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Abstract
Budget pacing is a popular service that has been
offered by major internet advertising platforms
since their inception. In the past few years, auto-
bidding products that provide real-time bidding
as a service to advertisers have seen a prominent
rise in adoption. A popular autobidding stategy
is value maximization subject to return-on-spend
(ROS) constraints. For historical or business rea-
sons, the systems that govern these two services,
namely budget pacing and ROS pacing, are not
necessarily always a single unified and coordi-
nated entity that optimizes a global objective sub-
ject to both constraints. The purpose of this work
is to theoretically and empirically compare al-
gorithms with different degrees of coordination
between these two pacing systems. In particular,
we compare (a) a fully-decoupled sequential al-
gorithm; (b) a minimally-coupled min-pacing al-
gorithm; (c) a fully-coupled dual-based algorithm.
Our main contribution is to theoretically analyze
the min-pacing algorithm and show that it attains
similar guarantees to the fully-coupled canonical
dual-based algorithm. On the other hand, we show
that the sequential algorithm, even though ap-
pealing by virtue of being fully decoupled, could
badly violate the constraints. We validate our the-
oretical findings empirically by showing that the
min-pacing algorithm performs almost as well
as the canonical dual-based algorithm on a semi-
synthetic dataset that was generated from a large
online advertising platform’s auction data.

1. Introduction
Internet advertisers purchase advertising opportunities by
bidding in real-time auctions, and, to control their expendi-
tures, it is common for advertisers to set budgets for their
campaigns (Google, 2023b; Meta, 2023; Twitter, 2023).
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Budget pacing is a popular service offered by most advertis-
ing platforms that allows advertisers to specify their budgets
and then optimizes advertiser bids in real-time to maximize
advertisers’ return subject to the spend being at most the
budget. In the past few years, thanks to the increasing avail-
ability of ROS-related metrics, and the vastly improved
conversion prediction models, autobidding products have
seen a prominent rise in adoption (Center, [n. d.]; Google,
2023a). These tools provide value-optimizing real-time bid-
ding subject to return-on-spend (ROS) constraints (on top of
the existing budget constraints). Autobidding takes as input
high-level advertiser goals like the target cost per conversion
or acquisition and places real-time bids on a per-query basis
to optimize advertiser returns.

The algorithms that govern budget and ROS pacing, namely
value-optimization subject to budget and ROS constraints,
are not necessarily always a unified entity that optimizes
a global objective. See Appendix B for a detailed discus-
sion on the reasons. These services are often managed by
different business units within the same organization or by
different organizations altogether (many third-party demand-
side platforms offer autobidding services). This results in
different algorithms independently choosing/modifying ad-
vertisers’ bids. This is not surprising in light of the mean-
ingful gap between the times at which these products gained
traction, with budget pacing systems having been standard
and popular much earlier. As a result, even if the objec-
tives of both services are aligned, the presence of budget
and ROS constraints can introduce inefficiencies in the bid-
ding process when the systems are decoupled. How do the
fully decoupled and fully coupled optimal pacing services
compare? Is there a way to operate the pacing service that
obtains the best of both worlds: i.e., (a) maintain the theoret-
ical guarantees of the fully coupled optimal pacing service,
while (b) still being only minimally coupled? Our contribu-
tion in this work is to design and analyze an algorithm that
approaches the best of both worlds. We establish this fact
both theoretically and empirically.

1.1. Pacing Services
Pacing services are online algorithms that adaptively ad-
just advertisers’ bids based on auction feedback to maxi-
mize certain objectives while satisfying different constraint.
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Nowadays, a popular paradigm in internet advertising mar-
kets is that of value maximization (Center, [n. d.]; Google,
2023a). Unlike the usual quasilinear utility model, where
the bidder seeks to maximize the difference between their
value and payment, the bidder’s stated objective in autobid-
ding/budgeting products is to maximize their overall value
(e.g., the number of conversions or conversion value) while
respecting their budget and ROS constraints. For example,
a bidder could ask to maximize the total number of conver-
sions they get, subject to spending at most $1000 and not
paying more than $5 per conversion. Figure 1a illustrates
a joint optimization pacing service, which we also refer to
as a dual-optimal pacing service, which takes as input the
advertiser’s budget and ROS target, and then automatically
bids on behalf of the advertiser in the platform’s auction.
Importantly, the pacing services maintain a feedback loop
that monitors the real-time spend and conversions from the
auction and uses this information to adjust bids.

In Figure 1b we illustrate a typical sequential pacing service
in which the ROS pacing service feeds bids to the budget
pacing service, which, in turn, bids in the platform’s auction.
Each service consumes the spend and conversion feedback
from the auction to adjust bids dynamically. The benefit of
the sequential optimization architecture is its decoupled na-
ture, i.e., it can operate separate modules for budget pacing
and ROS pacing.

We also consider a third minimally coupled architecture
(Figure 1c), which we call the min pacing service. Rather
than organizing the pacing services sequentially, they are
organized in parallel. For each auction, the bid is obtained
by taking the minimum of the bids generated by the two sys-
tems. While more generally one can think about other reduc-
tion operations of the two pacing systems’ bids, as we show
in this work, the min pacing already performs quite well and
achieves the performance of the joint dual-optimal pacing
service both theoretically and empirically, while still being
only minimally coupled. Moreover, a significant advantage
of the min pacing service (due to its minimally coupled
nature) is its practicality, whereas the joint dual-optimal pac-
ing, although being the natural solution following standard
duality, can be prohibitive to implement in practice.

To see why a fully-coupled pacing system can be less feasi-
ble in practice, we start with how these services are provided
in the broader context of online advertising. In the indus-
try, budget constraints and ROS constraints are handled by
separate teams for various reasons. For clarity, we’ll re-
fer to the former service as budget pacing and the latter as
auto-bidding. In our optimization formulation, we assume
the value is given, but in practice, it is usually a predicted
quantity (e.g., predicted click-through or conversion rate).
One main task of the auto-bidding service, on top of set-
ting the bids, is actually to come up with the predictions.

There is great heterogeneity in the prediction task across
different types of advertising campaigns based on: (1) what
features are available for prediction, e.g. campaigns from
different channels such as search, video, news feed, app
store, display or cross-channel; (2) the value that’s actu-
ally getting predicted, e.g. service sign-up, in-app purchase,
unique viewership etc. Thus, the (in-house) auto-bidding
service is provided by different teams (across different or-
ganizations) for different types of campaigns. On the other
hand, budget pacing has existed since the very early days
and is fairly homogeneous for all types of campaigns, so
this service is typically provided by one single team for all
campaigns. Advertisers usually use budget pacing provided
by the platform since it has the spending information with
the lowest latency (to avoid overspending). Consequently,
auto-bidding and budget pacing are run in different servers
with different underlying infrastructure, data pipeline, log-
ging, and latency requirements, all in a distributed manner
at the internet scale. We include more background on the
practicality considerations in Appendix B.

1.2. Our Results
We compare all three algorithms described above, both the-
oretically and empirically. We next describe the algorithmic
implementations of the pacing services, the empirical evalu-
ation, and our theoretical analysis. Our main contribution
is a theoretical analysis of the min-pacing algorithm and
shows that it obtains the best of both worlds, i.e., its per-
formance approaches that of the joint dual-optimal pacing
service, while still being essentially decoupled much like
the sequential pacing architecture. On the other hand, we
show that the sequential architecture itself is a very poor
choice: it either violates constraints by Ω(T ) or has a re-
gret of O(T ), when there is a finite horizon of T repeated
auctions.

Algorithmic implementation. In this work, we consider
uniform bidding policies (which were first proposed and
analyzed in Feldman et al. 2007) that multiplicatively scale
advertisers’ values, which are usually generated using ad-
vanced machine learning prediction algorithms (McMahan
et al., 2013; He et al., 2014; Zhou et al., 2018; Juan et al.,
2016; Lu et al., 2017). Uniform bidding is appealing for its
simplicity, can be shown to be optimal in many settings, and
is extensively used in practice (Aggarwal et al., 2019). The
bid multiplier k of the uniform bidding policy is adjusted
in real-time using a feedback loop. While many choices
are possible for the feedback loop, in this work we consider
Lagrangian dual algorithms, which are the work-horse algo-
rithms of budget pacing (Balseiro and Mirrokni, 2022). At
a high level, these algorithms introduce a dual variable for
each constraint and then adjust these dual variables dynami-
cally using a first-order algorithm. The final bid multiplier
is calculated using these dual variables. Dual-based algo-
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Figure 1. Three Different Pacing Services for Budget and ROS Constraints

ROS Violation Regret
Dual-Optimal O(

√
T ) O(

√
T )

Sequential Ω(T ) Ω(T )

Min O(
√
T ) O(

√
T )

Table 1. Summary of our theoretical evaluation.

rithms have strong performance guarantees and have been
shown to subsume PID controllers—one of the most popular
feedback controllers used in practice (Tashman et al., 2020;
Zhang et al., 2016; Smirnov et al., 2016; Yang et al., 2019;
Ye et al., 2020; Balseiro et al., 2022c). Therefore, we be-
lieve the algorithms studied in this paper are representative
of those used by pacing services in practice. We provide
more details on the concrete algorithmic implementation in
Section 2.

Theoretical evaluation. We evaluate the three algorithms
along two dimensions: ROS constraint error, and conversion
value. Budget constraints are hard in practice, i.e., pacing
algorithms can no longer participate in auctions when bud-
gets are exhausted. In contrast, ROS constraints are often
soft: while small violations are permitted, large violations
are undesirable. Finally, the conversion value garnered be-
fore the budget runs out should be as large as possible. We
benchmark algorithms by looking at their regret relative
to the conversion value of an offline optimum pacing strat-
egy satisfying budget and ROS constraints. Our results are
summarized in Table 1.

Technical contribution. Our evaluation is performed in a
statistical environment under uncertainty. In other words, we
assume that values and competing bids are drawn indepen-
dently from a distribution that is unknown to the algorithms.
We consider a finite horizon with T repeated auctions in

which the budget B is proportional to the number of auc-
tions, i.e., B = ρT for some fixed ρ > 0. Recently, (Feng
et al., 2022) showed that the joint dual-optimal algorithm
scores high along all dimensions. It violates the ROS con-
straint by an amount O(

√
T ), and attains a regret (conver-

sion value garnered before the budget runs out relative to
offline optimum) of O(

√
T ). Our main result in this paper

is to show that the min pacing algorithm also scores high
along both dimensions, achieving O(

√
T ) bounds similar to

those of the dual-optimal pacing algorithm. The analysis of
the min pacing algorithm is challenging because we do not
have access to a Lyapunov function, as in the dual-optimal
pacing case. Instead, we analyze the algorithm by carefully
studying the dynamics of the dual variables, which evolve
according to a complex stochastic process. In particular,
using the ODE technique for recursive algorithms, we first
prove that the min-pacing algorithm quickly identifies which
constraint binds and reaches the orbit of an optimal solu-
tion in O(

√
T ) time steps. Then, using stochastic stability

tools, we argue that the algorithm never leaves the orbit of
an optimal solution with high probability. We conclude by
showing that the regret accumulated once the algorithm is in
orbit is small using results from online convex optimization.

We finally argue that sequential pacing leads to unacceptable
levels of ROS constraint violation or regret. In particular,
we show any instantiation of the sequential pacing algorithm
can have either linear (i.e. Ω(T )) ROS violation or linear
regret on some instances.

Empirical evaluation. Section 4 explains in detail our
evaluation methodology, including how we construct our
semi-synthetic dataset, how we obtain the different quanti-
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ties in our optimization formulation (1) based on real auction
data. Here we give a high-level summary of our result. The
objective of the algorithms is to maximize conversion value
subject to budget and ROS constraints. In our simulations,
as explained in Section 4, we strictly enforce the budget
constraint, terminating simulations once it’s violated. How-
ever, we do not impose a similar hard limit on the ROS
constraint. This aligns with practice, as budget constraints
are typically more rigid than ROS constraints. Consequently,
direct comparison of conversion values is not possible, as
some algorithms might produce solutions that violate the
ROS constraint. Therefore, we evaluate the different algo-
rithms as follows. For each algorithm, we determine for
each percentile level z% violation of the ROS constraint,
the total conversion value obtained by the algorithm over
all the campaigns that violated the constraint by at most z%.
By comparing these quantities, we can obtain the following
critical insight: what percentage of ROS constraint violation
does the naive sequential pacing need, to obtain the same
value as the dual-optimal pacing does, at say 1% constraint
violation, or the min pacing does, at say 5% constraint vio-
lation. Such plot is shown in Figure 2b. A similar plot, but
instead focusing on the number of campaigns that violate
the ROS constraint by z% is portrayed in Figure 2a.

The high level summary is quite evident from these fig-
ures: the naive sequential pacing needs to violate the ROS
constraint by a very significant percentage to approach any-
where near the dual-optimal pacing, while the min pacing
approaches the dual optimal pacing at a much smaller per-
centage of ROS constraint violation. Moreover, in sequential
pacing, the feedback loops of budget and ROS can lead to
unstable dynamics. Our findings suggest avoiding the se-
quential implementation despite its simplicity and appeal,
and point towards having the two feedback loops either oper-
ating in a centralized manner, or at least minimally coupled
as in the min pacing architecture. Overall, our work has
implications for the design and operation of pacing services.
Our findings suggest that the lack of coordination of sequen-
tial pacing can lead to suboptimal and unstable outcomes.
Advertising should, whenever possible, adopt algorithms
that have some level of coordination between budget and
ROS pacing. If centralized architecture is not an option,
then the minimally-coupled min pacing architecture is a
simple, practical and high-performant option to consider.

1.3. Related Work
We discuss here the paper that is most related to ours, and
due to lack of space, we discuss other related work in Ap-
pendix A. In independent work, Lucier et al. (Lucier et al.,
2023) studied a conceptually similar, yet different, algorithm
that uses the final bid as the minimum of the bids from the
two pacing services. But unlike ours, the bid they use from
each pacing service is different from the dual-optimal bid

for that service. More importantly, they study a multi-bidder
setting (unlike our single bidder setting) and their primary
quantity of interest is the loss in liquid welfare, namely, the
budget-capped sum of values obtained by all agents, when
all of them employ this bidding algorithm. They establish
that when the autobidding algorithms of agents play against
each other, the resulting expected liquid welfare is at least
half of the optimal expected liquid welfare achievable. For
a single-bidder setting in which competing bids are drawn
i.i.d. their results imply a regret bound of O(T 7/8) as op-
posed to the tight O(

√
T ) guarantee we prove.

2. The Setup
In this section, we define a formal model for budget and
ROS constraint pacing. We consider a single bidder who
participates in T repeated auctions. The bidder derives
a value of vt ∈ [0, 1] from getting allocated in auction
t = 1, . . . , T . Upon submitting a bid of bt, the bidder gets
an allocation of xt(bt) and an expected payment of pt(bt).
I.e., xt : R≥0 → [0, 1], and pt : R≥0 → [0, 1] are the
allocation and payment functions respectively. Note we
assume without loss of generality (by scaling) that vt, xt, pt
are all in [0, 1]. The tuple γt = (vt, xt, pt) is drawn i.i.d.
every round from an unknown distribution P . We denote the
sequence of T samples by −→γ := {γ1, γ2, . . . , γT } ∼ PT

and sequences of length ℓ ̸= T by −→γ ℓ where needed. At the
beginning of round t, the bidder has knowledge of the value
vt and the historical information of past auctions to decide
on a bid, bt. Denote δt = (xt(bt), pt(bt)) to represent the
outcome of the auction at round t. At the end of round t, the
bidder observes δt. Thus, the historical information at the
beginning of round t is ht = {(vs, δs)}s≤t−1.

The optimization objective. The advertiser is a value-
maximizer and seeks to maximize the overall value while
respecting the budget of B dollars and the ROS constraint.
Formally, the bidder’s optimization problem is stated as
follows:

maximize
bt:t=1,··· ,T

∑T
t=1 vt · xt(bt)

subject to
∑T

t=1 pt(bt) ≤
∑T

t=1 vt · xt(bt),∑T
t=1 pt(bt) ≤ B

(1)

The first constraint is the ROS constraint, which states that
for every dollar spent, there is at least a dollar of value.1 The
second constraint is the budget constraint. We define the
per-round budget by ρ := B/T . In round t the bidder bids
bt = πt(vt, ht). The function πt(·, ·) could be randomized.

Truthful auctions, nontruthful auctions, uniform bid-
1More generally, one can have the constraint to state that for

every dollar spent, there is at least τ dollars of value. But without
loss of generality, one can set τ = 1. The update to the bidding
formula as a function of τ is quite straightforward, and we skip
this here to avoid carrying the notational clutter of τ everywhere.
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ding policy. We restrict attention to a uniform bidding
policy, which computes a bid multiplier kt independently of
the current value vt so that the bid submitted is bt = kt · vt.
If the underlying auction is truthful2, Aggarwal et al. (2019)
showed that the optimal bidding algorithm for problem (1)
is indeed a uniform bidding policy, and hence the restriction
to uniform bidding is without loss of generality. If the un-
derlying auction is non-truthful, the restriction to uniform
bidding can be made without loss if the buyer has access to
an optimizer gt(v) that computes the optimal bid to submit
in a one-shot auction for any given true value3 v. In this
case, bidding bt = gt(kt ·v) would be optimal for the bidder
due to the revelation principle.

2.1. The Bidding Algorithms
Despite the simplicity and appeal of uniform bidding, com-
puting the optimal multiplier kt requires knowledge of the
sample path −→γ , while information is only revealed online.
Thus, to approach the performance of uniform bidding pol-
icy in an online setting, a standard technique is to dualize the
constraints and look at the Lagrangian dual of the problem.
We introduce dual variables µ ≥ 0 for the budget constraint
and λ for the ROS constraint and write Lagrangian dual of
the problem (1):

min
λ≥0,µ≥0

max
bt:t=1,··· ,T

{
Tρµ+

T∑
t=1

(
(1 + λ)vt · xt(bt)

−(µ+ λ)pt(bt)
)}

.

(2)

At each time t, the Lagrangian dual variables λt, µt can be
updated using first-order algorithms, which, as we explain
below, employ as gradients the per-period constraint viola-
tion. Then, we compute the multiplier kt as a function of
λt, µt and set the bid of bt = kt · vt.
Dual-Optimal Pacing. We now discuss how to derive the
optimal bidding multiplier kt when the underlying auction
is truthful. Note that the Lagrangian dual problem (2) be-
comes separable over time after dualizing the constraints.
Therefore, at time t, assuming that the dual variables are µt
and λt, the optimal bid by solving (2) is

bdual−opt
t = argmax

b
{(1 + λt) · vt · xt(b)− (µt + λt)pt(b)}

= argmax
b

{
1 + λt

µt + λt
· vt · xt(b)− pt(b)

}
=

1 + λt

µt + λt
· vt ,

(3)

where the second equation follows from extracting the factor
(µt+λt) and the last because the bidder’s problem is equiva-
lent to that of bidding in a truthful auction when the value is

2An auction is truthful if a (profit-maximizing) bidder’s utility
is maximized when reporting the true value, i.e., v ∈ argmaxb{v ·
xt(b) − pt(b)}. Note the definition of truthful auction is for the
quasi-linear utility even though the actual bidder utility considered
in the auto-bidding setting is the overall value instead.

3If the bidder had access to xt(·) and pt(·) before
placing the bid at time t, the optimizer is gt(v) ∈
argmaxb {v · xt(b)− pt(b)}.

(1+λt)/(µt+λt)vt. In other words kt = (1+λt)/(µt+λt).
Note that kt is multiplicatively inseparable across λt and
µt, therefore, we need a centralized pacing to update kt.

The dual variables are updated using feedback loops based
on the auction result that have natural self-correcting fea-
tures to prevent constraint violations (see Algorithm 1). For
example, in the case of the budget constraint, the feedback
loop in (5) seeks to equate the actual spend of the auction
pt(bt) with the per-round budget ρ to satisfy the budget
constraint (whenever this constraint is binding). Mathemat-
ically, the budget and ROS dual variables are updated in
(4) and (5) using multiplicative weight updates with the
“gradients” set to be the per-period constraint violations of
the budget and ROS dual variables. We refer the reader to
(Balseiro and Gur, 2019; Feng et al., 2022) for more de-
tails. Feng et al. (2022) show that this specific setup obtains
near-optimal regret O(

√
T ), where regret is the difference

between the offline optimal total value and the bidding pol-
icy’s total value.

Algorithm 1 Dual-Optimal Pacing
Initialize: Initial dual variables λ1 = 1, µ1 = 0, total initial
budget B1 := ρT , gradient descent step-sizes α and η;
for t = 1, 2, · · · , T do

Observe the value vt, and set the bid

bt = min

{
1 + λt

µt + λt
· vt, Bt

}
.

Update the dual variable of the ROS constraint

λt+1 := λt · exp
(
− α · (vt · xt(bt)− pt(bt))

)
. (4)

Update the dual variable of the budget constraint as

µt+1 := µt · exp
(
− η · (ρ− pt(bt))

)
. (5)

Update the leftover budget Bt+1 = Bt − pt(bt);

Sequential Pacing. If one were to consider the problem (1)
with just the budget constraint, the bidding policy (from
Lagrangian duality with the ROS dual variable λt = 0)
would be to bid bt = vt/µt, with the dual variable µt alone
getting updated as in Algorithm 1. Similarly, if one were to
consider the problem (1) with just the ROS constraint, the
bidding policy (from Lagrangian duality with budget dual
variable µt = 0) would be to bid bt = vt · 1+λt

λt
, with the

dual variable λt alone updated as in Algorithm 1. Given the
historical context mentioned earlier, budget pacing systems
have been around for longer than ROS pacing optimization.
Therefore, it is not unexpected to have separate servers han-
dling the feedback loops of the budget and ROS constraints
and the final bid constructed in a sequential manner, namely,

bseqt = min

{
1 + λt

λt
· 1

µt
· vt, Bt

}
. (6)
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In other words, the ROS constraint pacing service deter-
mines an intermediary bid b̂t = (1 + λt)/λt · vt which is
fed to the budget service and, in turn, the budget pacing
service operates on the scaled bid b̂t to get the final bid of
b̂t/µt (and also capped by the remaining budget Bt). While
not optimal, this implementation has the benefit of being de-
centralized, i.e., it could operate separate servers for budget
pacing and ROS pacing, that (a) only communicate the tem-
porary bid b̂t and (b) could update their respective variables
at different frequencies.

Min Pacing. If the transition from sequential to dual-
optimal pacing proves prohibitively expensive in the short
term for organizational or engineering reasons, we pro-
pose and study another decentralized optimization, that we
call the min pacing service. Rather than applying the bid-
lowering operations of the two pacing systems sequentially,
we take the minimum of the bids generated by the two sys-
tems:

bmin
t = min

{
1 + λt

λt
· vt,

1

µt
· vt, Bt

}
. (7)

The corresponding dual variables can follow the same up-
date rules in Algorithm 1 (i.e., (4) and (5)). The min pac-
ing service operates in parallel instead of sequentially and
also requires minimum coordination between budgeting and
ROS pacing. We will show that even though bmin

t is in gen-
eral different from bdual−opt

t , and thus not the optimizer of
the Lagrangian dual (2), bidding bmin

t nonetheless achieves
the same asymptotically optimal guarantees on regret and
constraint violation as the dual-optimal pacing algorithm.

3. Regret Analysis of the Bidding Algorithms
In this section we analyze the performances of the pacing
algorithms introduced in the previous section, and we use
the notions of regret and constraint violation. To define the
regret, we first define the reward of some pacing algorithm
Alg for a sequence of requests −→γ over a time horizon T as

Reward(Alg,−→γ ) :=

T∑
t=1

vt · xt(bt), (8)

where bt’s are the algorithm’s bids. Note the def-
inition doesn’t require Alg to satisfy the budget and
ROS constraints. Next, we define the optimal reward
Reward(OPT,−→γ ) for a sequence −→γ as the optimal objec-
tive of the offline optimization problem (1) given −→γ . The
regret of Alg is

Regret(Alg,PT ) := E−→γ ∼PT [Reward(OPT,−→γ )

− Reward(Alg,−→γ )] .
(9)

We remark that we define Reward for some specific drawn
sequence, whereas Regret is defined with respect to a distri-
bution.

Note that Regret itself does not fully measure the perfor-
mance of Alg since the reward of Alg does not capture the

budget and ROS constraints. All the pacing algorithms we
discuss will cap the bid by the remaining budget, so the
budget constraint is always satisfied. To evaluate our algo-
rithms, we first need the following notion of stopping time.

Definition 3.1. The stopping time τ of Algorithm 1, with
budget B is the first time τ at which

∑τ
t=1 pt(bt) + 1 ≥ B.

Intutively, τ is the first time step when the total payment
almost exceeds the total budget. We also explore the budget
endurance of a bidding algorithm, that is, whether T − τ is
small for any −→γ or, in other words, the budget always runs
out close to the end of the horizon.

In addition, we focus on the violation of the ROS constraint,
i.e.

∑T
t=1 pt(bt) −

∑T
t=1 vt · xt(bt). For constraint error

we look at ex-post guarantees that hold for any −→γ .

In particular, both the joint pacing and min pacing algo-
rithms achieve asymptotically nearly optimal guarantees in
terms of the regret and constraint error in the stochastic i.i.d.
setting. For simplicity we assume in our analysis that the
allocation and payment functions are from truthful auctions.
The result for the joint algorithm is already known from
previous work in (Balseiro et al., 2022b; Feng et al., 2022).

We start with analyzing the regret of MinPacing by consid-
ering a continuous-time approximation of the algorithm in
which multipliers are updated using the expected gradients
instead of their noisy stochastic counterparts used in the real
algorithm.

Before proceeding with our analysis we provide some useful
definitions. We denote by

gBUD(k) = ρ− Eγ [p(k · v)] ,

gROS(k) = Eγ [v · x(k · v)− p(k · v)]

the expected error in the budget and ROS constraints when
the multiplier is k. Expectations are taken with respect to
the random tuple γ = (v, x, p). We plot some examples in
Figure 3, which is located in the appendix. We require the
following assumptions in our analysis.

Our first assumption is that the functions gROS and gBUD

cross zero once and from above, and that they are Lipschitz
continuous.

Assumption 3.2. We assume that the functions gROS(k)
and gBUD(k) are Lg-Lipschitz continuous in k and bounded.
Moreover, the following hold:

(1) The function gBUD(k) crosses the non-negative k-axis
once at kBUD > 0 and from above. That is, for any 0 ≤
k < kBUD, we have gBUD(k) > 0 and for any k > kBUD,
we have gBUD(k) < 0.

(2) The function gROS(k) crosses the positive k−axis once
at kROS > 1 and from above. That is, for any 0 < k <
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kROS, we have gROS(k) > 0 and for any k > kROS, we
have gROS(k) < 0.

When the auction is truthful, it can be shown that the func-
tions gROS and gBUD always cross the positive axis from
above. Therefore, the set of crossing points is always an
interval. Assumption 3.2 rules out the possibility of multiple
crossing points and, as we shall discuss later, implies the
uniqueness of the optimal bidding strategy. This assump-
tion is related to the so-called “general position” condition,
which is pervasive in online allocation problems (see, e.g.,
Devanur and Hayes 2009; Agrawal et al. 2014). The Lips-
chitz continuity of the gradients is a common assumption in
the analysis of online algorithms (Hazan et al., 2016) and
holds when either the interim allocation and payment are
smooth, or the distribution of values is absolutely continu-
ous. For example, this assumption might fail to hold in a
second-price auction when values and competing bids are
discrete (there, gROS and gBUD are piecewise constant). In
this case, it is possible to recover Lipschitz continuity by
adding a small amount of random noise to the bids, which
mollifies the functions gROS and gBUD, without signifi-
cantly impacting the performance of our algorithm. As a
result, Assumption 3.2 is not too restrictive.

Under Assumption 3.2, we can upper bound the optimal
performance in terms of the value collected by a uniform
bidding policy that bids the minimum of the multipliers
kBUD and kROS, and provide a simple characterization
of an optimal dual solution. The dual problem becomes
minµ≥0,λ≥0 D(µ, λ) where

D(µ, λ) := maximize
k≥0

{(1 + λ)Eγ [v · x(k · v)]ρ · µ

−(λ+ µ)Eγ [p(k · v)]} ,

is the dual function. A proof of Lemma 3.3 is presented in
Appendix C.2.

Lemma 3.3. Suppose Assumption 3.2 holds. There exists
an optimal solution with λ∗ = 0 and µ∗ = 1/kBUD if
kBUD ≤ kROS or λ∗ = 1/(kROS − 1) and µ∗ = 0 if
kROS ≤ kBUD. Moreover, with k∗ = min(kROS, kBUD),

E−→γ ∼PT [Reward(OPT,−→γ )] ≤ T ·D(µ∗, λ∗)

= T · Eγ [v · x(k∗ · v)]

Assumption 3.4. The problem is non-degenerate, namely,
kBUD ̸= kROS.

The non-degeneracy assumption guarantees that only one
of the budget constraint or the ROS constraint can be bind-
ing for the uniform bidding policy. This type of assump-
tion is common in the online allocation literature (see, e.g.,
Jasin and Kumar 2012). In practice, the data comes from
a random process, and the budget and targets are given by
the advertiser. Notice that the degenerate case stays in a

lower dimension manifold, thus it is very likely that the non-
degenerate assumption holds. Under the non-degeneracy
assumption, the optimal multiplier is either k∗ = kBUD or
k∗ = kROS. We remark that this assumption is only im-
posed to simplify the analysis. In Appendix C.4, we discuss
how to provide a similar regret bound of

√
T for the degen-

erate case using techniques similar to the ones presented in
this paper.

Assumption 3.5. The gradients of the budget and ROS
constraints have second moments bounded by G2.

Assumption 3.5 is common in the analysis of first-order algo-
rithms for online optimization, where second moments are
usually required to be bounded (Hazan et al., 2016). When
the auction is truthful, a sufficient condition for this assump-
tion to hold is that values have bounded second moments,
i.e., Eγ [v

2] < ∞.

Assumption 3.6. There exists some δ > 0 and ℓ > 0
such that for all k ∈ [k∗ − δ, k∗ + δ] we have that either
−gBUD(k)(k − k∗) ≥ ℓ · (k − k∗)2 if k∗ = kBUD or
−gROS(k)(k − k∗) ≥ ℓ · (k − k∗)2 if k∗ = kROS.

Our final assumption requires that the spend and conversion
value are locally strongly monotone around the optimal so-
lution. In other words, we require the gradients to be locally
linear around point where they cross the positive axis, for
example, when the budget constraint is binding, we require
that gBUD(k) ≈ k∗ − k around k∗ (see Fig 3). Similarly to
our Lipschtiz condition, we can guarantee this assumption
holds by randomly perturbing bids. Assumption 3.6 is also
common in the analysis of online algorithms, where it is
sometimes assumed that objective functions are strongly
convex, which is equivalent to gradients being strongly
monotone. See chapter 2.3 of Hazan et al. (2016) for a
discussion on handling functions that are not strongly con-
vex problems in online optimization algorithms by reducing
them to the strongly convex case.

The next theorem shows that the MinPacing algorithm has
an O

(
T 1/2

)
regret bound.

Theorem 1. Suppose Assumption 3.2-3.6 hold. Then, the
regret of MinPacing can be bounded as:

Regret(MinPacing,PT ) = O
(
T 1/2

)
.

One can show that the optimal joint algorithm also
has O

(
T 1/2

)
regret bound, which showcases that the

MinPacing algorithm achieves good practical performance.

Analyzing the min algorithm is challenging as we do not
have access to a Lyapunov function as in the joint pacing
case. We analyze the algorithm by carefully studying the
dynamics of the dual variables under the min algorithm.
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Note that in light of Lemma 3.3, if we knew in advance
which constraint is binding, then we could attain low regret
by bidding using the multiplier associated with the binding
constraint (k = 1/µ for the budget constraint and k =
(1+λ)/λ for the ROS constraint). Our proof technique is to
show that with high probability the algorithm detects in

√
T

steps which constraint is binding and then bids according to
the optimal bidding multiplier for the binding constraint. A
detailed proof of Theorem 1 is presented in Appendix C.3.

Next, we present the constraint violation of the MinPacing
algorithm. Recall that the bid is capped by the remaining
budget; thus, the budget constraint will always be satisfied.
Instead, we show that the budget always runs out O(

√
T )

close to the horizon’s end. On the other hand, for ROS
constraint, we allow small violations throughout the horizon,
and we can show that the violation is at most O(

√
T ). The

proof of Theorem 2 can be found in Appendix C.5.

Theorem 2. Suppose payments are at most the bid, i.e.,
pt(b) ≤ b · xt(b) for all b ≥ 0. Then, MinPacing satisfies
the following:

(ROS constraint.) The violation of the ROS constraint is
at most O(

√
T log T ), i.e.,

∑T
t=1 pt(bt) − vt · xt(bt) ≤

O(
√
T log T ).

(Budget endurance.) The budget always runs out close
to the end of the horizon, i.e., stopping time τ satisfies
T − τ ≤ O(

√
T ).

Finally, we show that the sequential algorithm fails to work—
it may have Ω(T ) regret and/or Ω(T ) constraint violation.
The proof of Proposition 3.7 is presented in Appendix D.

Proposition 3.7. For any initial dual variables µ0, λ0 and
step-sizes η, α, there is an instance on which the algorithm
either violates the ROS constraint by at least Ω(T ) or has a
regret at least Ω(T ).

4. Empirical Study
We empirically evaluate the three algorithms discussed in
Section 2.1. For confidentiality and advertiser privacy rea-
sons, we use a semi-synthetic dataset based on actual adver-
tising auctions from an online platform, where the advertis-
ing campaigns all use a bidding product which is captured
by our optimization formulation (1). In particular, an ad-
vertiser bids (and pays) for clicks, i.e., submits bids for
cost-per-click, and each click comes with an expected (or
predicted) number of conversions (conditioned on the click)
denoted as pconv, e.g. purchase at advertiser’s site. The
advertiser has an input target cost per conversion (denoted as
tcpa), which can be considered as how much the advertiser
values each conversion, so the advertiser’s (expected) value
of a click is the product of tcpa and the click’s pconv. The
advertiser’s objective is to maximize the total value over

won clicks with constraints on total spend being below an
input budget and average cost per conversion below tcpa.
In our formulation (1), this corresponds to: (i) The value
vt is equal to tcpa · pconvt (note both tcpa and pconvt are
taken to be independent of the bid; while it is obvious for
tcpa to be independent of the bid, pconv’s independence
is supported by empirical studies (Varian, 2009)); (ii) The
allocation xt(bt) is the number of clicks won by the adver-
tiser at a bid of bt; (iii) The payment pt(bt) is the cost of
the clicks won at a bid of bt. We denote the advertiser’s total
objective value as conv_val.

Semi-synthetic Dataset. Since we study the stochastic set-
ting where the functions xt(·), pt(·) are drawn i.i.d. from
some distribution, our dataset consists of a set of generative
models. The parameters of the generative model for any
given (actual) advertising campaign we study are derived
from the performance of that campaign in the (actual) auc-
tion. We discuss the generative model in more details in
Appendix E.1.

Evaluation Setup. Our dataset includes 105 randomly se-
lected campaigns, and for each campaign, we set the budget
constraint (i.e. ρT in (1)) using its actual daily budget B.
We divide the day into 10-minute periods and use T = 144.
For each campaign, we simulate an algorithm 10 times
to take the average total spend and total conv_val (i.e.,
conversion value) as the result of the algorithm on that
campaign. We include more details on how we simulate
the algorithms as well as visualizations in Appendix E.2.
For each algorithm, we evaluate it on all the campaigns
to get 105 simulated (spend, conv_val) pairs, and arrange
them into buckets based on the relative ROS constraint error
max (0, spend/conv_val − 1). We look at the cumulative
total conv_val (and number of campaigns) achieved by the
algorithm through the ROS violation buckets. That is, for
the bucket of at most z% relative error in the ROS con-
straint, we get the total value over all campaigns such that
the algorithm has a relative ROS violation of at most z%.
The cumulative total value (and number of campaigns) over
ROS error buckets gives us the picture of how an algorithm
performs with respect to both the optimization objective and
the constraints.

Benchmark. For each campaign, our benchmark is the
fluid relaxation of (1), but restricted to uniform bidding, i.e.,
bt = k · vt for all t.

maximize
k≥0

∑T
t=1 E[vt · xt(k · vt)]

subject to
∑T

t=1 E[pt(k · vt)] ≤
∑T

t=1 E[vtxt(k · vt)],∑T
t=1 E[pt(k · vt)] ≤ ρT .

(10)
We defer details of the benchmark to Appendix E.3.
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Table 2. Cumulative fraction of campaigns and total conversion (normalized by total benchmark) over the ROS relative error buckets.
Relative Constraint Violation

Alg (≤)0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 ∞

Frac. Dual-optimal 0.62 0.71 0.75 0.78 0.80 0.82 0.83 0.84 0.85 0.86 0.87 1.00
of Min. 0.49 0.64 0.72 0.77 0.80 0.81 0.83 0.84 0.85 0.86 0.87 1.00

Campaigns Seq. 0.11 0.15 0.18 0.22 0.26 0.29 0.32 0.35 0.38 0.40 0.43 1.00

Cum. Dual-optimal 0.62 0.75 0.77 0.81 0.83 0.84 0.84 0.85 0.85 0.85 0.86 0.88
Total Min. 0.42 0.73 0.82 0.86 0.88 0.89 0.89 0.90 0.91 0.91 0.91 0.94
Value Seq. 0.19 0.23 0.27 0.30 0.33 0.36 0.38 0.40 0.42 0.44 0.46 1.44

4.1. Results
We show the performance of the three algorithms in Table 2,
where each column is associated with a particular error
bound, and we show the cumulative fraction of campaigns
(top) and cumulative total value of campaigns (bottom) with
relative ROS error up to the bound in each column. We
normalize the quantities in the table: for value we normalize
by our benchmark and for number of campaigns we normal-
ized by the total number 105. We look at the results both in
terms of how well the algorithms respect the ROS constraint,
and also the optimization objective of value maximization.
We discuss the stability and convergence of the bidding
multipliers generated by the algorithms in Appendix E.4.

ROS constraint. Both the dual-optimal and min pacing
algorithms perform well at keeping the relative ROS error
reasonably small, e.g., both have a reasonably large 80% of
campaigns finish with at most 20% relative ROS error. The
sequential pacing algorithm performs poorly in obeying the
ROS constraint: only around 11% of campaigns satisfy the
ROS constraint, and in Figure 2(a) we see a considerable
fraction > 20% of campaigns spend more than twice the
conversion value.

Value maximization. Both the dual-optimal and min pacing
algorithms also do well at achieving good value. Recall our
benchmark on each campaign should be fairly close to the
expected optimal value of the fluid relaxation where both
the ROS constraint and budget constraint are satisfied on
expectation, so it is roughly an upper bound on the expected
offline or hindsight optimal, and will be especially meaning-
ful when an algorithm also obey the constraints relatively
well. The dual-optimal pacing and min algorithms both
achieve very large fraction of the benchmark with fairly
small ROS error, e.g., for dual-optimal pacing the cam-
paigns with ≤ 15% relative ROS error in total get 81% of
the total benchmark conversion values over all campaigns,
and for min pacing it is 86% of the total benchmark. The
sequential pacing algorithm gets much smaller total value
compared to the dual-optimal and min pacing algorithms
over campaigns finishing with small ROS error.

Stability and Convergence. We observe that the trajectory
of bidding multipliers generated by the dual-optimal and
min pacing algorithms converge to the optimal solution of
the benchmark (10). On the other hand, the bid multipliers
generated by the sequential pacing algorithm can be highly

(a) Number of campaigns

(b) Total conv_val

Figure 2. Cumulative number of campaigns and total conv_val
for each algorithm over the ROS relative error buckets.

unstable. We include the visualization and discussion of
the behavior of the three algorithms on a representative
campaign in Appendix E.4 (Figure 8).
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Work
Traditional auction theory in microeconomics studies maximizing objectives such as welfare, revenue and gains from trade
in the presence of buyer(s) with quasilinear utility, namely, a utility of v − p where v is the value derived and p be the
payment. In this work, we adopt a different behavioral model, namely, one where advertisers maximize their value, subject
to constraints on the return-on-spend (ROS) and total budget. As mentioned earlier, the significant rise in the adoption of
autobidding algorithms in the past few years (Center, [n. d.]; Google, 2023a) motivates the study of this model.

Optimal bidding algorithm for a single value-maximizing bidder with budget and/or ROS constraints. Aggarwal
et al. (2019) initiated the study of value-maximizing bidders (value maximizers for short) subject to quite general constraints
on value and cost. In particular, their model includes budget and ROS constraints. They show how the uniform bidding
strategy is optimal if and only if the underlying auction is truthful (where truthfulness is defined from the point-of-view of a
quasilinear bidder). Closest to our work is (Feng et al., 2022) who study the advertiser’s value maximization problem in the
presence of both budget and ROS constraints in an online repeated auction setting. They show that a specific instantiation of
what we call the joint pacing algorithm in this work achieves a O(

√
T log T ) regret while respecting both the budget and

RoS constraints in the stochastic i.i.d. setting. Their algorithm computes the bid as a function of the two Lagrange
multipliers exactly as in Equation (3).

Welfare in equilibrium among value maximizers. While the description so far, and also our work, focuses on a single
bidder’s optimal bidding problem, the equilibrium under the presence of multiple value maximizing bidders has also been a
very active area recently. Aggarwal et al. (2019) show how the VCG mechanism, which is welfare maximizing with
quasilinear utility maximizers, can achieve, in the worst case, only a fraction 1

2 of the optimal social welfare. Recent work
by Mehta (2022) shows how randomization can improve the efficiency beyond the 1

2 guaranteed by VCG, by establishing a
POA of 1.89 for 2 bidders and how the POA is unimprovable beyond 2 even with randomized mechanisms when
n → ∞. (Liaw et al., 2022) study whether non-truthfulness can improve the POA beyond 2 and show that this is not
possible with a deterministic mechanism. But with the combined power of randomization and non-truthful mechanisms, they
show how a randomized first-price auction can improve the POA to 1.8 for two bidders, but again show it is unimprovable
beyond 2 when the number of bidders is large. Departing from the no information case studied by the above referenced
papers, recent works by Balseiro et al. (2021b); Deng et al. (2021) show how to improve the efficiency under equilibrium
beyond 1

2 by adding boosts and reserves respectively, based on additional information from machine learned advice.

Revenue-optimal auction for value maximizers with budget and/or ROS constraints. Much like the design of optimal
auctions for utility-maximizing bidders (Myerson, 1981), a recent line of work has focused on the design of revenue optimal
mechanisms for value maximizers. Balseiro et al. (2021a); Li et al. (2020b) initiate this line of work, studying the revenue
optimal mechanism in the presence of RoS constraints, but no budget constraints, under various information structures
regarding whether or not the value is private, whether or not the advertiser specified target is private. (Balseiro et al., 2022a)
extend this work to include budget constraints for advertisers, and consider the information structure where value is public,
so are advertiser budgets, but advertiser specified target is private.

Optimal bidding algorithm for a single utility maximizing bidder with & without budget constraint. While works
dealing with budget and ROS constraints in the presence of value maximizers have already been discussed, there has been a
long line of work on doing the same for utility maximizers, but usually with just budget constraints. When values and
competing bids are drawn from i.i.d. distributions, Balseiro and Gur (2019) show that the dual subgradient descent
algorithm gives the optimal O(

√
T ) regret, and in the adversarial setting they show that it obtains the optimal asymptotic

competitive ratio, namely, B/T divided by the maximum value. Zhou et al. (2008) also study pacing in the adversarial
setting and give an optimal competitive ratio, but one that is differently parameterized compared to (Balseiro and Gur,
2019). Kumar et al. (2022) study an episodic setting and show how to compute per-period target expenditures based on
estimating the probability density based on samples, and ultimately pace based on these target expenditures. On similar
lines Jiang et al. (2020) also show how to obtain the optimal

√
T regret in a non-stationary setting by first learning the

probability distributions and then computing target expenditures based on those, using T log T samples per distribution. Our
paper is also loosely related with the rich literature about Learning to bid in repeated auctions (Borgs et al., 2007; Weed
et al., 2016; Feng et al., 2018; Balseiro et al., 2019; Han et al., 2020), in which the existing papers usually abstract this
problem as contextual bandits and do not incorporate budget or ROS constraints into them.
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Equilibrium among budget-pacing strategies of utility maximizers. There is a line of work studying equilibrium
outcomes of budget pacing agents interacting with each other. We refer the reader to (Gaitonde et al., 2022; Fikioris and
Tardos, 2022; Chen et al., 2021; Conitzer et al., 2022; Balseiro et al., 2015) and the references therein for more on this topic.
Interestingly, these papers show that uniform bidding is also optimal in the presence of budget constraints. Also, Balseiro
et al. (2017) perform a comprehensive study of different common budget-pacing strategies and compare the system
equilibrium in terms of their welfare, platform revenue, and advertiser utility.

Online resource allocation problems. The budget pacing problem discussed in the preceding paragraphs is known to be
a special case of online resource allocation problems, which have a long line of work. Most of the literature on this topic has
focused on the i.i.d. input model or the slightly more general random permutation model. Devanur and Hayes (2009)
introduce a training-based algorithm that learns the optimal dual variables from a batch of initial requests and then uses
those to assign the rest of the requests. They show how to obtain a O(T 2/3) regret for the budgeted allocation problem (also
known as the adwords problem) in the random permutation model. Feldman et al. (2010) obtain a O(T 2/3) regret for more
general linear packing problems in the random permutation model. Agrawal et al. (2014) obtain an improved O(

√
T ) regret

by repeatedly solving for the optimal dual variables at geometrically increasing time lengths. The algorithm of Kesselheim
et al. (2014) further solves a linear program at every step and apart from O(

√
T ), also obtain the optimal dependence on the

number of resources. Devanur et al. (2019) consider more general online packing and covering LPs, but in the i.i.d. model
and obtain a O(

√
T ) regret with the optimal dependence on the number of resources. Their algorithm does not need to solve

auxiliary linear programs if given an estimate of OPT. (Gupta and Molinaro, 2014; Agrawal and Devanur, 2015; Balseiro
et al., 2022b) make the formal connection between dual descent algorithms and online resource allocation, and show how
one can use dual descent algorithms as a black box to obtain a O(

√
T ) regret. In particular, (Balseiro et al., 2022b; Li et al.,

2020a) present simple algorithms that do not require solving auxiliary optimization problems.

B. Practicality considerations of pacing services
As we discussed in the introduction, while the fully coupled joint-pacing and minimally coupled min-pacing enjoy similar
performance guarantees, a significant advantage of the min-pacing algorithm is its ease of implementation in practice, which
is also the main motivation for us to analyze it theoretically.

If the advertiser uses an auto-bidding service from a third party and the budget pacing of the platform, anything other than
the min-pacing (i.e. the platform takes the min of the in-house budget-bid and the third-party ROS-bid) would likely require
the third party to share its inner bidding logic with the platform, which is also fairly infeasible.

Even if the advertiser lets the platform handle both budget and ROS constraints, it can be fairly infeasible to merge these
services beyond simple things like the min-pacing that takes a min of two bids before auction. One may imagine a scenario
that instead of sending the two bids, the servers can send the two dual variables λt, µt and compute the final bid according
to the dual-optimal joint-pacing formula before auction. This is plausible if all the products admit such a simple bidding
formula. However, even though our optimization formulation captures many of the most popular auto-bidding products on
the market, the auto-bidding teams still manage many (smaller) products with constraints or implicit business logic not
under our model, and the bidding formulas can be more complicated with many other dual variables depending on the
product. This makes it much more expensive to pass through all dual variables (or similarly to pass through the final bid for
some subset of products but the dual variables for other products) and apply complicated product-specific bidding logic
before auction, and thus it’s much more expensive in general for the platform to implement the dual-optimal joint-bidding
compared to min-pacing.

C. Proofs of Main Results
C.1. Proof Sketch of Main Result
To do so, we consider a continuous time approximation of the multipliers (λ(s)), µ(s)) in which we update them
continuously according to the expected gradients, and dynamics are governed by an ODE. The ODE traces the “expected”
path of the multipliers when the step-size is small. Here, we assume that step-sizes are α > 0 for both constraints. The
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kROS

k

gROS(k)

(a) Expected gradient of the ROS constraint gROS(k) =
Ev[v · x(k · v)− p(k · v)].

kBUD

k

gBUD(k)

(b) Expected gradient of the budget constraint
gBUD(k) = ρ− Ev[p(k · v)].

Figure 3. Expected gradients for an example in which values and competing bids are independent and exponentially distributed with
means 1/2 and 1, respectively. Also, ρ = 9/16. Both curves cross the positive k-axis once and from above (Assumption 3.2). Also, strong
monotonicity holds for this example (Assumption 3.6).

ODEs are obtained by considering the continuous approximation of multiplicative weight updates:

d

ds
log(λ(s)) = −gROS

(
kmin(λ(s), µ(s)

)
, (11)

d

ds
log(µ(s)) = −gBUD

(
kmin(λ(s), µ(s)

)
,

where

kmin(λ, µ) = min

(
1 + λ

λ
,
1

µ

)
.

The time in the ODE, which is denoted by s ≥ 0 can be mapped to a step t in the discrete-time stochastic system by setting
s = αt. In other words, the time in the ODE corresponds to the total distance traveled according to the step-size. We
assume throughout that the ROS constraint binds at optimality. A similar analysis holds for the budget constraint. Our proof
strategy is the following.

(1) Binding Constraint Identification. Setting the step-size to be α ≈ T−1/2, we show it takes order
√
T steps to be get to an

orbit of size ϵ of an dual optimal solution (λ∗, 0). The orbit is chosen so that the bidding formula in this region is
k = (1 + λ)/λ. We do so by first arguing that the ODE gets in a constant amount of time to the orbit of the optimal and
then arguing that the actual algorithm remains close to the expected path traced by the ODE with probability T−1/2 using a
discrete version of Gronwall’s Lemma to bound the absolute deviations and then invoking a concentration argument to
bound the maximum deviation in a stochastic sense.

(2) Orbital Stability. Once the algorithm reaches an orbit of an optimal solution, we show that it never leaves the orbit with
probability T−1/2. We prove this result by constructing a local stochastic Lyaponuv function using the KL divergence and
then invoking a classical result from stochastic stability.

(3) Regret Analysis. We conclude by showing that the regret accumulated once the algorithm is in the orbit of the optimal
solution is

√
T . For this step, we first lower bound the conversion value collected by the algorithm in terms of the dual

function D(λ, µ) and a complementary slackness term. Using weak duality, we can relate the first term to the optimal
performance. The complementary slackness term is controlled using standard regret bounds for multiplicative weight
updates.

C.2. Proof of Lemma 3.3
We first prove the upper bound on OPT and then the characterization of the dual optimal solution.
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Part 1 (weak duality). The upper bound follows from weak duality. Let λ ≥ 0 and µ ≥ 0 be the Lagrange multipliers for
the ROS and budget constraints, respectively. Moving the corresponding constraints in (1) to the objective, we obtain the
upper bound

E−→γ ∼PT [Reward(OPT,−→γ )] ≤ E−→γ ∼PT

[
max

bt:t=1,··· ,T

{
Tρµ+

T∑
t=1

(
(1 + λ) · vt · xt(bt)− (λ+ µ) · pt(bt)

)}]

= Tρµ+ TEγ

[
max

b
{(1 + λ) · v · x(b)− (λ+ µ) · p(b)}

]
= T

(
ρµ+max

k′≥0
Eγ [(1 + λ) · v · x(k′ · b)− (λ+ µ) · p(k′ · v)]

)
= T ·D(µ, λ) ,

where the first equation follows from using that the tuples γt = (vt, xt, pt) are drawn i.i.d. and that the problem is separable,
and the last equation because bidding a uniform multiplier of the value is optimal by (3).

Part 2 (characterization of dual optimal solutions). The characterization of the dual solution follows because there
exists an optimal solution in which either the dual variable of the budget constraint or the RoS constraint is zero. To see this,
fix some k > 0 and let Ck = {(µ, λ) ∈ R2

+ : k = (1 + λ)/(λ+ µ)} be all dual feasible solutions with a multiplier of k.
When the auction is truthful, we can write the dual function for (µ, λ) ∈ Ck as follows

D(µ, λ) = max
k′≥0

{(1 + λ)Eγ [v · x(k′ · v)] + ρ · µ− (λ+ µ)Eγ [p(k
′ · v)]}

= ρ · µ+ (λ+ µ) ·max
k′≥0

{
Eγ

[
1 + λ

λ+ µ
· v · x(k′ · v)− p(k′ · v)

]}
= ρ · µ+ (λ+ µ) · Ev [k · v · x(k · v)− p(k · v)] ,

where the second equation follows from extracting constant terms and the last because the bidding k · v is a best-response
for a bidder in a truthful auction in which their value is k · v. The set Ck is affine. Moreover, once we fix the value of k, the
dual objective D(µ, λ) is linear in the dual variables and, by individual rationality, the coefficients of the dual variables are
non-negative. Therefore, the dual function attains its maximum at an extreme point of D(µ, λ). Note that the extreme points
of Ck have either µ = 0 or λ = 0 since Ck is defined by the constraints µ ≥ 0, λ ≥ 0, and the hyperplane
k · µ+ (k − 1) · λ = 1. We now consider each case at a time.

Suppose at an optimal dual solution we have µ∗ = 0. By the Envelope Theorem we have that
∂D(µ, λ)/∂λ = Ev [v · x(k · v)− p(k · v)] = gROS(k). Therefore, Assumption 3.2 implies that
argminλ≥0 D(µ, λ) = 1/(kROS − 1) because the first-order conditions are such that gROS(kROS) = 0 and
kROS = (1 + λ∗)/λ∗ since µ∗ = 0. Thus, we have that the optimal dual objective value when µ∗ = 0 is

min
µ≥0,λ≥0

D(µ, λ) = D(0, λ∗) = (1 + λ∗) · Eγ [v · x(kROS · v)]− λ∗ · Eγ [p(k
ROS · v)]

= Eγ [v · x(kROS · v)]− λ∗ · gROS(kROS) = Eγ [v · x(kROS · v)] ,

where the third equation follows from the definition of gROS and the last because gROS(kROS) = 0 by Assumption 3.2. A
similar argument for the case when λ∗ = 0 implies that the optimal solution in that case is µ∗ = 1/kROS and
D(µ∗, 0) = Eγ [v · x(kBUD · v)].

Combining both cases and using that there always exists an optimal solution with either µ∗ = 0 or λ∗ = 0 we conclude that

min
µ≥0,λ≥0

D(µ, λ) = min

(
min
λ≥0

D(0, λ),min
µ≥0

D(µ, 0)

)
= min

(
Eγ [v · x(kROS · v)],Eγ [v · x(kBUD · v)]

)
= Eγ [v · x(k∗ · v)] ,

because the allocation is non-decreasing and letting k∗ = min(kROS, kBUD). The result follows.
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λ1 λ2

µ1

µ2

I

II

III
k(λ, µ) = kBUD

k(λ, µ) = kROS

Oϵ

(a) Case 1: ROS constraint is binding, i.e., kROS <
kBUD. An optimal dual solution is λ∗ = 1/(kROS−1)
and µ∗ = 0.

λ2 λ1

µ2

µ1

I

II

III

k(λ, µ) = kBUD

k(λ, µ) = kROS

Oϵ

(b) Case 2: budget constraint is binding, i.e., kBUD <
kROS. An optimal dual solution is λ∗ = 0 and µ∗ =
1/kBUD.

Figure 4. Illustration of the two cases for the MIN dynamics in the non-degenerate case (kBUD ̸= kROS). The black dot indicates an
optimal solution and the hatched rectangle is an orbit Oϵ of size ϵ around the optimal solution. The solid black curve gives the points for
which the (1 + λ)/λ = 1/µ, i.e., the multipliers of both constraints are equal. Above the curve, the algorithm bids 1/µ according to the
budget constraint, and below it bids (1 + λ)/λ according to the ROS constraint. The arrows indicate the drift of the stochastic process in
each region. The red (blue, resp.) dashed curve gives the set of dual variables for which kmin(λ, µ) = kROS (= kBUD, resp.).

C.3. Proof of Theorem 1: Analysis of MinPacing Algorithm
We choose the orbit to be a ball of size ϵ > 0 around the optimal solution

Oϵ =
{
{(λ, µ) ∈ R2

+ : max (|λ− λ∗|, |µ− µ∗|) < ϵ
}
.

The value of ϵ > 0 is chosen so that

1. Assumption 3.6 is satisfied for all (λ, µ) ∈ Oϵ,

2. The algorithm bids according to the binding constraint for all (λ, µ) ∈ Oϵ, i.e., kmin(λ, µ) = (1 + λ)/λ,

3. The gradient of the budget constraint satisfies gBUD(kmin(λ, µ)) > 0 for all (λ, µ) ∈ Oϵ,

4. The gradients satisfy gROS(kmin(λ, µ)) < 0 and gBUD(kmin(λ, µ)) < 0 if either λ < ϵ or µ < ϵ.

The second condition can be satisfied by Lemma 3.3 because there exists an optimal dual optimal solution with µ∗ = 0 and
λ∗ = 1/(kROS − 1) > 0, and the algorithm bids according to the ROS multiplier when (1 + λ)/λ < 1/µ. The third
condition can be satisfied because the single-crossing property (Assumption 3.2) implies that gBUD(k) > 0 for k < kBUD

and non-degeneracy (Assumption 3.4) implies that for kROS < kBUD. The fourth condition holds by the single-crossing
property because the gradients are negative for large enough multipliers k.

C.3.1. STEP 1: BINDING CONSTRAINT IDENTIFICATION

For the first step, we show that if dual variables are positive, it takes the ODE a constant amount of time to get to the interior
of the orbit.

Lemma C.1. For any initial dual solution (λ(0), µ(0)) ̸∈ [0, ϵ)2, there exits a finite time σ > 0 such that the solution of
(11) satisfies (λ(σ), µ(σ)) ∈ Oϵ/2 and for all s ∈ [0, σ] we have (λ(s), µ(s)) ̸∈ [0, ϵ)2.

Proof. It follows from Assumption 3.2 and 3.4 that gROS(k) > 0 for k < kROS and gROS(k) < 0 for k > kROS.
Furthermore, denote µ1 = 1/kBUD, µ2 = 1/kROS, λ1 = 1/(kBUD − 1), λ2 = 1/(kROS − 1). We consider two cases
depending on whether kBUD or kROS is smaller.
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Case 1: kBUD > kROS. In this case, we have k∗ = kROS, and the unique stationary point is given by µ∗ = 0 and
λ∗ = λ2 = 1/(kROS − 1).

The whole space can be split into three regions (see Figure 4a):

Region I: k > kBUD. This region corresponds to {(µ, λ) : µ < µ1, λ < λ1}. In this region, we have gROS(k) < 0 and
gBUD(k) < 0, thus µ̇ > 0 and λ̇ > 0.

Region II: kROS < k < kBUD. This region corresponds to {(µ, λ) : µ < µ2, λ < λ2} subtracting region I. In this region,
we have gBUD(k) > 0 and gROS(k) < 0, thus µ̇ < 0 and λ̇ > 0.

Region III: k > kROS. This region corresponds to the complementary set of region I and II. In this region, we have
gBUD(k) > 0 and gROS(k) > 0, thus µ̇ < 0 and λ̇ < 0.

Now, we are ready to show the result. Before proceeding, note that by definition ϵ, we have that µ̇ > 0 and λ̇ > 0 if µ < ϵ
and λ < 0. Therefore, the ODE can never get closer to a distance ϵ from the origin.

First, we claim that for any initial solution µ(0), λ(0), there exists s1 such that it holds for all s > s1 that
µ(s) ≤ µ̂ := 1

2 (µ1 + µ2). This is because once µ(s) ≤ µ̂, µ(s) would never go above µ̂ due to the dynamics in regions II
and III. So we just need to consider the first time µ(s) ≤ µ̂. Notice that for all (µ, λ) such that µ > µ̂, there exists δ1 such
that we have µ̇ < δ1 < 0. Thus, we just need to choose s1 = 1

|δ1| ((µ(0)− µ1)
+).

Second, we claim there exists s2 > s1 such that for s > s2, we have µ(s) ≤ µ̂ and λ(s) ≥ λ̂ := 1
2 (λ1 + λ2). This is

because after s1, µ(s) ≤ µ̂. Thus, once λ(s) ≥ λ̂, λ(s) would never go below λ̂ due to the dynamics in the regions I and II.
So we just need to consider the first time λ(s) ≥ λ̂. Notice that for all (µ, λ) such that µ ≤ µ1, λ ≤ λ̂, there exists δ2 such
that we have λ̇ ≥ δ2 > 0. Thus, we just need to choose s2 = s1 +

1
δ2
((λ̂− λ(s1))

+).

Third, we claim there exists s3 > s2 such that for s > s3, we have µ(s) ≤ ϵ/2 and λ(s) ≥ λ̂. This is because after s2,
µ(s) ≤ µ̂, λ(s) ≥ λ̂. In this region, there exists δ3 < 0 such that µ̇ ≤ δ3µ < 0 and we just need to choose
s3 = s2 + log(ϵ/(2µ))/|δ3|.

Fourth, we claim there exists s4 > s3 such that for s > s4, we have that µ(s) ≤ ϵ/2 and |λ(s)− λ2| ≤ ϵ/2. This is because
after s3 we have that µ̇ ≤ 0 and hence µ(s) ≤ ϵ/2 for all s > s3. The single-crossing property implies that λ̇ = 0 only at
λ2, so we should reach |λ(s)− λ2| ≤ ϵ/2 in finite time.

Case 2: kBUD < kROS. This case is exactly symmetric to Case 1 by flipping µ and λ (see Figure 4b).

We invoke the following result, which bounds the maximum error between a discrete-time stochastic system and its
continuous-time ODE approximation.

Lemma C.2. Consider the stochastic process {Yt}t≥0 with Yt ∈ Rn
++ satisfying

Yt+1 = Yt + αht(Yt) ,

where ht : Rn 7→ Rn is a random function and α > 0 is the step-size. The initial state Y0 lies in an open subset Y ⊆ Rn.
The random functions are i.i.d. with expectation Eht(y) = h(y). We assume that the random functions have uniformly
bounded expectation hi(y) ≤ H for all y ∈ Y , uniformly bounded variance Var[ht,i(y)] ≤ H2 for all y ∈ Y , and its
expectation is L-Lipschitz continuous in Y w.r.t. the max-norm, i.e., ∥h(y)− h(y′)∥∞ ≤ L∥y − y′∥∞ for all y, y′ ∈ Y .
Then, the following holds:

1. The ODE d
dsY (s) = h(Y (s)) with Y (0) = Y0 ∈ Y has a unique solution in Y .

2. Fix ϵ > 0. Let σ ≥ 0 be such that ∥Y (s)− y∥∞ > ϵ for all s ∈ [0, σ] and y ̸∈ Y . Then,

P
{

max
t:αt≤σ

∥∥Yt − Y (αt)
∥∥
∞ > ϵ

}
≤ ϵ−2

(
ασLH +

√
4nασH2

)2

exp(2Lσ)

Proof. Denote by st = αt the corresponding time in the ODE for the discrete step t. The first part follows from
Picard–Lindelöf theorem because h is Lipschitz continuous.
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We prove the second part in two steps. In the first step, use the Lipschitz continuity of the dynamics to show that deviations
of Yt from the expected path Y (st) accumulate linearly and conclude by using a discrete version of Gronwall’s Lemma to
bound the absolute deviations in an almost sure sense. This first step performs a deterministic analysis of the deviations. In
the second step, we use a concentration argument to bound the maximum deviation in a stochastic sense.

Step 1. Introduce a time τ corresponding to the first time t with st+1 ≤ σ such that Yt+1 ̸∈ Y . Consider a step t ≥ 1
under the event that t ≤ τ , which implies that Yj ∈ Y for all j ≤ t and Y (s) ∈ Y for all s ≤ st. Using the dynamics of the
stochastic process and the ODE, we obtain that

Yt+1 − Y (st+1) = Yt − Y (s(t)) + αht(Yt)−
∫ st+1

st

h(Y (s))ds .

From the mean value theorem, because the solution to the ODE is absolutely continuous, we know there exists
ζi ∈ [st, st+1] such that∫ st+1

st

hi(Y (s))ds = (st+1 − st)hi(Y (ζi))

= αhi(Yt) + α
(
hi(Y (st))− hi(Yt)

)
+ α

(
hi(Y (ζi))− hi(Y (st))

)︸ ︷︷ ︸
βt,i

.

Therefore, we have that

Yt+1 − Y (st+1) = Yt − Y (s(t)) + α∆t + βt .

where ∆t = ht(Yt)− h(Yt). We refer to ∆t as a stochastic error and βt as the integration error. Using that h is L-Lipschitz
continuous in Y , the integration error can be bounded as follows:

|βt,i| ≤ α
∣∣hi(Y (st))− hi(Yt)

∣∣+ α
∣∣(hi(Y (ζi))− hi(Y (st))

∣∣
≤ αL∥Yt − Y (st)∥∞ + αL∥Y (ζi)− Y (st)∥∞
≤ αL∥Yt − Y (st)∥∞ + α2LH ,

where the last inequality follows because from the mean value theorem there exists ζ ′′j ∈ [st, ζi] such that
|Y j(ζi)− Y j(st)| = |(ζi − st)h(Y (ζ ′′j ))| ≤ αH together with the fact that |ζi − st| ≤ α and |h(y)| ≤ H .

Therefore, summing over steps j = 0, . . . , t and using that the initial conditions satisfy Y0 = Y (0), we obtain that the
following is true under the event t ≤ τ :

∥∥Yt+1 − Y (st+1)
∥∥
∞ =

∥∥∥∥∥
t∑

j=0

(α∆j + βj)

∥∥∥∥∥
∞

≤ α ∥Mt∥∞ + αL

t∑
j=1

∥Yj − Y (sj)∥∞ + αst+1LH ,

where the we denote by Mt =
∑t

j=0 ∆j =
∑t

j=0 hj(Yj)− h(Yj) and last inequality follows from the triangle inequality
together with st = αt.

We next apply the following discrete version of Gronwall’s Lemma.

Lemma C.3 (Discrete Gronwall’s Lemma). Let xt ≥ 0 be a sequence satisfying xt ≤ a+ b
∑t−1

j=1 xj with a, b ≥ 0. Then,
xt ≤ a exp(bt).

Setting xt =
∥∥Yt − Y (st)

∥∥
∞ and choosing a, b appropriately, we obtain that

∥∥Yt+1 − Y (st+1)
∥∥
∞ ≤

(
αst+1LH + α max

ℓ=0,...,t
∥Mℓ∥∞

)
exp(Lst+1) .
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Step 2. Denote by Ft = σ(h0, . . . , ht) the sigma-algebra generated by the random functions up to step t. We have that
Mt is a martingale because Mt ∈ Ft and E[Mt+1|Ft] = Mt. Moreover, Y0, . . . , Yt+1 ∈ Ft and τ is a stopping time with
respect to Ft because τ ∈ Ft.

Taking expectations over the maximum of all steps up to τ , we obtain that(
E
[

max
j=1,...,min(t+1,τ)

∥∥Yj − Y (sj)
∥∥2
∞

])1/2

≤

(
αst+1LH + α

(
E
[

max
j=0,...,min(t,τ)

∥Mj∥2∞

])1/2
)
exp(Lst+1) ,

where the first inequality follows from Minkowski inequality. It is sufficient to bound each coordinate at a time because

max
j=0,...,min(t,τ)

∥Mj∥2∞ = max
i=1,...,n

max
j=0,...,min(t,τ)

|Mj |2 ≤
n∑

i=1

max
j=0,...,min(t,τ)

|Mj,i|2 ,

where the first equation follows from exchanging maximums and the second since ∥x∥∞ ≤ ∥x∥1. Using that τ is a stopping
time and Mt is a martingale that

E
[

max
j=0,...,min(t,τ)

|Mj,i|2
]
= E

[
max

j=0,...,t

∣∣Mmin(j,τ),i

∣∣2]
≤ 4E

[
M2

min(t,τ),i

]
= 4E

[(∑t

j=0
∆j1{j ≤ t}

)2]
= 4

t∑
j=0

E
[
∆2

j1{j ≤ t}
]

≤ 4

t∑
j=0

E
[
∆2

j

]
≤ 4(t+ 1)H2 ,

where the first inequality follows from Doob’s Martingale Inequality because the stopped martingale Mmin(t,τ),i is a
martingale, the second equality because martingale differences are orthogonal, and the last our bound on the variance of the
random function. Putting everything together, we obtain that(

E
[

max
j=0,...,min(t+1,τ)

∥∥Yt − Y (st)
∥∥2
∞

])1/2

≤
(
αst+1LH +

√
4nαst+1H2

)
exp(Lst+1) . (12)

To conclude that if t is the first time win which ∥Yt − Y (st)∥∞ > ϵ, then we must have ∥Yt−1 − Y (st−1)∥∞ ≤ ϵ, which
implies that Yt−1 ∈ Y (because if Yt−1 ̸∈ Y , we would have that ∥Yt−1 − Y (st−1)∥∞ because αt− 1 ≤ σ and the
definition of σ). The latter imples that τ ≥ t− 1 or t+ 1 ≤ τ . Therefore, we can write the event in the statement as

P
{

max
t:αt≤σ

∥∥Yt − Y (αt)
∥∥
∞ ≥ ϵ

}
= P

{
max
t:αt≤σ

∥∥Yt − Y (αt)
∥∥
∞ 1{t+ 1 ≤ τ} ≥ ϵ

}
= P

{
max

t:αt≤σ,t≤τ−1

∥∥Yt − Y (αt)
∥∥
∞ ≥ ϵ

}
≤ ϵ−2E

[
max

t:αt≤σ,t≤τ−1

∥∥Yt − Y (αt)
∥∥2
∞

]
≤ ϵ−2

(
αstLH +

√
4nαstH2

)2

exp(2Lst) ,

where the first inequality follows from an application of Markov’s inequality and the last from (12). We conclude by noting
that st ≤ σ.

We apply Lemma C.2 to Yt = (log λt, logµt) and set the random function ht to be the gradients of the ROS and budget
constraints, respectively. That is,

ht(y) = ht(log λ, logµ) = −
(
vt · xt

(
vt · kmin(λ, µ)

)
− pt

(
vt · kmin(λ, µ)

)
, ρ− pt

(
vt · kmin(λ, µ)

))
.
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This choice reduces the stochastic process in the statement of the lemma to the update rule of the algorithm. Taking
expectations, we obtain that

h(log λ, logµ) = −
(
gROS

(
kmin(λ, µ)

)
, gBUD

(
kmin(λ, µ)

))
By assumption, the expected gradients are bounded and have finite variance. For Lipschitz continuity we need to show that
for g = gBUD, gROS∣∣g(kmin(λ, µ))− g(kmin(λ′, µ′))

∣∣ ≤ Lmax (∥ log λ− log λ′∥, ∥ logµ− logµ′∥) .

The expected gradients, however, are not Lipschitz continuous for all multipliers because of the logarithmic transformation.
To guarantee Lipschitz continuity, we restrict the set of dual solutions to lie in the set

Y =
{
(log(λ), log(µ)) ∈ R2 : λ > ϵ/2 or µ > ϵ/2

}
.

For example, the gradient of the budget constraint be written as

gBUD
(
kmin(λ, µ)

)
= gBUD

(
kmin(exp(log(λ), exp(log(µ))

)
= gBUD (min (exp(− log(λ)) + 1) , exp(− log(µ)))

= gBUD (expmin (log(exp(− log(λ)) + 1),− log(µ))) .

Because the minumum min(x, y) and the log-sum-exp function log(exp(x) + 1) are 1-Lipschitz continuous, we obtain that

min (log(exp(− log(λ)) + 1),− log(µ))

is 1-Lipschitz continuous in (log λ, logµ). For (log λ, logµ) ∈ Y we have that kmin(λ, µ) < 2/ϵ, which implies that
gBUD

(
kmin(λ, µ)

)
is 2Lg/ϵ-Lipscthiz continuous because the exponential exp(x) function is exp(a)-Lipschitz continuous

in [0, a].

In Lemma C.2, we set σ as the time it takes the ODE to reach the set Oϵ/2 and ϵ := ϵ/2. Under the good event
A =

{
maxt:αt≤σ

∥∥Yt − Y (αt)
∥∥
∞ ≤ ϵ/2

}
, we have by Lemma C.1 that (λt, µt) ̸∈ [0, ϵ]2 and, thus, the dynamics are

Lipschitz continuous. Moreover, we because the step size is α ≈ T−1/2 we have that at time τ = ⌊σ/α⌋ = O
(
T 1/2

)
the

state of the algorithm reaches the orbit Oϵ with high probability. More formally, we have proved the following result.

Proposition C.4. For every initial dual solution (λ1, µ1) ̸∈ [0, ϵ)2, there exists a time τ = O
(
T 1/2

)
such that the

probability of not hitting the orbit is bounded by

P {(λτ , µτ ) ̸∈ Oϵ} = O
(
T−1/2

)
.

C.3.2. STEP 2: ORBITAL STABILITY

We next show that once the iterates reach the orbit Oϵ, they stay in the orbit for the rest of the horizon with high probability.
To prove this result we show that the sum of Bregman divergence Vh induced by the negative entropy h(u) = u log u
constitutes a stochastic Lyaponuv function. The Lyaponuv function is given by

V (λ, µ) = Vh(λ
∗, λ) + Vh(µ

∗, µ) ,

where the Bregman divergence Vh(y, x) = h(y)− h(x)− h′(x) · (y − x) is Vh(y, x) = y log(y/x)− y + x. Note that we
can choose m > 0 such that V (λ, µ) < m for all (λ, µ) ∈ Oϵ.

Assume that the ROS constraint is binding so that µ∗ = 0. Here, we have that Vh(µ
∗, µ) = µ. Let

gROS
t = vt · xt

(
vt · kmin(λt, µt)

)
− pt

(
vt · kmin(λt, µt)

)
and gBUD

t = ρ− pt
(
vt · kmin(λt, µt)

)
be the empirical gradients at time t. The multiplicative weight update implies that

V (λt+1, µt+1) ≤ V (λt, µt)− αgROS
t · (λt − λ∗)− αgBUD

t · (µt − µ∗) + α2 G2

λ∗ − ϵ
,
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where we used that second moments of the gradients are bounded by Assumption 3.5 and that the Bregman divergence is
(λ∗ − ϵ)−1-locally-strongly-convex in Oϵ by Lemma 2. Taking expectations conditional on the current iterates, we obtain
that

E [Vh(λt+1, µt+1) | λt, µt] ≤ Vh(λt, µt)− αgROS
(
kmin(λt, µt)

)
· (λt − λ∗)− αgBUD

(
kmin(λt, µt)

)
· (µt − µ∗)

+ α2 G2

λ∗ − ϵ
.

For the budget constraint, we know that in the set Oϵ there exists g > 0 such that gBUD
(
kmin(λ, µ)

)
≥ g. Therefore, using

that µ∗ = 0 and µt ≥ 0 we obtain that

gBUD
(
kmin(λt, µt)

)
· (µt − µ∗) = gBUD

(
kmin(λt, µt)

)
· µt ≥ g · µt ≥ g · Vh(µ

∗, µt) .

For the ROS constraint, use that k∗ = 1/λ∗ + 1 and kt := kmin(λt, µt) = (1 + λt)/λt for (λt, µt) ∈ Oϵ to obtain that

gROS
(
kmin(λt, µt)

)
· (λt − λ∗) = −gROS (kt) · (kt − k∗) · λ

∗ − λt

kt − k∗
= −gROS (kt) · (kt − k∗) · λt · λ∗

≥ ℓ(kt − k∗)2 · λt · λ∗ =
ℓ

λt · λ∗ (λt − λ∗)2

≥ ℓ

λ∗(λ∗ + ϵ)
· (λ− λ∗)2

≥ 2ℓ(λ∗ − ϵ)2

(λ∗)2(λ∗ + ϵ)
· Vh(λ

∗, λ) ,

where the first inequality follows from the strong monotonicity condition in Assumption 3.6 and that dual variables are
non-negative, the second inequality because λt ≤ λ∗ + ϵ for all (λt, µt) ∈ Oϵ, and the last inequality follows because the
Bregman divergence of the negative entropy function satisfies Vh(y, x) ≤ y/(2min(x, y)2)(y − x)2 for x, y > 0 together
with λt ≥ λ∗ − ϵ for all (λt, µt) ∈ Oϵ. Putting everything together, we obtain that there exists constant C1, C2 such that

E [V (λt+1, µt+1) | λt, µt] ≤ (1− αC1)V (λt, µt) + α2C2 .

We are now ready to invoke the following classical theorem on stochastic stability.

Theorem C.5 (Kushner (1967, p. 86)). Let xt, t = 1, . . . , T be a Markov process and V (x) a continuous non-negative
function with

E [V (xt+1) | xt] ≤ V (xt)/β + ϕ

for every x such that V (x) < m, where β > 1 and ϕ ≥ 0. Then

P
{

max
t=1,...,T

V (xt) ≥ m

}
≤ V (x1)

βTm
+

(1− β−T )ϕβ

(β − 1)m
.

Setting β = 1/(1− C1α) and ϕ = C2α
2, we obtain that for C1α < 1, which holds for large enough T

P {∃t : (λt, µt) ̸∈ Oϵ, τ < t ≤ T | (λτ , µτ ) ∈ Oϵ} ≤ P
{

max
t=τ+1,...,T

V (λt, µt) ≥ m | (λτ , µτ ) ∈ Oϵ

}
≤ β−T +

(1− β−T )ϕβ

(β − 1)m

≤ exp(−C1Tα) +
C2α

C1m
,

where the last equation follows because ϕβ/(β − 1) = C2α/C1, β−T = (1− C1α)
T ≤ exp(−C1Tα). Setting

α ≈ T−1/2 we obtain the following result.

Proposition C.6. The algorithm is orbital stable, that is, the probability of leaving the orbit after time τ is bounded by

P {∃t : (λt, µt) ̸∈ Oϵ, τ < t ≤ T | (λτ , µτ ) ∈ Oϵ} =
(
T−1/2

)
.
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C.3.3. STEP 3: REGRET ANALYSIS

As before, suppose that the ROS constraint is binding at the optimal solution. Consider an alternate algorithm that (1)
behaves as the original algorithm up to time τ and (2) after time τ always uses the multiplier of the ROS constraint and
projects the dual variable to [0, λ∗ + ϵ]. Let λ̂t be the dual variable in this new algorithm and denote the multiplier used by
k̂t = (1 + λ̂t)/λ̂t. We denote by Et =

{
kmin(λt, µt) = k̂t

}
the event that the multipliers used by both algorithm match.

Let τBUD be a stopping time as defined in Definition 3.1 corresponding to the first time the budget is depleted for some
initial budget B = ρT . Because values are non-negative, we can lower bound the reward of MinPacing given any −→γ by
summing over the value collected only in iterations from τ up to τBUD and conditioning on the event Et

Reward(MinPacing,−→γ , ρ) ≥
τBUD∑
t=τ

vt · xt

(
vt · kmin(λt, µt)

)
· Et

=

τBUD∑
t=τ

vt · xt

(
vt · (1 + λ̂t)/λ̂t

)
· Et

≥
τBUD∑
t=τ

vt · xt

(
vt · (1 + λ̂t)/λ̂t

)
︸ ︷︷ ︸

(I)

−
T∑

t=τ

vt · (1− Et)︸ ︷︷ ︸
(II)

where the first equation follows from the definition of the event Et, and the last inequality follows because xt ≤ 1 and
adding back periods after τBUD. We bound each term at a time.

For the first term, use that the alternate algorithm always bid according to the ROS constraint to write

vt · xt

(
vt · (1 + λ̂t)/λ̂t

)
= 0 · ρ+ f⋆

t (λ̂t, 0)−
τBUD∑
t=τ

λ̂t · gROS
t (λ̂t, 0)

Taking expectations, we can use that τBUD is a stopping time and a martingale argument to obtain that

E−→γT∼PT [(I)] ≥ E−→γT∼PT

τBUD∑
t=τ

D(λ̂t, 0)−
τBUD∑
t=τ

λ̂t · gROS
t (λ̂t, 0)

 ,

where D(λ, µ) is the dual function. Let λ = (τBUD + 1− τ)−1
∑τBUD

t=τ λ̂t be the average dual variable for the ROS
constraint. Using the convexity of the dual function we obtain that

τBUD∑
t=τ

D(λ̂t, 0) ≥ (τBUD + 1− τ)D(λ, 0) ≥ E−→γ ∼PT [Reward(OPT,−→γ )]−O
(
T 1/2

)
,

where we used that (λ, 0) is dual feasible and weak duality together with τ = O
(
T 1/2

)
and T − τBUD = O

(
T 1/2

)
.

Because the alternate algorithm projects dual variables to [0, λ∗ + ϵ], Lemma 2 implies that the Bregman divergence of the
generalized negative entropy is 1/(λ∗ + ϵ)-strongly convex. Applying the mirror descent guarantee in Lemma 1 to the
linear functions wt(λ) = λ · gROS

t (λ̂t, 0) we obtain that

τBUD∑
t=τ

λ̂t · gROS
t (λ̂t, 0) =

τBUD∑
t=τ

wt(λ̂t)− wt(0) = O
(
T 1/2

)
,

because the alternate algorithm updates the dual variable of the ROS constraint according to gROS
t (λ̂t, 0). Therefore, we

have that

E−→γT∼PT [(I)] ≥ E−→γ ∼PT [Reward(OPT,−→γ )]−O
(
T 1/2

)
. (13)
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For the second term, using that values are independent of the event Et we obtain

E−→γT∼PT [(II)] =

T∑
t=τ

E[vt] · P
{
E∁

t

}
≤ T · E[v] · P

{
∪T
t=τE

∁
t

}
= T · E[v] ·

(
P
{
∪T
t=τE

∁
t | A

}
P {A}+ P

{
∪T
t=τE

∁
t | A∁

}
P
{
A∁
})

≤ T · E[v] · (P {∃t : (λt, µt) ̸∈ Oϵ, τ < t ≤ T | (λτ , µτ ) ∈ Oϵ}+ P {(λτ , µτ ) ̸∈ Oϵ})

= O
(
T 1/2

)
, (14)

where the first inequality follows because values are i.i.d. and P{E∁
t } ≤ P{∪T

t=τE
∁
t } for all t = τ, . . . , T , the second

equality follows from conditioning on the event A = {(λτ , µτ ) ∈ Oϵ}, the second inequality follows because probabilities
are at most one and if for some t the event E∁

t is true then it must be the case that (λt, µt) ̸∈ Oϵ since the algorithm bids
according to the ROS multiplier in the orbit of the optimal dual solution, and the last inequality follows from
Proposition C.4 and Proposition C.6.

Combining (13) and (14) we conclude that

Regret(MinPacing,PT ) = O
(
T 1/2

)
.

C.3.4. ONLINE MIRROR DESCENT RESULTS

The following are some known results of Online Mirror Descent that we used in our previous analysis.

Lemma 1 (Bubeck et al. 2015, Theorem 4.2). Let h be a mirror map which is ρ-strongly convex on X ∩D with respect to a
norm ∥ · ∥. Let f be convex and L-Lipschitz with respect to ∥ · ∥. Then, mirror descent with step size α satisfies

t∑
s=1

(f(xs)− f(x)) ≤ 1

α
Vh(x, x1) + α

L2t

2ρ
.

Lemma 2 (Allen-Zhu and Orecchia 2014). The Bregman divergence of the generalized negative entropy satisfies “local
strong convexity”: for any x, y > 0,

Vh(y, x) = y log(y/x) + x− y ≥ 1

2max(x, y)
· (y − x)2.

Proof. The claimed inequality is equivalent to

t log t ≥ (t− 1) +
1

2max(1, t)
· (t− 1)2 (15)

for t > 0. Suppose t ≥ 1. Then, choosing u = 1− 1/t, Inequality (15) is equivalent to

− log(1− u) ≥ u+
1

2
u2,

for u ∈ [0, 1), which holds by Taylor series. Suppose 0 < t ≤ 1. Then Inequality (15) is equivalent to

log t− 1

2

(
t− 1

t

)
≥ 0,

which may be checked by observing that the function is decreasing and equals zero at t = 1. This completes the proof of the
claim.
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λ1 = λ2

µ1 = µ2

I

III

k(λ, µ) = kROS = kBUD

Oϵ

Figure 5. Illustration of the MIN dynamics in degenerate case (kBUD = kROS). The alternating dashed blue and red line indicates the set
of all optimal solutions, i.e., the set of dual variables for which kmin(λ, µ) = kROS = kBUD. The hatched rectangle is an orbit Oϵ of
size ϵ around the set optimal solutions. The solid black curve gives the points for which the (1 + λ)/λ = 1/µ, i.e., the multipliers of both
constraints are equal. Above the curve, the algorithm bids 1/µ according to the budget constraint, and below it bids (1 + λ)/λ according
to the ROS constraint. The arrows indicate the drift of the stochastic process in each region.

C.4. Analysis in the Degenerate Case
Without Assumption 3.4 we have multiple optimal dual solutions. In particular, the optimal solutions are all (λ, µ) with
min(1 + 1/λ, 1/µ) = k∗. Visually, the red and blue curves in Figure 4 would coincide, and all points along these curves
would be optimal. As a result, the orbit Oϵ would not be a ball around the unique optimal solution but a band around this
curve of all optimal solutions. The dynamics for the degenerate case are illustrated in Figure 5. We can still follow similar
steps as in the proof of Theorem 1.

First, we can show that it takes order
√
T steps to get to the orbit of all optimal solutions using a similar ODE analysis. This

can be easily seen in Figure 5 as the drift in regions (I) and (III) point toward the orbit Oϵ. Second, we can prove orbital
stability, i.e., once the algorithm reaches the orbit, it never leaves with a high probability. Third, we can show that the regret
accumulated once the algorithm is in the orbit of the optimal solution is O(

√
T ).

C.5. Proof of Theorem 2
To prove the result, we first show the next lemma, which bounds the constraint violations for time t.

Lemma 3. Recall gROS
t = vt · xt (bt)− pt (bt) and gBUD

t = ρ− pt (bt) with λt, µt being the dual variables for the ROS
and the budget constraint respectively, and bt = vt · kmin(λt, µt) = vt ·min {1/µt, 1 + 1/λt} being the bid used by the
algorithm. If the payment and allocation functions satisfy 0 ≤ pt(b) ≤ b · xt(bt) for any bid b > 0 (e.g. truthful auctions),
then we have

gROS
t ≥ − 1

λt
and gBUD

t ≥ ρ− 1

µt

Proof. Our condition only says the payment is always non-negative and at most the bid. Recall we also normalize the
functions so that vt, pt and xt all have range [0, 1]. For the ROS constraint, bt ≤ vt · (1 + 1/λt) and pt(bt) ≤ bt · xt(bt),
we get

gROS
t ≥ (vt − bt) · xt(bt) ≥ − vt

λt
· xt(bt) ≥ − 1

λt
.

Similarly, for the budget constraint because bt ≤ vt/µt, we get

gBUD
t ≥ ρ− bt · xt(bt) ≥ ρ− vt

µt
· xt(bt) ≥ ρ− 1

µt
.
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The first result in Theorem 2 on ROS constraint violation can be obtained from the below lemma.

Lemma 4. Consider a run of the min pacing algorithm starting at λ1 > 0 and α = 1√
T

, then for any outcome −→γ over the
T iterations, the ROS constraint violation satisfies

T∑
t=1

pt(bt)− vt · xt(bt) = −
T∑

t=1

gROS
t ≤ 2

√
T log

T

λ1
.

Proof. Equation (4) in the algorithm implies λt+1 = exp
[
−α

∑t
t′=1 g

ROS
t′

]
. If −

∑T
t=1 g

ROS
t ≤

√
T log T

λ1
, we are done.

Otherwise, let T ′ be the last time that −
∑T ′

t=1 g
ROS
t ≤

√
T log T

λ1
, so we know for any t > T ′, the dual variable λt must be

larger than T since

λt = λ1 · exp

[
−α

t∑
t′=1

gROS
t′

]
> λ1 · exp

[
α
√
T log

T

λ1

]
= T

By Lemma 3 we know gROS
t ≥ − 1

λt
, so −gROS

t ≤ 1
λt

≤ 1
T for all the iterations t after T ′. Since there are at most T such

iterations, we get

−
T∑

t=1

gROS
t = −

T ′∑
t=1

gROS
t −

∑
t>T ′

gROS
t ≤

√
T log

T

λ1
+ 1 ≤ 2

√
T log

T

λ1
.

The second result in Theorem 2 on stopping time can be obtained from the below lemma.

Lemma 5. Let µmax = 1/ρ+ 1, and consider a run of the min pacing algorithm starting at µ1 ∈ (0, µmax] and η = 1√
T

,
then for any outcome −→γ over the T iterations, we have µt ≤ µmax for all t ≤ τBUD, and
T − τBUD ≤

√
T
ρ · log 10µmax

µ1
= O(

√
T )

Proof. The part of µt ≤ µmax follows inductively. If µt ≤ µmax, either µt ≤ 1/ρ, then since the step-size η is chosen to be
small enough we have µt+1 ≤ 1/ρ+ 1, otherwise if µt > 1/ρ, by Lemma 3 we know gBUD

t > 0 and thus
µt+1 ≤ µt ≤ µmax.

The part of τBUD can be shown by contradiction. Suppose τBUD < T −
√
T
ρ · log 10µmax

µ1
, it means∑τBUD−1

t=1 pt(bt) ≥ ρ · T − 2 and thus

τBUD−1∑
t=1

gBUD
t ≤ ρ · τBUD − (ρ · T − 2) ≤ −

√
T · log 10µmax

µ1
+ 2.

Similar to the ROS case, note µτBUD = µ1 · exp
[
−η
∑τBUD−1

t=1 gBUD
t

]
≥ µmax, which gives a contradiction.

D. Proof of Proposition 3.7: Analysis of Sequential Algorithm
We prove Proposition 3.7 in this section. That is, we will show that for any initialization of the sequential pacing algorithm,
i.e. choice of initial values µ0, λ0 of the dual variables and their respective step-sizes η, α, there will always be some
instance on which the algorithm performs poorly, i.e. it either violates the ROS constraint by at least Ω(T ) or has a regret at
least Ω(T ).

Without loss of generality, we assume µ0 and λ0 are both O(1). All the instances we use in the proof will be deterministic,
i.e. v, x(·), p(·) are drawn i.i.d from a point distribution. In particular, all instances we consider have fixed values vt = 1,
xt(b) = min( b4 , 1) and pt(b) = min( b

2

8 , 2) for all b ≥ 0. Effectively the bid ranges from 0 to 4, and is equivalent to the bid
multiplier as v = 1. We pick these values for notation simplicity, and it is easy to scale all quantities down to satisfy our
model where v, x, p are all in [0, 1]. Note that the payment function p is the truthful pricing corresponding to the allocation
function x in our example. We start with the following observations for our instance.
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Observation D.1. It is straightforward to see that in each iteration, the value is a concave function on the payment, i.e.
(v · x) =

√
p/2 (Figure6), and thus if we fix some total spend P over some t iterations, the largest total value is achieved by

spending evenly (i.e. P/t) in each of the t iterations. Similarly because of concavity, if there is an additional constraint that
the per-iteration spend is at least l ≥ P/t, the optimal total value is achieved by spending l per-iteration (over any P/l < t
iterations).

Observation D.2. In each iteration, the largest ROS slack one can achieve is at most 1/8, i.e.,
maxb {v · x(b)− p(b)} = 1/8 by bidding b = 1.

0
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Landscape
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Figure 6. Achievable spend vs conversion value for the sequential example.

Fix any µ0, λ0, η, α, we will consider a pair of instances. The first instance Î has ρ̂ = 1.9 (and the v, x, p as described
above). It is easy to see for Î that k∗ = kROS = 2 and kBUD =

√
8 · 1.9 > 2, and it is optimal to spend 0.5 per iteration

and get T · v · 2
4 = T/2 total value. It is also easy to check that this instance satisfies all the assumptions we need for the

min-pacing algorithm. Consider the sequential pacing algorithm with two cases

1. If the total spend over T iterations is at least P ≥ 0.6 · T . The maximum total value in this case is achieved by
spending P/T per iteration (Observation D.1), which means bidding b =

√
8P/T and get value

√
P/(2T ). Thus the

total value is at most
√
P · T/2, so the total ROS constraint violation is at least

P −
√
P · T/2 = (P/T −

√
P

2T
) · T.

It is easy to check this is at least Ω(T ) when P ≥ 0.6 · T , so the ROS constraint violation would be linear in T .

2. If the total spend over T iterations is at most 0.6 · T . Consider any iteration after the first 0.7 · T iterations, and we
know µt = µ0 exp

(
− η · (ρ̂ · t−

∑
t′<t pt′(bt′)

)
≤ µ0 exp

(
− η · 0.73 · T

)
for any t ≥ 0.7T since ρ̂ = 1.9 and

total spend is at most 0.6 · T . There are two sub-cases:

• If µ0 exp
(
− η · 0.73 · T

)
≤ 1/3, we know µt ≤ 1/3 and thus bt = 1

µt
· λt+1

λt
≥ 3 for all t ≥ 0.7 · T , which

means we will have a per iteration ROS violation of at least 9/8− 3/4 = 0.375 (with bt = 3) in each of the last
0.3 · T iterations, since the ROS violation increases with b over the region b ≥ 3. In each of the first 0.7 · T
iterations, the ROS slack we can gain is at most 1/8 (Observation D.2), so the total ROS constraint violation is at
least 0.375 · 0.3 · T − 0.7 · T/8 ≥ 0.025 · T .

• If µ0 exp
(
− η · 0.73 · T

)
> 1/3, then we know µ0 > 1/3 and η ≤ ln(3µ0)

0.73·T .

We can conclude from the above discussion that the only possible scenario where an instantiation of the sequential pacing
algorithm won’t incur a Ω(T ) violation of the ROS constraint on the instance Î is in the last sub-case, which means the
step-size η of the budget dual variable is O(1/T ). If that is the case, it is easy to see such an instantiation must perform
poorly on a budget-binding instance when we need η to be large so the budget dual variable µ can increase fast enough to
lower the bid sufficiently.

More specifically, when µ0 exp
(
− η · 0.73 · T

)
> 1/3 holds, we consider the instance Ĩ with ρ̃ = 1

200µ4
0

. Note ρ̃ is Θ(1)

since we assume µ0 is O(1) and in this case µ0 > 1/3. We have k∗ = kBUD = 1
5µ2

0
< 1.8, kROS = 2, and the maximum

total value is T
20µ2

0
achieved by bidding kBUD and spending ρ̃ in each iteration. Since the pacing algorithm guarantees to
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obey the budget constraint (by not bidding above the remaining budget at any time), the total spend is at most
ρ̃ · T = T

200µ4
0
≤ 0.73 · T (as µ0 > 1/3), so we know that

∑
t′≤t ρ̃− pt′(bt′) ≥ −

∑
t′≤t pt′(bt′) ≥ −0.73 · T for any t.

Thus
µt = µ0 exp

(
− η ·

∑
t′≤t

(ρ̃− pt′(bt′))
)
≤ µ0 exp

(
η · 0.73 · T

)
< µ0 · (3µ0) = 3µ2

0,

where the last inequality follows from µ0 · exp
(
− η · 0.73 · T

)
> 1/3. Consequently, we have bt =

1
µt

· λt+1
λt

≥ 1
3µ2

0
and

thus spend at least 1
72µ4

0
in all iterations before the budget is depleted. It is straightforward to see that the maximum possible

total value under this condition is obtained when bidding exactly 1
3µ2

0
(and spending exactly 1

72µ4
0

) per iteration until the

budget depletes (Observation D.1). This gives a value of 1
12µ2

0
per iteration, and the budget is depleted after

ρ̃ · T/
(

1
72µ4

0

)
=
(

T
200µ4

0

)
/
(

1
72µ4

0

)
= 72·T

200 iterations. The total value obtained by sequential pacing in this case is at most
3T

100µ2
0

, which is at least Ω(T ) smaller than the optimal value of T
20µ2

0
(as µ0 is O(1) by assumption).

This completes our argument that given any instantiation of the sequential pacing algorithm, there exists an instance, which
satisfies all the assumptions we need for the min pacing algorithm, such that the sequential pacing algorithm either incurs at
least Ω(T ) violation of the ROS constraint, or has a regret at least Ω(T ).

E. Supplementary Material for Empirical Study
E.1. Semi-synthetic Dataset Construction
As we mentioned in Section 4, for confidentiality and advertiser privacy reasons, we evaluate the three pacing algorithms on
a semi-synthetic dataset based on actual online advertising auctions. In particular, we focus on advertising campaigns from
an online advertising platform that use a bidding product which is captured by our optimization formulation (1). More
specifically, an advertiser bids (and therefore also pays) for clicks, i.e., submits bids for cost-per-click, and the objective is to
maximize expected acquisitions (e.g. site visits, calls, conversions) with constraints on total spend being below an input
budget and average cost per acquisition below an input target cost (tcpa). In our formulation (1), this corresponds to:

1. The value vt is equal to tcpa · pconvt, where pconvt is the probability of a conversion conditioned on a click (note
both tcpa and pconvt are taken to be independent of the bid; while it is obvious for tcpa to be independent of the bid,
pconv’s independence is supported by empirical studies (Varian, 2009));

2. The allocation xt(bt) is the number of clicks won by the advertiser at a bid of bt;

3. The payment pt(bt) is the cost of the clicks won at a bid of bt.

Since we study the stochastic setting where the functions xt(·), pt(·) are drawn i.i.d. from some distribution, our dataset
consists of a set of generative models. The parameters of the generative model for any given (actual) advertising campaign
we study are derived from the performance of that campaign in the (actual) auction.

Generative Model. We will use a i.i.d. stochastic model to generate the xt(bt) and pt(bt) in iteration t as a function of
bid bt (as discussed earlier, we slightly abuse notation to use bt to be the multiplier to tcpa · pconv). We use a Poisson
distribution for xt(bt) (i.e. number of clicks in an iteration at a bid bt). With parameter λ, its probability mass function is
f(x;λ) = λxe−λ

x! . The parameter λ is the expected number of clicks in an iteration, and we set it using the bidding
landscape. In particular, for the model corresponding to a campaign C, the expected number of clicks at bid bt in an
iteration would be λC(bt) = clickC(bt)/T where T is the total number of iterations in a day. In our empirical evaluation,
we pick T = 144, which translates to each iteration being a 10-minute period, i.e., the dual variables of the algorithms are
updated every 10 minutes instead of after every auction. We also derive from the bidding landscape a cost-per-click
cpcC(bt) =

costC(bt)
clickC(bt)

. Both costC(·) and clickC(·) are model parameters derived from the bidding landscape which we
discuss next.

To summarize, the value, click and cost at bid bt are as follows:

vt = tcpa(C) · pconvt(C), xt(bt) ∼ Poisson(λC(bt)), pt(bt) = xt(bt) · cpc(bt) · noisep

where we introduce i.i.d. non-negative multiplicative noise noisep with expected value 1 to the cost. In our evaluation, we
use a Gaussian distribution centered at 1 with standard deviation 0.1 and truncated to be within [0, 2] (so it’s non-negative
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and has expected value 1). Also, when empirically evaluating the tCPA campaigns, the conversion rates pconvt(C) are
drawn from a Gaussian distribution centered at the average pconv (derived from the bidding landscape) of the campaign
with a standard deviation of 0.1 and truncated to be in [0, 2].

Bidding Landscape. To see how the auction performance of a campaign determines its model parameters in the
generative model, it is useful to begin with the notion of a bidding landscape. For each campaign C, we construct a bidding
landscape as a function from bids to the (predicted) number of clicks and cost. This is done first at a per-query level using
auction simulation. In more detail, for an ad opportunity (a.k.a. query) q where campaign C is eligible to show its
advertisement, we look at the logged bids of all the other campaigns participating in the auction for this query q, and
simulate the auction for any bid b of C to know if/where C’s ad would be shown. This gives us the predicted number of
clicks and cost per click corresponding to any particular bid b, and we refer to them as clickC,q(b) and costC,q(b). In our
model, we use the actual (i.e., advertiser submitted) target cost per acquisition of C as tcpa(C), and the logged average
predicted conversion probability generated by the production machine-learning model as pconvq(C). For a query q, bids are
given by b = k · vq where vq = tcpa(C) · pconvq(C) is the value of the query.

We aggregate these single-query landscape functions to get C’s daily bidding landscape by summing up the respective
functions over all the queries in a day, e.g., clickC(k) =

∑
q clickC,q(k · vq), and costC(k) =

∑
q costC,q(k · vq). Note

that these functions are non-decreasing in k. The per-query bidding landscapes are inherently step functions represented by
the various bid thresholds that makes C’s ad to be displayed at various positions (or not displayed at all). While the
aggregated landscapes are already smoother than the per-query landscapes, we further smooth the aggregated landscapes by
linearly interpolating between consecutive thresholds. See Figure 7 for an example of the aggregated daily bidding
landscape of an ad campaign.4

Figure 7. The bidding landscape of an example campaign. The x-axis is the bid (as a multiplier to value), and the y-axis are the daily cost
and number of clicks (all normalized to be in [0, 1]) respectively.

E.2. Empirical Evaluation
In our empirical study, our dataset includes 105 randomly selected campaigns, and for each campaign, we set the budget
constraint (i.e. ρT in (1)) using its actual daily budget B.

We divide the day into 10-minute periods and use T = 144, and simulate an algorithm on a particular campaign as follows.
In each iteration, after the algorithm gives the bid it wants to submit, we compute the allocation and payment xt, pt using
our generative model to get the number of clicks and cost of that iteration, and let the algorithm update the bid for the next
iteration. We sum up the total cost and value through all T iterations. For the budget constraint, we follow the common
practice to always strictly enforce it as follows: if in an iteration the generated cost is larger than the remaining budget, we
modify that iteration’s cost and value both to be 0. We do not enforce the ROS constraint strictly5, but of course, measuring

4We normalize the values of click, value and cost in all the plots of this section, so the quantities shown do not represent real traffic or
revenue.

5Note that it is always possible for an ROS constraint to be temporarily violated after t rounds, but in the t + 1-th round it could
become satisfied because of a really high value query coming through at low cost. Therefore it is suboptimal to stop serving right after
ROS constraint gets violated in a round. This is not the case for budget constraint: once violated, it always remains violated because
cumulative spend is monotonically increasing.
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(a) Dual-optimal Pacing Algorithm

(b) Min Pacing Algorithm

(c) Sequential Pacing Algorithm

Figure 8. Simulation of the dual-optimal bidding (top), min bidding (middle) and sequential bidding algorithms (bottom) on an example
campaign. We plot the per-iteration value and cost (normalized so value ∈ [0, 1]), cumulative value and cost (normalized by budget),
cumulative ROS error (as cost− value normalized by total value), and bids k.
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how much the different algorithms violate the ROS constraint is an important aspect of this study and will be discussed here.
In Figure 8 we visualize the pacing algorithms on an example campaign.

For each campaign, we simulate an algorithm 10 times to take the average (total) spend and conv_val as the result of the
algorithm on that campaign. For each algorithm, we take the 105 pairs of (spend, conv_val) from all the campaigns, and
arrange them into buckets based on the relative ROS constraint error6 max (0, spend/conv_val − 1). For each bucket, we
sum up the conv_val of all the campaigns in it. Moreover, for each algorithm, we do a grid search over the step-sizes used
in the dual variables’ updates. Each pair of step-sizes (one for each dual variable) is evaluated over the entire dataset, and for
each algorithm we pick the best pair of step-sizes according to the total conv_val in the bucket of zero ROS constraint error.
We compare the results associated with the best step-sizes for each algorithm.

E.3. Benchmark
For each campaign, our benchmark (10) (included again below) is the fluid relaxation of (1), but restricted to uniform
bidding, i.e., bt = k · vt for all t.

maximize
k≥0

∑T
t=1 E[vt · xt(k · vt)]

subject to
∑T

t=1 E[pt(k · vt)] ≤
∑T

t=1 E[vtxt(k · vt)],∑T
t=1 E[pt(k · vt)] ≤ ρT .

It is easy to see that in the stochastic i.i.d. model, the optimal value of (10) is an upper bound on the expectation of the
ex-post optimal value. In our generative model, by design we have

conv_valC(k) = E[vtxt(bt)] =
tcpa(C)

T
· E[pconvt(C) · clickC (k · tcpa(C) · pconvt(C))] ,

spendC(k) = E[pt(bt)] = E

[
xt(bt)

costC(bt)

clickC(bt)

]
E[noisep] =

1

T
E[costC (k · tcpa(C) · pconvt(C))] ,

where the expectation is taken with respect to the distribution of conversion probabilities of the different queries.

Our benchmark for campaign C in (10) becomes

maximize
k≥0

conv_valC(k)

subject to spendC(k) ≤ conv_valC(k),
spendC(k) ≤ ρ .

(16)

In our experiments, we approximate conv_valC(k) and spendC(k) by performing a certainty equivalent approximation in
which we replace random quantities (i.e., the predicted conversion probabilities) by their expected values. We solve the
above optimization problem on the bidding landscape functions by finding the largest bid multiplier k∗ such that
spendC(k

∗) is below C’s budget and conv_valC(k∗) ≥ spendC(k
∗). Such multiplier k∗ is easy to find using a line search

since our landscape functions are all monotone in k. Furthermore, the restriction to uniform bidding in (10) is without loss
of generality when the conv_valC(k) versus spendC(k) function is concave, which qualitatively holds in our data (e.g.
Figure 9).

We use conv_valC(k∗) as computed above as the benchmark for C (see Figure 9 for examples). Note this captures the
expected optimal solution, but algorithms running on the generative model of C may achieve better ex-post value than the
benchmark due to the stochasticity of the model. We add up the expected optimal value over all campaigns as the overall
benchmark. Figure 9 shows the pairs of spend and conversion value levels that can be achieved by varying the bidding
multiplier k for a typical campaign. The achievable curves (spendC(k), conv_valC(k))k≥0 lie in R2

+, start at the origin for
k = 0, increase along both axis as the bid multiplier increases, and end at k → ∞.

E.4. Stability and Convergence
We observe that the trajectory of bidding multipliers generated by the dual-optimal and min pacing algorithms converge to
the optimal solution of the benchmark (10). Figure 8 shows a representative campaign for which the ROS constraint is

6ROS constraint states that spend ≤ conv_val. So a constraint violation would imply spend > conv_val, i.e., spend/conv_val −
1 > 0.
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(a) Budget constraint is binding. (b) ROS constraint is binding.

Figure 9. The optimal operating points of an example campaign. The achievable curve (solid blue) delineates the pairs of spend-conversion
value pairs that can be achieved by different bidding multipliers. The black diagonal dotted line captures the ROS constraint (feasible
pairs should lie above this line), the blue vertical dotted line captures the budget constraint (feasible pairs should lie to the left of this line).
The optimal operating point is the smallest of the intersection points of the achievable curve with one of the constraints and is shown
using the red horizontal dotted line. In (a) the budget constraint is binding, while in (b) the ROS constraint is binding.

binding in the benchmark (but the budget constraint is not). After a small learning phase, the dual-optimal pacing algorithm
converges to the optimal multiplier of around k∗ ≈ 1. The return-on-spend constraint is mostly obeyed and the total spend
is smaller than the budget.

For the sequential pacing algorithm, however, we do not observe the convergence of bid multipliers. In Figure 8, it can be
seen that the bid multipliers generated by the sequential pacing algorithm for the same campaign are highly unstable.
Moreover, the ROS constraint is violated by a significant amount and the budget is exactly depleted by the end of the
horizon. Interestingly, the behavior of the sequential pacing algorithm is driven by conflicting feedback loops between the
budget and ROS pacing services. Recall that, at optimality, only the ROS constraint should bind. Initially, as the ROS
pacing service detects a violation of the ROS constraint, it starts increasing its dual variable λt to satisfy the constraint. This
results in a smaller bid multiplier kt and reduced spend. The budget pacing service, however, believing that the budget
constraint is not binding reacts to the lower spend by decreasing its dual variable µt, which in turn, results in a higher
multiplier. These two opposing feedback loops generate unstable dynamics and one constraint ends up being violated.
Similar behaviors are observed across campaigns even when the budget constraint is binding.
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