
From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

LEARNING TO SHARE IN MULTI-AGENT REINFORCE-
MENT LEARNING

Yuxuan Yi1,†, Ge Li†, Yaowei Wang‡, Zongqing Lu†
†Peking University
‡Peng Cheng Lab
{touma,geli,zongqing.lu}@pku.edu.cn wangyw@pcl.ac.cn

ABSTRACT

In this paper, we study the problem of networked multi-agent reinforcement learn-
ing (MARL), where a number of agents are deployed as a partially connected net-
work and each interacts only with nearby agents. Networked MARL requires all
agents make decisions in a decentralized manner to optimize a global objective
with restricted communication between neighbors over the network. Inspired by
the fact that sharing plays a key role in human’s learning of cooperation, we pro-
pose LToS, a hierarchically decentralized MARL framework that enables agents
to learn to dynamically share reward with neighbors so as to encourage agents to
cooperate on the global objective through collectives. For each agent, the high-
level policy learns how to share reward with neighbors to decompose the global
objective, while the low-level policy learns to optimize the local objective induced
by the high-level policies in the neighborhood. The two policies form a bi-level
optimization and learn alternately. We empirically demonstrate that LToS outper-
forms existing methods in both social dilemma and networked MARL scenario
across scales.

1 INTRODUCTION

In fully cooperative multi-agent reinforcement learning (MARL), there are multiple agents inter-
acting with the environment via their joint action to cooperatively optimize an objective. Many
methods of centralized training and decentralized execution (CTDE) have been proposed for coop-
erative MARL, such as COMA (Foerster et al., 2018), QMIX (Rashid et al., 2018), QPLEX (Wang
et al., 2021), and FOP (Zhang et al., 2021). However, these methods suffer from the overgener-
alization issue : employed value functions cannot estimate well because agents sometimes choose
uncoordinated actions, and thus the optimal policy cannot be learned (Castellini et al., 2019). More-
over, they may not easily scale up with the number of agents due to centralized learning (Qu et al.,
2020a).

In many MARL applications, there are a large number of agents that are deployed as a partially
connected network and collaboratively make decisions to optimize the globally averaged return,
such as communication networks (Kim et al., 2019) and traffic signal control (Wei et al., 2019).
To deal with such scenarios, networked MARL is formulated to decompose the dependency among
all agents into dependencies between only neighbors. To avoid decision-making with insufficient
information, agents are permitted to exchange messages with neighbors over the network. In such
settings, it is feasible for agents to learn to make decisions in a decentralized way (Zhang et al.,
2018; Qu et al., 2020b). However, there are still difficulties of dependency if anyone attempts to
make decisions independently, e.g., prisoner’s dilemma and tragedy of the commons (Pérolat et al.,
2017). Existing methods tackle these problems by consensus update of value function (Zhang et al.,
2018), credit assignment (Wang et al., 2020), or reward shaping (Chu et al., 2020). However, these
methods rely on either access to global state and joint action (Zhang et al., 2018) or hand-crafted
reward functions (Wang et al., 2020; Chu et al., 2020).

Inspired by the fact that sharing plays a key role in human’s learning of cooperation (Eisenberg
& Mussen, 1989), we propose Learning To Share (LToS), a hierarchically decentralized learning
framework for networked MARL. LToS enables agents to learn to dynamically share reward with
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neighbors so as to collaboratively optimize the global objective. The high-level policies decompose
the global objective into local ones by determining how to share their rewards, while the low-level
policies optimize local objectives induced by the high-level policies. LToS learns in a decentral-
ized manner, and we prove that the high-level policies are a mean-field approximation of the joint
high-level policy. Moreover, the high-level and low-level policies form a bi-level optimization and
alternately learn to optimize the global objective.

LToS is a general hierarchical framework for networked MARL and can be easily realized by di-
verse combinations of RL algorithms. We currently implement LToS by DDPG (Lillicrap et al.,
2016) as the high-level policy and DGN (Jiang et al., 2020) as the low-level policy. We empirically
demonstrate that LToS outperforms existing methods for networked MARL in both social dilemma
and networked MARL scenario.

2 RELATED WORK

There are many recent studies for collaborative MARL. Most adopt CTDE (Foerster et al., 2018;
Rashid et al., 2018; Wang et al., 2021; Zhang et al., 2021). Many of them are constructed on the
basis of factorizing the joint Q-function (Rashid et al., 2018; Wang et al., 2021). However, these
factorized methods suffer from the overgeneralization issue (Castellini et al., 2019). Other studies
focus more on decentralized training, to which our work is more closely related, as summarized as
follows.

Networked MARL. Zhang et al. (2018) and Qu et al. (2019) proposed consensus update of local
value functions, where each agent keeps a local copy of the global value function but is assumed to
have global information. Qu et al. (2020a) proposed intention propagation between agents, where
each agent updates its policy based on intentions shared by other agents, but the policy may converge
slowly due to propagated intentions over the network. Qu et al. (2020b) and Lin et al. (2020) inves-
tigated the exponential decay property, i.e., the impact of agents on each other decays exponentially
in their graph distance, while Chu et al. (2020) introduced a spatial discount factor to capture the
influence between agents, which remains hand-tuned. However, none of these studies provide an
explicit mechanism to solve social dilemma in networked MARL.

Reward Design. Hostallero et al. (2020) aimed at maximizing social welfare, but they simply
used temporal difference error for reward shaping. As temporal difference error in deep RL hardly
converges to zero, it still biases the optimization objective. Mguni et al. (2019) added an extra part to
the original reward as non-potential based reward shaping and used Bayesian optimization to induce
the convergence to a desirable equilibrium between agents. However, the extra part remains fixed
during an episode, which makes it less capable of dealing with dynamic environments. Moreover,
the reward shaping alters the original optimization problem. Hughes et al. (2018) proposed the
inequity aversion model to balance agents’ selfish desire and social fairness. Wang et al. (2020)
considered learning the Shapley value as the credit assignment. However, these methods still rely
on hand-crafted reward designs. Lupu & Precup (2020) added gifting as an extra action into the
original MDP to modify the MDP and objective. Yang et al. (2020) proposed that each agent learns
an incentive function and optimizes the policy in terms of both reward and incentives given by other
agents. Obviously, both methods alter the original objective of optimization.

Unlike existing work, LToS enables agents to learn to dynamically share reward with other agents
(without the bias of the optimization objective) such that they can collaboratively optimize the global
objective in networked MARL.

3 BACKGROUND

3.1 NETWORKED MULTI-AGENT REINFORCEMENT LEARNING

Assume N agents interact with an environment. Let V = {1, 2, · · · , N} be the set of agents. The
multi-agent system is modeled as an undirected graph G(V, E), where each agent i serves as vertex
i and E⊆ V × V is the set of all edges. Two agents i, j ∈ V can communicate with each other if
and only if eij = (i, j) ∈ E . We denote agent i and its all neighbors in the graph together as a set
Ni. The state of the environment s ∈ S transitions upon joint action a ∈ A according to transition
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probability Pa : S ×A× S → [0, 1], where joint action set A = ×i∈VAi. Each agent i has a
policy πi ∈ Πi : S ×Ai → [0, 1], and we denote the joint policy of all agents as π ∈ Π = ×i∈VΠi

(Zhang et al., 2018). For networked MARL, a common and realistic assumption is that the reward
of each agent i just depends on its action and the actions of its neighbors (Qu et al., 2020a), i.e.,
ri(s,a) = ri(s, aNi

). Moreover, each agent i may only obtain partial observation oi ∈ Oi, but can
approximate the state by the observations of Ni (Jiang et al., 2020) or the observation history (Chu
et al., 2020), which are all denoted by oi for simplicity. The global objective is to maximize the sum
of cumulative rewards of all agents , i.e.,

∑∞
t=0

∑N
i=1 γ

trti .

3.2 MARKOV GAME

In such a setting, each agent could individually maximizes its own expected return, which is known
as Markov game. This may lead to stable outcome or Nash equilibrium, which however is usually
sub-optimal in terms of the global objective. Given π, the value function of agent i is given by

vπi (s) =
∑
a

π(a|s)
∑
s′

pa(s
′|s,a)[ri + γvπi (s

′)], (1)

where pa ∈ Pa describes the state transitions. A Nash equilibrium is defined as (Mguni et al., 2019)

v
(πi,π−i)
i (s) ≥ v

(π′
i,π−i)

i (s), ∀π′
i ∈ Πi,∀s ∈ S,∀i ∈ V,

where π−i = ×j∈V\{i}πj .

4 LEARNING TO SHARE IN MULTI-AGENT REINFORCEMENT LEARNING

LToS is a decentralized hierarchy. At each agent, the high-level policy determines the weights of
reward sharing based on low-level policies while the low-level policy directly interacts with the
environment to optimize the local objective induced by the high-level policies. Therefore, they form
a bi-level optimization and alternately learn towards the global objective.

4.1 REWARD SHARING

The intuition of reward sharing is that if agents share their rewards with others, each agent has to
consider the consequence of its actions on others, and thus it promotes cooperation. In networked
MARL, as the reward of an agent is assumed to depend on the actions of neighbors, we allow reward
sharing only between neighboring agents. This is because the change of actions of neighbors directly
affects the reward while the agents outside the neighborhood can only affect the return of the agent
indirectly by the change of state distribution. Moreover, this also fits the setting of networked MARL
with restricted communication between neighbors.

For the graph of V , we additionally define a set of directed edges, D, constructed from E . Specif-
ically, we add a loop dii ∈ D for each agent i and split each undirected edge eij ∈ E into two
directed edges: dij = (i, j) and dji = (j, i) ∈ D. Each agent i determines a weight wij ∈ [0, 1] for
each directed edge dij ,∀j ∈ Ni, subject to the constraint

∑
j∈Ni

wij = 1, so that wij proportion of
agent i’s environment reward ri will be shared to agent j. Let w ∈ W = ×dij∈Dwij be the weights
of the graph. Therefore, the shaped reward after sharing for each agent i is defined as

rwi =
∑
j∈Ni

wjirj . (2)

4.2 HIERARCHY

Assume there is a joint high-level policy ϕ ∈ Φ : S ×W → [0, 1] to determine w. Given ϕ and w,
we can define the value function of π at each agent i based on (1) as

vπi (s;ϕ) =
∑
w

ϕ(w|s)
∑
a

π(a|s,w)
∑
s′

pa(s
′|s,a)[rwi + γvπi (s

′;ϕ)], (3)

vπi (s;w,ϕ) =
∑
a

π(a|s,w)
∑
s′

pa(s
′|s,a)[rwi + γvπi (s

′;ϕ)].
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Figure 1: Three experimental scenarios: (a) prisoner, (b) jungle, and (c) traffic.

It is noteworthy that w is a multidimensional action for an allocation scheme rather than a probability
distribution. In our derivation, we express w as a discrete action for simplicity. It also holds for con-
tinuous action as long as we change all the summations to integrals. Let V ϕ

V (s;π)
.
=

∑
i∈V vπi (s;ϕ)

and Qϕ
V(s,w;π)

.
=

∑
i∈V vπi (s;w,ϕ).

Proposition 1. Given π, V ϕ
V (s;π) and Qϕ

V(s,w;π) are respectively the value function and action-
value function of ϕ.

Proof. The proof is deferred to Appendix.

Proposition 1 implies that ϕ directly optimizes the global objective by generating w, given π. Unlike
existing hierarchical RL methods, we can directly construct the value function and action-value
function of ϕ based on the value function of π at each agent.

As ϕ optimizes the global objective given π while πi optimizes the shaped reward individually
at each agent given ϕ (assuming π convergent to Nash equilibrium or stable outcome, denoted as
lim), they form a bi-level optimization. Let Jϕ(π) and Jπ(ϕ) denote the objectives of ϕ and π
respectively. The bi-level optimization can be formulated as follows,

max
ϕ

Jϕ(π
∗(ϕ))

s.t. π∗(ϕ) = arg lim
π

Jπ(ϕ).
(4)

4.3 DECENTRALIZED LEARNING

We start from collective learning to achieve global optimization of average reward. So far, the
joint high-level policy is still in a centralized form. Note that the scenario needs a decentralized
method and each agent has its own reward. Now we turn to learning the joint high-level policy in a
decentralized way. Let wout

i
.
= {wij |j ∈ Ni} and win

i
.
= {wji|j ∈ Ni}. The following proposition

proves each agent’s independence of each other on the high level.

Proposition 2. The joint high level policy ϕ can be learned in a decentralized manner, and the
decentralized high-level policies of all agents form a mean-field approximation of ϕ.

Proof. The proof is deferred to Appendix.

Proposition 1 and 2 indicate that for each agent i, the low-level policy simply learns a local
πi(ai|s, win

i ) to optimize the cumulative reward of rwi , since rwi is fully determined by win
i ac-

cording to (2) and denoted as rwi from now on. And the high-level policy ϕi just needs to locally
determine wout

i to optimize the cumulative reward of rϕV .
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Therefore, for decentralized learning, (4) can be decomposed locally for each agent i as

max
ϕi

Jϕi
(ϕ−i, π

∗
1(ϕ), · · · , π∗

N (ϕ))

s.t. π∗
i (ϕ) = argmax

πi

Jπi
(π−i, ϕ1(π), ··, ϕN (π)).

(5)

Now we use max instead of lim because local policies can be compared and improved in a de-
centralized manner in a Markov game. We abuse the notation and let ϕ and π also denote their
parameterizations respectively. To solve the optimization, we have

∇ϕiJϕi(ϕ−i, π
∗
1(ϕ), · · · , π∗

N (ϕ))

≈ ∇ϕi
Jϕi

(ϕ−i, π1 + α∇π1
Jπ1

(ϕ), · · · , πN + α∇πN
JπN

(ϕ)),
(6)

where α is the learning rate for the low-level policy. Let π′
i denote πi + α∇πi

Jπi
(ϕ), we have

∇ϕi
Jϕi

(ϕ−i, π
∗
1(ϕ), · · · , π∗

N (ϕ))

≈ ∇ϕi
Jϕi

(ϕ−i, π
′
1, · · · , π′

N ) + α

N∑
j=1

∇2
ϕi,πj

Jπj
(ϕ)∇π′

j
Jϕi

(ϕ−i, π
′
1, · · · , π′

N ).

The second-order derivative is neglected due to high computational complexity, without incurring
significant performance drop such as in meta-learning (Finn et al., 2017). Differently, our low-level
policy requires more than one gradient step until convergence. Similarly, we have

∇πi
Jπi

(π−i, ϕ
∗
1(π), · · · , ϕ∗

N (π))

≈ ∇πiJπi(π−i, ϕ1 + β∇ϕ1Jϕ1(π), · · · , ϕN + β∇ϕN
JϕN

(π)),

where β is the learning rate of the high-level policy. Therefore, we can solve the bi-level optimiza-
tion (4) by the first-order approximations in a decentralized way. For each agent i, ϕi and πi are
alternately updated.

QeighbRUV

QeighbRUV

gUadieQW ÁRZ
daWa ÁRZ

ageQW 

environment

Figure 2: LToS

In distributed learning, as each agent i usually does not
have access to state, we further approximate ϕi(w

out
i |s)

and πi(ai|s, win
i ) by ϕi(w

out
i |oi) and πi(ai|oi, win

i ), re-
spectively. Moreover, in network MARL as each agent i
is closely related to neighboring agents, (5) can be further
seen as πi maximizes the cumulative discounted reward
of rwi given ϕNi

, where ϕNi
= ×j∈Ni

ϕj , and ϕi equiv-
alently optimizes the global objective given πNi

, where
πNi = ×j∈Niπj . During training, πNi and ϕNi are im-
plicitly considered by interactions of wout

i and win
i respec-

tively. The architecture of LToS is illustrated in Figure 2.
At each timestep, the high-level policy of each agent i
makes a decision of action wout

i as the weights of reward
sharing based on the observation. Then, the low-level pol-
icy takes the observation and win

i as an input and outputs
the action. Agent i obtains the shaped reward according to win

i for both the high-level and low-level
policies. The gradients are backpropagated along purple dotted lines.

Further, from Proposition 1, we have: qϕi

i (s, wout
i ;πNi

) = vπi
i (s;win

i , ϕNi
), where qϕi

i is the action-
value function of ϕi given πNi

, vπi
i is the value function of πi given ϕNi

and conditioned on win
i . As

aforementioned, we approximately have qϕi

i (oi, w
out
i ) = vπi

i (oi;w
in
i ). We can see that the action-

value function of ϕi is equivalent to the value function of πi. That said, we can use a single network
to approximate these two functions simultaneously. For a deterministic low-level policy, the high-
level and low-level policies can share the same action-value function. In the current instantiation of
LToS, we use DGN (Jiang et al., 2020) (Q-learning) for the low-level policy and DDPG (Lillicrap
et al., 2016) for the high-level policy. Thus, the Q-network of DGN also serves as the critic of
DDPG, and the gradient of win

i is calculated based on the maximum Q-value of ai.

For completeness, Algorithm 1 (see Appendix B) gives the training procedure of LToS based on
DDPG and DGN. More discussions about training LToS are also available in Appendix C.
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Figure 3: Learning curves in (a) prisoner, (b) jungle, and (c) traffic. All the curves are plotted using 5 training
runs with different random seeds, where the solid line is the mean and the shadowed area is enclosed by the
min and max value.

5 EXPERIMENTS

For the experiments, we adopt three scenarios prisoner, jungle, and traffic depicted in Figure 1,
where prisoner and jungle (Jiang et al., 2020) are grid games about social dilemma that easily
measures agents’ cooperation, while traffic is a realistic scenario of networked MARL. We obey
the principle of networked MARL that only allows communication in neighborhood as Zhang et al.
(2018) and Chu et al. (2020).

To illustrate the reward sharing scheme each agent learned, we use a simple indicator: selfishness,
the reward proportion that an agent chooses to keep for itself. For ablation, we keep the sharing
weights fixed for each agent, named fixed LToS. Throughout the experiments, we additionally com-
pare with the baselines including DQN and DGN, where DGN also serves the ablation of LToS
without reward sharing as DGN is the low-level policy of LToS. To maximize the global return di-
rectly by centralized learning, we use QMIX (Rashid et al., 2018) as a baseline throughout the three
scenarios and two other ones in prisoner. Moreover, as LToS aims to bring a harmonious cooper-
ation by reward sharing in networked MARL, we compared LToS to three methods for networked
MARL, i.e., ConseNet (Zhang et al., 2018), NeurComm (Chu et al., 2020) and Intention Propaga-
tion (abbreviated as IP) (Qu et al., 2020a), and LIO (Yang et al., 2020) for incentivized learning,
all of which use recurrent neural network (RNN) or graph neural network (GNN) for the partially
observable environment. More details of hyperparameters are available in Appendix D.

5.1 PRISONER

We use prisoner, a grid game version of the well-known matrix game prisoner’s dilemma from
Sodomka et al. (2013) to empirically demonstrate that LToS is able to learn cooperative policies to
achieve the global optimum (i.e., maximize globally averaged return). As illustrated in Figure 1a,
there are two agents A and B that respectively start on two sides of the middle of a grid corridor
with full observation. At each timestep, each agent chooses an action left or right and moves to the
corresponding adjacent grid, and every action incurs a cost −0.01. There are three goals, two goals
at both ends and one in the middle. The agent gets a reward +1 for reaching the goal. The game
ends once some agent reaches a goal or two agents reach different goals simultaneously. This game
resembles prisoner’s dilemma: going for the middle goal (“defect”) will bring more rewards than
the farther one on its side (“cooperate”), but if two agents both adopt that, a collision occurs and
only one of the agents wins the goal with equal probability. On the contrary, both agents obtain a
higher return if they both “cooperate”, though it takes more steps. The highest possible return is 1.

Figure 3a illustrates the learning curves of all the methods in terms of average return. Note that for
all three scenarios, we present the average of 5 training runs with different random seeds by solid
lines and the min/max value by shadowed areas. As a result of self-interest optimization, DQN
converges to the “defect/defect” Nash equilibrium where each agent receives an expected reward
about 0.5. So does DGN since it only aims to take advantage of its neighbors’ observations while
prisoner is a fully observable environment already. Given a hand-tuned reward shaping factor to
direct agents to maximize average return, NeurComm and fixed LToS agents are able to cooperate
eventually. So are ConseNet and QMIX. However, they converge slowly. In contrast, IP agents
learn at a slower pace and its performance is only a little higher than 0.5. LIO agents cooperate soon
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enough at the beginning, but they cannot form steady cooperation and perhaps need longer training
to get rid of such instability.

JointDQN, Coco-Q (Sodomka et al., 2013), and LToS perform similarly and outperform other meth-
ods. JointDQN is one centralized DQN that takes control of joint actions of both agent A and B,
and thus should be able to achieve the best performance but still takes time to converge even in such
a simple two-agent scenario. As a modified tabular Q-learning method, Coco-Q introduces the coco
value (Kalai & Kalai, 2010) as a substitute for the expected return in the Bellman equation and re-
gards the difference as transferred reward. However, it is specifically designed for some games, and
it is hard to be extended beyond two-player games. LToS can learn the reward sharing scheme where
one agent at first gives all the reward to the other so that both of them are prevented from “defect”,
and thus achieve the best average return quickly, as observed in the experiment. By prisoner, we
verify that LToS can escape from local optimum by learning to share reward.

5.2 JUNGLE

Jungle is a scenario about moral dilemma proposed by Jiang et al. (2020) . As illustrated in Fig-
ure 1b, there are N agents and L stationary foods. At each timestep, each agent can attack or move
to one adjacent grid. Eating (attacking food) brings a positive reward +1, but attacking other agents
obtains a higher reward +2. The victim, however, suffers a negative reward −4, which makes each
attack between agents a negative-sum action. Moreover, attacking a blank grid gets a small negative
reward −0.01 (inhibiting excessive attacks). We follow the original setting of Jiang et al. (2020):
map size = 30 × 30 grids, N = 20, L = 12, and the observation consists of one’s coordinates
and a field of 11 × 11 grids nearby. Each agent has 3 closest agents as its neighbors. Compared to
prisoner, jungle has much more agents, and thus JointDQN and Coco-Q are disregarded for this sce-
nario. Another challenge is that the network topology is dynamic since each agent can always move.
Fortunately, the topology change slowly and predictably, and algorithms may get the time-varying
neighbor set Ni as part of the input. Therefore, it is still likely to estimate the shaped rewards and
value functions well.

Table 1: Average reward per step of all the methods in jungle.

DQN DGN fixed LToS LToS NeurComm ConseNet LIO IP QMIX upper bound

0.24 0.66 0.71 0.86 -0.05 -0.04 0.00 0.63 0.04 0.95

Figure 3b illustrates the learning curves of all the methods, and their performance after convergence
is also summarized in Table 1. NeurComm, ConseNet and QMIX do not perform well in this task.
In NeurComm, each agent gets a “delayed global information”. However, a stable pattern of delayed
global information cannot be formed when the communication is conducted via a dynamic topology.
ConseNet is constructed on the basis of a premise of full observation, and it can hardly learn well
when the input is not only partial but also fairly varying in sequence and content. LIO agents also
perform badly, since they cannot be distinguished from one another in the dynamic topology and
thus fail to learn a proper incentive function. Moreover, LIO requires opponent modeling, but it is
hard to simultaneously model all other agents in a dynamic environment. QMIX is free from these
problems. While aiming at global optimization, like LIO, it realizes that attacking usually means a
negative-sum action, but as a result, it avoids attacking as well as eating most of the time and thus
only achieves a reward slightly higher than 0. Another possible reason to explain the performance
QMIX is its scalability. As there are 20 agents in the scenario, it can be hard to learn the joint
action-value function to directly optimize the average return (Qu et al., 2020a). Also, we can see
that a fixed reward sharing scheme does not bring any gain over DGN. This is because fixed reward
sharing does not adapt to the dynamic topology. By learning proper reward sharing and adjusting to
changing circumstances, LToS outperforms all other baselines. Note that there is an upper bound for
average reward per step for jungle. By estimating the average distance between each agent and the
food that is the closest to it at the beginning of one episode, we can give a loose upper bound around
0.95 to reflect our improvement. The experimental results in jungle verify that LToS can also adapts
to considerably varying topology in networked MARL.

In Appendix E.1, we illustrate the representative behaviors of agents learned by difference methods,
and we compare LToS and ablation baselines with different number of agents to verify the scalability
of LToS. LToS can always achieve the best performance as the agent population size increases.
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5.3 TRAFFIC

Table 2: Statistics of traffic flows

Time
(second)

Arrival Rate
(vehicles/s)

0− 600 1
600− 1, 200 1/4
1, 200− 1, 800 1/3
1, 800− 2, 400 2
2, 400− 3, 000 1/5
3, 000− 3, 600 1/2

In traffic, as illustrated in Figure 1c , we aim to investigate
the capability of LToS in dealing with highly dynamic envi-
ronment through reward sharing. We adopt the same problem
setting as Wei et al. (2019). In a road network, each agent
serves as traffic signal control at an intersection. The obser-
vation of an agent consists of a one-hot representation of its
current phase (directions for red/green lights) and the number
of vehicles on each incoming lane of the intersection. At each
timestep, an agent chooses a phase from the pre-defined phase
set for the next time interval, i.e., 10 seconds. The reward is
set to be the negative of the sum of the queue lengths of all approaching lanes at current timestep.
The global objective is to minimize average wait time of all vehicles in the road network, which is
equivalent to minimizing the sum of queue lengths of all intersections over an episode (Zheng et al.,
2019). The experiment was conducted on a traffic simulator, CityFlow (Zhang et al., 2019). We use
a 6 × 6 grid network with 36 intersections. The traffic flows were generated to simulate dynamic
traffic flows including both peak and off-peak period, and the statistics are summarized in Table 2.

For better demonstration, we choose to show the normalized metric of wait time: the average number
of red lights one vehicle waits for at per intersection, and we can give an unrealistic loose lower
bound 0.50 to reflect our improvement. Figure 3c shows the learning curves of all the methods
in terms of that in logarithmic form. The performance after convergence is summarized in Table 3,
where LToS outperforms all other methods. LToS outperforms DGN, which demonstrates the reward
sharing scheme learned by the high-level policy indeed helps to improve the cooperation of agents.
Without the high-level policy, i.e., given fixed sharing weights, fixed LToS does not perform well in
dynamic environment. This indicates the necessity of the high-level policy. The performance of IP
agents increases so slowly that they cannot converge efficiently. Although NeurComm and ConseNet
both take advantage of RNN for partially observable environments, LToS still outperforms these
methods, which verifies the great improvement of LToS in networked MARL. QMIX is confined to
suboptimality (Mahajan et al., 2019). As observed in the experiment, QMIX tries to release traffic
flows from one direction while stopping flows from the other direction all the time, because this will
only make two rows of intersections on the border blocked but keep most of the intersections from
any traffic jam all the time. However, the global optimality actually does not need to be constructed
on the sacrifice of anyone. Some similar thing happens to LIO. It is likely because LIO contains some
sensitive parameters (Yang et al., 2020) and agents are hard to learn and coordinate their incentive
functions since the original reward functions change acutely once an improper operation causes
traffic congestion. An introduction of some explicit coordination mechanism may also alleviate the
problem, like that of NeurComm and ConseNet.

The experimental results in traffic verify that LToS can also handle highly dynamic environment
in networked MARL. Additionally, we visualize the variation of selfishness of all agents during an
episode in Appendix E.2.

Table 3: Average number of red lights one vehicle waits for at per intersection of all the methods in traffic

DQN DGN fixed LToS LToS NeurComm ConseNet LIO IP QMIX lower bound

0.90 0.78 0.80 0.58 0.71 0.78 7.74 4.67 5.94 0.50

6 CONCLUSION

In this paper, we proposed LToS, a hierarchically decentralized framework for networked MARL.
LToS enables agents to share reward with neighbors so as to encourage agents to cooperate on the
global objective through collectives. For each agent, the high-level policy learns how to share reward
with neighbors to decompose the global objective, while the low-level policy learns to optimize
the local objective induced by the high-level policies in the neighborhood. Experimentally, we
demonstrate that LToS outperforms existing methods in both social dilemma and networked MARL
scenario across scales.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1. Given π, V ϕ
V (s;π) and Qϕ

V(s,w;π) are respectively the value function and action-
value function of ϕ.

Proof. Let rϕi
.
=

∑
a π(a|s,w)rwi and pw(s

′|s,w)
.
=

∑
a π(a|s,w)pa(s

′|s,a) in contrast with
pa . As commonly assumed the reward is deterministic given s and a, from (3), we have,

vπi (s;ϕ) =
∑
w

ϕ(w|s)
∑
a

π(a|s,w)[rwi +
∑
s′

pa(s
′|s,a)γvπi (s′;ϕ)]

=
∑
w

ϕ(w|s)
∑
s′

pw(s
′|s,w)[rϕi + γvπi (s

′;ϕ)], (7)

where pw ∈ Pw : S ×W × S → [0, 1] describes the state transitions given π.

Let rϕV
.
=

∑
i∈V rϕi , and from (7) we have

V ϕ
V (s;π) =

∑
i∈V

∑
w

ϕ(w|s)
∑
s′

pw(s
′|s,w)[rϕi + γvπi (s

′;ϕ)]

=
∑
w

ϕ(w|s)
∑
s′

pw(s
′|s,w)[

∑
i∈V

rϕi + γ
∑
i∈V

vπi (s
′;ϕ)]

=
∑
w

ϕ(w|s)
∑
s′

pw(s
′|s,w)[rϕV + γV ϕ

V (s′;π)],

and similarly,

Qϕ
V(s,w;π) =

∑
i∈V

∑
s′

pw(s
′|s,w)[rϕi + γ

∑
w′

ϕ(w′|s′)vπi (s′;w′,ϕ)]

=
∑
s′

pw(s
′|s,w)[rϕV + γ

∑
w′

ϕ(w′|s′)Qϕ
V(s

′,w′;π)].

Moreover, from the definitions of rwi and rϕi we have

rϕV =
∑
a

π(a|s,w)
∑
i∈V

rwi

=
∑
a

π(a|s,w)
∑
i∈V

∑
j∈Ni

wjirj

=
∑
a

π(a|s,w)
∑

(i,j)∈D

wijri =
∑
a

π(a|s,w)
∑
i∈V

ri.

Thus, given π, V ϕ
V (s) and Qϕ

V(s,w) are respectively the value function and action-value function
of ϕ in terms of the sum of expected cumulative rewards of all agents, i.e., the global objective.

A.2 PROOF OF PROPOSITION 2

Proposition 2. The joint high level policy ϕ can be learned in a decentralized manner, and the
decentralized high-level policies of all agents form a mean-field approximation of ϕ.

First, we introduce one definition and one lemma.

Definition 1 (Markov Random Field). A Markov Random Field (MRF) is a graph G = (V, E) that
satisfies:

P (Xi|{Xj}j∈V\{i}) = P (Xi|{Xj}j∈Ni) (8)

where Xi is some random variable associated with node i,∀i ∈ V .

11



From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

Lemma 1 (Hammersley–Clifford Theorem). A probability distribution that has a strictly positive
mass or density satisfies one of the Markov properties with respect to an undirected graph G if and
only if it is a Gibbs random field, i.e., its density can be factorized over the cliques (or complete
subgraphs) of the graph. (Hammersley & Clifford, 1971)

Now we begin the proof of Proposition 2.

Proof. Let dij ∈ D serve as a vertex with action wij and reward wijri in a new graph G′. Each
vertex has its own local policy ϕij(wij |s). Note that in the sense of mean-field approximation, we
focus on neighbors and find a MRF: each wij needs and only needs to be determined considering
other {wik|k ∈ Ni\{j}}, because their actions are subject to the constraint

∑
j∈Ni

wij = 1. It
accords with the adjacency relationship in G′. According to Lemma 1, it is also a Gibbs random
field.

Now we consider the cliques that we factor ϕ(w|s) over. For ∀i ∈ V , {dij |j ∈ Ni} should form a
complete subgraph in G′. Note that dij ∈ G′ connects to {dik|k ∈ Ni\{j}} and {dkj |k ∈ Nj\{i}},
but only the former will form the maximal clique. Therefore, we have ϕ(w|s) ≈

∏
i∈V ϕi(w

out
i |s).

Note that technically each agent i can determine {wij |j ∈ Ni} simultaneously. We allow agent i to
take charge of ϕi(w

out
i |s) as its high-level policy which is a joint policy of the complete subgraph in

G′, so that we can turn the view back to G from G′ and verify each agent’s independence in the high
level.

Besides, from Proposition 1, we approximately have: qϕi

i (s, wout
i ;πNi) = vπi

i (s;win
i , ϕNi), where

qϕi

i is the action-value function of ϕi given πNi , vπi
i is the value function of πi given ϕNi

and conditioned on win
i . Let Qϕ

Ni
(s,w;π)

.
=

∑
j∈Ni

vπj (s;w
in
j ,ϕ). Note that ϕi optimizes

Qϕ
Ni

(s,w;π), because only elements in {vπj (s;win
j ,ϕ)|j ∈ Ni} correlate with wout

i , while those
in {vπj (s;win

j ,ϕ)|j ∈ V\Ni} do not. After taking this uncorrelated set into account, we have an
equivalent optimization of Qϕ

V(s,w;π), i.e., the global objective. Therefore, each decentralized
high-level policy shares the same optimization objective as the global one, and we can factorize Jϕ
into {Jϕi |i ∈ V}.

This proposition gives a factorization which is different from existing studies. First, our factorization
differs from π(a|s) = ΠN

i=1π(ai|s) (Zhang et al., 2018), since each agent needs to make decisions
considering other agents’ plan. Also in contrast to Qu et al. (2020a), they parameterize intention
propagation by GNN and other neural networks to factorize the joint policy thoroughly, while we
accept incomplete factorization and group indecomposable cliques by each agent to form high-level
policies that are also decentralized and independent of each other.

B ALGORITHM

We describe LToS as Algorithm 1.

C DISCUSSIONS ON TRAINING LTOS

As a hierarchically decentralized MARL framework, LToS brings some challenges for training.

Selfishness Initializer. On the basis of a straightforward idea that one should generally focus more
on its own reward than that of others when optimizing its own policy, the initial output of each
high-level policy network is supposed to be higher on the sharing weight of its own than others. We
choose to predetermine the initial selfishness to learn the high-level policy effectively. However, with
normal initializers, the output of the high-level policy network will be evenly distributed initially.
Therefore, we use a special selfishness initializer for each high-level policy network instead. As we
use the softmax to produce the weights, which guarantees the constraint:

∑
j∈Ni

wij = 1,∀i ∈ V ,
we specially set the bias of the last fully-connected layer so that each decentralized high-level policy
network tends to keep for itself the same reward proportion as the given selfishness initially. The rest
of reward is still evenly distributed among neighbors. LToS learns started from such initial weights,
while fixed LToS uses such weights throughout each experiment. Moreover, we use grid search to
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Algorithm 1 LToS

1: Initialize ϕi parameterized by θi and πi parameterized by µi for each agent i (ϕi is learned by
DDPG and πi is learned by DGN, and they share the Q-network)

2: for t = 0 to T do
3: for each agent i do
4: exchange observations and get oi
5: wout

i ← ϕi(oi) with exploration
6: exchange wout

i and get win
i

7: ai ← πi(oi;w
in
i ) with exploration

8: execute ai, obtain ri, and transition to o′i = oi,t+1

9: exchange ri and get rwi
10: store (oi, w

in
i , ai, r

w
i , o

′
i,Ni) in Bi

11: end for
12: if t mod update frequency = 0 then
13: for each agent i do
14: sample a minibatch from replay buffer Bi: D = {(oi, win

i , ai, r
w
i , o′i,Ni)}

15: exchange wout′
i ← ϕ′

i(o
′
i) and get win′

i

16: set yi ← rwi + γq
π′
i

i (o′i, a
′
i;w

in′
i )|a′

i=π′
i(o

′
i;w

in′
i )

17: update µi by∇µiED(yi − qπi
i (oi, ai;w

in
i ))

2

18: exchange wout
i ← ϕi(oi) and get win

i

19: compute gin
i = ∇win

i
qπi
i (oi, argmaxai

qπi
i ;win

i )

20: exchange gin
i and get gradient gout

i for wout
i

21: update θi by 1
|D|

∑
oi∈D(∇θiϕi(oi))

Tgout
i

22: softly update target networkrs θ′i and µ′
i

23: end for
24: end if
25: end for
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find the best selfishness for fixed LToS in traffic and jungle. For prisoner we deliberately set the
selfishness to 0.5 so that fixed LToS directly optimizes the average return.

Unified Pseudo Random Number Generator. LToS is learned in a decentralized manner. This
incurs some difficulty for experience replay. As each agent i needs win

i to update network weights
for both high-level and low-level policies, it should sample from its buffer a batch of experiences
where each sampled experience should be synchronized across the batches of all agents (i.e., the
experiences should be collected at a same timestep). To handle this, all agents can simply use a
unified pseudo random number generator and the same random seed.

Different Time Scales. As many hierarchical RL methods do, we can set the high-level policy to
running at a slower time scale than the low-level one. Proposition 1 still holds if we expand vπi for
more than one step forward. Assuming the high-level policy runs every M timesteps, we can fix
wout

i = wout,t+1 = · · · = wout,t+M−1. M is referred to as action interval in Table 5.

Infrequent Parameter Update with Small Learning Rate. Based on the continuity of w, a small
modification of ϕ means a slight modification of local reward functions, and will intuitively result
in an equally slight modification of the low-level value functions. This guarantees the low-level
policies are highly reusable.

Unordered Output. Essentially, the output of high-level policy network is unordered and has a one-
to-one match with each neighbor as input. The output of deep neural network, however, is generally
ordered and has trouble in varying with the input order. To settle this, we take advantage of DGN
which is insensitive of neighbor order as input. Besides, we modify the structure to make the output
keep consistency with the neighbor part of input in the relative order.

D HYPERPARAMATERS

As three experimental scenarios are quite different, we may use different hyperparameters. Note
that we also tuned the hyparameters for the baselines with grid search. Table 4 summarizes the
hyperparameters of DQN, DGN that also serves as the low-level network of LToS, and IP. We choose
the setting of original DGN in jungle while the setting of Wei et al. (2019) in traffic for consistency.
Table 5 summarizes the hyperparameters of the high-level network of LToS, which are different
from the low-level network. Table 6 summarizes the hyperparameters of NeurComm and ConseNet,
which adhere to the implementation (Chu et al., 2020). In addition, for tabular Coco-Q, the step-size
parameter is 0.5, and for IP, the regularizer factor is 0.2. We adopt soft update for both high-level
and low-level networks and use an Ornstein-Uhlenbeck Process (abbreviated as OU) for high-level
exploration.

Both fixed LToS and NeurComm exploit static reward shaping, but they adopt different reward shap-
ing schemes which are hard to compare directly. We consider a simple indicator: Self Neighbor
Ratio (SNR), the ratio of reward proportion that an agent chooses to keep for itself to that it obtains
from a single neighbor. As the rest reward is evenly shared with neighbors in LToS, for each agent i,
we have SNR = selfishness/1-selfishness× (|Ni| − 1) for LToS, and SNR = 1/α for NeurComm where α
is the spatial discount factor. We adjust the initial selfishness and α to set the SNR of both methods
at the same level for fair comparison.

E VISUALIZATION

E.1 JUNGLE

Figure 4 illustrates the representative behaviors of agents learned by difference methods. For Neur-
Comm, ConseNet (and the same with LIO), most agents are not even close to the foods, so as to
avoid being attacked. Even though, there are still conflict and sneak attack between agents some-
times. IP and DGN agents learn much better, but agents may still be cautious about each other,
which leads to hesitation when they are near the same food. LToS agents learn to properly share the
food even if the foods are close (i.e., agents are easy to be attacked) as depicted in Figure 4e and
demonstrate much better cooperation than the agents learned by other methods.
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Table 4: Hyperparameters for DQN, DGN (also serves as the low-level policy network of LToS), and IP

Hyperparamater Prisoner Jungle Traffic

sample size 10 10 1,000
batch size 10 10 20

buffer capacity 200,000 200,000 10,000
ϵstart, ϵdecay, ϵend 0.8/1/0.8 0.6/0.996/0.01 0.4/0.9/0.05

initializer random normal random normal random normal
optimizer Adam Adam RMSProp

learning rate 1e-3 1e-4 1e-3
γ 0.99 0.96 0.8

τ for soft update 0.1 0.01 0.1

# MLP units 32 & 32 512 & 128 32 & 32
MLP activation ReLU ReLU ReLU

# encoder MLP layers 2 2 2
# attention heads for DGN 4 4 1

Table 5: Hyperparameters for the high-level policy network of LToS

Hyperparamater Prisoner Jungle Traffic

update frequency 1 step 100 episodes 5 episodes
action interval 1 step 1 step 15 steps

sample size 2,000 5,000 1,000
batch size 32 32 20

noise for exploration ϵ + Gaussian OU OU
noise parameter ϵ = 0.8, σ = 1 σ = 0.025ϵ σ = 0.25ϵ

initializer selfishness selfishness selfishness
initial selfishness 0.5 0.5 0.8

optimizer SGD SGD SGD
learning rate 1e-1 1e-4 1e-3

last MLP layer activation softmax softmax softmax

Table 6: Hyperparameters for NeurComm, ConseNet, LIO and QMIX

Hyperparamater Prisoner Jungle Traffic

initializer orthogonal orthogonal orthogonal
optimizer RMSProp RMSProp RMSProp

learning rate 5e-3 5e-5 5e-4

# MLP units 20 512 & 128 16
MLP activation ReLU ReLU ReLU
# cell state units 20 512 16

# hidden state units 20 512 16

RNN type for NeurComm and ConseNet LSTM LSTM LSTM
RNN type for QMIX GRU GRU GRU

hypernetwork layer1 units for QMIX 2× 20 20× 512 36× 16
hypernetwork layer2 units for QMIX 20 512 16

α for NeurComm 1 0.33 0.1

ϵstart, ϵdecay, ϵend for LIO 0.8/0.99/0.01 0.6/0.996/0.01 0.2/0.9/0.01
αθ for LIO 1 1e-4 1e-4

Rmax for LIO 2 3 0.1

Besides, we compared LToS and ablation baselines (i.e., DGN and fixed LToS) with different number
of agents (i.e., from 10 to 50). All the setting remains the same except that the number of agents and
food grows proportionally (i.e., #agents/#foods = 5/3). As depicted in Figure 5b, LToS can always
achieve the best performance as the agent population size increases.
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Sneak 
attack

(a) NeurComm (b) ConseNet

Hesitation

(c) IP

Hesitation when 
foods are close

Caution about 
each other

(d) DGN

Reasonable allocation 
even when foods are close

(e) LToS

Figure 4: Representative behaviors of agents learned by (a) NeurComm, (b) ConseNet, (c) IP, (d) DGN, and (e)
LToS in jungle.

# agents DGN fixed LToS LToS upper bound

10 0.52 0.63 0.71 0.93
20 0.66 0.71 0.86 0.95
30 0.77 0.79 0.88 0.96
40 0.84 0.80 0.90 0.96
50 0.86 0.79 0.91 0.97

(a) Statistics of performance

10 20 30 40 50
number of agents

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

av
er

ag
e 

re
wa

rd

DGN
LToS
fixed LToS
upper bound

(b) Line graph of performance

Figure 5: Average reward per step of methods in jungle with different number of agents

(a) temporal pattern (b) spatial pattern

Figure 6: Patterns of selfishness in traffic.

E.2 TRAFFIC

We visualize the variation of selfishness of all agents during an episode in traffic in Figure 6a and 6b.
Figure 6a depicts the temporal variance of selfishness for each agent. For most agents, there are two
valleys occurred exactly during two peak periods (i.e., 0−600s and 1, 800−2, 400s). This is because
for heavy traffic agents need to cooperate more closely, which can be induced by being less selfish.
We can see this from the fact that selfishness is even lower in the second valley where the traffic is
even heavier (i.e., 2 vs. 1 vehicles/s). Therefore, this demonstrates that the agents learn to adjust
their extent of cooperation to deal with dynamic environment by controlling the sharing weights.
Figure 6b shows the spatial pattern of selfishness at different timesteps, where the distribution of
agents is the same as the road network in Figure 1c. The edge and inner agents tend to have very
different selfishness. In addition, inner agents keep their selfishness more uniform during off-peak
periods, while they diverge and present cross-like patterns during peak periods. This shows that
handling heavier traffic requires more diverse reward sharing schemes among agents to promote
more sophisticated cooperation.
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