
Under review as submission to TMLR

Multiscale Training of Convolutional Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Training convolutional neural networks (CNNs) on high-resolution images is often bottle-
necked by the cost of evaluating gradients of the loss on the finest spatial mesh. To address
this, we propose Multiscale Gradient Estimation (MGE), a Multilevel Monte Carlo-inspired
estimator that expresses the expected gradient on the finest mesh as a telescopic sum of
gradients computed on progressively coarser meshes. By assigning larger batches to the
cheaper coarse levels, MGE achieves the same variance as single-scale stochastic gradient
estimation while reducing the number of fine mesh convolutions by a factor of 4 with each
downsampling. We further embed MGE within a Full-Multiscale training algorithm that
solves the learning problem on coarse meshes first and “hot-starts” the next finer level,
cutting the required fine mesh iterations by an additional order of magnitude. Extensive
experiments on image denoising, deblurring, inpainting and super-resolution tasks using
UNet, ResNet and ESPCN backbones confirm the practical benefits: Full-Multiscale reduces
the computation costs by 4-16× with no significant loss in performance. Together, MGE
and Full-Multiscale offer a principled, architecture-agnostic route to accelerate CNN training
on high-resolution data without sacrificing accuracy, and they can be combined with other
variance-reduction or learning-rate schedules to further enhance scalability.

1 Introduction

In this work, we consider the task of learning a functional y(x) = ϕ(u(x)), where x is a position (in 2D
x = (x1, x2), u(x) ∈ U and y(x) ∈ Y are families of functions. To this end, let us assume that we have
discrete samples from U and Y, that is uh

i = ui(xh), yh
i = ϕ(ui(xh)) for i = 1, . . . , M , associated with some

resolution h. A common approach to learning the function is to parameterize the problem, typically by a
deep network, and replace ϕ with a function f(·, ·) that accepts the vector uh and learnable parameters θ
which leads to the problem of estimating θ such that yh

i ≈ f(uh
i , θ) for i = 1, . . . , M . To evaluate θ, the

following stochastic optimization problem is formed and solved,

min
θ

Euh,yhℓ
(
f(uh, θ), yh

)
, (1)

where ℓ(·, ·) is a loss function (typically mean squared error). Standard approaches use variants of stochastic
gradient descent (SGD) to estimate the loss and its gradient for different samples of (uh, yh). In deep learning
with convolutional neural networks, the parameter θ (the convolutional weights) has identical dimensions,
independent of the resolution. Although variants of SGD (e.g. Adam, AdamW, etc.) are widely used, their
computational cost can become prohibitively high as the mesh-size h decreases, especially when evaluating
the function f on a fine mesh for many samples uh

i . This challenge is worsened if the initial guess θ is far
from optimal, requiring many costly iterations for large data sizes M . One way to avoid large meshes is to
use small crops of the data where large images are avoided, however, this can degrade performance, especially
when a large receptive field is required for learning (Araujo et al., 2019).

Background and Related Work. Computational cost reduction can be achieved by leveraging different
resolutions, a fundamental concept to multigrid and multiscale methods. These methods have a long history
of solving partial differential equations and optimization problems (Trottenberg et al., 2001; Briggs et al.,
2000; Nash, 2000). Techniques like multigrid (Trottenberg et al., 2001) and algorithms such as MGopt (Nash,

1

Under review as submission to TMLR

2000; Borzi, 2005) and Multilevel Monte Carlo (Giles, 2015; 2008; Van Barel & Vandewalle, 2019) are widely
used for optimization and differential equations.

In deep learning, multiscale or pyramidal approaches have been used for image processing tasks such as object
detection, segmentation, and recognition, where analyzing multiple resolutions is key (Scott & Mjolsness, 2019;
Chada et al., 2022; Elizar et al., 2022). Recent methods improve standard CNNs for multiscale computations
by introducing specialized architectures and training methods. For instance, the work by He & Xu (2019)
uses multigrid methods in CNNs to boost efficiency and capture multiscale features, while Eliasof et al.
(2023b) focuses on multiscale channel space learning, and van Betteray et al. (2023) unifies both. Li et al.
(2020) introduced the Fourier Neural Operator, enabling mesh-independent computations, and Wavelet neural
networks were explored to capture multiscale features via wavelets (Fujieda et al., 2018; Finder et al., 2022;
Eliasof et al., 2023a).

While often overlooked, it is important to note that these approaches, can be divided into two families of
approaches that leverage multiscale concepts. The first is to learn parameters for each scale, and a separate set
of parameters that mix scales, as in UNet (Ronneberger et al., 2015). The second, called multiscale training,
enables the approximation of fine-scale parameters using coarse-scale samples (Haber et al., 2017b; Wang
et al., 2020; Ding et al., 2020; Ganapathy & Liew, 2008). The second approach aims to gain computational
efficiency, as it approximates fine mesh parameters using coarse meshes, and it can be coupled with the first
approach, and in particular with UNets.

Our approach. This work advances the multiscale training paradigm by rigorously adapting Multilevel
Monte Carlo (MLMC) methods to the non-convex landscape of CNN training. While concepts like MLMC
and multigrid are well-established in numerical analysis, their application to stochastic gradient estimation
for deep CNNs is non-trivial and requires specific theoretical justification. We distinguish our contributions
beyond a simple recombination of existing methods in three key ways.

First, we establish the theoretical bounds for CNN gradient estimation. We explicitly derive the error bounds
for the Multiscale Gradient Estimation (MGE) estimator, proving that under standard Lipschitz conditions,
the difference between gradients on fine and coarse meshes decays as O(h). This provides the necessary
theoretical guarantee for applying variance reduction to convolutional weights, ensuring that the optimization
does not diverge when mixing scales, a specificity not addressed in standard MLMC literature.

Second, we provide a rigorous analysis of subsampling strategies. Unlike prior empirical works (Haber et al.,
2017a), we mathematically demonstrate that the choice of downsampling is critical: we prove that coarsening-
based subsampling yields an error that vanishes as resolution increases (O(2Lh)), whereas cropping-based
strategies result in a constant error bound (O(1)) regardless of resolution. This offers a principled guideline
for multiscale training paradigm design.

Finally, we embed these theoretical insights into a Full-Multiscale training algorithm. By combining the
variance reduction of MGE with a coarse-to-fine “hot-start” initialization, we demonstrate an architecture-
agnostic framework that accelerates training by orders of magnitude for tasks ranging from denoising to
super-resolution, without significant loss in performance over key metrics.

Although our method exploits the convolutional operation, it does not explicitly address alternative mechanisms
like attention. Consequently, while the framework could, in principle, be adapted to attention, it does not
offer the same theoretical guarantees that we establish for convolutions.

Our main contributions are: (i) we propose a new multiscale training algorithm, Multiscale Gradient Estimation
(MGE), deriving explicit error bounds for gradient convergence in convolutional networks; (ii) we theoretically
analyze the limitations of image subsampling strategies, rigorously proving why coarsening outperforms
cropping within a multiscale framework; and (iii) we validate our approach via a Full-Multiscale training
algorithm on benchmark tasks, showcasing enhanced computational efficiency and scalability across diverse
architectures.

2

Under review as submission to TMLR

2 Multiscale Gradient Estimation

We now present the standard approach of training CNNs, identify its major computational bottleneck, and
propose a novel approximation to the gradient that can be used for different variants of SGD.

Standard Training of Convolutional Networks. Suppose that we use a gradient descent-based method
to train a CNN with input resolution h1 and with trainable parameters θ. Under gradient-based methods,
the parameters θ can be learned iteratively using,

θk+1 = θk − µkEuh,yh

[
g(uh, yh, θk)

]
, (2)

where g(uh, yh, θk) at iteration k represents the gradient with respect to the parameters θ of some loss
function ℓ (e.g., the mean squared error function) given by g(uh, yh, θk) = ∇ θℓ

(
f(uh, θk), yh

)
and µk

represents the learning rate. The expectation E is taken with respect to the input-label pairs (uh, yh).
Evaluating the expected value of the gradient can be highly expensive, especially on fine meshes where the
value of h is very small. To understand why, consider the estimation of the expected value of the gradient
using sample mean of g with a batch of N samples,

Euh,yh

[
g(uh, yh, θk)

]
≈ 1

N

∑
i

g(uh
i , yh

i , θk). (3)

The above approximation results in an error in the gradient. Under some mild assumptions on the sampling
of the gradient value (Johansen et al., 2010), the error can be bounded by,∥∥∥∥∥E [g(uh, yh, θk)

]
− 1

N

∑
i

g(uh
i , yh

i , θk)
∥∥∥∥∥ ≤ C√

N
, (4)

for some constant C, where ∥ · ∥ represent the L2 norm. Clearly, obtaining an accurate evaluation
of the gradient (that is, with low variance) requires sampling g(uh

i , yh
i , θk) across many data points

i with sufficiently small h (high-resolution). This tradeoff between the sample size N and the accu-
racy of the gradient estimation, is the costly part of training a deep network on high-resolution data.

+

Figure 1: Illustration of our Multiscale Gradient Estimation
(MGE) algorithm introduced in Section 2. This figure shows
a schematic of a 3-level MGE algorithm with resolutions h (finest),
2h, and 4h (coarsest) with batch sizes N3 > N2 > N1.

To alleviate the problem, it is common
to use large batches, effectively enlarging
the sample size. It is also possible to
use various variance reduction techniques
(Anschel et al., 2017; Chen et al., 2017;
Alain et al., 2015). Nonetheless, for high-
resolution images, or 3D inputs, the large
memory requirement limits the size of the
batch. A small batch size can result in
noisy, highly inaccurate gradients, and
slow convergence (Shapiro et al., 2009).

2.1 Efficient Training with
Multiscale Estimation of the Gradient

To reduce the cost of the computation of
the gradients, we use a classical trick pro-
posed in the context of Multilevel Monte
Carlo methods (Giles, 2015). To this end, let h = h1 < h2 < ... < hL be a sequence of mesh sizes, for
which the functions u and y are discretized on. We can easily sample (or coarsen) u and y to some mesh

1In this paper, we define resolution h as the pixel size on a 2D uniform mesh grid, where smaller h indicates higher resolution.
For simplicity, we assume the same h across all dimensions, though different resolutions can be assigned per dimension.

3

Under review as submission to TMLR

hj , 1 ≤ j ≤ L. We consider the following identity, based on the telescopic sum and the linearity of the
expectation,

E
[
gh1(θ)

]
= E

[
ghL(θ)

]
+ E

[
ghL−1(θ)− ghL(θ)

]
+ . . . + E

[
gh1(θ)− gh2(θ)

]
, (5)

where for shorthand we define the gradient of the loss with respect to θ with resolution hj by ghj (θ) =
g(uhj , yhj , θ). The core idea of our Multiscale Gradient Estimation (MGE) approach, is that the expected
value of each term in the telescopic sum is approximated using a different batch of data with a different batch
size. This concept is demonstrated in Figure 1 and can be written as,

E
[
gh1(θ)

]
≈ 1

NL

∑
i

ghL
i (θ) +

L∑
j=2

1
Nj−1

∑
i

(
ghj−1

i (θ)− ghj

i (θ)
)

(6)

To understand why this concept is beneficial, we analyze the error obtained by sampling each term in
Equation (6). Evaluating the first term in the sum requires evaluating the function g on the coarsest mesh
hL (i.e., the lowest resolution) using downsampled inputs. Therefore, it can be efficiently computed, while
utilizing a large batch size NL. Thus, following Equation (4), the approximation error of the first term in
Equation (6) can be bounded by, ∥∥∥∥∥E [ghL(θ)

]
− 1

NL

∑
i

ghL
i (θ)

∥∥∥∥∥ ≤ C√
NL

. (7)

Throughout our discussion, we assume that the per-pixel gradient contribution φ(uh) is uniformly bounded
and Lipschitz-continuous in its argument, so that ∥φ(uh)−φ(vh)∥ grows at most linearly with ∥uh − vh∥. In
addition, when relating gradients across resolutions, we assume that each coarse-grid representative ck

2h (see
Appendix A.1 for a detailed discussion) approximates all fine-grid values uh within its block to within O(h),
reflecting the smoothness of the underlying image signal. Additionally, we need to evaluate the terms of the
form,

rj = E
[
ghj−1(θ)− ghj (θ)

]
. (8)

The above rj can similarly be approximated by sampling with a batch size Nj−1,

r̂j = 1
Nj−1

∑
i

(
ghj−1

i (θ)− ghj

i (θ)
)

, (9)

for j = 2, . . . , L. The key question is: what is the error in approximating rj by the finite sample estimate r̂j?
Previously, we focused on error due to sample size N . However, note that the exact term rj is computed by
evaluating g on two resolutions of the same samples and subtracting the results. The key observation is that
if the evaluation of g on different resolutions yields similar results, then g computed on a mesh with step size hj

can be utilized to approximate the gradient g on a mesh with finer resolution hj−1, making the approximation
error r̂j small. Furthermore, for the multiscale estimator we adopt the standard cross-resolution discrepancy
condition,

∥ghj−1
i (θ)− ghj

i (θ)∥ ≤ Bhp
j−1, (10)

for some constants B > 0 and p > 0 both independent of the pixel-size hj−1. This captures the fact that
evaluating the gradient on a slightly coarser mesh yields an approximation whose accuracy improves as the
resolution is refined. Then, we can bound the error of approximating rj by r̂j as follows,

∥rj − r̂j∥ ≤ BC
hp

j−1√
Nj−1

. (11)

Note that, under the assumption that Equation (10) holds, the gradient approximation error between different
resolutions decreases as the resolution increases (i.e., h→ 0). Combining the terms, the sum of the gradient
approximation obtained from the telescopic sum in Equation (6) can be bounded by,

e = C

 1√
NL

+ B

L∑
j=2

hp
j−1√
Nj−1

 . (12)

4

Under review as submission to TMLR

Sketch of derivation for Equation (12): Starting from the telescoping representation of the fine-scale gradient,
we decompose the total error of the multiscale estimator into the sampling error at the coarsest level and the
sampling errors of the correction terms across levels. Under our boundedness and Lipschitz assumptions on
the per-pixel gradient contribution, the coarsest-level term behaves like a standard Monte Carlo estimator
and contributes a term proportional to 1/

√
NL. For each correction term, the cross-resolution discrepancy

condition ∥ghj−1 − ghj∥ ≤ Bhp
j−1 implies that its sampling error is bounded by a factor hp

j−1/
√

Nj−1.
Summing these contributions over all levels and absorbing constants yields the bound in Equation (12). In the
two-level case as discussed next, we can then specialize this expression, enforce that the multiscale estimator
matches the single-scale error level, and choose a simple allocation between coarse and fine batches, which
leads directly to the form stated in Equation (13).

Computational Complexity of using Multiscale Gradient Estimation. Let us look at an exemplary
2-level case (using 2 mesh grids h1 and h2 with h = h1 < h2) used for MGE. A standard single-scale gradient
estimation (on fine mesh h1) with N samples yields an accuracy of eN = C/

√
N . If we are to achieve the

same accuracy using a 2-level method, then, using Equation (12) and choosing N2 = 4N1 (that is making the
batch size of the coarse mesh h2 four times larger than the one on the fine mesh h1), we see that using MGE
the same error is obtain by sampling the fine mesh

N1 = 1
4(1 + 2Bhp)2N. (13)

For high-resolution images, as the mesh size h→ 0 and B is bounded, Bhp ≪ 1 and therefore the number
of computations on high-resolution samples in a 2-level MGE is approximately 1/4 compared to a single
mesh algorithm. To see the effect of this sampling on the overall cost, similar to other multiscale algorithms
(see Trottenberg et al. (2001)), it is useful to define a quantity workunit (#WU). A workunit is defined
as the cost of computation of the convolution operation on the finest mesh. For single-scale estimation of
gradients, an error of eN is achieved using N #WU . Let us analyze the same for the 2-level MGE algorithm,
which involves the computation of the loss over three different batches: a batch of N2 = 4N1 ≈ N samples
over the coarse grid for the first term in Equation (12), a second batch of N1 ≈ N/4 samples over the coarse
mesh and finally a third batch of N1 ≈ N/4 over the fine mesh. Since, the cost of convolution of coarse
mesh is approximately 1/4 of the cost of the fine scale convolution, the cost of estimating the gradients
using a 2-level MGE is N × (1

4) + N
4 × (1 + 1

4) = 9N
16 #WU . Thus, even a simple 2-level algorithm can

save approximately 43.8% of computations. Detailed calculations for MGE with more levels is provided in
Appendix B. When considering the actual wall time for computing multiscale convolutions, note that the
two terms (fine and coarse mesh computations) can, in principle, be executed in parallel. Therefore, with
appropriate parallelization of the two processes, the wall time for a 2-level MGE algorithm could theoretically
be reduced to approximately 50% of the time required for a single-scale algorithm. However, it is important
to note that in this work, we do not strictly exploit this parallelization potential; our reported experiments
are performed sequentially. We leave the engineering of parallel execution to fully realize these theoretical
wall-time gains for future work.

Beyond these savings, MGE is easy to implement. It simply requires computing the loss at different input
scales and batches. Since gradients are linear, the gradient of the loss naturally yields MGE. The full algorithm
is outlined in Algorithm 1.

2.2 Multiscale Analysis of Convolutional Neural Networks

We now analyze under which conditions multiscale gradient computation can be applied for convolutional
neural network optimization without compromising on its efficiency.

Specifically, for multiscale gradient computation to be effective, the network output and its gradients with
respect to the parameters at one resolution should approximate those at another resolution. Here, we explore
how a network trained at one resolution h, performs on a different resolution 2h. Specifically, let f(uh, θ) be
a network that processes images at resolution h. The downsampled version u2h = R2h

h uh is generated via the
interpolation matrix R2h

h . We aim to evaluate f(u2h, θ) using the coarser image u2h. A simple approach is
to reuse the parameters θ from the fine resolution h. In Lemma 1 below, we justify such a usage under some
conditions.

5

Under review as submission to TMLR

Algorithm 1 Multiscale Gradient Estimation
Set batch size to NL and sample, NL samples of uh1 and yh1

Pool uhL = RhL

h1
uh1 , yhL = RhL

h1
yh1

Set loss = ℓ(uhL , yhL , θ)
for j = 1, ..., L do

Set batch size to Nj and sample, Nj samples of uh1 and yh1

Pool uhj = Rhj

h1
uh1 , yhj = Rhj

h1
yh1 and uhj−1 = Rhj−1

h1
uh1 , yhj−1 = Rhj−1

h1
yh1

Compute the losses ℓ(uhj , yhj , θ) and ℓ(uhj−1 , yhj−1 , θ)
loss← loss− ℓ(uhj , yhj , θ) + ℓ(uhj−1 , yhj−1 , θ)

end for
Compute the gradient of the loss.

Lemma 1 (Convergence of standard convolution kernels). Let uh, yh be continuously differentiable
grid functions, and let u2h = R2h

h uh, and y2h = R2h
h yh be their interpolation on a mesh with resolution 2h.

Let gh and g2h be the gradients of the function in Equation (6) with respect to θ. Then the difference between
gh and g2h is

∥gh − g2h∥ = O(h).

As can be seen in the proof – that we present in Appendix A.1 – of the above lemma, the convergence of the
gradient depends on the amount of high frequencies in the data. This makes sense since the restriction R2h

h

damps high frequencies. If the signals uh and yh contain mainly high frequencies, then the gradients of loss
on the coarse mesh cannot faithfully represent those on the fine meshes. We now test the validity of this
assumptions for a number of commonly used data set in Example 1.
Example 1. Assume that f is a 1D convolution, that is f(uh, θ) = uh ⋆ θ, and that the loss is a linear model,

ℓh(θ) = 1
n

(uh ⋆ θ)⊤yh, (14)

where yh is the discretization of some function y on the fine mesh h. We use a 1D convolution with kernel
size 3 × 1, whose trainable weight vector is θ ∈ R3 and compute the gradient of the function on different
meshes. The loss function on the ith coarse mesh of size 2ih can be written as,

ℓ2ih(θ) = 1
ni

(R2ih
h uh ⋆ θ)⊤(R2ih

h yh), (15)

where R2ih
h is a linear interpolation operator that takes the signal from mesh size h to mesh size 2ih. We

compute the difference between the gradient of the loss function on each level and compute its norm,

δg =
∥∥∇ θℓ2ih −∇ θℓ2i+1h

∥∥. (16)

In our experiments, we add Gaussian noise N (0, I) scaled by different factors σ to the inputs. We compute
the values of δg, and report it in Figure 2. The experiment demonstrates that even for relatively large amounts
of noise the difference between the gradients stays rather small. This justified using the approach for a wide
range of problems.

Figure 2 also serves as an empirical evaluation of the resolution-induced gradient discrepancy ∥ghj−1 − ghj∥,
which is the key approximation term used in the analysis of Section 2.1. The observed decay of this discrepancy
with mesh refinement, as well as its stability under noise perturbations, provides direct support for the
cross-resolution consistency assumption underlying the error bounds in Equations (12) and (13). While this
does not measure the full gradient error ∥ĝ −∇f∥, it verifies precisely the gradient behavior required for the
multiscale estimator to be theoretically well-founded.

The analysis suggests that for smooth signals, standard CNNs can be integrated into Multilevel Monte Carlo
methods, which form the basis of our MGE. The example demonstrates that while for noisy signals, the

6

Under review as submission to TMLR

difference between gradients on different mesh sizes may not decrease, it is still small and thus can be used
for estimating the gradients. We also compute the total wall time (in seconds) for the computation of loss
under both the single-scale and MGE frameworks for 512 images from the STL10 dataset in Table 1, where
we show that MGE takes considerably lower amount of time as compared to the single-scale operations.
All computations were performed on a CPU with 48 cores, and a total available RAM of 819 GB. Note
that although in terms of FLOP counts, the computation on a coarser mesh is 4 times more effective, using
standard hardware and software (PyTorch) yields more modest gains. This however, can be resolved by
designing better hardware and software implementations.

Figure 2: The difference between the gradients on
different mesh sizes and for different noise levels
σ. The difference remains small even for large
noise levels.

Table 1: Comparing the time for loss evaluation on
images of different sizes for single images, number of
loss function evaluations and total evaluation time for
loss computation under single-scale and MGE over 512
images from the STL10 dataset. For this example,
all evaluations were performed using a UNet. For the
telescopic sum of MGE, for each n, the batch size at the
finest possible resolution was set to 16 and subsequent
coarser levels were assigned batch sizes in even multiples
of 16 (32, 64, etc.) and the coarsest level got all the
remaining (out of 512) number of images.

Mesh size (n2) → 2562 1282 642 322 162

Wall time for loss computation
on a single image (s) 3.338 1.502 0.956 0.662 0.458

Number of loss
evaluations

Single-scale 512 512 512 512 512
MGE 752 624 560 528 512

Wall time on
512 images (s)

Single-scale 1709.06 769.02 489.47 338.94 234.50
MGE 527.58 345.98 274.24 245.09 234.50

3 The Full-Multiscale Training Algorithm

While MGE can accelerate the computation of the gradient, solving the optimization problem is still
computationally expensive. MGE makes each iteration computationally cheaper, nonetheless, the number of
iterations needed for the solution of the optimization problem is typically very high. Many problems require
thousands, if not tens of thousands of iterations, where each iteration sees only a small portion of the data (a
batch), due to the large size of the whole data set. Multiscale framework can be leveraged to dramatically
reduce the cost of the optimization problem. A common method is to first coarsen the images in the data
and solve the optimization problem (that is, estimate the parameters, θ) where the data is interpolated
(pooled) to a coarser mesh. Since the loss and gradients of loss on the coarse mesh approximates the fine
mesh problem, the output of the optimization problem on coarse mesh serves as a very good initial guess to
the solution of the fine scale problem. When starting the solution close to its optimal value, one requires
only few iterations on the fine mesh to converge. This process is often referred to as called mesh homotopy
(Haber et al., 2007). This resolution-dependent approach to training CNNs is summarized in Full-Multiscale
in Algorithm 2 (Borzì & Schulz, 2012).

Algorithm 2 Full-Multiscale
Randomly initialize the trainable parameters θH

∗ .
for j = 1, ..., L do

Set mesh size to hj = 2L−jh and θ
hj

0 = θH
∗ .

Solve the optimization problem on mesh hj for θ
hj
∗ .

Set θH
∗ ← θ

hj
∗ .

end for

7

Under review as submission to TMLR

Convergence rate for Full-Multiscale. To further understand the effect of the Full-Multiscale approach,
we recall the stochastic gradient descent (SGD) converge rate. For the case where the learning rate converges
to 0 and ℓ is smooth and convex, we have that after k iterations of SGD, we can bound the error of the loss
by, ∥∥∥E [ℓ(θk)]− E

[
ℓ(θh

∗)
] ∥∥∥ ≤ C0

C

k
, (17)

where C is a constant, θh
∗ is the parameter that optimizes the expectation of the loss, and C0 is a constant

that depends on the initial error at θ0. Let θH
∗ and θh

∗ be the parameters that minimize the expectation of
the loss for meshes with resolution H and h, respectively with H > h and assume that ∥θH

∗ − θh
∗∥ ≤ γH,

where γ is a constant independent of h. This assumption is standard (see Nash (2000) and it is justified if
the loss converges to a finite value as h→ 0. During the Full-Multiscale iterations (Algorithm 2), we solve
the problem on the coarse mesh H to initialize the fine mesh h solution. Thus, after k steps of SGD on the
fine mesh, we can bound the error by,∥∥∥E [ℓ(θk)]− E

[
ℓ(θh

∗)
] ∥∥∥ ≤ γH

C

k
. (18)

Requiring that the error is smaller than some ϵ, renders a bounded number of required iterations

k ≈ γC
H

ϵ
. (19)

The above discussion can be summarized by the following theorem.
Theorem 1 (Hotstarting SGD). Let fh(θ) = Euh,yh [ℓ(uh, yh, θ)] and let fH(θ) = EuH ,yH [ℓ(uH , yH , θ)].
Let θH

∗ = arg minθ fH(θ) and θh
∗ = arg minθ fh(θ). Then, the number of iterations needed to optimize fh to

an error of ϵ is,

k = O
(

H

ϵ

)
In practice, since in Algorithm 2, H = 2jh, the number of iterations for a fixed error ϵ is halved at each level,
the iterations on the finest mesh are a fraction of those on the coarsest mesh which can speed up training by
an order of magnitude compared with standard single-scale training.

4 Experimental Results and Discussion

In this section, we evaluate the empirical performance of our training strategies: Multiscale (Algorithm 1)
and Full-Multiscale (Algorithm 2), compared to standard Single-scale CNN training.

Experiments. We demonstrate the broad application of our Multiscale and Full-Multiscale training strategies
using architectures such as ResNet (He et al., 2016), UNet (Ronneberger et al., 2015), and ESPCN (Shi et al.,
2016) on a wide variety of tasks ranging from image denoising, deblurring, inpainting, and super-resolution.
Additional details on experimental settings, hyperparameters, architectures, and datasets are provided in
Appendix D. Notably, recent architectures employ attention. The application of multiscale techniques to
attention are beyond the scope of this paper and will be investigated in future work. We also experiment
with different approaches to image subsampling that are based either on cropping, coarsening (pooling) or a
combination of both within a multiscale training framework based on MGE.

Research questions. We seek to address the following questions: (i) How effective are standard convolutions
with multiscale training and what are their limitations? (ii) Can multiscale training be broadly applied
to typical CNN tasks, and how much computational savings does it offer compared to standard training?
(iii) What is the right image subsampling strategy to use, among coarsening and cropping, within a multiscale
training framework?

Metrics. To address our questions, we focus on performance metrics (e.g., MSE or SSIM) and the
computational effort for training as measured by #WU for each method. As a baseline, we train the problem
on a single-scale (finest) resolution. As explained in Appendix B, to be unbiased to implementation and

8

Under review as submission to TMLR

software limitations, we define a workunit (#WU) as one application of the model on a single image at
the finest mesh (i.e., original resolution). In multiscale training, this unit decreases by a factor of 4 with
each downsampling by a factor of 2. We then compare #WU across training strategies. We also compare
a workunit with computational time. For optimal implementation, there is a linear relationship between
the two. Finally, we perform paired t-tests between the Single-scale baseline and each of the Multiscale and
Full-Multiscale variants on the test set, using a 5% significance level to assess whether the differences in their
mean performance metrics are statistically significant.

Image denoising. Here, one assumes data of the form uh = tyh + (1− t)z, where yh is some image on a
fine mesh h and z ∼ N (0, I) is the noise. The noise level t ∈ [0, 1] is chosen randomly. The goal is to recover
yh from uh. The loss to be minimized is loss(θ) = 1

2Eyh,uh,t∥f(uh, t, θ) − yh∥2. In Table 2, training via
Multiscale and Full-Multiscale strategies significantly improve training compute (measured by #WU) while
maintaining the quality of the reconstructed denoised image on the STL10 test dataset, measured by MSE.
Additional experiments on the CelebA dataset for this task are provided in Appendix C.1 (see, Table 3).

Table 2: Comparison of different training strategies, Single-scale, Mul-
tiscale and Full-Multiscale (under various image subsampling strategies
like coarsening or cropping for the multiscale training), over different
networks and across various tasks such as denoising, deblurring, in-
painting, and super-resolution. The training computational costs are
measured via #WU and the mean performance of the networks on
the test set via MSE or SSIM over various tasks. A paired t-test was
performed for Multiscale and Full-Multiscale (for coarsening only) with
respect to the Single-scale baseline. Here, “*” indicates performance
not statistically different from Single-scale, while “**” indicates perfor-
mance statistically different from Single-scale at a significance level of
5%.

Subsampling strategy Image Denoising, MSE (↓)
Training strategy Coarsen Crops #WU (↓) UNet ResNet
Single-scale - - 480k 0.1472 0.0927
Multiscale (Ours) ✓ ✗ 74k 0.1417∗ 0.0943∗

Full-Multiscale (Ours) ✓ ✗ 28.7k 0.1086∗∗ 0.0839∗∗

Full-Multiscale (Ours) ✗ ✓ 28.7k 0.2723 0.1599
Full-Multiscale (Ours) ✓ ✓ 28.7k 0.2632 0.1366

Image Deblurring, MSE (↓)
UNet ResNet

Single-scale - - 480k 0.1478 0.1117
Multiscale (Ours) ✓ ✗ 74k 0.1420∗∗ 0.1156∗

Full-Multiscale (Ours) ✓ ✗ 28.7k 0.1515∗∗ 0.1480∗∗

Full-Multiscale (Ours) ✗ ✓ 28.7k 0.4010 0.1852
Full-Multiscale (Ours) ✓ ✓ 28.7k 0.3541 0.1849

Image Inpainting, SSIM (↑)
UNet ResNet

Single-scale - - 480k 0.9020 0.9079
Multiscale (Ours) ✓ ✗ 74k 0.8927∗∗ 0.8920∗∗

Full-Multiscale (Ours) ✓ ✗ 126k 0.9112∗∗ 0.9060∗

Full-Multiscale (Ours) ✗ ✓ 126k 0.6383 0.8527
Full-Multiscale (Ours) ✓ ✓ 126k 0.6392 0.8464

Image Super-resolution, SSIM (↑)
ESPCN ResNet

Single-scale - - 30k 0.8147 0.8294
Multiscale (Ours) ✓ ✗ 4.6k 0.7952** 0.7982**
Full-Multiscale (Ours) ✓ ✗ 7.9k 0.7945** 0.7929**
Full-Multiscale (Ours) ✗ ✓ 7.9k 0.7590 0.7504
Full-Multiscale (Ours) ✓ ✓ 7.9k 0.7663 0.7617

Image deblurring. Here, one
assumes data of the form uh =
Khyh + z, where yh is some im-
age on mesh h, Kh is the blur-
ring kernel and z is the noise. The
goal is to recover yh from blurred
uh. The loss to be minimized is
loss(θ) = 1

2Eyh,uh∥f(uh, θ)− yh∥2.
In Table 2, our Full-Multiscale train-
ing strategy significantly accelerates
training while maintaining the qual-
ity of the reconstructed deblurred
image on the STL10 dataset, mea-
sured by MSE.

Image inpainting. Here, one
assumes data of the form uh =
Mhyh + z, where yh is a complete
image on mesh h, Mh is the image
corruption operation and z is the
noise. The goal is to recover yh from
incomplete noised data uh. The
loss to be minimized is loss(θ) =
1
2Eyh,uh∥f(uh, θ)−yh∥2. In Table 2,
our Full-Multiscale training strat-
egy significantly accelerates train-
ing while maintaining the quality of
the reconstructed inpainted image
on the CelebA dataset, measured by
SSIM.

Image super-resolution. Here,
we aim to predict a high-resolution
image uh from a low-resolution im-
age yl, which is a downsampled ver-
sion of uh. The downsampling pro-
cess is modeled as yl = Duh + z,
where D(·) is a downsampling oper-
ator (e.g., bicubic), and z is noise.
The goal is to reconstruct uh using
a neural network f(yl, θ). The loss function is L(θ) = −Eyl,uh

[
SSIM

(
f(yl, θ), uh

)]
. In Table 2, our Full-

9

Under review as submission to TMLR

Ground truth Noisy input Ground truth

Ground truth Ground truth

Blurred inputUNet ResNet UNet ResNet

Corrupt input UNet ResNet ESPCN ResNetLow-res input

Figure 3: Examples of image recovery over different tasks such as image denoising (top-left), deblurring
(top-right), inpainting (bottom-left), and super-resolution (bottom-right) under different training strategies
(Single-scale, Multiscale, and Full-Multiscale) using various base networks such as UNet, ResNet, and ESPCN.

Multiscale training strategy significantly accelerates training while maintaining image quality on the Urban100
dataset, measured by SSIM.

In all our experiments, we noted that within a multiscale training framework, a coarsening-based subsampling
strategy is better than a cropping-based or a combination of both coarsening- and cropping-based strategy.
We provide a theoretical justification for this observation in Appendix A.2. The error in the estimation of
gradient using the telescopic sum in Equation (5) for a coarsening-based subsampling approach varies as
O(2Lh), hence as the mesh resolution h→ 0, the error vanishes. On the other hand, for a cropping-based
subsampling approach, the error in gradient has an upper bound 2(1− m

Nh
)M(L− 1), where m is the number

of pixels in the cropped patch, Nh is the total number of pixels in the entire image, and M represents the
upper bound on the norm of gradients for all pixels. Hence, the error in gradients for the cropping-based
approach varies as O(1) (independent of h) but grows with the number of levels of resolution L in MGE.

Qualitative performance of these training strategies on different tasks have been presented in Figure 3. We
discuss the broader impacts of our work in Section 5. Detailed experimental settings and visualizations
for each of the above tasks are provided in Appendices D and E, respectively. Furthermore, we provide
additional experiments with deeper networks, comparison under fixed computational budget, and sensitivity
to different number of resolution levels for the Multiscale and Full-Multiscale training in Appendices C.2
to C.4, respectively.

10

Under review as submission to TMLR

Practical guidelines for hyperparameters (L and batch-size) selection. While the theoretical
derivation of MGE allows for an arbitrary number of levels, practical implementation requires selecting
the number of levels L and batch size multipliers (refer to the calculations in Appendix B) based on input
resolution and memory constraints. Based on our ablation studies (see Appendix C.4) and variance analysis
in , we propose the following guidelines for practitioners:

• Selecting the number of multiscale levels (L): The choice of L involves a trade-off between computa-
tional acceleration and approximation error. As the mesh becomes coarser, the spatial structure may
degrade to a point where gradients are no longer representative of the fine mesh. We recommend
choosing L such that the spatial resolution of the coarsest level hL remains large enough to capture
dominant structural features (typically ≥ 8× 8 pixels). For example, with 64× 64 inputs, we utilized
L = 4 levels (coarsest resolution 8× 8), but for larger inputs (e.g., 256× 256), L can be increased to
5 or 6 to maximize speedup.

• Scaling batch sizes: To maintain the variance reduction properties of the telescopic sum (Equa-
tion (13)), batch sizes at coarser levels should ideally increase to compensate for the approximation
noise. Since the computational cost of 2D convolutions decreases by a factor of 4 with each downsam-
pling, we recommend increasing the batch size by a factor of 2 to 4 at each subsequent coarser level.
This strategy - assigning the largest batches to the cheapest (coarsest) levels - minimizes the variance
of the gradient estimator without significantly increasing the wall-clock time or memory footprint.

Potential challenges with extension to attention-based networks. While this work demonstrates the
efficacy of MGE for convolutional architectures, extending the framework to attention mechanisms presents
distinct theoretical challenges primarily due to the global nature of standard self-attention (Vaswani et al.,
2017). Our convergence proofs in Lemma 1) rely on the locality of the operator, assuming that gradients on a
coarse mesh approximate those on a fine mesh within a bounded local neighborhood. Global attention allows
every token to interact with every other token, potentially destabilizing the gradient approximation across
scales without specific regularization. Future work addressing this would likely benefit from investigating
localized window-based attention mechanisms such as Swin Transformers (Liu et al., 2021), which restore the
locality assumption required by our theoretical bounds. Furthermore, successfully adapting MGE to attention
offers arguably greater potential rewards: since self-attention computational cost scales quadratically with
resolution, the 4× pixel reduction at each coarser level 2 could theoretically yield up to 16× computational
savings per attention layer, significantly amplifying the efficiency gains observed here for convolutions.

5 Conclusions

In this paper, we introduced a novel approach to multiscale training for convolutional neural networks,
addressing the limitations of high computational costs related to training on single-scale high-resolution data.
We theoretically derived error bounds on the expected value of gradients of loss within a multiscale training
framework, proved results on the convergence of standard convolutional kernels, discussed the convergence
rates of Full-Multiscale algorithm, and provided a theoretical justification for why coarsening is a better image
subsampling strategy than cropping within a multiscale training framework. Empirical findings on a number
of canonical imaging tasks suggest that our proposed methods with coarsening-based image subsampling can
achieve similar or sometimes even better performance than single-scale training with only a fraction of the
total training computational costs, as measured by #WU and wall time. While our results indicate that
multiscale training has merit using the existing computational framework, we observe a gap between the
theoretical complexity to the observed performance. Further gains can be made by using more advanced
computational architectures, both in terms of hardware and software. We hope that the theoretical merits
discussed in this paper will inspire the development of such efficient implementations that could better utilize
multiscale training strategies.

11

Under review as submission to TMLR

Broader Impact Statement

Our proposed Multiscale Gradient Estimation and Full-Multiscale training algorithms reduce the number
of expensive fine-resolution convolutions by up to 16×, which can potentially significantly cut the energy
consumption and carbon footprint associated with training high-resolution convolutional networks while
preserving accuracy. By lowering the high expense of large-scale training - both in terms of compute hours
and electricity consumption - this work has the potential to help make high-fidelity deep learning research
more attainable for institutions and researchers facing tight budgetary or infrastructure constraints. At the
same time, faster and cheaper training could accelerate the development of powerful models for applications
ranging from medical-image reconstruction and diagnosis to environmental sensing and weather forecasting,
and also lower the barrier for misuse in areas like pervasive surveillance or deep-fake generation.

References
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance reduction

in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization for deep
reinforcement learning. In International conference on machine learning, pp. 176–185. PMLR, 2017.

André Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolutional neural networks.
Distill, 4(11):e21, 2019.

A. Borzi. On the convergence of the mg/opt method. Number 5, December 2005.

Alfio Borzì and Volker Schulz. Computational optimization of systems governed by partial differential
equations, volume 8. SIAM, Philadelphia, PA, 2012. ISBN 978-1-611972-04-7. URL http://www.ams.org/
mathscinet-getitem?mr=MR2895881.

W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial, Second Edition. Society for Industrial and
Applied Mathematics, second edition, 2000. doi: 10.1137/1.9780898719505. URL https://epubs.siam.
org/doi/abs/10.1137/1.9780898719505.

Neil K. Chada, Ajay Jasra, Kody J. H. Law, and Sumeetpal S. Singh. Multilevel bayesian deep neural
networks, 2022. URL https://arxiv.org/abs/2203.12961.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction. arXiv preprint arXiv:1710.10568, 2017.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Lei Ding, Jing Zhang, and Lorenzo Bruzzone. Semantic segmentation of large-size vhr remote sensing images
using a two-stage multiscale training architecture. IEEE Transactions on Geoscience and Remote Sensing,
58(8):5367–5376, 2020.

Moshe Eliasof, Benjamin J Bodner, and Eran Treister. Haar wavelet feature compression for quantized graph
convolutional networks. IEEE Transactions on Neural Networks and Learning Systems, 2023a.

Moshe Eliasof, Jonathan Ephrath, Lars Ruthotto, and Eran Treister. Mgic: Multigrid-in-channels neural
network architectures. SIAM Journal on Scientific Computing, 45(3):S307–S328, 2023b.

Elizar Elizar, Mohd Asyraf Zulkifley, Rusdha Muharar, Mohd Hairi Mohd Zaman, and Seri Mastura Mustaza.
A review on multiscale-deep-learning applications. Sensors, 22(19):7384, 2022.

Shahaf E Finder, Yair Zohav, Maor Ashkenazi, and Eran Treister. Wavelet feature maps compression for
image-to-image cnns. Advances in Neural Information Processing Systems, 35:20592–20606, 2022.

12

http://www.ams.org/mathscinet-getitem?mr=MR2895881
http://www.ams.org/mathscinet-getitem?mr=MR2895881
https://epubs.siam.org/doi/abs/10.1137/1.9780898719505
https://epubs.siam.org/doi/abs/10.1137/1.9780898719505
https://arxiv.org/abs/2203.12961

Under review as submission to TMLR

Shin Fujieda, Kohei Takayama, and Toshiya Hachisuka. Wavelet convolutional neural networks. arXiv
preprint arXiv:1805.08620, 2018.

Velappa Ganapathy and Kok Leong Liew. Handwritten character recognition using multiscale neural network
training technique. International Journal of Computer and Information Engineering, 2(3):638–643, 2008.

Michael B Giles. Multilevel monte carlo path simulation. Operations research, 56(3):607–617, 2008.

Michael B Giles. Multilevel monte carlo methods. Acta numerica, 24:259–328, 2015.

E. Haber, S. Heldmann, and U. Ascher. Adaptive finite volume method for the solution of discontinuous
parameter estimation problems. Inverse Problems, 2007.

Eldad Haber, Lars Ruthotto, and Elliot Holtham. Learning across scales-a multiscale method for convolution
neural networks. arXiv preprint arXiv:1703.02009, 2017a.

Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across scales - A multiscale
method for convolution neural networks. abs/1703.02009:1–8, 2017b. URL http://arxiv.org/abs/1703.
02009.

Juncai He and Jinchao Xu. Mgnet: A unified framework of multigrid and convolutional neural network.
Science china mathematics, 62:1331–1354, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5197–5206, 2015.

Adam M Johansen, Ludger Evers, and N Whiteley. Monte carlo methods. International encyclopedia of
education, pp. 296–303, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

S.G. Nash. A multigrid approach to discretized optimization problems. Optimization Methods and Software,
14:99–116, 2000.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In Advances in
Neural Information Processing Systems, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/1505.04597.

C. B. Scott and Eric Mjolsness. Multilevel artificial neural network training for spatially correlated learning.
SIAM Journal on Scientific Computing, 41(5):S297–S320, 2019.

13

http://arxiv.org/abs/1703.02009
http://arxiv.org/abs/1703.02009
http://arxiv.org/abs/1505.04597

Under review as submission to TMLR

A. Shapiro, D. Dentcheva, and D. Ruszczynski. Lectures on Stochastic Programming: Modeling and Theory.
SIAM, Philadelphia, 2009.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert,
and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional
neural network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1874–1883, 2016.

U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.

Andreas Van Barel and Stefan Vandewalle. Robust optimization of pdes with random coefficients using a
multilevel monte carlo method. SIAM/ASA Journal on Uncertainty Quantification, 7(1):174–202, 2019.

Antonia van Betteray, Matthias Rottmann, and Karsten Kahl. Mgiad: Multigrid in all dimensions. efficiency
and robustness by weight sharing and coarsening in resolution and channel dimensions. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 1292–1301, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Yating Wang, Siu Wun Cheung, Eric T Chung, Yalchin Efendiev, and Min Wang. Deep multiscale model
learning. Journal of Computational Physics, 406:109071, 2020.

14

Under review as submission to TMLR

A Proofs

A.1 Proof to Lemma 1

Convergence of standard convolution kernels. Let uh, yh be continuously differentiable grid functions,
and let u2h = R2h

h uh, and y2h = R2h
h yh be their interpolation on a mesh with resolution 2h. Let gh and g2h

be the gradients of the function in Equation (6) with respect to θ. Then the difference between gh and g2h is

∥g2h − gh∥ = O(h).

Figure 4: Multiscale Gradient Estimation using coarsening-based subsampling of images. Here, the left figure
shows the discretization of an image on a mesh of resolution h (finest mesh). With subsequent coarsening,
the image can be downsampled to a mesh of resolution 2h (and 4h, 8h, and so on). For the sake of proving
Lemma 1, we define non-overlapping patches B2h

k on the image with resolution 2h (with centers c2h
k) each of

which contains four pixels from the image of resolution h. After coarsening, the image looks like the figure on
the right with each pixel of resolution 2h.

Proof. To prove Lemma 1, let us assume a mesh with a resolution h, as shown in Figure 4 (left) containing
Nh pixels. Let the set of all pixels at resolution h be denoted by Ωh, and |Ωh| = Nh. While this proof can
be generalized for transitions between any two consecutive mesh resolutions 2j−1h→ 2jh, here we assume
j = 1 for brevity and restrict our attention to the coarsening h→ 2h (which is also directly related to the
statement of Lemma 1). The extension to arbitrary j follows by the same reasoning.

Let us assume the gradient with respect to the network parameters θ of the loss function ℓ of the form,

φ(uh
j) = ∂

∂θ
ℓj(f(uh, θ), yh), (20)

where ℓj(f(uh, θ), yh) represents the contribution to the loss from the pixel j of the image. To prove this
lemma, we make the following three assumptions:

(1) The gradient φ is bounded: ∥φ(x)∥ ≤M , ∀x ∈ Ωh

(2) The gradient φ is Lipschitz-continuous: ∥φ(x)−φ(y)∥ ≤ C∥x− y∥, ∀x, y ∈ Ωh, where C > 0
is the Lipschitz constant.

(3) The error in approximating a pixel xh with c2h
k : As shown in Figure 4 (left), the image on

the grid with resolution h can be coarsened to a resolution 2h. At resolution 2h, the overall image
consists of Nh/4 non-overlapping patches B2h

k with their centers denoted as c2h
k for k ∈ {1, . . . , Nh/4}.

For a specific B2h
k , we assume that the error ∥xh − c2h

k ∥ < h for xh ∈ B2h
k and k ∈ {1, . . . , Nh/4}.

15

Under review as submission to TMLR

The gradient gh can be written as an average over φ(uh
j) for all uh

j ∈ Ωh,

gh = 1
Nh

Nh∑
j=1

φ(uh
j) = 1

Nh

Nh/4∑
k=1

∑
uh∈B2h

k

φ(uh). (21)

Upon coarsening the image to 2h, the gradient g2h
coarsen can be written using the midpoints ck of patches B2h

k

as,

g2h
coarsen = 4

Nh

Nh/4∑
k=1

φ(ck). (22)

Hence, the residual (Equation (9)) becomes,

rcoarsen = ∥gh − g2h
coarsen∥ =

∥∥∥∥∥ 1
Nh

Nh/4∑
k=1

(∑
uh∈B2h

k

φ(uh)− 4φ(ck)
)∥∥∥∥∥. (23)

Now, using the triangle inequality, we can write,

rcoarsen ≤
1

Nh

Nh/4∑
k=1

∥∥∥∥∥ ∑
uh∈B2h

k

φ(uh)− 4φ(ck)
∥∥∥∥∥. (24)

But, within a specific B2h
k ,

∥∥∑
uh∈B2h

k
φ(uh) − 4φ(ck)

∥∥ =
∥∥∑

uh∈B2h
k

(
φ(uh) − φ(ck)

)∥∥. Hence, using the
triangle inequality argument again, we have,∥∥∥ ∑

uh∈B2h
k

(
φ(uh)−φ(ck)

)∥∥∥ ≤ ∑
uh∈B2h

k

∥∥∥φ(uh)−φ(ck)
∥∥∥ ≤ ∑

uh∈B2h
k

C∥uh − ck∥ ≤ 4Ch, (25)

where in the last two steps in the above expression, we have utilized assumptions (2) and (3). Finally, we
have,

rcoarsen ≤
1

Nh

Nh/4∑
k=1

4Ch = Ch. (26)

This implies that,
rcoarsen = ∥gh − g2h

coarsen∥ = O(h) (27)

which completes the proof. Although our proofs use a single convolution for simplicity and clarity, the key
bound ∥ghj−1 − ghj∥ = O(h) extends directly to deep CNNs. Each layer in a CNN – convolution, nonlinearity,
pooling – is Lipschitz continuous, so an O(h) perturbation in the input propagates through the network
with at most a multiplicative constant depending on the network depth. Thus, the rate of decay of gradient
differences across scales remains O(h) for all layers. Consequently, the theoretical guarantees of MGE and
Full-Multiscale (variance reduction, telescopic-sum bounds, and convergence behavior) remain valid for deep
architectures, with modified but bounded constants.

A.2 Why coarsening is better than cropping under a multiscale training framework

To compute the residual (Equation (9)) for cropping, we can invoke similar ideas developed in Appendix A.1.
Let us crop a patch of size s× s from the image and let ωh be the set of all pixels within the cropped patch
with |ωh| = m. The gradient gh

crop for the cropped patch can be written as,

gh
crop = 1

m

∑
uh

j
∈ωh

φ(uh
j). (28)

16

Under review as submission to TMLR

Let us express the gradient on the finest mesh h in Equation (21) in a different way as,

gh = 1
Nh

∑
uh

j
∈ωh

φ(uh
j) + 1

Nh

∑
uh

j
∈ωc

h

φ(uh
j), (29)

where ωc
h represents the set of pixels outside the cropped patch and |ωh| + |ωc

h| = |Ωh| = Nh. Hence, the
residual can be expressed as,

rcrop = ∥gh − gh
crop∥ =

∥∥∥∥∥ 1
Nh

∑
uh

j
∈ωc

h

φ(uh
j)−

(
1
m
− 1

Nh

) ∑
uh

j
∈ωh

φ(uh
j)
∥∥∥∥∥. (30)

Using the triangle inequality, we have,

rcrop ≤
1

Nh

∑
uh

j
∈ωc

h

∥φ(uh
j)∥+

(
1
m
− 1

Nh

) ∑
uh

j
∈ωh

∥φ(uh
j)∥. (31)

And, finally using assumption (1), we get,

rcrop ≤
(

Nh −m

Nh

)
M +

(
1
m
− 1

Nh

)
mM = 2

(
1− m

Nh

)
M. (32)

This implies that,

rcrop = ∥gh − gh
crop∥ ≤ 2

(
1− m

Nh

)
M = O(1) (33)

Hence, the upper bound of rcrop shrinks with increasing m (as the cropped patch size becomes bigger,
m/Nh → 1) and is independent of h.

Now, using the telescoping sum for cropping, we have ∥ghj−1 − ghj∥ ≤ 2
(
1− m

Nh

)
M for j = 2, . . . , L. Hence,

L∑
j=2
∥ghj−1 − ghj∥ ≤

L∑
j=2

2
(

1− m

Nh

)
M = 2

(
1− m

Nh

)
M(L− 1) (34)

Therefore, for cropping-based subsampling, we have,

L∑
j=2
∥ghj−1 − ghj∥ = O(L) (35)

Hence, when using cropping-based subsampling in MGE, the total error is independent of the resolution
h but grows with the number of levels L in MGE.

On the other hand, for the case of coarsening, the telescopic sum becomes,

L∑
j=2
∥ghj−1 − ghj∥ ≤ C(h + 2h + 4h + . . . + 2L−2h) = C(2L−1 − 1)h. (36)

Therefore, for coarsening-based subsampling, we have,

L∑
j=2
∥ghj−1 − ghj∥ = O(2Lh) (37)

Hence, when using coarsening-based subsampling in MGE, the total error goes to zero as h→ 0. Hence,
coarsening is better than cropping as an image subsampling strategy within a multiscale training
framework.

17

Under review as submission to TMLR

B Computation of #WU within a multiscale framework

Definition 1 (Working Unit (WU)). A single working unit (WU) is defined by the computation of a model
(neural network) on an input image on its original (i.e., highest) resolution.
Remark 1. To measure the number of working units (#WUs) required by a neural network and its training
strategy, we measure how many evaluations of the highest resolution are required. That is, evaluations at
lower resolutions are weighted by the corresponding downsampling factors. In what follows, we elaborate on
how #WUs are measured.

We now show how to measure the computational complexity in terms of #WU for the three training strategies,
Single-scale, Multiscale, and Full-Multiscale. For the Single-scale strategy, all computations happen on the
finest mesh (size h), while for Multiscale and Full-Multiscale, the computations are performed at 4 mesh
resolutions (h, 2h, 4h, 8h). The computation of running the network on half resolution is 1/4 of the cost, and
every coarsening step reduces the work by an additional factor of 4. From Equation (5), we have,

E
[
gh(θ)

]
= E

[
gh(θ)− g2h(θ)

]
+ E

[
g2h(θ)− g4h(θ)

]
+ E

[
g4h(θ)− g8h(θ)

]
+ E

[
g8h(θ)

]
(38)

With Multiscale, the number of #WU in one iteration needed to compute the Egh(θ) is given by,

#WU Multiscale = N0

(
1 + 1

4

)
+ N1

(
1
4 + 1

16

)
+ N2

(
1
16 + 1

64

)
+ N3

64 (39)

where N0, N1, N2 and N3 represent the batch size at different scales. With N1 = 2N0, N2 = 4N0 and
N3 = 8N0, #WU for I iterations become,

#WU Multiscale = 37N0I

16 ≈ 2.31N0I (40)

Alternatively, seeing an equivalent amount of data, doing these same computations on the finest mesh with
the Single-scale training strategy, the #WU per iteration is given by, N0 × 1 + N1 × 1 + N2 × 1 + N3 × 1
images in one iteration (where each term is computed at the finest scale). With N1 = 2N0, N2 = 4N0, and
N3 = 8N0, the total #WU for I iterations in this case, becomes,

#WU Single-scale = 15N0I (41)

Thus, using Multiscale is roughly 6.5 times cheaper than Single-scale training.

The computation of #WU for the Full-Multiscale strategy is more involved due to its cycle taking place at
each level. As a result, #WU at resolutions h, 2h, 4h and 8h can be computed as,

#WU Full-Multiscale(h) = Ih ×
[
Nh

0

(
1 + 1

4

)
+ Nh

1

(
1
4 + 1

16

)
+ Nh

2

(
1
16 + 1

64

)
+ Nh

3
64

]
(42)

#WU Full-Multiscale(2h) = I2h

4 ×
[
N2h

0

(
1 + 1

4

)
+ N2h

1

(
1
4 + 1

16

)
+ N2h

2
16

]
(43)

#WU Full-Multiscale(4h) = I4h

16 ×
[
N4h

0

(
1 + 1

4

)
+ N4h

1
4

]
(44)

#WU Full-Multiscale(8h) = I8h

64 ×N8h
0 (45)

(46)

where Ih, I2h, I4h and I8h represent the number of training iterations at each scale and Nr
1 = 2Nr

0 , Nr
2 = 4Nr

0 ,
and Nr

3 = 8Nr
0 for each r ∈ {h, 2h, 4h, 8h} with N2jh

0 = 2jN0. For the denoising and deblurring tasks, we

18

Under review as submission to TMLR

chose I iterations at the coarsest scale with I = I8h = 2I4h = 4I2h = 8Ih. The total #WU for Full-Multiscale
for these two tasks is given by,

#WU Full-Multiscale = 37
16 · 8N0I + 17

32 · 42N0I + 7
64 · 24N0I + 1

648N0I = 115
128N0I ≈ 0.90N0I (47)

Thus, it is roughly 16 times more effective than using Single-scale training. For both denoising
and deblurring tasks, we chose N0 = 16 and I = 2000.

Similarly, for the inpainting and super-resolution tasks, we chose I iterations at the coarsest scale with
I = I8h = I4h = I2h = Ih. We observed that a larger number of iterations per level were required for these
tasks to achieve a similar accuracy as the Single-scale training. The #WU for Full-Multiscale for these two
tasks is given by,

#WU Full-Multiscale = 37
16N0I + 17

16N0I + 7
16N0I + 1

8N0I = 63
16N0I ≈ 3.94N0I (48)

Thus, it is roughly 3.8 times more effective than using Single-scale training. For inpainting and
super-resolution, we chose N0 = 16 and I = 2000, and N0 = 8 and I = 250, respectively.

C Additional results

C.1 Experiments for the denoising task on the CelebA dataset

To observe the behavior of the Full-Multiscale algorithm, we performed additional experiments for the
denoising task on the CelebA dataset using UNet and ResNet. The results have been presented in Table 3,
showing that both multiscale training strategies achieved similar or better performance to single-scale training
for all networks but with a considerably lower number of #WU .

Table 3: Comparison of different training strategies using UNet and ResNet for the denoising task on the
CelebA dataset. Here, the Multiscale and Full-Multiscale training utilize only the coarsening strategy for
image subsampling.

Training strategy #WU (↓) MSE (↓)

UNet ResNet

Single-scale 480k 0.0663 0.0553

Multiscale (Ours) 74k 0.0721 0.0589
Full-Multiscale (Ours) 28.7k 0.0484 0.0556

C.2 Experiments with deeper networks

In this section, we present the results of our multiscale training strategies for deeper CNNs. To this end, we
compare the training to ResNet18 and ResNet50, as well as UNet with 5 levels, for the image denoising task
on the STL10 dataset. The results are presented in Table 4.

C.3 Comparison of different training strategies under fixed computational budget

We assessed the performance (as measured by MSE) for both standard convolution under both Single-scale
and Multiscale training strategies as a function of the computational budget, measured by #WU. Table 5
shows that for the same computational budget (#WU), Multiscale training consistently achieves lower error
than Single-scale training across all tested budgets. At extremely low budgets (10–20 #WU), Multiscale
attains more than 50% lower MSE due to its ability to allocate large batches to coarse, cheap levels, producing

19

Under review as submission to TMLR

Table 4: Comparison of different training strategies using ResNet18, ResNet50, and a deeper UNet for the
denoising task on the STL10 dataset. Here, the Multiscale and Full-Multiscale training utilize only the
coarsening strategy for image subsampling.

Training Strategy #WU (↓) MSE (↓)

ResNet18 ResNet50 UNet (5 levels)

Single-scale 480k 0.1623 0.1614 0.1610

Multiscale (Ours) 74k 0.1622 0.1611 0.1604
Full-Multiscale (Ours) 28.7k 0.1588 0.1598 0.1597

lower-variance gradient estimates. Even at higher budgets (60–90 #WU), Multiscale method still maintains
its advantage. These results empirically confirm that Multiscale training makes significantly more efficient
use of available compute and that reductions in computational cost do not imply reductions in performance
when using our multiscale framework.

Table 5: Comparison of Single-scale and Multiscale training strategies under fixed computational budgets, as
measured by #WU .

Computational
budget (#WU)

MSE (↓)

Single-scale Multiscale
10 0.1000 0.0444
20 0.0514 0.0179
30 0.0354 0.0231
40 0.0277 0.0122
60 0.0204 0.0191
70 0.0178 0.0133
80 0.0159 0.0114
90 0.0151 0.0101

C.4 Ablation over different number of resolution levels within Multiscale training

In this section, we experiment with the number of resolution levels used in our Multiscale and Full-Multiscale
training strategies. We had conducted our experiments in the main text in Table 2 with 4 levels of resolutions
h, 2h, 4h and 8h. The number of levels of resolution is a hyperparameter in our experiment which can be
tuned on a held-out validation set. To illustrate this point, we show the performance of Multiscale and
Full-Multiscale for the denoising task on the STL10 dataset in Table 6 for number of levels 4, 3 and 2. Upon
going from 4 levels of resolution to 2 levels of resolution, the performance, in general, slightly degrades for
all networks, although it leads to significant gains in computational savings due to results #WU for lower
number of levels of resolution. In fact, the number of iterations and batch size (additional hyperparameters
in our experiments, as calculated in Appendix B), can also be tweaked further leading to different (better)
values of #WU against performance on MSE.

D Experimental setting

For the denoising task, the experiments were conducted on STL10 and CelebA datasets using networks, UNet
(Ronneberger et al., 2015) and ResNet (He et al., 2016). For deblurring and inpainting tasks, the experiments
were conducted on STL10 and CelebA datasets, respectively, using the same two networks as the denoising
task. For the deblurring experiments, we used a blurring kernel K(x, y) = 1

2πσxσy
exp

(
− x2

σ2
x
− y2

σ2
y

)
with

σx = σy = 3 to blur the input images. For the inpainting task, we introduced up to 3 (randomly chosen for
each image) small rectangles with heights and widths sampled uniformly from the range [s/12, s/6], where

20

Under review as submission to TMLR

Table 6: Comparison of the performance sensitivity to the number of resolution levels for Multiscale and
Full-Multiscale training strategies using UNet and ResNet for the denoising task on the STL10 dataset.
Here, the Multiscale and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

Training strategy # of Levels #WU (↓) MSE (↓)
UNet ResNet

Multiscale 4 74k 0.1975 0.1653
Full-Multiscale 28.7k 0.1567 0.1658
Multiscale 3 68k 0.2010 0.1741
Full-Multiscale 19.5k 0.1644 0.1703
Multiscale 2 56k 0.2641 0.2081
Full-Multiscale 11k 0.1895 0.1730

s × s is the dimension of the image. The key details of the training experimental setup for the denoising,
deblurring, and inpainting tasks are summarized in Table 7. For the super-resolution task, the experiments
were conducted on Urban100 dataset using networks, ESPCN (Shi et al., 2016) and ResNet (He et al., 2016).
The key details of the training experimental setup for the super-resolution task are summarized in Table 8.

All our experiments were conducted on a system with NVIDIA A6000 GPU with 48GB of memory and
Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz with x86_64 processor, 48 cores, and a total available RAM of
819 GB. Upon acceptance, we will release our source code, implemented in PyTorch (Paszke et al., 2017).

Table 7: Experimental details for training for denoising, deblurring and inpainting tasks

Component Details

Dataset
STL10 (Coates et al., 2011) and CelebA (Liu et al., 2015).
Images from both datasets were resized to a dimension
of 64 × 64

Network architectures

UNet: 3-layer network with 32, 64, 128 filters,
and 1 residual block (res-block) per layer
ResNet: 2-layer residual network 128 hidden channels

Number of training parameters UNet: 2,537,187
ResNet: 597,699

Training strategies Single-scale, Multiscale and
Full-Multiscale for all networks

Loss function MSE loss
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 5× 10−4 (with CosineAnnealing schedular)

Batch size strategy
Dynamic batch sizing is used, adjusting the batch size
upwards during different stages of training for
improved efficiency. For details, see Appendix B.

Multiscale levels 4

Iterations per level
Single-scale and Multiscale (all tasks): [2000, 2000, 2000, 2000],
Full-Multiscale (denoising/deblurring): [2000, 1000, 500, 250]
Full-Multiscale (inpainting): [2000, 2000, 2000, 2000]

Evaluation metrics MSE for denoising and deblurring, SSIM for inpainting

21

Under review as submission to TMLR

Table 8: Experimental details for training for super-resolution task

Component Details

Dataset
Urban100 (Huang et al., 2015), consisting of paired
low-resolution and high-resolution image patches
extracted for training and validation.

Network architectures

ESPCN: 5-layer super-resolution network with
64, 64, 32, 32, and 3 filters
ResNet: 9-layer ResNet-like model with
100 hidden channels per layer

Number of training parameters ESPCN: 69,603
ResNet: 23,315

Training strategies Single-scale, Multiscale and
Full-Multiscale for all networks

Loss function Negative SSIM loss
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 1× 10−3 (constant)

Batch size strategy
Dynamic batch sizing is used, adjusting the batch size
upwards during different stages of training for
improved efficiency. For details, see Appendix B.

Multiscale levels 4

Iterations per level Single-scale, Multiscale, and
Full-Multiscale: [250, 250, 250, 250]

Evaluation metrics SSIM

E Visualizations

In this section, we provide visualization of the outputs obtained from Single-scale, Multiscale and Full-
Multiscale training strategies using different networks for various tasks such as image denoising, deblurring,
inpainting, and super-resolution. Visualizations for the denoising task on the STL-10 dataset are provided in
Figure 5 and on the CelebA dataset are provided in Figure 6. Visualizations for the deblurring task on the
STL-10 dataset are provided in Figure 8, and for the inpainting task on the CelebA dataset are provided in
Figure 9. Visualizations for the super-resolution task on the Urban100 dataset are provided in Figure 10.

22

Under review as submission to TMLR

Figure 5: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the STL10 dataset for the denoising task. The first two columns display the
original image and data (same for all rows), followed by results from UNet and ResNet. Here, the Multiscale
and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

Figure 6: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the CelebA dataset for the denoising task. The first two columns display the
original image and data (same for all rows), followed by results from UNet and ResNet. Here, the Multiscale
and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

23

Under review as submission to TMLR

Figure 7: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the CelebA dataset for the denoising task. The first two columns display the
original image and data (same for all rows), followed by results from UNet and ResNet. Here, the Multiscale
and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

Figure 8: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the STL10 dataset for the deblurring task. The first two columns display the
original image and data (same for all rows), followed by results from UNet and ResNet. Here, the Multiscale
and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

24

Under review as submission to TMLR

Figure 9: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the STL10 dataset for the inpainting task. The first two columns display the
original image and data (same for all rows), followed by results from UNet and ResNet, MFC-UNet. Here,
the Multiscale and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

Figure 10: A comparison of different network predictions for Single-scale, Multiscale, and Full-Multiscale
training for an image from the Urban100 dataset for the super-resolution task. The first column displays
the low-resolution data (same for all rows), followed by results from ESPCN and ResNet. Here, the Multiscale
and Full-Multiscale training utilize only the coarsening strategy for image subsampling.

25

	Introduction
	Multiscale Gradient Estimation
	Efficient Training with Multiscale Estimation of the Gradient
	Multiscale Analysis of Convolutional Neural Networks

	The Full-Multiscale Training Algorithm
	Experimental Results and Discussion
	Conclusions
	Proofs
	Proof to lemma:standardConverror
	Why coarsening is better than cropping under a multiscale training framework

	Computation of #WU within a multiscale framework
	Additional results
	Experiments for the denoising task on the CelebA dataset
	Experiments with deeper networks
	Comparison of different training strategies under fixed computational budget
	Ablation over different number of resolution levels within Multiscale training

	Experimental setting
	Visualizations

