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ABSTRACT

Advanced representation learning techniques require reliable and general evalu-
ation methods. Recently, several algorithms based on the common idea of geo-
metric and topological analysis of a manifold approximated from the learned data
representations have been proposed. In this work, we introduce Delaunay Com-
ponent Analysis (DCA) – an evaluation algorithm which approximates the data
manifold using a more suitable neighbourhood graph called Delaunay graph. This
provides a reliable manifold estimation even for challenging geometric arrange-
ments of representations such as clusters with varying shape and density as well
as outliers, which is where existing methods often fail. Furthermore, we exploit
the nature of Delaunay graphs and introduce a framework for assessing the quality
of individual novel data representations. We experimentally validate the proposed
DCA method on representations obtained from neural networks trained with con-
trastive objective, supervised and generative models, and demonstrate various use
cases of our extended single point evaluation framework.

1 INTRODUCTION

Figure 1: Example of an approximated
Delaunay graph GD = GD(R ∪ E)
(solid edges) obtained from the Voronoi
cells (dashed gray lines) of the consid-
ered R and E points as well as the dis-
tilled Delaunay graph GDD containing
three connected components (solid dark
colored and gray edges) used in the final
evaluation of R and E. See Section 3
for furher details.

Quality evaluation of learned data representations is gain-
ing attention in the machine learning community due to
the booming development of representation learning tech-
niques. One common approach is to assess representa-
tion quality based on their performance on a pre-designed
downstream task (Bevilacqua et al., 2021; Li et al., 2020).
Typically, a classification problem is used to evaluate ei-
ther the ability of a model to recover labels of raw in-
puts, or the transferability of their representations to other
domains, as done in state-of-the-art unsupervised repre-
sentation learning methods (Chen et al., 2020b; Ermolov
et al., 2021). However, in many scenarios such straight-
forward downstream classification task cannot be defined,
for instance, because it does not represent the nature of
the application or due to the scarcity of labeled data as of-
ten occurs in robotics (Chamzas et al., 2021; Lippi et al.,
2020). In these scenarios, representations are commonly
evaluated on hand-crafted downstream tasks, e.g., spe-
cific robotics tasks. However, these are time consuming
to design, and potentially also bias evaluation procedures
and consequentially hinder generalization of representa-
tions across different tasks.

Recently, more general evaluation methods such as Ge-
ometry Score (GS) (Khrulkov & Oseledets, 2018), Im-
proved Precision and Recall (IPR) (Kynkäänniemi et al.,
2019) and Geometric Component Analysis (GeomCA) (Poklukar et al., 2021) have been proposed.
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These methods analyze global geometric and topological properties of representation spaces instead
of relying on specific pre-designed downstream tasks. These works assume that a set of evaluation
representations E is of high quality if it closely mimics the structure of the true data manifold cap-
tured by a reference set of representationsR. This reasoning implies thatR andE must have similar
geometric and topological properties, such as connected components, their number and size, which
are extracted from various approximations of the data manifolds corresponding to R and E. For ex-
ample, GS and GeomCA estimate the manifolds using simplicial complexes and proximity graphs,
respectively, while IPR leverages a k-nearest neighbour (kNN) based approximation. However, as
we discuss in Section 2, neither of these approaches provides a reliable manifold estimate in com-
plex arrangements of R and E, for instance, when points form clusters of varying shape and density
as well as in the presence of outliers. Moreover, the informativeness of the scores introduced by
these methods is limited.

In this work, we address the impediments of evaluation of learned representations arising from poor
manifold approximations by relying on a more natural estimate using Delaunay graphs. As seen in
Figure 1, edges (solid lines) in a Delaunay graph connect spacial neighbours and thus vary in length.
In this way, they naturally capture local changes in the density of the representation space and thus
more reliably detect outliers, all without depending on hyperparameters. We propose an evaluation
framework called Delaunay Component Analysis (DCA) which builds the Delaunay graph on the
union R ∪ E, extracts its connected components, and applies existing geometric evaluation scores
to analyze them. We experimentally validate DCA on a variety of setups by evaluating contrastive
representations (Section 4.1), generative models (Section 4.2) and supervised models (Section 4.3).

Furthermore, we exploit the natural neighbourhood structure of Delaunay graphs to evaluate a single
query representation. This is crucial in applications with continuous stream of data, for example, in
interactions of an intelligent agent with the environment or in the assessment of the visual quality of
individual images generated by a generative model as also explored by Kynkäänniemi et al. (2019).
In these cases, existing representation spaces need to be updated either by embedding novel query
points or distinguishing them from previously seen ones. In Delaunay graphs, this translates to
analyzing newly added edges to the given query point. We demonstrate various possible analyses in
Section 4 using aforementioned experimental setups.

2 STATE-OF-THE-ART METHODS AND THEIR LIMITATIONS

We review the state-of-the-art methods for evaluation of learned data representations, namely
GS (Khrulkov & Oseledets, 2018), IPR (Kynkäänniemi et al., 2019) and GeomCA (Poklukar et al.,
2021), which compare topological and geometrical properties of an evaluation set E with a refer-
ence set R representing the true underlying data manifold. We discuss differences in their manifold
approximations, visualized in Figure 2, as well as informativeness of their scores.

Figure 2: Visualization of manifold approximations obtained by GS (a), IPR (b), GeomCA without
sparsification (c), GeomCA with sparsification (d) and our proposed DCA (e).

The pioneering method in this area, GS, constructs witness simplicial complexes on randomly sam-
pled subsets of R and E (panel (a)), and compares their connected components using tools of com-
putational topology (Zomorodian & Carlsson, 2004). The result is an average over several iterations
summarized either in the form of histograms, which are cumbersome for quantitative comparison, or
as a single un-normalized score, which is in many cases not sufficiently informative. Moreover, GS
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depends on four hyperparameters, which can be difficult to understand and tuned by practitioners
unfamiliar with computational topology.

In contrast, IPR obtains manifold approximations by enlarging each point in R (or E) with a hy-
persphere of radius equal to the distance to its kNN in that set (panel (b)). It defines two scores:
precision PI which counts the number of E points contained on the approximated R manifold, and
vice versa for recall RI . While the method depends only on one hyperparameter k, it is highly
affected by outliers which induce overly large spheres and dense areas of the space which yield too
conservative coverage as visualized in panel (b). Moreover, it is the only method expecting R and
E to be of equal size, thus, often requiring subsampling of one of them. Both GS and IPR have been
primarily developed to assess generative adversarial networks (GANs) (Goodfellow et al., 2014).

The most recent and generally applicable method, GeomCA, extends GS and IPR in two ways: i) it
provides functionality to analyze individual connected components of the approximated manifold,
hence enabling one to examine local areas of representation spaces where inconsistencies arise, and
ii) characterizes the captured geometry in four global scores: precisionPG and recallRG, which are
similar to IPR, as well as network consistency cG and network quality qG, which are also the basis
of the GeomCA local evaluation scores (see Section 3 for recap). GeomCA estimates the manifolds
using ε-proximity graphs where the hyperparameter ε defines the maximum distance between two
points connected by an edge and is estimated from distances among points in R. However, in
practice, representations often form clusters of different shape and density which makes it impossible
to select a single value of ε that adequately captures such variations (see examples in panel (c)).

Moreover, GeomCA reduces the number of points by performing geometric sparsification that ex-
tracts a subset of points from each of R and E being pairwise at least distance δ apart, where δ is
estimated from ε. While the authors argue that this step does not affect their scores as it preserves
the topology, we show that it nevertheless can bias the manifold estimation ofR and E. An example
is illustrated in the bottom component of panels (c) and (d), where the sparsification removes a large
portion of the denseE subset and artificially increases the precision. We demonstrate the occurrence
of this scenario in the evaluation of a GAN model in Section 4.2.

Our DCA framework utilizes Delaunay graphs (panel (e)) to address the discussed limitations in
manifold approximations of the existing methods, and employs evaluation scores introduced by Pok-
lukar et al. (2021) to maximize its informativeness. Moreover, it extends the existing methods by
additionally providing a general framework for quality evaluation of single query representations.

3 METHOD

We propose Delaunay Component Analysis (DCA) algorithm for evaluation of data representations
consisting of three parts: i) manifold approximation which approximates the Delaunay graph on
the given sets of representations, ii) component distillation which distills the graph into connected
components, and lastly iii) component evaluation which outputs the evaluation scores summarizing
the geometry of the data. We provide an outline of our DCA framework in Algorithm 1 found
in Appendix A. Moreover, by exploiting the nature of Delaunay graphs, DCA can be efficiently
implemented (Section 3.2) and extended for evaluation of individual representations (Section 3.1).

Phase 1: Manifold approximation As mentioned in Section 1, the unique property of Delaunay
graphs is the definition of neighbouring points that are connected by an edge. For example, in an
ε-graph, two points are adjacent if they are at most ε distance apart. In a kNN graph, a point is
connected to all points that are closer than the k-th smallest distance of that point to any other. In
contrast, in a Delaunay graph (Figure 1), a point is adjacent to any point that is its spatial neighbour,
regardless of the actual distance between them or the number of its other spatial neighbours. We
refer to such spatial neighbours as natural neighbours of a point and rigorously define them through
Voronoi cells (depicted as dashed lines in Figure 1) in the following.

Definition 3.1 Given a set W ⊂ RN we define the Voronoi cell Cell(z) associated to a
point z ∈ W as the set of points in RN for which z is the closest among W : Cell(z) ={
x ∈ RN

∣∣ ∥x− z∥ ≤ ∥x− zi∥∀zi ∈W}
. The Delaunay graph GD(W ) = (V, E) built on the

set V = W is then defined by connecting points whose Voronoi cells intersect, i.e., E =
{(zi, zj) ∈W ×W | Cell(zi) ∩ Cell(zj) ̸= ∅, zi ̸= zj}.
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We consider a reference set R = {zi}nR
i=1 ⊂ RN and evaluation set E = {zi}nE

i=1 ⊂ RN of data
representations with R ̸= E, and approximate the Delaunay graph GD = GD(R ∪ E). By Defini-
tion 3.1, edges in GD correspond to points on the boundary of Voronoi cells which are obtained using
Monte Carlo based sampling algorithm presented by Polianskii & Pokorny (2019) (see Appendix A
for further details). The process, visualized in Figure 3, is based on sampling rays originating from
each z ∈ R ∪ E and finding their intersection with the boundary of its Voronoi cell Cell(z). This
allows to reconstruct GD via subgraph approximation, and can be additionally exploited for memory
optimizations which we present in Section 3.2. Due to the sampling, the number of found edges
directly depends on the number T of rays sampled from each z. However, as we show in ablation
studies in Appendix B.1 and B.2, our evaluation framework is stable with respect to the variations
in T . Next, we discuss the distillation of GD into connected components.

Phase 2: Component distillation Since edges in GD are obtained among natural neighbours, GD
consists of a single connected component uniting regions of points formed in different densities or
shape. These can be distinguished by removing large edges (depicted with transparent edges in
Figure 1), or equivalently, by finding clusters of points having similar natural neighbours (depicted
with opaque edges in Figure 1).

Figure 3: Delaunay graph ap-
proximation. In this exam-
ple, five rays (green arrows)
detect four Delaunay edges
(solid gray). The angular size
βij of the bottom right bound-
ary is marked in red.

We distill GD into connected components by adapting the state-
of-the-art hierarchical clustering algorithm HDBSCAN (McInnes
et al., 2017) summarized in Appendix A. We apply the part of HDB-
SCAN that extracts connected components {Gi} from the minimum
spanning tree1 MST(GD). We emphasise that applying HDBSCAN
directly on MST(GD) efficiently bypasses the calculation of a com-
plete pairwise distance matrix2 of size nR + nE which becomes
a computational burden for large R and E sets. Such calculation
is an integral part of HDBSCAN performed to reduce the sensitiv-
ity of the method to noise or outliers which can be omitted in case
of Delaunay graphs due their natural neighbourhood structure (see
Appendix A for further details). In this way, our modification of
HDBSCAN inherits only one of its original hyperparameters, the
minimum cluster size mcs parameter, determining the minimum
number of points needed for a set of points to form a cluster. This
parameter is intuitive to tune and can be flexibly adjusted depending
on the nature of the application. In our ablation studies reported in
Appendix B.1 and B.2, we show that DCA is stable with respect to variations in mcs. At the end of
this phase, we obtain the distilled Delaunay graph GDD =

⊔
i Gi of GD which we denote simply by

G when no confusion arises. Lastly, we analyze the components of G as summarized below.

Phase 3: Component evaluation We analyze the connected components Gi of G using local and
global evaluation scores introduced by Poklukar et al. (2021) which we recap below. Following
their notation, we denote by |G|V and |G|E the cardinalities of the vertex and edge sets of a graph
G = (V, E), respectively, and by GQ = (V|Q, E|Q×Q) ⊂ G its restriction to a set Q ⊂ V .

We start by introducing the two local scores: component consistency and quality. Intuitively, a
component Gi attains high consistency if it is equally represented by points from R and E, i.e., if
|GRi |V ≈ |GEi |V , where GRi ,GEi denote the restrictions of Gi to R and E. Similarly, Gi obtains a
high quality score if points from R and E are also well mixed which is measured in terms of edges
connecting R and E, i.e., the points are geometrically well aligned if the number of homogeneous
edges among points in each of the sets, |GRi |E and |GEi |E , is small compared to the number of het-
erogeneous edges connecting representations from R and E. This is rigorously defined as follows:

Definition 3.2 (Local Evaluation Scores, Poklukar et al. (2021)) Consistency c and quality q of a
component Gi ⊂ G are defined as the ratios

c(Gi) = 1− | |G
R
i |V − |GEi |V |
|Gi|V

and q(Gi) =

{
1− (|GR

i |E+|GE
i |E)

|Gi|E if |Gi|E ≥ 1,

0 otherwise,
(1)

1Minimum spanning tree of a graph is a tree minimizing the total edge length and connecting all vertices.
2The matrix represents mutual reachability distance calculated among each pair of points with respect to the

minimum samples parameter.
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respectively. Moreover, Gi is called consistent if c(Gi) > ηc and of high-quality if q(Gi) > ηq
for given thresholds ηc, ηq ∈ [0, 1) ⊂ R. A consistent component of high-quality as determined
by ηc, ηq is called a fundamental component. The union of fundamental components is denoted by
F = F(G, ηc, ηq) and indexed by the subscript f , i.e., we write Gf ∈ F .

The thresholds ηc, ηq are designed to enable a flexible definition of fundamental components and
are assumed to be set depending on the application and available prior knowledge. By examining
the proportion of R and E points contained in F , we obtain the first two global scores: precision
and recall, respectively. Two more global scores, network consistency and network quality, used to
measure global imbalances and misalignment betweenR andE, can be simply derived by extending
Definition 3.2 to the entire graph G. In summary, we consider the following global evaluation scores:

Definition 3.3 (Global Evaluation Scores, Poklukar et al. (2021)) We define network consistency
c(G) and network quality q(G) as in Definition 3.2, as well as precision P and recallR as

P =
|FE |V
|GE |V

and R =
|FR|V
|GR|V

, (2)

respectively, where FR,FE denote the restrictions of F = F(G, ηc, ηq) to the sets R and E.

3.1 EXTENSION: QUERY POINT INSERTION AND EVALUATION

A practical evaluation framework should not only provide a functionality to analyse sets of represen-
tations but also to assess the quality of individual points with respect to R, which is desirable in any
application where data is being collected continuously. In case of Delaunay graphs, evaluating the
quality of a query point q ⊂ RN\R is equivalent to studying its insertion into the distilled Delaunay
graph GDD(R). Formally, we consider the neighbourhood N(q) of q in the distilled Delaunay graph
GDD(R∪{q}) defined as the subgraph of GD(R∪{q}) induced by all vertices adjacent to q includ-
ing q and intersected with GDD(R). To find the edges of N(q), it suffices to perform the sampling
process described in Phase 1 only within the Voronoi cell Cell(q) of GD. In fact, this process can be
efficiently performed for a set Q of query points independently from each other and has equal com-
putational complexity as the construction of GD(R) provided that |R| and |Q| are comparable. We
refer to this extension as query (point) Delaunay Component Analysis, or in short, q-DCA algorithm.

The obtained neighbourhood graph N(q) = (VN(q), EN(q)) can be analyzed in numerous ways
depending on the application. In this work, we experiment with the length and the number of the
inserted edges in three ways: i) by extracting the point inR closest to q, ii) by additionally extracting
the length of that edge, or iii) by examining the number of inserted edges to each fundamental
component as well as the length of the shortest one. We provide a summary of the three variants in
Algorithm 2 in Appendix A and experimentally validate them in Section 4.

3.2 DELAUNAY GRAPH REDUCTION VIA SPHERE COVERAGE

In high dimensions, the Delaunay graph GD can have a large number of edges. In this section, we
propose an optional procedure for removing the least significant edges and thus reducing the overall
memory consumption.

During the construction of GD, the probability of sampling an edge (zi, zj) ∈ E(GD) directly de-
pends on the angular size of Cell(zi) ∩ Cell(zj) viewed from one of the points3. It is visualized in
Figure 3 and formally defined as the solid angle βij ∈ (0, 1] at zi of a cone with vertex zi and base
Cell(zi) ∩ Cell(zj) normalized by the volume of the unit hypersphere. It is approximated by the
ratio of all rays sampled from zi that provided the corresponding edge (zi, zj) using the algorithm
of Polianskii & Pokorny (2019). Intuitively, low βij values correspond to edges that are unstable
(depicted with thinner lines in Figure 1) because they may disappear with small perturbations of
data. We therefore propose to remove the longest edges (zi, zj) connecting zi such that the sum∑

j βij of solid angles corresponding to the remaining ones is larger than a predetermined parame-
ter B ∈ [0, 1). We refer to B as sphere coverage and demonstrate its usefulness on the large scale
experiment in Section 4.2 and perform an ablation study in Appendix B.1.

3The authors of Rushdi et al. (2017) call this significance.
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3.3 COMPLEXITY ANALYSIS

The computational complexity of the Delaunay graph approximation performed in Phase 1 grows
polynomially with the dimensionality of representations N . Given that the number of points |R| +
|E| is at least linear corresponding to their dimensionality N , i.e. |R| + |E| = Ω(N), we utilize
the probabilistic method for the construction of the graph proposed by Polianskii & Pokorny (2019)
that yields the total complexity O((|R|+ |E|)2 · (N + T )). The complexity for q-DCA is obtained
by substituting |E| with |Q| for a set of query points Q. Moreover, the asymptotics of the modified
HDBSCAN clustering algorithm utilized in Phase 2 rely on the graph obtained in Phase 1, which
again does not directly depend on the dimensionality N and is at most quadratic of the number of
points, i.e. O((|R| + |E|)2). Real computation times of Phase 1 and Phase 2 are comparable (see
Appendix B.1, Table 6), partially due to high GPU parallelization of Phase 1. We refer the reader
to (Polianskii & Pokorny, 2019), (Campello et al., 2015) and (McInnes & Healy, 2017) for details.

4 EXPERIMENTS

Our implementation of the DCA algorithm is based on the C++/OpenCL implementation of Delau-
nay graph approximation provided by Polianskii & Pokorny (2019) as well as on Python libraries
HDBSCAN (McInnes et al., 2017) and Networkx (Hagberg et al., 2008). The code is available on
Github4. We considered a similar experimental setup as in (Poklukar et al., 2021) and analyzed (i)
representation space of a contrastive learning model trained with NT-Xent contrastive loss (Chen
et al., 2020a), (ii) generation capabilities of a StyleGAN trained on the FFHQ dataset (Karras et al.,
2019), and (iii) representation space of the widely used VGG16 supervised model (Simonyan &
Zisserman, 2015) pretrained on the ImageNet dataset (Deng et al., 2009).

Using each of the above scenarios, we demonstrate the stability and informativeness of DCA and
showcase three variants of the q-DCA extension. We compare the obtained results to the discussed
evaluation methods: GeomCA used with geometric sparsification (denoted by PsG,RsG, csG, qsG)
and without it (denoted by PG,RG, cG, qG), IPR (denoted by PI ,RI ) and GS. We refer to the
evaluation scores obtained using the Delaunay graph as DCA scores. We report the hyperparameters
choices of the respective methods in Appendix B.

4.1 CONTRASTIVE REPRESENTATIONS

A successfully trained contrastive learner provides a controlled setup with known structure of
learned representations, thus enabling us to perform a series of experiments validating the correct-
ness and reliability of our DCA method. In this section, we demonstrate the superior performance
of DCA compared to the benchmark methods in various complex geometric arrangements of R and
E. Additional experiments on this experimental setup can be found in Appendix B.1, where we i)
show how q-DCA can be applied to investigate the robustness of the model’s representation space to
novel images, ii) demonstrate that DCA successfully recognizes mode collapse and mode discovery
situations by repeating the mode truncation experiment performed by Poklukar et al. (2021), and
lastly iii) perform a thorough ablation study on hyperparameters of DCA.

Figure 4: Box im-
ages recorded from
the front and right
views, respectively.

We used a model trained on an image dataset shown in Figure 4 presented
by Chamzas et al. (2021). The training DR

f and test DE
f datasets each con-

sisted of 5000 images containing four boxes arranged in 12 possible configu-
rations, referred to as classes, recorded from the front camera angle (Figure 4
left). We created the setsR and E from 12-dimensional encodings ofDR

f and
DE

f , respectively, corresponding to the first 7 classes, c0, . . . , c6. Due to the
contrastive training objective, we expect to observe 7 clusters corresponding
to each class and therefore set ηc, ηq , defining fundamental components, to
rather high values of 0.75 and 0.45, respectively.

Varying component density To demonstrate reliability of DCA in various geometric arrange-
ments of points, we repeatedly sampled 10 times 3 classes ci and discarded a fraction of p ∈
{0.5, 0.75, 0.999} points in R with that label. In this way, R contained smaller and sparser com-
ponents for p = 0.5, 0.75, while p = 0.999 mimics a scenario with outliers. Since such pruning

4https://github.com/petrapoklukar/DCA
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necessarily removed 3 fundamental components due to ηc = 0.75, we expected to observe the av-
erage precision P ≈ 4/7 regardless the value of p. On the contrary, increasing p corresponds to
majority of R being contained in the remaining 4 fundamental components, thusR should approach
1 (see Appendix B.1 for precise calculation of the optimal values). Since by design, |R| < |E|, we
performed downsampling of E in case of IPR.

Figure 5: Mean and std of DCA (P,R), GeomCA with and without sparsification
(PsG,RsG,PG,RG), and IPR scores (PI ,RI ) obtained when varying the fraction p controlling
the amount of discarded R points. Vertical lines denote optimal values for P (blue) andR (orange).

Figure 5 shows the mean and standard deviation (std) of the obtained DCA, GeomCA and IPR
scores together with the optimal values (solid vertical lines). For DCA, we observe the correct
average P ≈ 0.57 for all p as well as increasing R with increasing p. Moreover, we observed the
scores to have a low std indicating the stability of our method. For p = 0.5, the sparsification in
GeomCA led to an artificial increase in scores, while PI ,RI ≈ 0.7 did not detect the differences
in the sets potentially due to the additional downsampling. While the average GeomCA scores
obtained without sparsification are more aligned with DCA, they exhibit large std due to the unstable
ε estimation. Similar conclusions hold for p = 0.75 and p = 0.999, where both GeomCA and sparse
GeomCA scores are lower than DCA due to a largely disconnected graph resulting from a small ε.
The IPR was again not robust for p = 0.75, while in p = 0.999, PI exhibited larger mean and std
compared to other scores indicating the erroneous merges originating from large radii of the outliers.
Lastly, downsampling of E negatively affected RI resulting in a low score. In Appendix B.1, we
also report the results for GS which we found to be inadequaltely informative.

4.2 EVALUATION OF A STYLEGAN

Next, we applied our proposed DCA and q-DCA algorithms to assess the quality of both data distri-
bution learned by a StyleGAN model trained on the FFHQ dataset and individual generated images.

Generation capacity To evaluate generation capabilities of StyleGAN, we repeated the truncation
experiment performed in (Kynkäänniemi et al., 2019; Poklukar et al., 2021) where during testing
latent vectors were sampled from a normal distribution truncated with a parameter ψ affecting the
perceptual quality and variation of the generated images. A lower ψ results in improved quality
of individual images but at the cost of reducing the overall generation variety. For each trunca-
tion ψ ∈ {0.0, 0.1, . . . , 1.0}, we randomly sampled 50000 training images and generated 50000
images, and encoded them into a VGG16 model pretrained on ImageNet. The corresponding 4096-
dimensional representations composed the sets R and E, respectively. For low values of ψ, we
expect to obtain high precision values as the high-quality generated images should be embedded
close to the (fraction of) training images but low recall values as the former poorly cover the diver-
sity of the training images. Due to the large number of considered representations, we reduced the
size of the approximated Delaunay graph GD(R ∪ E) by setting the sphere coverage parameter B,
introduced in Section 3.2, to 0.7.

Figure 6 shows the obtained DCA scores (solid lines) together with GeomCA, IPR and GS scores
(dashed lines). All methods correctly reflect the truncation level ψ apart from GS at ψ = 0 and DCA
at ψ = 0.5, which we discuss in detail below. Firstly, DCA scores exhibit larger absolute values of
P,R compared to the benchmarks. Even though this is expected because Delaunay edges naturally
connect more points, we additionally investigated the average length of homogeneous edges among
R and among E points to verify the correctness of the obtained scores. In Table 7, we observe
that the average length homogeneous edges among E increases with increasing ψ and resembles the
average length homogeneous edges among R for ψ = 1.0. This indicates that the StyleGAN model
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was successfully trained, which is on par with the high-quality images reported by Karras et al.
(2019). However, both GeomCA and IPR methods result in more conservative values which are
especially visible for recall. For GeomCA, this is because ε is estimated from R resulting in fewer
and smaller components (also due to the sparsification), which in turn yields low PsG,RsG. For
IPR, it is because the radii of spheres around E points yield a conservative coverage as discussed in
Section 2. Therefore, this analysis demonstrates that DCA scores in this case provide more accurate
description of the geometry.

Figure 6: Mode truncation results. Left: DCA P , GeomCA PsG and
IPR PI precision scores (in blue colors), together with GS (green).
Middle: DCA R, GeomCA RsG and IPR RI recall scores. Right:
DCA (c, q) and GeomCA (csG, qsG) network consistency (light green)
and quality scores (purple).

Next, we analyze the in-
consistency in R and E de-
tected by DCA at ψ =
0.5. It originates from their
peculiar geometric position
similar to that visualized in
Figure 2, where points in
E formed a denser cluster
that was slightly mixed but
mostly concatenated to a
more scattered cluster inR.
As discussed in Section 2,
such formation can neither
be detected by IPR due to
the large sphere radii ob-
tained from the more scat-
tered R points nor Ge-
omCA due to the sparsi-
fication removing majority
of dense E points that are

concatenated to the R cluster, while a single score of GS is too uninformative. In Appendix B.2,
we provide a detailed investigation where we both analyzed the lengths of edges in MST(GD) and
applied DCA to R and E sets obtained at different truncation levels. The obtained results verify the
irregular formation of the points and highlight ineffectiveness of existing methods in such scenarios.

Lastly, note that network consistency c and quality q values are reversed in DCA compared to Ge-
omCA as we consider all 50000 points. Therefore, we trivially obtained c equal to 1 that is perfectly
aligned with qsG score due to the geometric sparsification (see Appendix B). On contrary, q in-
creased with ψ except for the observed irregularity at ψ = 0.5.

Quality of individual generated images A challenging problem in generative modelling is to as-
sess the quality of individual generated samples, which is possible with our q-DCA extension by
analyzing the shortest edges of their corresponding representations added to an existing G.

To demonstrate this, we again created R from representations of randomly sampled 50000 train-
ing images, approximated G = GDD(R) and analyzed newly added edges EN(q) for each query
representation q corresponding to 1000 generated images. In Figure 7, we visualize examples of
generated images with shortest (left) and largest (right) inserted edges. We observe that the length
of the inserted edges correlates well with the visual quality of generated images, where generated
images close to the training ones display clear faces (left) and those further away display distorted
ones (right). We compared our results with the realism score (RS) introduced by Kynkäänniemi
et al. (2019) and sorted the generated images both by increasing Delaunay edge length and decreas-
ing RS and computed the intersection of first and last 100 samples. We obtained that 51% and 83%
of images are commonly marked as high and low quality, respectively, by both methods. Following
the discussion in Section 2, we emphasize that RS is highly affected both by outliers and uneven
distribution of points in R, which the authors address by discarding half of the hyperspheres with
the largest radii. Such adjustments are not robust to various arrangements or small perturbations of
points, and are not needed in case of Delaunay graphs.

Additional ablation study on DCA hyperparameters We use the high dimensionality of repre-
sentations in this experiment to perform an ablation study on the hyperparameters of our proposed
DCA method. Similarly as for the experimental setup in Section 4.1, we investigated the stability of
our scores with respect to variations in i) the number of sampled rays T in the approximation of the
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Figure 7: Examples of images generated by a StyleGAN that are closest (left) and furthest (right) to
training images from FFHQ dataset in representation space of a pretrained VGG16.

Delaunay graph GD (Phase 1), ii) the minimum cluster size mcs parameter used in the distillation of
GD (Phase 2) and lastly, iii) the optional sphere coverage parameter B that can be used to reduce the
number of edges in the distilled Delaunay graph GDD. The results, shown in Table 8, show that our
DCA framework is stable with respect to the choice of hyperparameters even in higher dimensional
representation spaces. We refer the reader to Appendix B.2 for further details.

4.3 REPRESENTATION SPACE OF VGG16

Lastly, we applied q-DCA to analyze whether the structure of the representation space of a VGG16
classification model pretrained on ImageNet reflects the human labeling. By repeating the experi-
ment investigating separability of classes performed by Poklukar et al. (2021), we reached a similar
conclusion that VGG16 moderately separates semantic content (see Appendix B.3). However, we
further investigated whether the limited class separation originates from inadequacies of the model
or human labeling inconsistencies. To distinguish between the two scenarios, we applied q-DCA to
obtain labels of query points and compared them to their true labels.

Figure 8: Examples of query im-
ages (left) and their corresponding
closest R images (right).

Amending labelling inconsistencies We used representations
of ImageNet images constructed by Poklukar et al. (2021)
corresponding to 5 classes representing kitchen utilities and
5 classes representing dogs. We constructed R by randomly
sampling 10000 points, and composed the query set Q1 of the
remaining 2758 points. We then determined the label of each
query point q by the label of its closest point in its neighbour-
hood N(q). The obtained 87.6% accuracy offers interesting
insights into both human labeling and structure of the VGG16
representation space. In Figure 8, we show various examples
of query images (left) and the corresponding closest image in
GDD (right) having different labels. The first row shows ex-
amples of pairs of images considered close by VGG16 despite
no clear semantic connection between them. The second row
shows examples having meaningfully different labels but are
encoded close by VGG16 potentially due to the similar pat-
tern. On the other hand, the last row shows examples where
human labeling is different but VGG16 correctly encoded the
images close due to their striking semantic similarity. More

examples can be found in Appendix B.3, where we show similar cases using images correspond-
ing to randomly chosen classes also considered by Poklukar et al. (2021). The results suggest that
a more reliable labeling could result from a combination of human input and the ability of neural
networks to recognize semantic similarity in images.

5 CONCLUSION

We presented Delaunay Component Analysis (DCA) framework for evaluation of learned data repre-
sentations which compares the structure of two sets of representationsR and E using the introduced
distilled Delaunay graphs. We showed that distilled Delaunay graphs provide a reliable approxima-
tion in various complex geometric arrangements of R and E, thus resulting in a stable output of our
DCA scores. Moreover, we introduced the extended q-DCA framework for individual query repre-
sentations evaluation. We experimentally demonstrated the applicability and flexibility of q-DCA
on three different scenarios.
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processing steps that we applied on datasets provided by Poklukar et al. (2021) (see files named
* utils.py). The full description of hyperparameters used in our experiments is available in
Appendix B. Lastly, in Appendix A we provide additional explanation of our DCA method presented
in Section 3.
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A METHOD: ADDITIONAL BACKGROUND

Our DCA method utilizes several existing methods in each of the three phases, namely, i) Delaunay
approximation algorithm (Polianskii & Pokorny, 2019) for obtaining the approximated Delaunay
graph GD built on the given set of representations (Phase 1), ii) HDBSCAN (McInnes et al., 2017) for
obtaining the distilled Delaunay graph GDD from GD (Phase 2), and lastly iii) GeomCA evaluation
scores (Poklukar et al., 2021) for analyzing the connected components of GDD (Phase 3). Therefore,
DCA naturally inherits hyperparameters associated to the methods used in Phases 1 and 2, which
we summarize below.

Algorithm 1 Delaunay Component Analysis (DCA)
Require: sets of representations R and E
Optional input: number of sampled rays T (default 104)
Optional input: sphere coverage parameter B (default 1.0)
Optional input: minimum cluster size mcs (default 10)
Optional input: component consistency threshold ηc (default 0.0)
Optional input: component quality threshold ηq (default 0.0)

[Phase 1: Manifold approximation]
GD ← approximate Delaunay graph(R,E, T )
if B < 1.0 then
GD ← filter Delaunay graph(GD, B) (Section 3.2)

end if
[Phase 2: Component distillation]
GDD ← distil Delaunay graph(GD,mcs)
[Phase 3: Component evaluation]
C ← get connected components(GDD)
Slocal ← zeros(|C|, 2)
for i = 0, . . . , |C| do
Gi ← C[i]
compute c(Gi) and q(Gi) as in Definition 3.2 (local scores)
Slocal[i, :]← [c(Gi), q(Gi)]

end for
compute c(GDD), q(GDD),P(ηc, ηq),R(ηc, ηq) as in Definition 3.3 (global scores)
Sglobal ← [c(GDD), q(GDD),P(ηc, ηq),R(ηc, ηq)]

Return: Slocal,Sglobal

Delaunay Graph Approximation As discussed in Section 3, the Monte Carlo based algorithm pre-
sented by Polianskii & Pokorny (2019) samples rays originating from each representation z ∈ R∪E
and efficiently finds their intersection with the boundary of the Voronoi cell Cell(z). The points on
the boundary then correspond to edges in the Delaunay graph GD by Definition 3.1, allowing to
iteratively reconstruct GD via subgraph approximation. Consequently, the number of found edges
directly depends on the number T of rays sampled from each z. However, as we show in ablation
studies in Appendix B.1, our obtained distilled Delaunay graph GDD and DCA scores are stable with
respect to variations in T . In all our experiments, we used T = 104 unless the value was decreased
for computational purposes.

HDBSCAN is a hierarchical clustering algorithm that extracts flat clusters using a technique de-
termining the stability of clusters. To reduce the sensitivity to outliers and noise, HDBSCAN first
performs a transformation of space using which points with low density are spread apart. Formally,
this is achieved by computing mutual reachability distance among each pair of points from a given
set W defined as dmr-k(zi, zj) = {dk(zi), dk(zj), d(zi, zj)}, where zi ̸= zj ∈ W and dk(zi) is
the distance to kth NN of zi. This induces the first so-called minimum samples hyperparameter of
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Algorithm 2 query point Delaunay Component Analysis (q-DCA)
Require: Delaunay graph GDD(R) built on a set of representations R
Require: set of query representations Q
Optional input: number of sampled rays T (default 104)
Optional input: sphere coverage parameter B (default 1.0)
Squery ← zeros(|Q|, 3)
for j = 0, . . . , |Q| do
q ← Q[j]
N(q) = (VN(q), EN(q))← get Delaunay neighbourhood graph(GDD(R), q, T )
if B < 1.0 then
N(q)← filter Delaunay neighbourhood graph(N(q), B) (Section 3.2)

end if
[Processing option 1: Section 4.3]
zq ← argminzi∈VN(q)∩R d(zi, q) [get closest representation in R]
[Processing option 2: Section 4.2]
lq ← d(zq, q) [get length of the edge to the closest representation in R]
[Processing option 3: Section 4.1]
ÊN(q) ← {} [initiate the set of typical edges]
for Gf ∈ F do

calculate µ(EGf ), σ(EGf ) of edge lengths in EGf

end for
for (zi, q) ∈ EN(q) do

if d(zi, q) ≤ µ(EGf ) + σ(EGf ) for any Gf then
ÊN(q) ← ÊN(q) ∪ {(zi, q)}

end if
end for
Squery[i, :]← [zq, lq, ÊN(q)]

end for
Return: Squery

HDBSCAN, k, which we eliminate from DCA by bypassing the computation of dmr-k as discussed
in Section 3. This is possible because the approximated Delaunay graph GD obtained in Phase 1
already captures the natural neighbourhood of points in W , where edges originating from outliers
and noise differ in length and solid angle from edges originating from points in dense and regular
regions. Thus, while HDBSCAN obtains the minimum spanning tree MST from the mutual reach-
ability distance matrix, we obtain it directly from GD. From MST, HDBSCAN then extracts the
dendrogram representing the hierarchy of connected components, which is further simplified into a
condensed tree. The latter is obtained by categorizing each split in the dendrogram either as a real
split, if there is more than minimum cluster size mcs points in each branch, or as outlying points
otherwise. Lastly, by analyzing the distances associated to the birth and death of the clusters in the
condensed tree, HDBSCAN extracts flat clusters with longest lifetime. Therefore, with our modi-
fication of HDBSCAN, DCA inherits only one hyperparameter mcs, which is intuitive to tune. In
Appendix B.1, we show that our obtained distilled Delaunay graph GDD and DCA scores are stable
with respect to the choice of mcs. In all our experiments we used mcs = 10.

We summarize our DCA framework in Algorithm 1 and its q-DCA extension in Algorithm 2.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further results supporting the experiments discussed in Section 4 as well
as present results of our additional experiments. Moreover, we report the hyperparameters used for
DCA and the benchmark methods GS, IPR and GeomCA in each experiment.

Hyperparameters In Table 1, we report the hyperparameters of all the methods used in our ex-
periments presented in Section 4 and Appendix B. For IPR, we used neighborhood size k = 3 as
recommended by the authors and constructed the sets R and E of equal size by randomly sampling
min(|R|, |E) points from each of them. For GS and GeomCA, we followed the same hyperparame-
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ter choices as in (Poklukar et al., 2021). By default, we used GeomCA with geometric sparsification
as suggested by Poklukar et al. (2021) unless specified otherwise. Note that using δ = ϵ trivially
results in perfect network quality q as it necessarily yields only heterogeneous edges among points
from R and E (see (Poklukar et al., 2021) for details). In some cases, we also applied GS on the
sets R and E of equal size which were constructed as for IPR. For DCA, we set mcs = 10 for
all experiments. Whenever computations were feasible on a single GPU, we used T = 104 and
performed no filtering of GD (i.e., used B = 1.0). This was possible when evaluating contrastive
representations in Section 4.1 and representations obtained from VGG16 in Section 4.3. When eval-
uating generation capabilities of a StyleGAN in Section 4.2, we instead sampled less rays T in the
approximation of the Delaunay graph GD and used B = 0.7.

Table 1: Hyperparameters used for the benchmark methods GS, IPR and GeomCA as well as our
DCA method in the experiments presented in Section 4. The same hyperparameter choices apply
for experiments presented in Appendix B.

GS IPR GEOMCA DCA

L0 γ imax n k ε(p) δ T B mcs

SECTION 4.1 64 1/128 10 1000 3 ε(1) ε/2 1 · 104 1.0 10
SECTION 4.2 64 1/128 100 1000 3 ε(10) ε 5 · 103 0.7 10
SECTION 4.3 / / / / 3 ε(10) ε 1 · 104 1.0 10

B.1 CONTRASTIVE REPRESENTATIONS

In this section, we first derive the optimal values of precision and recall scores used in the varying
component density experiment in Section 4.1 and present GS score results for the same experiment.
We then show how q-DCA can be applied to investigate the robustness of the model’s representation
space to novel images, and present the results of the additional mode truncation experiment per-
formed in (Poklukar et al., 2021). Lastly, we present the results of an extensive ablation study on the
inherited hyperparameters of DCA: T ,mcs and the optionalB parameter, described in Appendix A.

Figure 9: Mean and standard de-
viation of GS scores (multiplied
by 100) obtained over 10 iterations
when varying the fraction p con-
trolling the amount of discarded R
points. Left: GS calculated on R
and E of equal size by downsam-
pling E. Right: GS calculated on
the original R and E sets of un-
equal size.

Varying component density In Table 3, we report the num-
ber of representations corresponding to each class in the con-
sidered training DR

f and test DE
f datasets containing images

of boxes placed in 12 possible configurations recorded from
the front camera view. The total number of representations
corresponding to the first 7 classes c0, . . . , c6 contained in R
and E was 3514 and 3463, respectively. Therefore, on aver-
age, each class in R contained 502 points. By Definition 3.3,
recall R is defined as the fraction of R points contained in
the union of fundamental components F over the total num-
ber of points in R. Thus, when discarding p = 0.5 frac-
tion of points from three fundamental components in R, the
average optimal value of recall R∗ is calculated as R∗ ≈
(502 · 4)/(502 · 4 + 251 · 3) ≈ 0.73. When p = 0.75, we
get that R∗ ≈ (502 · 4)/(502 · 4 + 126 · 3) ≈ 0.84, and for
p = 0.999,R∗ ≈ (502 · 4)/(502 · 4+ 1 · 3) ≈ 0.99. Similarly,
since precision P is defined as the fraction of E points con-
tained in F over the total number of points in E, its average
optimal value is calculated as P∗ ≈ (494 · 4)/3463 ≈ 0.57.
This value is optimal for all values of p since variations in p do
not affect the number of points in E.

In Figure 9, we additionally report the mean and standard de-
viation (std) of GS scores (multiplied by 100) obtained over 10 iterations as in Section 4.1 when
varying p ∈ {0.5, 0.75, 0.999}. We calculated GS both on R and E sets of equal size by downsam-
pling the set E as in calculation of IPR (dark green) and original R and E of unequal sizes (light
green) as used in DCA. Firstly, we see that the results are not robust to the changes in the number of
points in each set (dark vs light green) and can exhibit large std which is most evident in the case of
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outliers for p = 0.999. The results show that GS does not reflect the geometric arrangement of the
R and E points which illustrates inadequate informativeness of the score.

Cluster assignments We applied our q-DCA algorithm, presented in Section 3.1, to analyze the
robustness of the model to novel images not seen during the training. For this, we constructed
three different query sets: Q1 containing 100 test representations of classes c0, . . . , c6 that were
removed from E, Q2 containing 100 test representations of classes c7, . . . , c11, and Q3 comprising
250 randomly chosen representations of images of all classes that were recorded from the right
camera view (see Figure 4, right). As R and E contain only representations of classes c0, . . . , c6,
we expected Q1 to be close to existing fundamental connected components in the distiled Delaunay
graph G = GDD(R ∪ E) and Q2 further away. Moreover, if the model is robust to the semantic
content in the right-view images, points in Q3 labeled with first 7 classes were expected to be close
to G, while the remaining ones should lie further apart.

To obtain an assignment (if any) of a query point qj ∈ Qk to an existing fundamental component
Gf = (VGf , EGf ) ∈ F , we analyzed the edges inserted using q-DCA (see also Algorithm 2 in
Appendix A). Recall that due to the nature of Delaunay graphs, qj can have edges associated to
several Gf although these vary in their length. Therefore, we considered only those inserted edges
whose length were representative of the connected components they connected to, i.e, we calculated
the mean µ(EGf ) and std σ(EGf ) of the length of edges in each Gf ∈ F and kept only edges from
N(qj) ∩ Gf that were shorter than µ(EGf ) + σ(EGf ). We refer to these edges as typical edges
and define two assignment procedures: (1) conservative where we assigned qj to a component Gf
only if all typical edges connected qj to exactly one Gf and did not assign it to any otherwise, and
(2) flexible where we additionally assigned qj , whose typical edges connected to more than one
component, to a component Gf if it attained both shortest and maximum number of typical edges
among all the candidate components.

Using class labels ci, we first determined the majority-vote label of each Gf which we observed to
be > 99.9% accurate (see also Table 4 in Appendix B.1). Given the labels of qj ∈ Qk, we then
extracted those qj that a) were assigned to a component and report the percentage A of those that
were assigned to the one with the correct label. However, by design, our assignment procedure
might not assign all the points. Therefore, we additionally extract qj that b) should be assigned to
a component and report the percentage B of them that were correctly assigned. Thus, for Q1, the
extracted representations in b) is the entire set Q1. Same holds for Q2 as in this case we assumed
that points in Q2 should not be assigned to any component and thus report the percentage of those
that were correctly not assigned to any. In Q3, we consider a combination of the two cases, where
1750 representations corresponding to c0, . . . , c6 should be assigned to a component if the model
is able to extract the underlying semantic information, while the remaining 1250 representations
corresponding to ci, i ≥ 7 should not. Therefore, for A, the higher the better for Q1, the lower the
better for Q2 and A ≈ 1750/3000 for Q3, while for B it holds that the higher the better for all Qi.

Table 2: Results of assigning points in query sets Qk to fundamental components Gf ∈ F .

A = % CORRECTLY ASSIGNED B = % THAT SHOULD BE ASSIGNED
Q1(↑) Q2(↓) Q3 Q1(↑) Q2(↑) Q3(↑)

CONSERVATIVE 0.99 0.00 0.08 0.68 0.85 0.28
FLEXIBLE 0.99 0.00 0.08 0.98 0.83 0.19

We show the assignment results in Table 2. For Q1, we see that the conservative approach resulted
in A = 99% and B = 68%. The former is because 3 points were wrongly assigned, while the latter
is due to the fact that 219 representations out of 700 were assigned to several components. Out of
these, 206 were considered in the flexible assignment yielding an increase ofB to 98% of correct as-
signments. For Q2, the conservative approach resulted in B = 85% due to 77 points being assigned
to a component despite their wrong label ci, i ≥ 7 (thus leading to A = 0%), suggesting a moderate
separation of classes. For Q3, we see that A = 8% and B = 28% in the conservative approach
which indicates that the model was not able to recognize similar box configurations recorded from
different camera view, which is aligned with the results obtained by Chamzas et al. (2021). Lastly,
we observe that flexible approach yielded only minor decrease in B for Q2 and Q3.
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Table 3: Number of representations corresponding to each class ci contained in the trainingDR
f (top

row) and test DE
f (middle row) datasets. The bottom row shows the size of the sets Et used in the

mode truncation experiment.

ci 0 1 2 3 4 5 6 7 8 9 10 11

DR
f 670 690 395 706 349 409 295 296 292 311 258 331

DE
f 666 625 373 684 429 377 309 312 310 293 279 345

Et 666 1291 1664 2348 2777 3154 3463 3775 4085 4378 4657 5002

Figure 10: Scores obtained on R and Et when varying the truncation parameter t. Left: DCA
P , GeomCA with sparsification PsG, and IPR PI precision scores (blue) together with GS score
multiplied by 100 (green). Middle: DCA R, GeomCA with sparsification RsG, and IPR RI recall
scores. Right: network consistency (green) and quality (purple) scores of DCA (c, q) and GeomCA
with sparsification (csG, qsG).

Mode Truncation We repeated the mode truncation experiment performed by Poklukar et al. (2021)
and applied DCA on the set R comprised of representations corresponding to images of the first 7
classes, c0, . . . , c6, and the sets Et containing representations corresponding to images of the first t
classes c0, . . . , ct for t ≤ 11 (see Table 3 for the exact number of points in each of these sets). Since
we expect representations to be separated by the class label due to the contrastive training objective,
we again set ηc, ηq defining fundamental components to high values of 0.75 and 0.45, respectively.
By design, the sets R and Et should reflect mode collapse scenario for t < 6 and mode discovery
scenario for t > 7, while in the case of R and E6 we expect to observe a perfect alignment with
exactly 7 fundamental connected components.

Figure 10 shows the obtained P,R (left) and c, q (right) DCA scores for each of the sets R ∪ Et

for t ∈ {0, . . . , 11}. We observe that DCA correctly correlated with the number of (dis)covered
modes contained in Et. The precision P (solid blue) increased with t, while recallR (solid orange)
decreased. Moreover, the highest scores were achieved at t = 6 where all the modes in R were cov-
ered in E6. The IPR scores reflect the same behaviour but resulted in lower absolute values. This is
likely due to the small radius of the constructed hyperspheres arising from a small distance between
representations of the same class (as discussed in Section 2). We observe that GS (multiplied by
100) failed to correctly reflect mode collapse for t ∈ {0, 1} as well as mode discovery cases, which
illustrates that GS is not sufficiently informative. Additionally, we see that precision and recall
(left), and component consistency and quality (right) are aligned for both DCA (P,R, c, q marked
with solid lines) and GeomCA (PsG,RsG, csG, qsG marked with dashed lines). This is because the
similar density of connected components in this case yielded a reliable ε estimation (see Section 2).
Lastly, for DCA, network consistency c (green) and quality q (purple) correctly increased until they
reached the maximum at t = 6 and then started to decrease. Note that, in contrast to GeomCA, DCA
utilized all the points.
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Ablation Study We present the results of an ablation study on DCA hyperparameters discussed in
Appendix A and Section 3.2, and show that our algorithm is robust to their choices. We performed
an ablation study on Ab-1) HDBSCAN min cluster size mcs parameter, Ab-2) sphere coverage
parameter B and Ab-3) the parameter T determining the number of rays used in the Delaunay
graph approximation algorithm. To ensure a controlled representation space where prior knowledge
of its structure is available, we used the sets R and E6 as in previous experiments. However, to
fairly evaluate the obtained scores, we additionally balanced the sets to contain 250 representations
corresponding to each of the 7 classes. Thus, |R| = |E6| = 1750 which always yielded a perfect
network consistency score c and is therefore omitted from the results. For all experiments, we set
ηc = 0.75 and ηq = 0.45 in order to anchor the analysis on the fundamental components only. We
always fixed T = 104 in the approximation of GD, B = 1.0 (i.e. preformed no filtering of GD) and
msc = 10 for HDBSCAN except in Ab-1) where we variedmsc ∈ {3, 5, 10, 20}, in Ab-2) where we
variedB ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and in Ab-3) where we varied T ∈ {10, 102, 103, 105, 106}.
VALIDITY OF FUNDAMENTAL COMPONENTS: Firstly, for each experiment in Ab-i), we verified
that the fundamental components in the distilled Delaunay graph GDD contain representations cor-
responding to the same class. In Table 4, we report the percentage of points in R ∪ E6 that con-
tributed to the majority-vote label of each fundamental connected component Gf ∈ F (top rows)
when varying mcs (columns) in Ab-1). In square brackets, we report the obtained majority-vote
label [ci] corresponding to each Gf . In bottom rows, we report the total percentage of points that
contributed to the majority-vote labelling (row included) as well as the percentage of points that
were not contained in any fundamental component Gf (row excluded). Firstly, for any choice of
mcs, the majority-vote labels of the fundamental components are unique and include all classes
c0, . . . , c6. Secondly, we observe that only mcs = 3 resulted in |F| > 7, where points of class
c3 were split in two fundamental components. Thirdly, for any choice of mcs, each Gf correctly
contains approximately 1/7 ≈ 0.14% of all the 3500 points in R ∪ E6, except for f = 6 (and
f = 10) where a small fraction of points were excluded. However, we see that with increasing mcs,
the percentage of excluded points decreased and stabilized for mcs ≥ 10. In Ab-2) and Ab-3), we
observed the same values as for mcs ≥ 10 in Table 4. These results show that DCA is robust to the
choice of hyperparameters, resulting in the correct distilled Delaunay graph GDD.

Table 4: The percentage of points in R ∪ E6 contributing to the majority-vote labelling of each
fundamental component Gf ∈ F(GDD(R ∪ E6), ηc = 0.75, ηq = 0.45) (shown in rows) when
varying mcs (columns). The majority vote label ci of each Gf is shown in square brackets [ci]. The
bottom rows show the total percentage of points from R ∪ E6 that contributed to the majority-vote
labelling (row included) and that were excluded from fundamental components F (row excluded).

% OF POINTS LABELLED WITH MAJORITY-VOTE [ci]

mcs 3 5 10 20

Gf

COMP.
IDX

0 0.143 [c2] 0.143 [c2] 0.143 [c2] 0.143 [c2]
1 0.142 [c4] 0.142 [c1] 0.142 [c1] 0.142 [c1]
2 0.141 [c5] 0.142 [c4] 0.142 [c4] 0.142 [c4]
3 0.140 [c1] 0.141 [c5] 0.141 [c5] 0.141 [c5]
4 0.139 [c0] 0.140 [c6] 0.140 [c6] 0.140 [c6]
5 0.127 [c6] 0.139 [c0] 0.139 [c0] 0.139 [c0]
6 0.127 [c3] 0.127 [c3] 0.136 [c3] 0.136 [c3]

10 0.001 [c3] / / /

INCLUDED [%] 0.960 0.973 0.981 0.981
EXCLUDED [%] 0.040 0.027 0.018 0.018

STABILITY OF DCA SCORES: Next, in each Ab-i), we measured the stability of our precision P ,
recall R, network quality q, as well as the number of fundamental components |F| with respect to
the varying hyperparameter. Moreover, since variations in all hyperparameters affect the number of
edges obtained in the resulting distilled Delaunay graph GDD, we also report percentage of edges
normalized by the highest number obtained in each ablation experiment separately. Note that varying
T directly affects the number of found edges in GD, while varying mcs affects the number of edges
in GDD because of the definition of outlying points by HDBSCAN. The results are shown in Table 5,
where the column % edges in square brackets additionally shows the maximum number of edges
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Table 5: DCA ablation results obtained when varying mcs in experiment Ab-1) (top rows), sphere
coverage parameter B in Ab-2) (middle rows) and number of sampled rays T in Ab-3) (bottom
rows). For each experiment Ab-i), we report in columns the obtained precision P , recallR, network
quality q(G), percentage of edges normalized by the maximum number obtained per experiment Ab-
i) (with maximum absolute value shown in square brackets) and lastly, the number of fundamental
components |F|.

P R q(G) % EDGES |F|

mcs

3 0.949 0.972 0.502 0.959 8
5 0.967 0.979 0.502 0.984 7
10 0.977 0.987 0.502 1.0 7
20 0.977 0.987 0.502 1.0 [301376] 7

[0.967± 0.013] [0.981± 0.007] [0.502± 0.000]

B

0.5 0.977 0.989 0.502 0.357 7
0.6 0.977 0.987 0.502 0.393 7
0.7 0.977 0.987 0.502 0.448 7
0.8 0.977 0.987 0.502 0.534 7
0.9 0.977 0.987 0.502 0.676 7
1.0 0.977 0.987 0.502 1.0 [301376] 7

[0.977± 0.000] [0.988± 0.00] [0.502± 0.000]

T

10 0.975 0.982 0.498 0.056 7
102 0.977 0.987 0.501 0.223 7
103 0.977 0.987 0.503 0.467 7
104 0.977 0.987 0.502 0.693 7
105 0.977 0.987 0.501 0.871 7
106 0.977 0.987 0.501 1.0 [434802] 7

[0.976± 0.000] [0.987± 0.002] [0.501± 0.002]

obtained in each Ab-i) used in the respective normalization. Firstly, we observe that the obtained
P,R and q are robust to various choices of hyperparameters, with minor deviations for mcs = 3
which is also the only case that wrongly resulted in 8 fundamental components. Secondly, in Ab-1)
(top rows) we observe rather stable number of edges in GDD. In Ab-2) (middle rows), we observe
that sphere coverage parameter B not only significantly reduces the number of edges in GDD but
also does not affect the obtained scores. This empirically shows that the edge filtering, introduced
in Section 3.2, correctly removes unstable edges that are not significant for the correct manifold
estimation. We observe a similar result in Ab-3) (bottom rows), where increasing the number of
sampled rays T naturally increased the number of found Delaunay edges, while again not affecting
the resulting scores except for the minor decrease in case of the extremely low T = 10. These result
show the reliability of both our manifold approximation using Delaunay graphs and the introduced
edge filtering using B, as well as the stability of our DCA scores.

DCA RUNTIME: Lastly, we additionally report empirical runtime (obtained on NVIDIA GeForce
GTX 1650 with Max-Q Design) of the main components of the proposed DCA method normalized
by the total elapsed time of each experiment: approximating the Delaunay edges in GD (column
approx. GD), filtering of Delaunay edges using sphere coverage parameter B (filter GD), distilling
GD into the distilled Delaunay graph GDD (distill GDD) and the analysis of connected components
obtained in GDD (analyse GDD). We also report the total time elapsed in seconds (total) for each
experiment in Ab-i). The obtained times are shown in Table 6. Firstly, we see that the largest
computational bottleneck is the approximation of the Delaunay graph GD, followed by its filtering
using B if performed (middle rows). Secondly, we observe that choosing B < 1.0 significantly
reduces the number of edges and hence improves the memory consumption (see middle rows in
Table 5) at the cost of slightly increasing the total computational time (column total). Thirdly, we
see that in Ab-3) increasing T naturally increases the time necessary for the approximation of GD
and consequentially the time needed to distill GD and analyze GDD. For clarity, we report the
actual elapsed time in seconds for columns distill GD and analyse GDD because of the potentially
misleading percentage obtained from the large normalization constant (column total).
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Table 6: Empirical runtime of the main components of our DCA algorithm obtained when varying
mcs in experiment Ab-1) (top rows), sphere coverage parameterB in Ab-2) (middle rows) and num-
ber of sampled rays T in Ab-3) (bottom rows). For each experiment Ab-i), we report the elapsed
time normalized by the total elapsed time per experiment of the following implementation parts: ap-
proximation of the Delaunay graph GD (column approx. GD), filtration of GD using sphere coverage
parameter B (filter GD), distillation of GD into the distilled Delaunay graph GDD (distill GDD) and
analysis of connected components obtained in GDD (analyse GDD). For columns distill GDD and
analyse GDD in Ab-3), we additionally report in square brackets the actual elapsed time to alleviate
the effects of the large normalization constant. Finally, we report the total time elapsed in seconds
(total) for each experiment in Ab-i).

APPROX. GD [%] FILTER GD [%] DISTIL GD [%] ANALYSE GDD [%] TOTAL [s]

mcs

3 0.852 / 0.046 0.029 49.6
5 0.837 / 0.054 0.032 50.4
10 0.841 / 0.054 0.029 50.2
20 0.841 / 0.051 0.031 50.2

B

0.5 0.748 0.151 0.028 0.046 57.1
0.6 0.724 0.169 0.031 0.048 59.0
0.7 0.732 0.155 0.033 0.050 58.4
0.8 0.715 0.155 0.037 0.058 59.7
0.9 0.699 0.150 0.043 0.069 61.1
1.0 0.729 / 0.084 0.109 58.6

T

10 0.792 / 0.085 [0.28s] 0.060 [0.19s] 3.2
102 0.622 / 0.114 [0.56s] 0.094 [0.46s] 4.9
103 0.601 / 0.126 [1.50s] 0.084 [1.00s] 12.0
104 0.854 / 0.043 [2.08s] 0.028 [1.37s] 48.1
105 0.975 / 0.008 [3.42s] 0.004 [1.80s] 422.6
106 0.997 / 0.001 [4.39s] 0.001 [2.10s] 4157.8

Table 7: The mean and the standard deviation of the lengths of homogeneous edges among points
in R and among points in E per truncation level ψ.

ψ 0.0 0.1 0.2 0.3 0.4 0.5

R 30.07± 6.29 30.11± 6.34 30.22± 6.37 30.35± 6.41 30.48± 6.45 30.47± 6.55
E 7.25± 0.85 9.76± 1.44 12.96± 2.50 15.96± 3.29 18.37± 3.78 20.28± 4.09

ψ 0.6 0.7 0.8 0.9 1.0

R 30.53± 6.62 30.40± 6.59 30.21± 6.66 29.97± 6.61 29.71± 6.53
E 21.91± 4.44 23.32± 4.72 24.74± 4.98 26.13± 5.26 27.41± 5.44

B.2 ADDITIONAL EVALUATION OF STYLEGAN

In this section, we present a detailed investigation of the geometry of R and E points obtained
in Section 4.2 as well as an additional ablation study on the hyperparameters of the DCA method
similar to the one carried out in Section B.1.

Investigation of the geometry of R and E points obtained in Section 4.2 Firstly, we additionally
verified the correctness of the obtained DCA scores for each truncation level ψ by investigating the
average length of homogeneous edges among R and among E points. The results including mean
and standard deviation of the lengths are reported in Table 7. We observe that the average length
homogeneous edges among E increases with increasing ψ and resembles the average length of the
homogeneous edges among R for ψ = 1.0. This analysis suggests that the StyleGAN model was
successfully trained, which is supported by the high-quality images reported in (Karras et al., 2019),
and indicates the correctness of the obtained DCA values.

19



Next, we performed a series of further experiments to investigate the decrease in our DCA scores
obtained at truncation level ψ = 0.5 shown in Figure 6. Firstly, we analysed whether the decrease
emerged from irregularities of points in R or points in E. To this end, we performed two more tests
and applied DCA on the sets a) R = R(ψ = 0.4) and E = R(ψ = 0.5) and b) R = R(ψ = 0.4)
and E = E(ψ = 0.5), where we denoted by, e.g., R(ψ = 0.4), the set R obtained at truncation
level ψ = 0.4 in Section 4.2. In a), we obtained that P = 0.98,R = 0.98 and q = 0.55 indicating
no irregularities in the set R(ψ = 0.5) of sampled training image representations, while in b) we
obtained P = 0.52,R = 0.05 and q = 0.14, which is equally low as for R = R(ψ = 0.5) and
E = E(ψ = 0.5) where P = 0.65,R = 0.10 and q = 0.19 (as visualized in Figure 6). This
analysis showed that the irregularity originates from the geometry of the set E(ψ = 0.5).

Next, in order to verify thatR andE were formed in a specific geometric arragenment similar to that
depicted in Figure 2, we additionally analyzed the minimum spanning tree MST(GD) obtained from
the approximated Delaunay graph GD built on the sets R = R(ψ = 0.5) and E = E(ψ = 0.5).
Recall that MST(GD) is a subgraph of GD connecting all the vertices such that the total edge length
is minimized and there exist no cycles. The latter implies that an MST of a graph with n vertices
contains n − 1 edges. If our hypothesis that R and E have different densities and are concatenated
with a minor intersection is correct, this should be reflected in the length of the edges in MST(GD).
We calculated the average length and standard deviation of both homogeneous (among points from
only one of the sets) and heterogeneous edges (among points from R and E) in MST(GD). We
obtained the average length of homogeneous edges 21.58± 4.88 among R and 13.78± 3.29 among
E points, while for heterogeneous edges the length resulted in 18.19 ± 4.00. This indicates the
differences in the density of points in each of the set. Moreover, homogeneous edges among R and
E points represented 33% and 49% of all edges, respectively, while heterogeneous edges accounted
only for the remaining 18%. Together with the obtained low network quality q = 0.19 showing that
R and E are poorly geometrically mixed, this verifies that points from R and E are concatenated as
shown in Figure 2. Moreover, when performing geometric sparsification on R = R(ψ = 0.5) and
E = E(ψ = 0.5), which resulted in |R| = 9364 and |E| = 576, we obtained P = 0.77,R = 0.43
and q = 0.16, which artificially improved the DCA scores with a minor decrease in q compared to
results obtained in Figure 6. We emphasise that this scenario cannot be detected with the existing
methods due to their limitations discussed in Section 2.

Ablation study We perform an additional ablation study on DCA hyperparameters discussed in Ap-
pendix A and Section 3.2 using high-dimensional representations of training and generated images
obtained from the VGG16 model, and show that our algorithm is robust to their choices. As in
Section B.1, we performed an ablation study on Ab-1) HDBSCAN min cluster size mcs parameter,
Ab-2) optional sphere coverage parameter B and Ab-3) the parameter T determining the number
of rays used in the Delaunay graph approximation algorithm. For computational purposes, all the
experiments were performed on fixed sets R and E containing 10000 VGG16 representations of
training and generated images, respectively. For all experiments, we set ηc = 0.0 and ηq = 0.0 as
done in Section 4.2. We always fixed T = 104 in the approximation of GD, B = 0.7 and msc = 10
for HDBSCAN except in Ab-1) where we varied msc ∈ {3, 5, 10, 20}, in Ab-2) where we varied
B ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and in Ab-3) where we varied T ∈ {10, 102, 103, 105, 106}.
We measured the stability of our precision P , recall R, network quality q for each experiment Ab-
i) with respect to the varying hyperparameter. Since variations in all hyperparameters affect the
number of edges obtained in the resulting distilled Delaunay graph GDD, we also report percentage
of edges normalized by the highest number obtained in each ablation experiment separately. For
each Ab-i), we additionally report the mean and the standard deviation (std) of P ,R and q obtained
when varying the corresponding parameter. Note that varying T directly affects the number of found
edges in GD, while varying mcs affects the number of edges in GDD because of the definition of
outlying points by HDBSCAN.

The results are shown in Table 8, where the column % edges in square brackets additionally shows
the maximum number of edges obtained in each Ab-i) used in the respective normalization. Firstly,
we observe that the obtained P,R and q are robust to various choices of hyperparameters, except for
theP,R values obtained in Ab-1) when varyingmcs parameter (top rows). However, such variations
are expected due to the nature of the mcs parameter, which directly affects the obtained connected
components. Increasing mcs naturally yields more outliers or components of lower quality, which
can be seen in the decrease of the P,R values for mcs = 10 and mcs = 20. We emphasise that the
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network quality remains unaffected and exhibits low std. In Ab-2) (middle rows), we observe that
lowering the sphere coverage parameter B significantly reduces the number of edges in GDD, while
not affecting the resulting scores. This again empirically shows that the edge filtering, introduced in
Section 3.2, correctly removes unstable edges even in higher dimensional spaces. Similarly, in Ab-3)
(bottom rows), increasing the number of sampled rays T naturally increased the number of found
Delaunay edges which did not affect the resulting scores. These result demonstrate the reliability
and stability of our DCA method even in higher dimensions, and show the efficiency of introduced
edge filtering using B.

Table 8: DCA ablation results for StyleGAN obtained when varying mcs in experiment Ab-1) (top
rows), sphere coverage parameter B in Ab-2) (middle rows) and number of sampled rays T in Ab-
3) (bottom rows) as described in Section B.2. For each experiment Ab-i), we report in columns
the obtained precision P , recall R, network quality q(G), percentage of edges normalized by the
maximum number obtained per experiment Ab-i) (with maximum absolute value shown in square
brackets).

P R q(G) % EDGES

mcs

3 0.992 0.970 0.494 1.0 [47093874]
5 0.954 0.900 0.495 0.896
10 0.564 0.469 0.493 0.293
20 0.564 0.469 0.493 0.293

[0.768± 0.237] [0.702± 0.271] [0.494± 0.001]

B

0.5 0.564 0.469 0.490 0.375
0.6 0.564 0.469 0.492 0.537
0.7 0.564 0.469 0.493 0.709
0.8 0.564 0.469 0.493 0.859
0.9 0.564 0.469 0.493 0.954
1.0 0.564 0.469 0.4932 1.0 [13784316]

[0.564± 0.000] [0.469± 0.000] [0.492± 0.001]

T

10 0.592 0.486 0.471 0.002
102 0.478 0.376 0.479 0.011
103 0.563 0.469 0.487 0.086
104 0.563 0.469 0.493 0.307
105 0.563 0.469 0.496 0.673
106 0.564 0.469 0.497 1.0 [44866410]

[0.553± 0.041] [0.456± 0.040] [0.487± 0.010]

B.3 REPRESENTATIONS SPACE OF VGG16

In this section, we further describe the experiments performed to analyze the representation space
of a VGG16 model (Simonyan & Zisserman, 2015) pretrained on the ImageNet dataset (Deng et al.,
2009). We present the results obtained by repeating the experiment investigating separability of
classes performed by Poklukar et al. (2021) and show additional examples of images analyzed in
Section 4.3 where we applied q-DCA to investigate whether the limited class separation originates
from inadequacies of the model or human labeling inconsistencies.

We used the same representations as Poklukar et al. (2021) who constructed R and E from repre-
sentations of images corresponding to 5 ImageNet classes in each set. In version 1, classes were
manually chosen to maximize the semantic differences in representations where R and E contained
classes representing kitchen utilities and dogs, respectively, while in version 2 classes were chosen
at random.

Class separability We analyzed the distilled Delaunay graph G = GDD(R ∪ E) built on the sets R
andE in each version. In Table 9, we report the DCA scores, the relative size of the largest connected
component |G0|rV (normalized by |R ∪ E|) and the total number of non-trivial components denoted
as # non-trivial. In version 1, we observed one large connected component containing≈ 61% of all
the points in R and E, and 4 more non-trivial components containing E points only which in turn
yielded a lower precision P . Consequentially, all the heterogeneous edges (among points from R
and E) contributing to the network quality q(G) were contained in the first component. A relatively
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Figure 11: Examples of images contained in three non-trivial E components obtained in version 1
(marked with blue) and in the single non-trivial E component obtained in version 2 (marked with
green).

largeR suggests that features corresponding to images of kitchen utilities were encoded close by in
the representation space. On the other hand, in version 2, we observed that the relative size |G0|rV and
q(G) increased compared to version 1 indicating that points in R and E are better aligned. Similarly
as in version 1, we observed only one more non-trivial component again containing E points only
which thus did not contribute to q(G) score. Moreover, we observe larger P and lowerR compared
to version 1 which means that more E but less R points were contained in the largest component
due to the random choice. Interestingly, by visual inspection (see example images in Figure 11), we
see that all non-trivial E components in both versions consist of individual dog breeds suggesting
that features representing dogs might be easier for the network to distinguish.

For comparison, we included GeomCA scores reported by Poklukar et al. (2021). We emphasise
two main differences in the interpretation of the results: i) their network quality q and consistency c
scores are affected by the sparsification process, while ours reflect the structure of the original sets
R and E, ii) their absolute values of P,R and |G0|rV are substantially lower than ours which is the
result of lower number of edges obtained in GeomCA. For example, the ratio of the number of edges
over the number of nodes in version 1 resulted in 0.006 in GeomCA and 673.5 in DCA. This also
indicates that ε-edges constructed based on maximum Euclidean distance are not as expressive in
higher dimensions as Delaunay ones, which is also seen from higher number of smaller non-trivial
connected components obtained in GeomCA.

Table 9: DCA scores (top row) obtained on VGG16 representations of ImageNet images from ver-
sion 1 (kitchen utilities vs dogs) and version 2 (random) compared with GeomCA scores (bottom
row). For each method, we report in columns network consistency c(G), network quality q(G), pre-
cision P , recall R, the relative size |G0|rV of the largest component normalized by the total number
of points in R ∪ E and lastly, the total number of non-trivial connected components (# non-trivial).

VERSION c(G) q(G) P R |G0|rV # NON-TRIVIAL

DCA 1 0.98 0.31 0.4975 0.7247 0.610 5
2 1.0 0.42 0.6551 0.6302 0.640 2

GEOMCA 1 0.75 1.00 0.0042 0.0130 0.004 7
2 0.98 1.00 0.0423 0.0391 0.023 25

Amending labelling inconsistencies We show additional examples of images supporting the ex-
periment performed in Section 4.3 where we applied q-DCA to further investigate the origin of the
limited class separation, i.e., whether it emerged from inadequacies of the model or inconsisten-
cies of human labeling. We first ran DCA on randomly sampled 5000 points from each of the R
and E sets in both versions, and then determined the labels of the remaining 2758 and 3000 points
in version 1 and 2, respectively, by the label of their closest point in the distilled Delaunay graph
G = GDD(R ∪ E) using q-DCA extension.
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Figure 12: Additional examples of query images (odd columns) and their corresponding closest R
images (even columns) taken from version 1 (left) and version 2 (right).

This approach resulted in 87.6% accuracy in version 1, and 90.3% in version 2, providing interesting
insights into the nature of both human labeling and structure of the VGG16 representation space. In
Figure 12, we show examples of query images (odd columns) and the corresponding closest image in
G (even columns) having different labels corresponding to version 1 (left, blue) and version 2 (right,
green). Similarly as in Figure 8, the first row shows examples of pairs of images considered close
by VGG16 despite no clear semantic connection between them. The second row shows examples of
images that are close in the VGG16 representation space possibly due to similar pattern, background
or structure, while having meaningfully different labels. The last row shows examples where human
labeling is different despite the images having strikingly similar semantic information, which is why
they are encoded close by the VGG16 model.
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