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ABSTRACT

Online deep clustering refers to the joint use of a feature extraction network and
a clustering model to assign cluster labels to each new data point or batch as it
is processed. While faster and more versatile than offline methods, online clus-
tering can easily reach the collapsed solution where the encoder maps all inputs
to the same point and all are put into a single cluster. Successful existing models
have employed various techniques to avoid this problem, most of which require
data augmentation or which aim to make the average soft assignment across the
dataset the same for each cluster. We propose a method that does not require data
augmentation, and that, differently from existing methods, regularizes the hard
assignments. Using a Bayesian framework, we derive an intuitive optimization
objective that can be straightforwardly included in the training of the encoder net-
work. Tested on four image datasets, we show that it consistently avoids collapse
more robustly than other methods and that it leads to more accurate clustering. We
also conduct further experiments and analysis justifying our choice to regularize
the hard cluster assignments.

1 INTRODUCTION

Deep clustering refers to the combination of deep learning and clustering, where the data are first
encoded with a deep neural network to a feature space, and then clustering is performed in the feature
space. Deep clustering models (and clustering models more generally) can be classified as offline or
online. Offline models process the entire dataset, and then assign all cluster labels at once. Online
models, by contrast, assign a cluster label to each data point, or each batch, as it is processed. Offline
methods tend to produce more accurate clusterings (e.g., (Mahon & Lukasiewicz, 2021; Niu et al.,
2021)) reaching close to supervised performance, as they can leverage information from later data
points when assigning cluster labels to earlier data points. However, they are more expensive to train,
as they must alternate between encoding the entire dataset/training the encoder for some number of
epochs, and clustering the encoded data. Online models, on the other hand, can jointly encode and
cluster so are less computationally expensive. They are also more versatile, being applicable in real-
world settings where new data is constantly becoming available, as opposed to offline methods,
which are limited to having a fixed, pre-defined dataset (Silva et al., 2013).

The disadvantage of online methods is that they are more difficult to train. In particular, they run
the risk of producing a degenerate solution where the large majority of data points are concentrated
in a small number of clusters. In the extreme case, all points are placed into the same cluster. For
example, an intuitive way to formulate a training procedure for online deep clustering is to update
both the encoder network and the clustering parameters to make the encoding of each point close
to its cluster centroid and far from other cluster centroids. (The clustering parameters are, e.g.,
the centroids in K-means.) However, this training objective is trivially minimized by the encoder
network mapping all data points to the same point in feature space, where this point is equal to one
of the cluster centroids. Techniques for avoiding collapse we refer to as partition support. Several
partition support methods have been proposed, but they mostly require data augmentation (DA), and
those that do not are often ad hoc and lack a rigorous technical foundation. Additionally, they take the
soft assignments as a measure of partition collapse and propose to regularize the soft assignments to
make them more uniform. This paper focuses on deep clustering without DA, which is an advantage
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because relying on DA limits a method to domains in which have sufficient prior knowledge to
perform class-preserving augmentations. Additionally, we argue that soft assignments are not an
accurate measure of collapse, and that we should instead focus on hard assignments.

We propose a DA-free partition support by regularizing hard assignments. Specifically, we consider
the problem of how to optimally assign each data point in a batch to the most appropriate cluster.
We express this problem probabilistically in a Bayesian framework, where the regularizing element
is captured by a uniform prior across clusters. We then use this expression to derive a precise opti-
mization objective, which we also show to be equivalent, up to a small error term, to the objective
of maximizing the mutual information of the cluster assignments and the data index. This objective
itself is too slow to solve exactly, but we devise a greedy approximation algorithm that can be im-
plemented straightforwardly and results in an intuitive method for fully online clustering, which we
term combination assignment. This method outperforms existing online DA-free clustering methods
on four popular image clustering datasets. Finally, we analyze the role of hard vs. soft cluster assign-
ments in our partition support method, and in previous methods, and make the case that regularizing
hard assignments is a more effective approach. Note, although existing methods can easily convert
soft assignments to hard assignments, this is very different from regularizing the hard assignments,
as we propose. While the relation between hard and soft clustering has been studied before (Bora
et al., 2014; Kearns et al., 1998), its study in the context of regularizing online deep clustering
collapse is new.

Our contributions are briefly summarized below.

• We articulate a clear Bayesian framework of the problem of hard assignments in online
deep clustering models, which is more theoretically correct than requiring uniformity in
each batch, as done by existing methods.

• We use this framework to derive an optimization objective and prove that it is approxi-
mately equivalent to an information-theoretic framework that maximizes the mutual infor-
mation of the cluster assignments and the data index.

• We show empirically that the resulting method significantly outperforms existing partition
support methods, both in avoiding partition collapse and resulting clustering accuracy.

• We conduct further analysis of the performance of different partition support methods,
which justifies our choice to focus on hard assignments.

The rest of this paper is organized as follows. Section 2 gives an overview of related work, while
Section 3 lays the theoretical foundations of our method, describes our greedy algorithm for optimiz-
ing the resulting objective and proves the equivalence to mutual information maximization. Section
4 reports our empirical results and analysis, and finally Section 5 summarizes our findings.

2 RELATED WORK

A key component of online deep clustering methods is how they avoid the collapsed solution, where
(almost) every data point is placed in the same cluster. Methods designed for contrastive learning,
and those clustering models that employ it as a part of the training procedure, are more resistant to
collapse, because the negative pairs are encouraged to be represented differently. This can mean that
they are to be placed in different clusters (Huang & Gong, 2021), or just that the encodings should
be far apart (Zhang et al., 2021; Cai et al., 2021). Either approach helps resist all points having the
same representation. Even without negative pairs, data augmentation is essential for some methods
to avoid collapse. Grill et al. (2020) perform representation learning without negative pairs, only
positive pairs that are encouraged to be similar. Then an “online” network is trained to predict
the output of a “target” network, where the target network is a slow-moving average of the online
network. Zbontar et al. (2021) use data-augmented pairs to reduce redundancy in the representations
by minimizing off-diagonals in the cross-correlation matrix.

Among online clustering models, several partition support methods have been proposed. Kul-
shreshtha & Guha (2018) freeze the encoder during clustering, but this requires pretraining it on
a separate task. Gao et al. (2020) proposes an online autoencoder-based (AE) clustering model,
where the reconstruction loss helps to avoid partition collapse, but this limits the method to simple
datasets, because the AE’s reconstruction loss requires that different images from the same class have
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significant pixel overlap. Zhan et al. (2020) continually reweight the loss function to encourage the
assignment to smaller clusters. Additionally, when clusters decrease below a certain threshold, they
are deleted, and the largest cluster is split in two using K-means. Cai et al. (2021) treat soft cluster
assignments as representations, and use data-augmented pairs with the same method as Zbontar et al.
(2021). Zhong et al. (2020) minimize the sum of squares of the probability (i.e., soft assignment)
of each cluster, marginalized over each training batch. Decomposing the expectation of the square,
we see that this also involves minimizing the variance. However, the authors also use contrastive
learning and DA to avoid collapse, so they do not fully rely on sum-of-squares minimization.

A similar idea, employed by (Li et al., 2020; Hu et al., 2017; Niu et al., 2021; 2020; Van Gans-
beke et al., 2020), is to maximize the entropy of soft assignments, marginalized over each training
batch. For an input distribution X with corresponding soft assigned labels Y , both approximated
over a batch, an extra term −H(Y ) is added to the loss function. As the entropy of a multinomial is
maximized at the uniform distribution, this encourages more equally sized clusters. Entropy maxi-
mization has the advantage of a solid formal interpretation as part of the maximization of the mutual
information between data and cluster assignments: by maximizing H(Y ) but minimizing H(Y |X)
(the latter is minimized explicitly in (Hu et al., 2017) and implicitly via contrastive learning in (Li
et al., 2020)), we are maximizing

I(X;Y ) = H(Y )−H(Y |X) .

However, the marginal entropy term tends to only be partially successful at preventing partition
collapse, often the entire dataset is still put into only a small number of clusters. As well as being
confirmed in our experiments in Section 4, this empirical weakness of entropy maximization for
avoiding partition collapse is reported in (Hu et al., 2017), and better results are found by explicitly
constraining the soft cluster assignments using non-linear programming. Li et al. (2020) do not rely
entirely on entropy maximization, because they employ contrastive learning, which (as explained
above) also helps to avoid partition collapse. Thus, while theoretically sound, entropy maximization
is not sufficiently effective empirically.

Another approach is to directly impose a constraint on cluster assignments. Based on earlier work
by Asano et al. (2019), Caron et al. (2020); Deshmukh et al. (2021); Kumar et al. (2021) proposed to
constrain the soft cluster assignments to be marginally uniform across each training batch. Though
effective in preventing partition collapse, the constraint of uniformity across each batch is too strict,
as noted by Kumar et al. (2021). A given batch is very unlikely to be exactly uniform across classes,
so the ground-truth distribution of classes will almost certainly violate this constraint.

3 METHOD

3.1 PROBLEM FORMULATION

We want to simultaneously (a) train the encoder and (b) make hard assignments to each batch of
points at a time, based on the features extracted by that encoder. If the encoder is fθ1 : Rn → Rm,
our clustering model is gθ2 : Rm → {1, . . . ,K}, parametrized by θ2, and our batch size is N , then
we seek a function of the form Γ : RN×m → {1, . . . ,K}N . (The difference between Γ and gθ2 is
that the former is used during training to assign an entire batch, while the latter is used at inference
time and can assign each point individually.) If we have a method for batchwise assignment, then the
training objective can be formulated as minimizing the distance of points from the centroids of their
assigned clusters. This objective can be used to train both the encoder and the clustering model:

argmin
θ1,θ2

N∑
i=1

||fθ1(xi)− µki
||2 , (1)

where x is the input batch, ki = Γ(fθ1(x))i is the cluster label assigned to the encoding of xi

under f , and µk is the kth cluster centroid.

Finding a suitable assignment function Γ is non-trivial. It should be more likely to assign points to the
clusters whose centroids are closer. However, using only this rule, and assigning every vector to its
closest centroid, we allow a collapsed solution where equation 1 is minimized by fθ1 mapping every
point to a single centroid: ∀i, fθ1(xi) = ck, for some k ∈ {1, . . . ,K}. The heart of our method is the
choice of a suitable Γ, which avoids the collapsed solution. We refer to it as combination assignment,
because it uses a prior over the combination of such labels under a multinoulli distribution
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3.2 COMBINATION ASSIGNMENT

Combination assignment is based on a Bayesian formulation of the online clustering problem. Let
D be the data distribution, X ∼ D be a sampled batch of data, Z be the random variable defined by
applying the feature extraction to X (i.e., Z is the output of a deep encoder network), and let Y be the
assigned cluster labels. Here, we consider the encoder to be fixed, and we are just interested in the
best hard assignment of cluster labels, given the extracted features. That is, we want to determine the
values of Y with the maximum probability under the a posteriori distribution p(Y |Z). We assume
a uniform prior over K cluster labels, p(Y = k) = 1/K for k ∈ {1, . . . ,K}. Note how this is
a weaker and more realistic assumption than each batch containing exactly uniform numbers of
each class. Then, the prior probability of a batch containing exactly nk labels for each cluster k ∈
{1, . . . ,K} is (

1

K

)N
N !∏K

k=1 nk!
, (2)

where N =
∑K

k=1 nk is the batch size. We model each cluster as a multivariate normal distribution
in feature space, so that the likelihood is given by

p(Z = z1, . . . , zN |Y = k1, . . . , kN ) =

N∏
i=1

exp(− 1
2 (zi − µki

)Σ−1
ki

(zi − µki
))√

(2π)d|Σki |
, (3)

where d is the dimension of the feature space, and µk and Σk are the centroid and covariance matrix
of the kth cluster, respectively. If we further assume each cluster is spherical, with the same isotropic
variance across all clusters, i.e., Σk = σI, for k ∈ {1, . . . ,K}, and we maximize the posterior
corresponding to the prior in equation 2 and the likelihood in equation 3, then we get the following
optimization problem (details in appendix).

argmin
Y

N∑
i=1

||zi − µki
||2 + 2σ

K∑
k=1

log(nk!) . (4)

In matrix notation, the objective is

argmin
Q∈BN×K

⟨Q, Q̃⟩+ 2σ log(1T
NQ!)1K (5)

subject to Q1K = 1N ,

where Q̃ is the matrix of unnormalized log probabilities, i.e., Q̃i,j = ||zi − µj ||2, ⟨·, ·⟩ denotes the
Frobenius inner product, 1a is an a-dimensional vector of all ones, and log and factorial are applied
to each element in the K-dimensional vector 1T

NQ. The requirement that Q be a Boolean matrix
specifies that we seek hard assignments, and the constraint Q1K = 1N specifies that the rows of Q
are one-hot vectors, i.e., each latent vector is assigned to exactly one cluster.

3.3 SOLVING THE OPTIMIZATION PROBLEM

Unfortunately, it is too slow to solve equation 5 exactly (see appendix for details). However, to
motivate an approximation, we can consider the simpler problem of assigning the last data point
in a batch, given that the rest have already been assigned. That is, we maximize the conditional
probability of the N th assignment in a batch, conditioned on the N − 1 previous assignments. This
gives the following optimization problem (details in appendix).

argmax
kN=1,...,K

p(yN = k|y1 = k1, . . . , yN−1 = kN−1;Z) =

argmin
kN=1,...,K

||zN − µkN
||2 + 2σ log(nkN

+ 1) , (6)

where nk is the number of points assigned to cluster k before the N th assignment.

To approximately solve equation 5, we employ a greedy algorithm that iteratively solves equation 6
with respect to the most confident assignment possible. That is, at each iteration, select the pair (i, k)
(corresponding to (N, kN ) above) for which equation 6 is smallest, with i ranging over the indices
of still-unassigned points, and k ranging over all clusters, and assign the ith point to cluster k.
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To get an intuition on our method, recall that we generally want to assign points to the closest
centroid, but that we should try to resist assigning to a cluster that already has lots of points assigned
to it. Even if such a cluster has its centroid closest to N th point, it may be better to instead assign
to a smaller, further away cluster. This suggests choosing the cluster assignment so as to minimize
a combination of the distance to the centroid and some increasing function of cluster size, which is
precisely what equation 6 expresses. The first term says to pick a nearby cluster, and the second term
says to penalize clusters that already have many points assigned. It would not be obvious, a priori,
what the increasing function of cluster-size should be exactly, but the derivation of equation 6 shows
that log (n+ 1) is an appropriate choice.

3.4 INTERPRETATION

Here, we show that the greedy algorithm that iteratively solves equation 6 can be interpreted as iter-
atively making whatever assignment will maximize the mutual information between the batch index
i and the cluster labels. First, we show that our method is very closely equivalent to maximizing the
entropy of cluster labels in each batch.

Let H(k) be the marginal hard entropy of cluster labels after a new assignment to cluster k:

H(k) =
xk + 1

N + 1
log

xk + 1

N + 1
+

K∑
j=1,j ̸=k

xj

N + 1
log

xj

N + 1
,

and consider the difference H(k) −H(k′) between the entropy after making assignment k vs. after
making a different assignment k′. It can be shown (see appendix for full proof) that

H(k) −H(k′) ≈ 1

N + 1
(log(xk′ + 1)− log(xk + 1)) . (7)

Thus, if we were to make each assignment so as to maximize log(Lk(x)) + λH(k), where L(k) is
the likelihood of the new data point under cluster k and λ is some hyperparameter, then, subject to
the above approximation, for each k, k′ ∈ {1, . . . ,K}, we would prefer to assign to k iff

logL(k) + λH(k) > logL(k′) + λH(k′) ⇐⇒

logL(k)− logL(k′) > λ

N + 1
(log(xk′ + 1)− log(xk + 1)) . (8)

Modelling clusters as multivariate normal distributions with isotropic variance σ (as above), and
setting λ = N + 1, equation 8 becomes equivalent to equation 6. (See appendix for full proof.)

Thus, our method closely approximates a maximization of the entropy of cluster labels. There is
some similarity to those methods, discussed in Section 2, that use an additional loss term to encour-
age greater entropy of soft assignments in each batch, but an important difference here is that we
are maximizing the entropy of hard assignments. This means that the entropy of cluster labels given
batch index is automatically zero. Therefore, using the decomposition I(X;Y ) = H(X)−H(X|Y ),
the mutual information of the batch index i and the cluster labels equals the entropy of cluster labels,
and so our method is a close approximation to maximizing this mutual information.

3.5 TRAINING PROCEDURE

Our model comprises an encoder network fθ1 and a set of cluster centroids θ2 = {µ1, . . . , µK}.
To train on an input batch, we first encode the raw data using fθ1 , then we employ the combination
assignment method of Section 3.3, and use these assignments to minimize equation 4 with respect
to both θ1 and θ2. As the second term in equation 4 has no gradient, the updates are made only with
respect to the first term, so equivalently to equation 1. At inference time, we do not perform com-
bination assignment. Instead, we simply assign each point to the cluster with the nearest centroid,
so the resulting clustering model can assign points individually, and is not restricted to assigning
cluster labels batchwise. The full methods for training and inference are described by the functions
TrainOnBatch and PredictBatch, respectively, in Algorithm 1.
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Algorithm 1: (combination assignment): During training, cluster labels are assigned batchwise,
with partition support provided by a uniform prior across clusters. During inference, cluster labels
are assigned pointwise, without any explicit partition support.

fθ1 ← encoder network;
θ2 = µ1, . . . , µK ← centroids for each of the K clusters;
σ ← isotropic variance of all clusters;
function ASSIGNBATCH(Z)

counts←K-dimensional array, initially all 0s;
isAssigned← N -dimensional Boolean array, initially all False;
D ← N ×K matrix, where Dij = ||Zi − µj ||2;
for r=1,. . . ,N do

D̃ ← N ×K matrix, where D̃ij = Dij + 2σ log(counts[i] + 1);
(a, k)← argmin {D̃ij : ¬isAssigned[i]};
counts[k]← counts[k] + 1;
isAssigned[a]← True;
loss← loss+Da,k

return loss
function TRAINONBATCH(X)

Z ← fθ1(X), encodings for a batch of N data points;
loss← AssignBatch(Z);
take a gradient descent step on loss with respect to θ1, θ2

function PREDICTDATAPOINT(x)
z ← fθ(x) encodings for a batch of N data points;
assignment = argminj=1,...,K ||z − µj ||2;
return assignment

4 EXPERIMENTAL EVALUATION

4.1 DATASETS AND METRICS

We report results on four popular image clustering datasets: CIFAR 10, CIFAR 100, FashionMNIST
and STL, with image sizes 32,28 and 96 respectively. We use the standard clustering metrics of
accuracy (ACC), normalized mutual information (NMI), and adjusted Rand index (ARI), defined as,
e.g., in (Sheng & Huber, 2020). We also report variance of cluster sizes. All datasets have uniform
numbers of ground-truth classes, so ideally, this variance should be close to zero.

4.2 CLUSTER SIZES AND CLUSTERING ACCURACY

Table 1 compares our method with three existing methods: sum of squares minimization, denoted
“SS” (Zhong et al., 2020), the Sinkhorn-Knopp algorithm for optimal transport, denoted “SK”
(Caron et al., 2020; Kumar et al., 2021), and marginal entropy maximization (Li et al., 2020), de-
noted “Ent”. Each is described in Section 2. To make further explicit the phenomenon of partition
collapse, we also include a model without any partition support. Our method significantly outper-
forms others across all datasets and metrics.

Observe that the unregularized model exhibits total collapse in all experiments, placing all points in
the same cluster and consequently achieving a cluster performance no better than random guessing.
In many of our experiments, the performance of SS is not much better. By making a slight change
to the author’s original method, we could actually significantly improve its results (see appendix),
but it was still unreliable and less accurate than our method. The other two existing partition support
methods do a reasonable job of avoiding partition collapse. However, entropy maximization occa-
sionally also reaches the state with all points in the same cluster (this is consistent with previous
literature, e.g., (Hu et al., 2017)). The Sinkhorn-Knopp method is more reliable, but by far the most
uniform cluster sizes are produced by our method. Note that we do not employ our assignment al-
gorithm at inference time, instead we just assign each point to the cluster with the nearest centroid.
This shows that our cluster centroids are well-distributed around the data manifold, each capturing a
sizeable subset of the data even when the explicit support is removed. Together, these figures show
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Table 1: Effect, on cluster size and clustering performance, of our method compared to two existing
methods of preventing partition collapse. “CA” refers to our method of combination assignment,
“SK” refers to Sinkhorn-Knopp regularization, as proposed by Caron et al. (2020) and Chen & He
(2021), “Ent” refers to entropy maximization, as used by Hu et al. (2017), “SS” is the sum of squares
minimization proposed in (Zhong et al., 2020) and others, and “No-Reg” is the model without any
partition support component. Along with standard cluster metrics, we report the variance in cluster
size (denoted “CVar”) to indicate the extent of partition collapse. All figures are the mean of 5 runs,
with std dev in parentheses. Best results are in bold.

CA SK Ent SS No Reg

Cifar10

Acc 22.7 (2.07) 16.7 (0.36) 18.6 (1.36) 11.8 (1.72) 10.0 (0.00)
NMI 10.1 (1.68) 3.8 (0.68) 8.7 (2.63) 1.1 (1.15) 0.0 (0.00)
ARI 5.8 (0.93) 2.7 (0.60) 5.7 (1.76) 0.3 (0.38) 0.0 (0.00)
CVar 425 (136) 8931 (3634) 16240 (2243) 43542 (11424) 54000 (0)

Cifar100

Acc 6.4 (0.22) 2.6 (0.21) 2.4 (0.17) 1.2 (0.22) 1.0 (0.00)
NMI 13.2 (0.37) 5.3 (0.41) 6.3 (0.73) 0.6 (1.05) 0.0 (0.00)
ARI 1.7 (0.14) 0.3 (0.04) 0.5 (0.10) 0.0 (0.04) 0.0 (0.00)
CVar 1280 (156) 13451 (4430) 25156 (3283) 55405 (3743) 59400 (0)

FashionMNIST

Acc 54.5 (6.96) 25.1 (2.80) 25.5 (5.51) 10.0 (0.04) 10.0 (0.00)
NMI 53.2 (4.23) 17.7 (2.08) 20.9 (10.12) 0.0 (0.04) 0.0 (0.00)
ARI 39.1 (6.29) 9.2 (1.27) 10.6 (5.37) 0.0 (0.00) 0.0 (0.00)
CVar 386 (51) 7087 (3530) 14559 (3203) 53950 (98) 54000 (0)

STL

Acc 23.5 (1.42) 15.2 (1.03) 10.9 (1.76) 10.1 (0.20) 10.0 (0.00)
NMI 13.7 (1.33) 2.8 (0.53) 1.3 (2.56) 0.0 (0.08) 0.0 (0.00)
ARI 7.1 (0.70) 1.1 (0.37) 0.2 (0.32) 0.0 (0.00) 0.0 (0.00)
CVar 217 (21) 2319 (466) 11320 (751) 11317 (765) 11700 (0)

that (a) some form of partition support is necessary to learn anything meaningful, (b) our method of
combination assignment is better at avoiding partition collapse than previous methods, and (c) this
leads to our model producing a better clustering performance.

To better isolate the effect of our proposed partition support method, we do not perform hyperparam-
eter tuning, and use a relatively simple architecture for all datasets. This is the same for all methods
being compared. The network consists of two convolutional layers with filter sizes 6 and 16, and
ReLU activations, followed by a fully connected layer to a latent space of dimension 128. Training
uses Adam, with learning rate 1e-3, β1 = 0.9, β2 = 0.99, and batch size 256. We follow previous
works in setting K, the number of clusters, to the number of ground truth classes.

4.3 HARD VS. SOFT ASSIGNMENT REGULARIZATION

A key element of our method is the regularization of hard assignments, whereas previous methods
regularize soft cluster assignments. This is a fundamentally different form of regularization, and one
which we argue is better able to prevent collapse. For example, assume there are only three clusters
and a batch size of four, and consider the following two matrices of assignment probabilities

D1 =

.98 .01 .01
.98 .01 .01
.49 .50 .01
.49 .01 .50

D2 =

.34 .33 .33
.34 .33 .33
.34 .33 .33
.34 .33 .33

 .

The hard and soft entropy (i.e. the entropy of marginal hard and soft assignments respectively) for
D1 are 1.5 and 1.1 respectively, and for D2 they are 0 and 1.58 respectively. That means D2 has
higher soft entropy than D1 but a much lower hard entropy. Indeed, despite having nearly maximum
soft entropy, D2 is collapsed with zero hard entropy. A similar scenario is shown for an idealized
batch in Figure 1, again revealing that near-uniform soft assignments does not guarantee avoiding
collapse, and is in fact quite a different objective.

To investigate whether such differences between hard vs. soft regularization manifest in practice, we
empirically measure the variance and entropy of hard and soft assignment probabilities, marginalized
across the entire dataset, for each method tested. The results are shown in Table 2.

The most striking difference between hard and soft entropy is in SS. There, the soft entropy is often
close to the maximum value (equal to the logarithm of the number of clusters), but the hard entropy
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Figure 1: Types of assignments encouraged by different types of regularization, for an idealized
batch of size 4, with 5 clusters. Top: with no regularization the model collapses, it places most of
the probability mass on the same cluster for each data point, and the argmax is the same for each
data point. Middle: soft regularization forces the soft marginal assignments to be close to uniform,
but still the argmax is the same for every data point, so all points are assigned to the same cluster
and the model is also collapsed. Bottom: regularizing the hard assignments causes the argmax to
change. It allows the marginal soft assignment probabilities to deviate from uniform, and instead
encourages uniformity in the number assigned to each cluster. This model avoids collapse. In order
to make the figure more readable, we cut off the top and middle graphs at 80% and 40% respectively.
On full graphs, the hard marginal for cluster 0 would extend up to 100%.
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Table 2: Comparison of the hard variance (HV) and entropy (HE), and soft variance (S) and soft entropy (SE).
Previous methods regularize the soft assignments, but this does not transfer well to the hard assignments. Ours
(CA) is the only method that produces low variance and high entropy for both hard and soft assignments. Best
results in bold.

CA (ours) SK Ent SS

Cifar10

hard variance 424 8931 16240 43542
soft variance 407 0 13141 338
hard entropy 3.27 2.51 1.81 0.93
soft entropy 3.27 3.32 2.10 2.58

Cifar100

hard variance 1280 13450 25155 55405
soft variance 190 0 4117 120
hard entropy 5.44 3.52 1.63 0.19
soft entropy 6.47 6.63 4.60 6.51

FashionMNIST

hard variance 386 7087 14559 53950
soft variance 368 0 10051 376
hard entropy 3.27 2.65 1.89 0.01
soft entropy 3.27 3.32 2.32 3.07

STL

hard variance 217 2319 11320 11316
soft variance 194 0 3380 524
hard entropy 3.19 2.31 0.08 0.08
soft entropy 3.21 3.32 1.99 3.06

is consistently close to zero. This shows that this form of regularization produces batch assignment
probabilities similar to matrix D2 above, where the probabilities for each data point are squeezed
close to one another, without much change in the order of highest to lowest, in particular the argmax.

A similar discrepancy is found in SK, which produces near-perfect uniformity in the soft assign-
ments, with a variance of zero and the maximum possible entropy (up to rounding) on each dataset.
This is because it is a (close approximation to a) hard constraint problem. However, SK’s hard as-
signments still show significant variability, and markedly lower entropy than the soft assignments.
This suggests that applying the SK algorithm also produces batch assignment probabilities some-
what similar to D2 above. Our method, on the other hand, explicitly forces the argmax to be more
evenly distributed during training and, as Table 2 shows, this transfers to the testing setting as well.
(Recall that, during testing, we simply assign each point to the cluster with the nearest centroid.)
Our hard entropy is only slightly lower than our soft entropy, and is consistently higher than that of
the other three methods. This supports our argument that the mean soft assignments do not contain
sufficient information to determine if the clustering model is learning a meaningful partition, and
regularizing this quantity is not an optimal way to prevent collapse. The pattern in the argmax is also
important and is lost if we look only at the mean soft assignment across a batch.

Our analysis here of hard vs soft cluster assignments does not contradict (Caron et al., 2020). They
report better results using soft assignments as training labels, while we show the superiority of
regularizing, i.e., encouraging equal numbers of, hard assignments. The two are different contexts
of hard and soft labels. We also explored training SK (the method used by Caron et al. (2020)) using
soft assignments as targets, but the results were slightly worse than using hard targets.

5 CONCLUSION

This paper proposed a data-augmentation-free method to prevent collapse in online deep clustering.
We frame probabilistically the problem of deciding which clusters to assign a batch of data points
to, given the cluster centroids and features of the data points, and we use this framing to derive a
concise optimization objective for making hard cluster assignments. We then describe an algorithm
to approximately solve this optimization problem and demonstrate empirically on four datasets that
this method outperforms existing methods, both in better preventing collapse and in leading to better
clustering performance. Finally, we analyze how the cluster assignment distribution is affected by
our partition support method and previous comparable methods. The analysis suggests that regular-
izing the soft assignments, as is done by existing works, is not sufficient to prevent collapse, and that
a better approach is to regularize the hard assignments, as is done by our method.
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