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Abstract

Noise Contrastive Estimation (NCE) is a widely
used method for training generative models, typ-
ically used as an alternative to Maximum Like-
lihood Estimation (MLE) when exact computa-
tions of probability are hard. NCE trains gen-
erative models by discriminating between data
and appropriately chosen noise distributions. Al-
though NCE is statistically consistent, it suffers
from slow convergence and high variance when
there is small overlap between the noise and data
distributions. Both these problems are related to
the flatness of the NCE loss landscape. We pro-
pose an innovative approach to circumvent slow
convergence rates by quick inference of the opti-
mal normalizing constant at every gradient step.
This allows the rest of the parameters to have
more freedom during NCE optimization. We ana-
lyze the use of both binary search and the Bennett
Acceptance Ratio (BAR) for quick computation
of the normalizing constant and show improved
performance for both methods on convex and non-
convex settings.

1. Introduction
Noise Contrastive Estimation (NCE) is a statistical method
used to learn parameterized probability distributions that
are specified up to a constant of proportionality. It was
first proposed by Gutmann & Hyvärinen (2010; 2012)
and has seen some recent attention for training Energy
Based Models (EBMs), where probabilities are modelled as
pθ̃(x) ∝ exp(Eθ̃(x)) for some parametric family Eθ̃. The
main idea behind NCE loss is to train a classifier to discrim-
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inate between samples from a desired distribution P∗ and
an appropriately chosen noise distribution Q (Dyer, 2014;
Gutmann & Hyvärinen, 2010; 2012; Rhodes et al., 2020).
If the model is considered expressive enough, the optimal
discriminator will learn an estimate of the ratios of densities
p∗(x)/q(x) from which the densities p∗(x) can be success-
fully extracted (Sugiyama et al., 2012; Menon & Ong, 2016).
The NCE training regime is especially advantageous as it
avoids the computation of a partition function (as opposed
to the Maximum Likelihood Estimation (MLE) framework)
that is quite often intractable (Gutmann & Hirayama, 2012).

Although NCE provides computational advantages over
MLE, it suffers from low rate of convergence and asymp-
totically high variance. One of the primary reasons behind
both problems is the phenomenon known as density chasm
(Rhodes et al., 2020). The NCE loss optimization landscape
is flat near the optimum distribution and poses problems
for first order (eg. gradient descent) and second order (eg.
Newton’s method) optimization methods, as observed in Liu
et al. (2021). The flat region is especially prevalent when
the data and noise distributions are well separated, that is,
the KL-divergence between the two distributions is large.

In this work, we propose a method that improves the rate
of convergence of NCE loss by enhancing the ability of
NCE to self-normalize. Specifically, we change the update
to the log of the partition function so that it yields better
estimates of an appropriate constant value at each gradient
descent step. We show that the correct constant value can
be easily calculated using binary search or approximated
through a method developed in statistical physics known as
the Bennett Acceptance Ratio (BAR) (Bennett, 1976).

Particularly, our contributions are the following:

• We show that the NCE objective function is always con-
vex along the log partition function coordinate (keeping
the other parameters θ̃ constant) and the optimal value
of this coordinate can be calculated up to machine pre-
cision using binary search at every gradient descent
step.

• We show that we get improvements in NCE optimiza-
tion if we increase the learning rate of the log partition
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function parameter.

• We get further improvements if we use the BAR for-
mulation to update the log partition function parameter
rather than the NCE gradient. We also show that binary
search of the log partition function provides the best
improvement in NCE optimization, albeit, at a slightly
higher cost than applying just the BAR update.

• We validate our methods on both convex and non-
convex settings, seeing consistent improvements over
vanilla NCE optimization.

2. Related works
NCE has become a predominant area of research in both
NLP (Mnih & Teh, 2012; Mnih & Kavukcuoglu, 2013;
Dyer, 2014; Kong et al., 2020; Jozefowicz et al., 2016;
Oord et al., 2018) and computer vision (Hjelm et al., 2018;
Henaff, 2020; Tian et al., 2020; Feeney & Hughes, 2023).
A major empirically observed issue with NCE is that a
fixed noise distribution Q is not sufficient to learn good
generative models. The two predominant approaches to
solve this issue have been to either anneal between the noise
and data distributions (Rhodes et al., 2020; Chehab et al.,
2024; Gelman & Meng, 1998), or iteratively updating the
noise distribution Q to yield a more informative loss (Xu,
2022; Gao et al., 2020; Goodfellow et al., 2014).

For a fixed Q, a recent work provided certain solutions to
overcome the density chasm problem by using normalized
gradient descent and an exponential loss function that is
better behaved (Liu et al., 2021). It’s important to note that
while these improvements are substantial, the approach is
orthogonal to our proposed method and theoretically, both
the methods may be combined.

3. NCE objective function and optimization
strategy

3.1. Vanilla Noise Contrastive Estimation

The NCE objective function is designed to learn parameter-
ized energy based models of the form pθ̃(x) ∝ exp(Eθ̃(x)).
The NCE method defines an additional parameter F that rep-
resent the log of the partition function so that the learnt den-
sity then becomes pθ = exp(Eθ̃(x)− F ) where θ = [θ̃, F ].
It is used when we have access to samples from a desired
distribution P∗ that we would like to learn.

From here on we use a short hand notation to represent
densities, for eg. pθ(x) = pθ The NCE objective for θ is
then defined as the following:

Definition 3.1. The NCE loss of θ such that θ = [θ̃, F ] w.r.t
to data distribution P∗ and noise distribution Q is:

LNCE(θ) = −
1

2
Ep∗

[
log

pθ
pθ + q

]
− 1

2
Eq

[
log

q

pθ + q

]
(1)

Note that LNCE(θ) can be computed without the condition
that pθ is normalized. The crucial property of NCE loss
is that it is consistent and has a unique global minima
at θ = θ∗, with the corresponding constant F satisfy-
ing F ∗ = log

∫
x
exp(Eθ̃(x))dx (Gutmann & Hyvärinen,

2012)1, provided that support of Q contains that of P∗.

3.2. Exponential families

For some of our experiments, we work with parameter es-
timation setting for distributions in the exponential family,
where the density of distributions Pθ is given by

pθ(x) = exp(⟨T̃ (x), θ̃⟩ − F ). (2)

where T̃ (x) is sufficient statistics of x. Since we want to
pay special attention to the normalizing constant, we will
assume that the last coordinate of θ and T (x) correspond
to the normalizing constant, that is, T (x) = [T̃ (x),−1] and
θ = [θ̃, F ]. We will further assume that the data distribution
corresponds to some distribution P∗ = Pθ∗ in the family,
with a normalizing constant given by exp(F∗) for some F∗.

Further, in case of exponential families, the NCE loss func-
tion is well known to be convex (Uehara et al. (2020), Liu
et al. (2021)) allowing for a nice analysis of convergence
rates to the right parameter values. The proof for convexity
is provided in Appendix A.1 for completeness.

3.3. Optimization of the Normalizing Constant

The NCE loss has two very distinct facets, one correspond-
ing to finding a function proportional to the density of p∗
and the other corresponding to finding the correct partition
function. Since NCE is self-normalizing, it optimizes for
both the parameters and the normalizing constant. The opti-
mization dynamics are very different in both of these direc-
tions, suggesting that separating these two directions might
be beneficial for improving optimization. In particular, we
would like to take the advantage of following observation:

Lemma 3.2. For any energy based parameterized family of
distributions where pθ(x) is given by

pθ(x) = exp(Eθ̃(x)− F ),

the function LNCE(θ) is convex as a function of F , for any
fixed θ̃.

1The result holds even in an non-parametric setting.
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The partial derivative of LNCE with respect to F is given by

∂

∂F
LNCE(θ) =

1

2
Ep∗

[
q

pθ + q

]
− 1

2
Eq

[
pθ

pθ + q

]
=

1

2

∫
x

q(p∗ − pθ)

pθ + q
dx (3)

Similarly, the second derivative is given by

∂2

∂F 2
LNCE(θ) =

1

2

∫
x

q(pθ)(p∗ + q)

(pθ + q)2
dx ≥ 0, (4)

which shows convexity. If we look more closely at Equa-
tion 3 we see that it has limits of − 1

2 when F → −∞
(pθ → ∞) and 1

2 when F → ∞ (pθ → 0). In particular,
the NCE gradient is a monotonically increasing function
which takes values from

[
− 1

2 ,
1
2

]
. Therefore, for fixed value

of θ, there is a unique value of F where the loss LNCE is
minimized, and it can be computed to machine precision
by using binary search or approximated using the Bennett
Acceptance Ratio (introduced in Section 3.4). Furthermore,
the optimization surface for exponential families remains
convex when we get this optimal value of F (proof Ap-
pendix A.2). This raises the following question - does con-
vergence performance of NCE increase when we treat the
constant separately and optimize it using one of the afore-
mentioned methods?

3.4. Bennett Acceptance Ratio

The Bennett Acceptance Ratio is a method developed in
statistical physics for the estimation of the ratio of parti-
tion functions between two energy distributions. The BAR
method has been mainly used on Boltzmann distributions
with densities of the form p(x) ∝ exp(−βE(x)), where
β is a constant dependant on temperature of the physical
system being modelled. This method, however, is easily
adaptable to EBMs by substituting E(x) = −βE(x).

Now, we provide the application of this method on EBMs.
Consider two densities p(x) and q(x) modelled as EBMs
p(x) ∝ exp(Ep(x)) and q(x) ∝ exp(Eq(x)), where the
partition functions are given by:

Zp\q =

∫
x

exp(Ep\q(x))dx (5)

There exists appropriate weighting functions W such that:

W (∆E) exp(Ep(x)) = W (−∆E) exp(Eq(x)) (6)

where: ∆E = Ep(x)− Eq(x)

An example of such a weighting function can be the canon-
ical Metropolis function used in Monte Carlo sampling,
given by W (∆E) = min{1, exp(∆E)}.

Taking Equation 6, integrating over all configurations and
multiplying and dividing by partition functions we get:

Zp

Zq
=

Eq[W (−∆E)]

Ep[W (∆E)]
(7)

Bennett (1976) found an optimal weight function that would
minimize the variance of the estimate and showed that it is
of the form

Zp

Zq
=

Eq[σ(∆E − c)]

Ep[σ(−∆E + c)]
(8)

where σ is the sigmoid function and c = log[Zp/Zq] =
logZp − logZq. Since c also contains the log of the ratio
of the partition functions, the equation can be solved itera-
tively through fixed point iteration to make it self consistent.
Representing our estimate of logZp as F̂p, the update to the
estimate would be:

F̂p = F̂p−(logEp[σ(−∆E+ĉ)]−logEq[σ(∆E−ĉ)]) (9)

with ĉ = F̂p − logZq or equivalently:

∆F̂p = − logEp

[
q

p̂+ q

]
+ logEq

[
p̂

q + p̂

]
(10)

Equation 10 could also be viewed as the update applied to
the log partition function coordinate when optimizing it with
gradient descent optimizers. We show in Section 4.1 that an
update of this form can be applied to the constant to yield
better convergence rates than the vanilla NCE objective
function.

3.5. Training Noise Contrastive Estimation with the
BAR and binary search

We provide here an easy way to apply the BAR update to
the log partition function of our parameterized probability
density function. We take the terms in Equation 3, and scale
the magnitude of those terms with log to yield a BAR-like
update that is of the form:

∇F = log
1

2
Ep∗

[
q

pθ + q

]
− log

1

2
Eq

[
pθ

pθ + q

]
(11)

Notice, this is not exactly a BAR update as the data samples
are not from the density specified by pθ but from the density
we want to learn p∗. To apply such an update, we just need
to take the log of the gradients provided by each summand
of the NCE objective function. The gradients of the rest
of the parameters θ̃ are kept the same. In practice, we see
best performance when we update the log of the partition
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function using a naive Stochastic Gradient Descent (SGD)
optimizer as it does not modify the magnitude of the up-
date. The other parameters θ̃ are optimized using the same
optimizer as the vanilla NCE baselines in our experiments.
The training method with a BAR update is provided in Al-
gorithm 1. Note that, in practice, we apply the BAR update
only once as we have noticed that to be enough to provide a
performance boost over vanilla NCE.

Algorithm 1 Training NCE with BAR update

Input: Model parameters θ = [θ̃, F ], noise distribution Q,
data samples D

Initialize θ̃ optimizer
Initialize F optimizer as SGD
for epoch← 1 to epochmax do

xp∗ ← D.sample()
xq ← Q.sample()

LData(xp∗)← − 1
2

∑
xp∗

log pθ(x)
pθ(x)+q(x)

LNoise(xq)← − 1
2

∑
xq

log q(x)
pθ(x)+q(x)

LNCE(xq, xp∗)← LNoise(xq) + LData(xp∗)

∇F ← log|∇FLData(xp∗)| − log|∇FLNoise(xq)|
∇θ̃ ← ∇θ̃LNCE(xq, xp∗)
F ← Update(F,∇F )
θ̃ ← Update(θ̃,∇θ̃)

Output: Updated model parameters θ = [θ̃, F ]

A binary search update for the log of the partition function
(at a constant value of θ̃) requires only one forward pass
through the model as we only need to keep track of chang-
ing loss values with the change of the log of the partition
function parameter. This results in very rapid computation
of the ideal F with binary search.

4. Experimental results
We experimentally verify our method in both non-convex
and convex settings. For all our experiments, we compare
the performance of the BAR and binary search update of
the log partition function coordinate to base NCE and NCE
with increased learning rate on the log partition function
coordinate. To implement binary search, we keep updat-
ing the log partition function parameter until the binary
search loop returns the same value of the parameter (within
a threshold) consecutively. Note that, while we compare our
methods to vanilla NCE, our approach is orthogonal to other
improvements to the NCE objective (Liu et al., 2021) and
therefore could, in principle, be used in conjunction with
these improvements.

4.1. BAR leads to quicker convergence on logZ values
than NCE

First, we establish that BAR and binary search converge
faster than NCE in a one dimensional setting, where the only
parameter is F , the log of the partition function. Figure 1
show the trajectories of F while estimating the log partition
function using BAR, binary search, and NCE respectively.
The figure represent a total of 100 runs with a batch of 512
samples for each run. The data distribution is a mixture of 10
standard Gaussians in R20, where the means are randomly
sampled and evenly distributed on a circle of radius 4 in
the (x1, x2)-plane. The noise distribution is a standard
Gaussian.

Figure 1. Trajectories of 100 runs for BAR, NCE and Binary
Search. The y axis denotes predicted values of logZ and x axis
denotes iterations.

Here, we can observe that for almost all runs BAR converges
to a precision of 10−6 in less than 6 updates - a lot faster
than NCE. In fact, in this case it is even quicker than binary
search which takes around 20 steps to achieve same level
of accuracy! Note that in the population limit with infinite
precision, BAR will always converge in just one update.
In fact, it has been theoretically proven that the iterative
BAR procedure should converge with a finite number of
samples (Meng & Wong, 1996). We provide a proof in
Appendix B for completeness. Note that the convergence
proof is also applicable to situations when data samples do
not correspond to the density function used to compute the
log of the partition function parameter.

In certain cases, we empirically observe that BAR is prone
to oscillations around the true value. This is in the setting
where the data and noise distributions have low overlap
and their ratios are not well defined due to the constraints
of numerical precision. In such cases, we show that the
provided value is no further from the optimal value than the
previous one during the iterative procedure.
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4.2. Binary search and BAR updates perform better
than NCE in convex settings

Following Liu et al. (2021), we run experiments in two
convex settings. In first setting, we look at the exponential
family given by T (x) = [x,−1] and q(x) = e−

x2

2 , repre-
senting normal distributions with unit variance. The data
and noise distributions are Gaussian with means separated
by a distance of 16. In the second setting, the data and
noise distributions are 16 dimensional Gaussians that share
the same mean, but the noise is chosen to have an identity
covariance matrix, while the data has a diagonal covari-
ance matrix, with entries in [6, 12]. The exponential family
corresponds to T (x) = [x2

1, . . . , x
2
d, x1, . . . xd, 1]. The ad-

vantage of working in this setting is that we know what the
best parameters θ∗ are and we can evaluate performance of
different methods through a comparison of distance of the
learnt parameters θ from θ∗.

In both settings, we find that performing a BAR update or
binary searching for optimal value of F (log of the partition
function parameter) performs better than doing a joint gra-
dient descent on the NCE loss. Although the results shown
are obtained using SGD for optimization, we found that
using other optimizers leads to similar trends, as long as the
F parameter is handled separately. While using BAR, the
log partition function coordinate F is updated using Equa-
tion (11), and the optimization algorithm is only used for θ̃
coordinates. We keep a learning rate of 1 for all parameters
of the model in this setting.

Figure 2. Results for estimating 1d Gaussian distribution at a dis-
tance of 16 from the noise Gaussian. Parameter distance ∥θ−θ∗∥2
is plotted along y axis and training steps along x. Mean results
over 5 runs are shown with standard deviation being the shaded
region

First, we consider the 1d case with low overlap: Gaussians
with unit variance and a mean distance of 16. We expect
NCE to perform poorly in this setting and so the gains
made by our methods should become more visible. We also
provide results for 1d cases with better overlap along with
optimization trajectories in Appendix C.

Figure 2 shows the distance of learnt parameters from the

Figure 3. Results for estimating 16d Gaussian distribution. Param-
eter distance ∥θ − θ∗∥2 is plotted along y axis and training steps
along x. Mean results over 5 runs are shown with standard devia-
tion being the shaded region

true parameters. BAR and binary search do much better than
vanilla NCE in this setting, indicated by the much lower
parameter distance values with binary search showing the
best performance. Of note, is the high variance in the perfor-
mance of binary search along multiple runs. We conjecture
that the main cause of these fluctuations is the low overlap
between the two distributions. Due to the low overlap, the
optimal value of the log partition function constant at each
step is highly dependant on the points sampled and hence
can vary largely from batch to batch. In contrast, for settings
of good overlap, the value of the ideal log partition function
constant would not vary as much and be less dependant on
the batch of samples. We observe much lower variance in
settings of good overlap for binary search. The results from
the BAR update to the log partition function coordinate, on
the other hand, has low variance in both settings. This could
possibly be attributed to BAR being explicitly formulated
to minimize variance of its estimates (Bennett, 1976).

The 16d case demonstrates better overlap, but with higher
dimensions. Here, we can observe the benefit of using these
methods over vanilla NCE scaling with dimensions. In this
experiment we train the model parameters with a learning
rate of 0.1, but also include an additional case where the
learning rate of the log of the partition function parameter
for base NCE is higher than the rest of the parameters.

Figure 3 shows results for this setting. BAR and binary
search show much quicker convergence over vanilla NCE
justifying the use of these methods even in settings with
good overlap.

4.3. Binary Search and BAR show greater performance
with neural networks

For non convex settings, we train neural networks on the
NCE objective function. We train models on toy 2D systems
where the optimization surface is relatively simple and also
show performance trends on higher dimension datasets such
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Figure 4. Log of the NCE loss while training the Neural Network on the 8-Gaussians toy system with the different methods mentioned in
the legend. The other parameters of the neural network are trained with a learning rate of 10−3

Figure 5. Energy density function on the 8-Gaussian 2D toy system learnt by the neural network through NCE (left), BAR (center), and
Binary search (right). Ground truth energy has the same intensity for all 8 Gaussians.

as MNIST. For all of our experiments we also compare
to using NCE with a higher learning rate on the log of
the partition function coordinate (F ) as we observe that
even making just that minor adjustment leads to improved
performance with NCE.

For 2D toy systems, we train a neural network to learn
density functions on the 8-gaussians and pinwheel toy 2D
system using an isotropic Gaussian with diagonal covari-
ance values of 2 as the base noise distribution. The neural
network is a very basic 2 layer MLP with 128 and 64 hidden
dimensions and leaky relu as activation function. The loss
curves and learnt energy functions on the 8-Gaussians toy
system are shown in Figure 11 and Figure 12. The marginal
gains in the loss for binary search and BAR is not entirely
surprising as this is a relatively easy task with low dimen-
sions and good overlap. However, on visualization of the
learnt energy function we can qualitatively say that BAR
and binary search have made more progress than NCE with
the same number of steps. We provide additional results on

the pinwheel toy system in Appendix D.1 that indicate the
same trend.

Figure 6. NCE loss of all the methods while training on the MNIST
dataset

Finally, we compare our methods to vanilla NCE on the
MNIST dataset to check performance in high dimensions
and low overlap setting. Following Rhodes et al. (2020)
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we use a resnet-18 neural network and quadratic heads.
Thus, we represent the log density ratio log(pθ) − log(q)
as f⊤Wf + b⊤f + c, where f denotes the resnet feature
map. As is done in Rhodes et al. (2020) we restrict the
matrix to W ≻ 0. Finally, the distribution q is chosen
to be a Gaussian with matching mean and covariance to a
dequantized version of the MNIST dataset.

Figure 6 shows the loss curves of training the neural net-
works with the various methods discussed above. We ob-
serve that both BAR and binary search make significant
progress over the usual NCE. They optimize the neural
network to a loss that is 2-3 orders of magnitude better
than that obtained with base NCE. To ensure that this phe-
nomenon does not happen due to learning rate differences,
we also compare to NCE trained with a higher learning rate
for the log partition function coordinate parameter. Note
that this is the same learning rate we use for the BAR up-
date. This curve follows previously observed trends where
it does better than base NCE but is still outperformed by the
BAR/binary search update.

5. Conclusion
In this work, we aim to improve NCE training dynamics
through explicit treatment of the log partition function coor-
dinate. We notice that the NCE objective function is always
convex along that coordinate when the rest of the parame-
ters are kept fixed. We observe a measurable improvement
in training dynamics when we solve for that optimal value
of the log partition function parameter explicitly using bi-
nary search or approximate it using the Bennett Acceptance
Ratio. Empirical results across various settings, both with
low and high overlap and in both convex and non-convex
scenarios, consistently demonstrate superior performance
compared to the NCE baseline.

While we have strong empirical evidence that such updates
work over the NCE baseline, we do not currently have a
working theory on why it shows this behaviour and so we
will be exploring that further to get a more principled un-
derstanding of the optimization dynamics. We are also
interested in seeing what the effects of these updates would
be when used along with other recent improvements in the
NCE objective function such as those suggested by Liu et al.
(2021). Finally, we would like to explore applying these
developments to calculating partition functions of physical
systems so that we can obtain important thermodynamic
quantites such as the free energy.
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A. Convexity proofs
A.1. NCE objective is convex for exponential families

Proof of NCE loss being convex on the exponential family:

The NCE loss is given by:

LNCE(pθ) = −
1

2
Ep∗

[
log

pθ
pθ + q

]
− 1

2
Eq

[
log

q

pθ + q

]
(12)

pθ = exp(T (x)⊺θ) where T (x) = [T̃ (x),−1] and θ = [θ̃, F ]. The gradient of the objective function is:

∇θpθ(x) =pθ(x).T (x)

∇θL(θ) =−
1

2
∇θ

[
Ep∗ log

pθ
pθ + q

+ Eq log
q

pθ + q

]
=
1

2
∇θ

[
Ep∗ log

pθ + q

pθ
+ Eq log

pθ + q

q

]
=
1

2

[
Ep∗

pθ
(pθ + q)

−pθ − q + pθ
p2

∇θpθ + Eq
q

pθ + q

1

q
∇θpθ

]
=

1

2

∫
x

q

pθ + q
(pθ − p∗)T (x)dx

(13)

The corresponding Hessian for the objective is:

∇2
θL(θ) =

1

2

∫
x

(
−q(pθ − p∗)

(pθ + q)2
∇θpθ +

q

pθ + q
∇θpθ

)
T (x)dx

=
1

2

∫
x

q

pθ + q
· p∗ + q

pθ + q
· pθ · T (x)T (x)⊤dx =

1

2

∫
x

(p∗ + q)pθq

(pθ + q)2
T (x)T (x)⊤dx

(14)

Since the Hessian is Positive Semi-Definite, the objective function is convex for exponential family of distributions.

A.2. Binary search update of logZ is convex for exponential families

We work with pθ = exp(T (x)⊺θ − Fθ). Note that here Fθ is a function of θ and samples in our batch. We know that we
can find a value of Fθ upto machine precision that makes the NCE derivative (Equation 3) go to zero. Here, we show this
update still maintains a convex surface for exponential families.

The gradient of the objective function in this representation is

∇θpθ(x) =pθ(x).(T (x)−∇θFθ)

∇θL(θ) =−
1

2
∇θ

[
Ep∗ log

pθ
pθ + q

+ Eq log
q

pθ + q

]
=
1

2
∇θ

[
Ep∗ log

pθ + q

pθ
+ Eq log

pθ + q

q

]
=
1

2

[
Ep∗

pθ
(pθ + q)

−pθ − q + pθ
p2

∇θpθ + Eq
q

pθ + q

1

q
∇θpθ

]
=

1

2

∫
x

q(pθ − p∗)

pθ + q
(T (x)−∇θFθ)dx

(15)

The Hessian then is:

∇2
θL(θ) =

1

2

∫
x

(
−q(pθ − p∗)

(pθ + q)2
∇θpθ +

q

pθ + q
∇θpθ

)
(T (x)−∇θFθ)dx−

1

2

∫
x

q(pθ − p∗)

pθ + q
∇2

θFθdx

=
1

2

∫
x

q

pθ + q
· p∗ + q

pθ + q
· pθ · (T (x)−∇θFθ)(T (x)−∇θFθ)

⊤dx− 1

2

∫
x

q(pθ − p∗)

pθ + q
∇2

θFθdx

=
1

2

∫
x

(p∗ + q)pθq

(pθ + q)2
(T (x)−∇θFθ)(T (x)−∇θFθ)

⊤dx− 1

2

∫
x

q(pθ − p∗)

pθ + q
∇2

θFθdx

(16)
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The right integral becomes zero on the binary search update to Fθ and the left integral is positive semi definite, therefore the
optimization surface remains convex after the binary search update.

B. Comments on convergence of BAR
Lemma B.1. Let xi, yi ∈ R for i = 1, . . . , n. Let f, q be any functions that are positive on the set {x1, . . . , xn, y1, . . . , yn},
satisfying Bennette’s ratio condition, that is

1
n

∑
i

q(xi)
f(xi)+q(xi)

1
n

∑
i

f(yi)
f(yi)+q(yi)

= 1. (17)

Then for any function g such that g(x) = Z · f(x), the value Z̄ obtained by using the bar update rule

log Z̄ = logZ + log

(
1

n

∑
i

q(xi)

g(xi) + q(xi)

)
− log

(
1

n

∑
i

g(yi)

g(yi) + q(xi)

)

satisfies
∣∣log Z̄∣∣ ≤ |logZ|.

Proof. Let F = logZ. Then g(x) = eF f(x). Since f(x) and q(x) are positive, it follows that

min(1, eF )(f(x) + q(x)) ≤ eF f(x) + q(x) ≤ max(1, eF )(f(x) + q(x)).

Therefore,

1

max(1, eF )

(
1

n

∑
i

q(xi)

f(xi) + q(xi)

)
≤

(
1

n

∑
i

q(xi)

g(xi) + q(xi)

)
≤ 1

min(1, eF )

(
1

n

∑
i

q(xi)

f(xi) + q(xi)

)
,

and similarly,

eF

max(1, eF )

(
1

n

∑
i

f(xi)

f(xi) + q(xi)

)
≤

(
1

n

∑
i

g(xi)

g(xi) + q(xi)

)
≤ eF

min(1, eF )

(
1

n

∑
i

f(xi)

f(xi) + q(xi)

)
.

Combining both the inequalities,

1

eF
min(1, eF )

max(1, eF )

 1
n

∑
i

q(xi)
f(xi)+q(xi)

1
n

∑
i

f(xi)
f(xi)+q(xi)

 ≤ 1
n

∑
i

q(xi)
g(xi)+q(xi)

1
n

∑
i

g(xi)
g(xi)+q(xi)

≤ 1

eF
max(1, eF )

min(1, eF )

 1
n

∑
i

q(xi)
f(xi)+q(xi)

1
n

∑
i

f(xi)
f(xi)+q(xi)


Note that max(1, eF ) = e|F | min(1, eF ). Further, since f satisfies Equation (17), we get

−F − |F | ≤ log

(
1

n

∑
i

q(xi)

g(xi) + q(xi)

)
− log

(
1

n

∑
i

g(yi)

g(yi) + q(xi)

)
≤ −F + |F |.

Adding F = logZ to the expression, we get

−|F | ≤ logZ + log

(
1

n

∑
i

q(xi)

g(xi) + q(xi)

)
− log

(
1

n

∑
i

g(yi)

g(yi) + q(xi)

)
− logZ∗ ≤ |F |.

Note that the middle term is precisely log Z̄, giving us∣∣log Z̄∣∣ ≤ |F |,
which completes the proof since F = logZ.
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Figure 7. BAR shows oscillating behavior in case of low overlap between data and noise distributions.

Specifically, when xi are samples from some distribution P∗ and yi are samples from some distribution Q, and if pθ where
θ = [θ̃, F∗] satisfies the Bennette’s ratio condition, then for any other F , the BAR update specified in Equation (10), given
by

F̄ = F + logEp∗

[
q

pθ̃,F + q

]
− logEq

[
pθ̃,F

pθ̃,F + q

]
satisfies

∣∣F̄ − F∗
∣∣ ≤ |F − F∗|, in population as well as when the expectations are estimated using a finite number of

samples.

This proof shows that the BAR update is almost a contraction mapping, and the statement of lemma is tight unless further
assumptions are made on xi and yi. Experimentally, in low overlap cases, we encounter situations where BAR update is not
a contraction mapping as shown in the Figure 7.
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C. Supplementary Results on Exponential Family

Figure 8. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two
distributions are at a distance of 1 from each other. The orange dot in the trajectory figures represents the optimal value of the parameters
in that setting.

Figure 9. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two
distributions are at a distance of 4 from each other. The orange dot in the trajectory figures represents the optimal value of the parameters
in that setting.

Figure 10. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two
distributions are at a distance of 16 from each other. The orange dot in the figure on the right represents the optimal value of the learn
parameters.

Results for NCE, BAR and binary search on varying levels of overlap in 1d exponential family settings. All experiments
show a consistent improvement of BAR and binary search over base NCE. While, there isnt much to take from the trajectory
plots, its worthwhile to note that both BAR and binary search make a big jump towards the right value of Z in the initial
steps itself for a high overlap problem (Figure 8). We also notice in Figure 9, the parameter distance of BAR is lower than
that of binary search. This is an indication that there is still some task specific variance between the performance of BAR
and binary search that needs to be explored more.
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D. Supplementary Results on Neural Networks
D.1. Neural Network training on toy 2D pinwheel system

Figure 11. Log of the NCE loss while training the Neural Network on the 8-Gaussians toy system with the different methods mentioned in
the legend. The other parameters of the neural network are trained with a learning rate of 1e− 3

Figure 12. Energy density function on the Pinwheel 2D toy system learnt by the neural network through NCE (left), BAR (center), and
Binary search (right). Ground truth energy has the same intensity for all 5 pinwheel petals.
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D.2. Example of generated samples after training on MNIST

Figure 13. MNIST images sampled from a learnt energy function

We show in Figure 13 some generated samples via running MCMC chains on the energy function learnt by the neural
network that used the BAR update for its log partition function parameter while training.
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