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Abstract: There exist several datasets for developing self-driving car methodolo-
gies. Manually collected datasets impose inherent limitations on the variability
of test cases and it is particularly difficult to acquire challenging scenarios, e.g.
ones involving collisions with pedestrians. A way to alleviate this is to consider
automatic generation of safety-critical scenarios for autonomous vehicle (AV) test-
ing. Existing approaches for scenario generation use heuristic pedestrian behavior
models. We instead propose a framework that can use state-of-the-art pedestrian
motion models, which is achieved by reformulating the problem as learning where
to place pedestrians such that the induced scenarios are collision prone for a given
AV. Our pedestrian initial location model can be used in conjunction with any goal
driven pedestrian model which makes it possible to challenge an AV with a wide
range of pedestrian behaviors – this ensures that the AV can avoid collisions with
any pedestrian it encounters. We show that it is possible to learn a collision seeking
scenario generation model when both the pedestrian and AV are collision avoiding.
The initial location model is conditioned on scene semantics and occlusions to
ensure semantic and visual plausibility, which increases the realism of generated
scenarios. Our model can be used to test any AV model given sufficient constraints.
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1 Introduction

Research on autonomous vehicle (AV) models has gained momentum in recent years [1]. There exist
both end-to-end AV models which make decisions directly based on visual sensor outputs [1–6], and
hierarchical models which require intermediate processing (such as pedestrian detection) of sensor
outputs for decision making [7, 8]. To ensure traffic safety, e.g to avoid fatal collisions [9], there is a
need to evaluate the various AV models in safety-critical situations. In this paper we consider safety
testing of the full pipeline of perceptive AV models – from sensor inputs (e.g. images) to steering.
There exist several datasets [10–17] for developing and evaluating AV models, but manually collected
data is typically gathered from traffic scenarios that seldom exhibit collision and near-collision
scenarios. This shortcoming has lead to recent developments of safety-critical test case generation
methods [18–32] for AV models. These existing approaches resort to simulated pedestrians which
are not representative of the rich and varied behavior of real pedestrians [33] – either the pedestrian
trajectories are handcrafted, or the pedestrian models are trained to behave in unnatural ways (e.g.
pedestrian agents which are adversarially trained to collide with vehicles). Thus these methods may
provide insufficient insights on how the AV would act in scenarios involving real pedestrians. At the
same time, there exist a large number of state-of-the-art pedestrian behavior models [34–49] which
learn, from real traffic scenarios, how pedestrians interact with the world.

Different from [18–32], we reformulate the problem of generating challenging scenarios as one of
learning the distribution µ of pedestrian initial locations x0 which are likely to induce collisions
between the pedestrian and the AV, for a given pedestrian behavior model π. This reformulation
allows the use of state-of-the-art goal driven pedestrian behavior models π in AV test case generation,
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Figure 1: Overview of the proposed safety-critical test case generation model for AVs. The Adver-
sarial Test Synthesizer (ATS) is trained to position a pedestrian with behavior model π such that the
induced scenario is likely to yield a collision with the AV ρ (car to the right). Four example scenarios
are shown. Scenarios #3 and #4 are visually implausible, as a pedestrian cannot simply appear from
nowhere into the line of sight of an AV. Scenarios #1 and #2 are both plausible and challenging, as
the pedestrian is close to the AV and not in the line of sight of the AV due to the occlusions.

which means that the AV can be stress tested in more realistic scenarios compared to prior works.
There exist three types of pedestrian behavior models – collision seeking, collision ignorant, and
collision avoiding – each of which gives rise to a distinct optimization problem in our framework.
We are the first to show empirically that a non-trivial solution exists when the pedestrian model is
collision avoiding. Different from previous work [18–32], we explicitly model scene semantics to
learn to generate semantically and visually plausible traffic scenarios. Our model can be used to
augment existing data by adding simulated safety critical pedestrians to real traffic scenarios.

In real traffic an AV can be expected to encounter pedestrians with a range of different behaviors.
Some individuals follow traffic rules and plan their movements based on the surroundings; others are
inattentive and take risks. Independently of the pedestrian’s overall behavior, an AV should be able to
avoid collisions with the pedestrian when it appears from an occluded space. To ensure this, AV test
scenarios should cover the true variation of different pedestrian behaviors. Previous works [18–32]
either assume that the pedestrian motion can be modelled by a simple constant velocity model, or
that the pedestrian motion is adversarial to the AV. In reality however, collisions do not occur only
when a pedestrian has a perfectly predictable path (e.g. constant velocity), or when the pedestrian
is actively seeking to get hit by the AV (e.g. adversarial pedestrian model). Quite the contrary –
most collisions occur because pedestrians are distracted, due to occlusions or noise. To alleviate
the previous unrealistic assumptions on pedestrian motion in generative AV testing, we separate
the problem of finding the pedestrian location distribution µ from the modelling of the pedestrian
behavior. The main problem is then to find a location distribution µ such that the number of collisions
between a black-box AV and a black-box pedestrian is maximal in expectation. In AV testing the
proposed approach should be used with as many different pedestrian behavior models as possible, as
an AV should be seeking to avoid collisions with all (even collision seeking) pedestrians.

The pedestrian location distribution µ, shown in Fig. 1, is conditioned on scene semantics, distance to
the AV, as well as a dynamic occupancy and occlusion map. Occlusions can cause an AV to miss
a pedestrian (or vise versa) [50] and can thus cause collisions, therefore affecting the shape of µ.
Furthermore, µ is likely to be shaped by the scene semantics (e.g., pedestrians are more likely to
reside on sidewalks than on grass) [33, 51, 52]. In previous works, test case generation for AVs
has been treated as a reinforcement learning problem [20–24, 32] or as a black-box optimization
problem solved by bayesian optimization (BO) [18, 21]. BO [53] cannot be used to learn µ as µ is
inherently discontinuous – in realistic scenarios pedestrians can only appear from occluded spaces
[51] (cf. Fig. 2). Reinforcement learning (RL) on the other hand does not assume that the policy µ
is continuous, and avoids the curse of dimensionality (that occurs in classical control and planning
methods) in problems, like ours, with large state spaces with unknown world dynamics [54]. We
thus propose the Adversarial Test Synthesizer (ATS), an RL agent which positions pedestrians in a
given scene (see Fig. 1). It selects initial locations for the pedestrian according to its policy µ, which
is optimized to increase the number of collisions. For the ATS agent, the uncontrollable external
dynamics include the scene, the AV, and all other pedestrians and cars. We model µ as a heatmap
over the scene, parametrized by a deep convolutional neural network. Our pedestrian initial location
model µ allows collision seeking scenario generation with any goal driven pedestrian behavior model
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and any AV model. This allows for more varied and more realistic testing of the AV. We show that
near-collision scenario generation with a collision avoiding pedestrian gives rise to a previously
unstudied optimization problem in AV testing. We show that this problem has a solution.

1.1 Related Work

Previous works [21, 23, 24] have studied the generation of full pedestrian trajectories (x0, . . . , xT )
for AV testing, such that the trajectory is adversarial to the AV ρ. This leads to the pedestrian only
behaving in a suicidal manner. This is unnecessarily limiting as typically it is not only the AV which
aims to avoid collisions. Ultimately in testing we wish to ensure that the AV can avoid collisions with
adversarial as well as collision avoiding pedestrians. In [18] pedestrians are modelled with constant
velocity and are initialized from a set of predefined positions. The AV is retrained in a loop with the
test case generator. In [21] existing trajectories are adapted to become adversarial. The suggested
method requires a varied ground truth dataset and the generated data is dependent on the variability
of the existing dataset. Similarly, [25, 26, 28–31] augment existing datasets in a latent or trajectory
space, which again requires a large and varied ground truth dataset.

When only testing the vehicle control of a hierarchical AV system, the set of initial locations that
cause collisions can be found by the Hamiltonian-Jacobi reachability set [55]. This is not possible in
our setup since we consider the full stack of the AV, not only the control problem. Moreover, in our
framework the pedestrian is not necessarily adversarial to the AV, and the scene dynamics cannot
be described by a differential game. Our proposed approach allows the testing of AV models with
pedestrian models that are semantically aware, collision avoiding, goal reaching and articulated. We
do not use robust control methods because we utilize explicit pedestrian behavior models.

There are a number of recent studies which explore visual relations in data from the AV’s perspec-
tive [51, 52, 56]. Makansi et al. [51] learn a visual prior for where pedestrians and other objects can
appear from the perspective of a camera mounted on an AV. A similar problem of realistic object
placement in LiDAR scenes is studied in [56]. Finally, [52] show that visual cues from an on-board
camera can be used to learn walkable areas in a scene. The results of [51, 52, 56] indicate that
realistic data contains strong correlations between the scene’s semantic structure as well as the the
presence and behavior of pedestrians and stationary obstacles. We thus include such semantic cues
and occlusions in our proposed pedestrian location distribution model µ, as described in §2.

2 Methodology

In our framework, the ATS µ and the AV model ρ play an indirect constrained minimax game, and
no assumptions are made about the pedestrian behavior model π. Thus π can be cooperative with
either the AV ρ or ATS µ, or be ignorant with respect to both of these. The problem then becomes
a constrained indirect three-agent minimax game with up to two agents per team. The study of the
equilibrium [57, 58] is beyond the scope of this paper. However, it is clear that if the AV ρ, pedestrian
behavior π and pedestrian location distribution µ are unconstrained, then the minimax problem has a
trivial solution. If the pedestrian is always initialized arbitrarily close to the front of the AV (when
the AV’s initial velocity is forward), then this will always lead to a collision. If the pedestrian and the
AV always stand still or always move in opposite directions, then there are never any collisions. To
avoid trivial solutions, sufficient constraints are needed.

To illustrate the minimax problem, assume that the loss functions for the AV ρ, the pedestrian π, and
the ATS µ are respectively given by a sum of the expectation of the number of collisions and other
loss components. Let the number of collisions between a given AV and pedestrian be measured by an
indicator function I that is 1 if a collision occurs and 0 otherwise. The AV model ρ and the pedestrian
location distribution model µ are learnt by minimizing the loss functions Jρ and Jµ respectively,

min
ρ
Jρ = min

ρ

(
Eµ,ρ,π[I] + fρ(ρ)

)
s.t. ρ ∈ Bρ (1)

min
µ
Jµ = max

µ

(
Eµ,ρ,π[I]− fµ(µ)

)
s.t. µ ∈ Bµ, (2)

where fρ and fµ are loss components of Jρ and Jµ, respectively. And Bρ and Bµ describe the model
constraints of ρ, and µ respectively. Equations (1) - (2) express the general optimization problem
when the pedestrian behavior π is independent of E[I] (for example constant velocity π). If π is
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collision avoiding then (1) - (2) together with the following equation describe the general problem
min
π
Jπ = min

π

(
Eµ,ρ,π[I] + fπ(µ)

)
s.t. π ∈ Bπ, (3)

where fπ is the loss component of Jπ, and Bπ describes the constraints on the model π. If the
pedestrian behavior model π is adversarial then (3) will be replaced by maxπ

(
Eµ,ρ,π[I] + fπ(µ)

)
s.t. π ∈ Bπ . It is clear that the choice of the behavior policy π changes the optimization problem and
affects the solutions of µ and ρ. Depending on the choice of π, the set of applied constraints Bρ and
Bµ may need to be adjusted to ensure that none of the models converge to a trivial solution. Previous
works [18–32] have considered the cases where π is adversarial or a constant velocity model. In our
experiments we illustrate that with sufficient constraints on µ, π and ρ, a non-trivial solution exists for
(2) when π is collision avoiding. The classical existence conditions of a solution of zero-sum game
cannot be applied [57, 59] because the problem at hand is not a zero-sum game, as the pedestrian has
loss terms fπ that are not present in the AV’s loss function Jρ.

2.1 Special Case: Three Reinforcement Learning Agents

We view the problem of learning the pedestrian initial location distribution as a reinforcement learning
(RL) problem with three agents: the pedestrian, the AV and the ATS. At timestep t ∈ {0, T − 1}
the pedestrian and the AV move in the scene by taking actions aπt and aρt , respectively; we gather
these in a joint vector at = (aπt , a

ρ
t ). The pedestrian’s action is sampled from the pedestrian policy

aπt ∼ π(.|sπt ) conditioned on its observation sπt of the scene which includes the AV. Similarly, the
AV chooses actions as aρt ∼ ρ(.|sρt ) where sρt is the AV’s observation of the scene which includes the
pedestrian. The states sπt and sρt respectively contain the pedestrian’s and the AV’s final goal location.
We join sπt and sρt as a vector st = (sπt , s

ρ
t ). The unknown world model p(st+1|st, at) provides the

transition probabilities from state st to state st+1 when the pedestrian and the AV take the joint action
at. The pedestrian’s and the AV’s actions are evaluated by the reward functions rπ(st, at, st+1) and
rρ(st, at, st+1), respectively. The policies π and ρ are trained to maximize the respective expected
discounted cumulative future rewards (i.e. the utility) at each state st.

We assume that the AV’s initial location y0, initial velocity vρ0 and final goal location are given. Before
the 0th timestep the ATS observes sµ = (S,D,OP ), where S is the top view RGB and semantic
images of the scene, with constant velocity predicted dynamic occupancy D of the AV(calculated
from y0 and vρ0 ), external cars and external pedestrians in the scene, and OP is the elementwise
product between the occlusion map from the AV’s perspective O and µ’s prior distribution P . The
prior P is a heuristic of µ which assigns high probability to pedestrian initial locations that are close
to the AV and that can lead to a collision assuming constant motion vρ0 of the AV. The ATS agent
samples an initial pedestrian location x0 from the policyOPµ(sµ), which is the product betweenOP
and the learnable policy µ. To reduce notational clutter we will in §2.1 omit the notation OP from
OPµ and let µ denote the policy of ATS. The pedestrian with an initial location x0 is given a goal
location gπ and velocity vπ0 such that the pedestrian’s path to gπ coincides with the AV’s assuming
both move with constant velocity. After sampling the pedestrian’s initial location x0 we simulate the
pedestrian at the location x0 with velocity vπ0 . Next we can simulate the pedestrian’s and the AV’s
observation of the world sπ0 , s

ρ
0 at t = 0. Our aim is to find the the initial distribution µ – i.e. the

policy of the ATS agent – which leads to the highest utility for the reward function rµ(st, at, st+1),
where rµ attains its highest value when the AV and pedestrian collide.

In our experiments the learnable ρ, π, µ are modelled by policy gradient models and share the loss

J = Ex0∼µΘ(.|sµ),sµ∼q,aπt ∼π,a
ρ
t∼ρ,st∼p(.|st,at)

[
T−1∑
t=0

γtr(st, a
π
t , a

ρ
t , st+1)

]
, (4)

where r = (rµ, rπ, rρ). The loss functions’ dependence on I is expressed in the different re-
ward functions. To simplify notations let the state-action history τ = (a0, s1, ..., aT−1, sT ),
and the discounted cumulative reward R =

∑T−1
t=0 γtr(st, at, st+1). We can express (4) as

E[R] =
∫
sµ

∫
x0

∫
τ
R(x0, τ)q(sµ)µ(x0|sµ)pτ (τ |x0)dτdx0ds

µ, where pτ is the probability density
function of τ given x0, and q is the probability density function of sµ. Let Ω be the set of allowed
values for (τ, x0, s

µ) then for finite T (4) can be rewritten to reveal the relationship between µ and r,

J =

∫
Ω

q(sµ)µ(x0|sµ)

T−1∑
t=0

γtr(st, at, st+1)

t∏
k=0

π(aπk |sπk )ρ(aρk|s
ρ
k)p(sk+1|sk, ak)dτdx0dsµ. (5)
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Figure 2: Left: A top view image of a sample prior P of µ. In red are other pedestrians, and in blue
are cars. The prior implies a higher likelihood of pedestrian initial placement which are close to the
AV. Right: The same prior after a multiplication with the occlusion map O.

Figure 3: Top-view of two different scenarios. The AV is green, external cars and pedestrians are blue
and dark red, respectively. In each of the two examples, the left image shows the prior distribution
and the right image shows the final initial distribution. Left example: The prior P induces a high
likelihood for initializing a pedestrian close to the AV, but the probability map is very smeared out.
The final distribution Pµ is much less scattered than P and more peaked close to the AV (indicated
also with an external orange ellipsoid, to more clearly show where the probability mass is). Right
example: We see a similar phenomenon as in the left example, in the dense dataset (see supplement).

From the above it is clear that µ’s one step reward is Rµ =
∑T−1
t=0 γtrµ(st, at, st+1). We use

REINFORCE [60] to find µ. The models ρ and µ can be learnt simultaneously as shown in the
supplement. If the environment model p is known, we can try to find the closed form solution of (5).
Using Bellman equations would then allow for a white-box treatment of the AV and the pedestrian.

2.2 Adversarial Test Synthesizer

The ATS is a policy gradient agent, with policy µ. Its objective is to provide an initial position x0 to
the pedestrian agent such that the pedestrian collides with the AV. To do so the ATS needs to find
locations near the AV where pedestrians and their motion are difficult to detect for the AV. To this
end the ATS gets an input consisting of a top view image of the scene, the prior P of µ that depends
on the distance to the AV, and the temporal mapping of dynamic objects D. The initial distribution µ
depends also on the scene semantics S, as ATS should learn that pedestrians are more likely to reside
near certain semantic classes such as pavement. The policy µ is conditioned on the state sµ of size
(128×256×C), where C = 17 is the number of channels. Due to the success of neural networks in
vision tasks and the visual nature of the input µ is modelled by a two layered convolutional neural
network with bi-linear interpolations and a softmax output layer (see Fig.1 in supplement). The output
of the network µ(sµ) is a heatmap of size (128×256). The heatmap is multiplied by the prior P (see
Fig. 2) to avoid sampling x0 that cannot possibly lead to a collision. To enforce visual feasibility the
ATS can be required to sample x0 only from locations that are occluded for the AV. This can be done
by sampling x0 ∼ OPµ(sµ), i.e.the product of the occlusion map O, the prior P and µ(sµ).

The ATS’s reward rµ evaluates at timestep t the pedestrian’s behavior at position xt. Collisions with
all external objects, cars and pedestrians are penalized but collisions with the AV are given a positive
reward. Steps xt taken in areas often visited by pedestrians are rewarded. Steps at towards the goal
gπ are rewarded. The reward rµ is adapted from rπ §2.3.

2.3 Pedestrian Model

The collision avoiding pedestrian behavior policy π is the goal driven Semantic Pedestrian Locomotion
model (CARLA SPL) [46]. The π is a policy gradient agent that is trained by alternatively optimizing
π for the maximum likelihood objective of pedestrian trajectory forecasting and for the policy gradient
objective of collision avoidance. The reward function rπ (see supplement) of π encourages motion
in pedestrian dense areas with the reward term Rped and penalizes collisions with cars (including
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the AV), other pedestrians and static objects in the reward term Rcoll. The reward component Rg
encourages movement towards the goal location gπ , and Rφ penalizes unnaturally large motions.

The model observes a local crop St(xt) of size 5m × 5m of the semantic labels and RGB top
view image of scene S and a local crop Dt(xt) of the dynamic occupancy map Dt. Further the
state sπ contains a history of past actions and poses taken by the pedestrian in the past N = 12
timesteps, the displacement to the closest car dxt and the displacement to the goal gπ. In summary
sπt = (St(xt), Dt(xt), a

π
t−1 . . . a

π
t−N , d

x
t , ‖xt − gπ‖). The policy gradient model takes a step aπt

consisting of a direction and a speed. The step aπt is articulated by the Human Locomotion Network.

Unless otherwise stated the pedestrian models weights are kept constant to not deviate from the learnt
pedestrian motion. The CARLA SPL model is trained to avoid collisions with the external cars. The
external cars have a lower average speed than the highest possible speed for ρ. This implies that π
expects ρ to always have the same dynamics as its surrounding cars.

2.4 Autonomous Vehicle Model

The AV model ρ is intentionally simple to illustrate the framework empirically and to avoid making
constraining assumptions about the AV. The focus of this work is to show that collision avoiding
pedestrian behavior models can be successfully used in autonomous AV test case generation given
enough constraints on the problem. The AV is a policy gradient model with the state sρt = (‖xt −
yt‖, dt, δt) at timestep t; where ‖xt − yt‖ is the AV’s distance to the pedestrian agent, dt is the AV’s
distance to the closest car, and δt is the AV’s intersection with the sidewalk. The AV’s speed ct is
sampled fromN (sigmoid(wT sρt +b), σρ), where w, b are learnt weights, and σρ = 0.1. The sampled
speed ct is then scaled by the maximal speed of 70km/h. The AV’s initial position y0 and direction
are chosen randomly among the external cars’ constant velocity future trajectories.

The AV ρ is assumed to have a constant direction and the policy gradient model controls the speed of
the AV. Speed control can be enough to avoid collisions, as the AV can stop or accelerate to avoid a
collision. Extending the AV’s model to allow directional changes complicates the learning as the AV
receives two conflicting objectives: to move to a goal location further ahead and to avoid collisions.
The research on AVs deals with balancing such conflicting objectives, and in the future we aim to
replace the minimal AV model with a state-of-the-art AV model. Replacing the current AV model
with a state-of-the-art AV model requires additional constraints to avoid 0 gradients in early training
(as the trained AV model may outperform the untrained ATS).

The reward function rρ penalizes the AV for collisions with cars, people and static objects. The AV
is penalized for driving on the sidewalk proportionally to the AV’s overlap with the sidewalk. To
motivate the AV to move, a positive reward is given at the end of the episode for the distance travelled
‖y0 − yT ‖. The full reward function rρ is given in the supplementary.

3 Experiments

We experiment on a dataset gathered from CARLA[61]. Training data is collected from Town 1 and
consists of 100 training and 50 validation scenes. The test set consists of 37 scenes from Town 2. For
each scene a 3d reconstruction of RGB and semantic segmentation is created from a AV’s perspective.
In all experiments the scenes 51m× 25.6m are voxelized into 20cm cube voxels. All of the tested
ATS models are evaluated and trained with the base AV model. During initial experimentation it was
noted that the AV model ρ had trouble learning collision avoidance without an initializer µ. The base
AV model is trained on two scenes for 200 epochs with a µ that is trained on the training dataset for 10
epochs. A trajectory length of T = 30 is used to train the AV model, and T = 100 is used to train the
pedestrian initial distribution models. Each scene is evaluated for 10 episodes with T = 100. During
testing the pedestrian and AV models perform the mode and mean actions respectively. The action
of the ATS model is sampled. The models are evaluated with three different random seeds and the
average and the standard deviation (stdev) of the three runs are reported. The reported metrics are

– #. collisions - number of collisions the AV model ρ has with pedestrians on average.
– π-entropy - entropy of the pedestrian policy during the length of an episode.

In Table 1 left the proposed pedestrian initial distribution models OPµ and Pµ from §2.2 generate
more than twice as many collisions (std=0.01) as sampling x0 from the priors P and the occlusion-
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Table 1: Left: The proposed OPµ and Pµ generate more than twice the collisions compared to the
baselines; the heuristics the priors P and OP and the random initialization from occluded spaces
Random O. Right: An ablation studying the effect of the prior during the training of µ shows that the
µ is robust to changes in the prior during training as OPµ and Pµ trained with the priors OP and P
respectively, and tested with the prior OP , have indistinguishable collision rates (stdev 0.01).

Random O Prior P Prior OP OPµ Pµ

#. collisions 0.06 0.10 0.09 0.22 0.24
π-entropy 0.85 0.60 0.65 0.25 0.24

Testing prior OP Pµ OPµ

#. collisions 0.21 0.22
π-entropy 0.29 0.25

Table 2: Collision rates of the Pµ model trained with collision avoiding, distracted, collision seeking
and constant velocity pedestrians. The pedestrian model does not affect the collision rate of the
proposed µ, as long as the pedestrian model is not the constant velocity model.

Collision
avoiding SPL

Distracted
SPL+ε

Adversarial
SPL A.

Adversarial
STPN

Constant
velocity HLN

#. collisions 0.21(+−0.02) 0.22(+−0.03) 0.22(+−0.01) 0.19(+−0.01) 0.11(+−0.02)
π-entropy 0.29(+−0.01) 0.25(+−0.02) 0.029(+−0.001) 0.53(+−0.03) 0

masked prior OP . This confirms that µ learns and improves beyond the initial prior distribution,
and that OPµ produces more collisions than the hand-designed heuristics P and OP . The baseline
Random O the random initialization of pedestrians from occluded spaces with 360◦field of view
has the lowest collision frequency. This is likely because occluded spaces may be far from the AV.
The proposed OPµ has a lower π-entropy than the prior OP suggesting that OPµ has learnt to
initialize the pedestrian such that the pedestrian’s direction of movement is as predictable as possible.
With low π-entropy µ has more control over π’s trajectory. To the left in Fig. 3 the prior P and
the corresponding scene’s Pµ distribution are visually compared. The Pµ has learnt decisively to
initialize the pedestrian near the AV, and with a higher probability towards the sidewalk than the road.

In Table 1 left the models OPµ ( i.e. µ trained and tested with the prior OP ) and Pµ ( i.e. µ trained
and tested with prior P ) showed no significant difference. Showing that a 90◦view occlusion map
does not significantly affect µ. Further applying the occlusion mask O only in testing does not affect
the number of collisions, as seen when comparing Pµ to OPµ in Table 1 right. This suggests that
curriculum learning may be used to enforce larger changes to the prior P to facilitate 360◦field of
view occlusion masks (for LiDAR data). A visual comparison of P and OP can be seen in Fig. 2.

In Table 2 the following pedestrian behavior policies are used to train µ,
– Collision avoiding SPL - the goal reaching collision avoiding pedestrian model described in §2.3
– Distracted SPL+ε - a distracted SPL pedestrian. With a 0.3 probability at each timestep the

pedestrian will not notice the AV for m ∼ Poisson(2) timesteps.
– Adversarial SPL A. - an adversarial SPL agent. The SPL model that is finetuned with the Rµ

reward. SPL A. is trained simultaneously with µ (see supplementary Algorithm 1 with αρ = 0).
– Adversarial STPN A. - an adversarial agent that has the Semantic Trajectory Policy Network

architecture [46] i.e. the SPL architecture without the Human Locomotion Network (HLN). The
STPN A. is trained from random weights simultaneously with µ to maximize the the number or
collisions (RSTPN = I from §2). STPN A. is not trained to maximize the negative log-likelihood
of pedestrian trajectories like the SPL models, and it is the only model without locomotion.

– Constant velocity CV - constant velocity motion articulated by [62]. The agent moves towards the
goal with a speed drawn from a Gaussian with µ = 1.23ms−1 and σ = 0.3 [63].

The models Pµ trained with the collision avoiding SPL, the distracted SPL+ε, the adversarial
finetuned pedestrian policy SPL A. and the adversarial STPN A. (most similar to previous work)
are on-par, showing that µ can learn to control the collision avoiding SPL as well as an adversarial
pedestrian model. The collision seeking STPN A. does not outperform the collision avoiding SPL
likely due to STPN A.’s high entropy that makes STPN A. hard to control for µ. STPN A. has no
motion priors and can get hit by the AV with motions that have a low likelihood in real pedestrian
trajectories, such as zigzagging in the middle of the road. Even though the CV model is the most
controllable, the initializer trained to control CV results in the lowest collision rate because the AV
has an easy time avoiding collisions with the CV. The µ trained on SPL+ε distracted pedestrian could
be expected to have a higher collision rate than SPL, as π has a noisier estimate of the AV’s position.
Unfortunately µ does not learn to utilize this unnaturally unstructured (and thus unpredictable) noise.
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Figure 4: Sample trajectories of the Simultaneous-µ, ρ model, sub-sampled at 5 frames from frame 0.
First row: The AV changes speed thus causing the pedestrian to incorrectly estimate the AV’s motion
and walk into the AV. Second row: The pedestrian waits for the AV to pass before crossing the road.

This illustrates the need for a realistic noise model. Natural noise in the pedestrian’s observation
of the AV could be expected to be more structured, for example high noise levels are expected near
occluded spaces. Some sample trajectories of the simultaneously trained µ and ρ (see supplement) are
shown in Fig. 4 - a collision prone initialization, and an initialization that does not lead to a collision
because the AV speeds away.

4 Conclusions and Future Work

We are the first to utilize state-of-the-art pedestrian forecasting models in generative AV testing. We
have proposed a general framework that is capable of stress testing the collision avoidance of AVs
with a wide range of pedestrian behavior models. In practice we wish to ensure that an AV can avoid
collisions with all pedestrians (intoxicated, law-obedient, children etc.), and thus should test the
AV with as many different pedestrian behaviors as possible. Our empirical evaluations show that a
goal driven pedestrian model with any behavior can be used in this framework. This is a significant
result, as no prior work has shown that a collision avoiding pedestrian model can be used to generate
collisions with a collision avoiding AV. To achieve this, we have proposed the Adversarial Test
Synthesizer (ATS) which, given any goal driven pedestrian model, learns the pedestrian initial location
distribution µ that maximizes the expected number of collisions with a given AV. The ATS is modelled
by a neural network which receives as input the top view image of the scene, the scene semantics, the
occupancy of dynamic objects, and outputs a distribution µ over pedestrian initial locations. We have
shown that µ can learn to adversarially position a collision avoiding pedestrian model that has been
trained on ground truth pedestrian data and obeys human locomotive dynamics. Our work, for the first
time, shows that generative models of AV test scenarios can utilize state-of-the-art pedestrian motion
models instead of the typically used models which do not resemble real pedestrian motion. Stress
testing AVs with state-of-the-art pedestrian forecasting models decreases the statistical difference
between tested and real pedestrian behaviors, which could reduce the likelihood of real life AV
crashes.

We have shown that a learnable pedestrian initial location distribution µ exists for stress testing a basic
AV model. Ultimately we wish to extend the result to state-of-the-art AV models. Since the model
µ treats the AV and the pedestrian agent as black-boxes, µ can be trained to adjust to the dynamics
of a more sophisticated AV as is. However, finding a non-trivial solution will require a careful
readjustment of the choice of sufficient but realistic constraints. The problem can be constrained
spatially by tight streets, occlusion dense scenes, lack of space due to traffic density, or by setting
a limit on the pedestrian’s maximal distance to the AV. Alternatively, the pedestrian model can be
constrained by adjusting the noise level of the pedestrian’s internal prediction of the AV’s future
motion, the noise level of the pedestrian’s observation of the AV, or the pedestrian’s goal, dynamics or
personality. Similarly, the noise in the AV’s observation of pedestrians and other traffic participants
and their motion should be high enough to lead to collisions. As seen in the experiments, unstructured
noise cannot be utilized by µ, thus careful modelling of the noise of the chosen AV’s observations is
required. In future work the pedestrian’s internal prediction of the AV’s motion could be impaired
with a psychologically or physiologically inspired noise process.
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