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ABSTRACT

Human languages are largely compositional: sentences derive meaning based on
the meanings of constituent words. Conversely, emergent communication sys-
tems, learned by unsupervised neural networks, rarely learn human-like compo-
sitionality. To encourage compositionality, we propose a new training method
that combines information-bottleneck losses with a multi-task framework. By
training on a diversity of tasks, we induce task-specific vocabulary; by penal-
izing complexity, we decrease redundancy and entanglement in communica-
tion. Our information-theoretic framing explains results from studies in noisy-
channel emergent communication, and outperforms recent population-based train-
ing methods. Our work thus address important theoretical questions in composi-
tional communication and achieves state-of-the-art results.

1 INTRODUCTION

We seek to train agents to learn compositional emergent communication (EC) that decomposes ac-
cording to human-like factors. In traditional EC literature, cooperative agents are trained in partially
observable environments, with the ability to communicate (Lowe et al., 2017; Mordatch & Abbeel,
2018). By training to maximize a task-specific reward or utility function, communication “emerges.”

Unfortunately, unlike typical human communication, emergent communication is rarely composi-
tional. For example, humans might refer to colorful shapes by decomposing messages into one
word for color and one for shape (e.g., “red square”). Conversely, agents often learn to combine
factors into a single symbol (e.g., one symbol for red triangles, another symbol for red squares,
etc.). Furthermore, even if agents do communicate meanings via a combination of symbols, rather
than learning one symbol for “red” that can combine with any shape, agents often learn to inter-
pret that same symbol differently in different messages (e.g., as “red” for squares and as “blue”
for triangles). While significant prior literature has considered the problem of inducing human-like
compositional communication (Kottur et al., 2017; Kuciński et al., 2021; Chaabouni et al., 2020),
recent research tends to focus on generalization or compositionality, without comparison to human
meanings (Chaabouni et al., 2021b; Rita et al., 2022).

In this work, we propose a computational model for the emergence of compositional communica-
tion based on a combination of pragmatics and communicative efficiency. Pragmatics considers
the role of context or goals in communication and, in EC, often gives rise to communication that
solves a specific task well but is non-compositional (Goodman & Frank, 2016). We propose that
training EC agents on a distribution of tasks, as opposed to a single task, can partially address such
non-compositionality. To further encourage compositionality, we incorporate a cognitively-inspired
communicative efficiency term to penalize the complexity of communication; this biases agents to
avoid redundant communication (Gibson et al., 2019; Zaslavsky et al., 2018; Tucker et al., 2022).
Overall, therefore, we model how compositional communication may arise due to multi-task training
(inducing a vocabulary that is suitable for many tasks) and pressures for communication efficiency
(encouraging re-use of vocabulary in multiple contexts).

We make two primary contributions in this work. First, we extend an existing metric to better
align with our judgement of compositionality. Second, we propose a complexity-limited multi-
task training framework to improve compositionality in emergent communication, which we show
outperforms methods from prior art.
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2 RELATED WORK

In an effort to induce more “human-like” emergent communication (EC), several researchers have
sought to induce compositionality in emergent communication. Kottur et al. (2017) found that re-
stricting the vocabulary size of communicative neural agents was a necessary but not sufficient
change for inducing compositionality. Overly-large vocabularies allowed agents to combine multi-
ple factors into a single vocabulary element (e.g., communicating about red squares via one symbol,
and red triangles via a different symbol). Unfortunately, small vocabularies alone are insufficient
for inducing compositional communication according to human-like factors, as agents may learn to
decompose meanings along a variety of orthogonal bases, which may not align with human under-
standing (Locatello et al., 2019).

Numerous EC works have encountered this issue of alignment of compositionality with human-
specified factors. Some works induce generalizable EC and that achieves high compositionality
metrics, but such compositionality does not appear to align with human-defined factors (Chaabouni
et al., 2020; 2021b; Karten et al., 2023). To induce more human-like compositionality, Rita et al.
(2022) train populations of agents and find that larger, and more heterogeneous, populations of
agents lead to more compositional communication (as measured by a metric of topographic simi-
larity, which we explore later). At the same time, while considering just a single pair of agents,
Kuciński et al. (2021) show that adding a small amount of noise to the communication channel
improves compositionality. Lastly, Gupta et al. (2020) examined effects of varying speaker capac-
ity (e.g., the vocabulary size) and found no benefit to limiting capacity for inducing compositional
communication.

In our work, we seek to induce human-like compositionality in emergent communication, via a com-
bination of information bottleneck methods and a multi-task training framework. Our information
bottleneck approach provides a principled way to limit the information conveyed at each timestep,
supplanting hardcoded methods that artificially limit agent vocabulary or add noise (Kuciński et al.,
2021; Kottur et al., 2017), and unlike Gupta et al. (2020) we do find benefits to limiting complexity
of communication. At the same time, our work complements population-based training methods.

3 BACKGROUND

In this paper, we use existing compositionality metrics and evaluate neural architectures that support
complexity-bounded communication. Here, we review the technical details of relevant prior work.

3.1 COMPOSITIONALITY METRICS

We consider two metrics of compositionality that have been widely used in prior literature: topsim
and posdis. topsim measures the “topographic similarity” between inputs and communication
by measuring if similar inputs give rise to similar communication (Brighton & Kirby, 2006; Lazari-
dou et al., 2018). More formally, it is the Spearman correlation coefficient between the Levenshtein
distance for each pair of messages and the Euclidean distance for each pair of inputs. A topsim
value of 0 indicates no correlation; a positive value, up to maximum of 1.0, indicates that similar
messages represent similar inputs.

posdis is the “positional disentanglement” of communication and measures the specificity of in-
formation about a particular field in the input (e.g., color) with a particular timestep in communica-
tion (e.g., second symbol in a message) (Chaabouni et al., 2020). It is computed as

posdis =
1

L

∑
i∈[1,L]

I(si; f
i
1)− I(si; f

i
2)

H(si)
(1)

where L is the length of the message, si refers to the symbol communicated at timestep i, f1
i is

the feature with the highest mutual information with si (f1
i = argmaxf∈F I(si; f)), and f2

i is the
feature with the second-highest mutual information with si. posdis is bounded between 0 and 1,
with a value of 1 indicating that each position is informative of only one feature in the input.
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3.2 COMPLEXITY-BOUNDED EMERGENT COMMUNICATION ARCHITECTURES

In our experiments, we use the Vector-Quantized Variational Information Bottleneck – Categorical
(VQ-VIBC) method for generating complexity-limited discrete tokens (Peng et al., 2023). A VQ-
VIBC speaker agent is parametrized via a feedforward encoder, h, and a set of discrete tokens,
ζ. Given an input, x, the speaker generates a continuous latent representation, z = h(x) ∈ RZ ,
which, for a message of length L, is divided into L representations: zi ∈ RZ/L. Lastly, a symbol
at timestep i is stochastically selected with probability P(si = ζj |x) ∝ exp ||zi(x)− ζj ||2. These
discrete representations are concatenated into the overall message.

Via its stochastic discretization process, VQ-VIBC allows for variational bounds on the complexity
of communication, but prior work has either considered single-timestep communication (Tucker
et al., 2022) or used multiple discrete representations in non-communication settings (Peng et al.,
2023). In our work, we apply VQ-VIBC and other neural architectures in multi-timestep EC settings
for the first time.

4 TECHNICAL APPROACH

In this work, we make two primary contributions: 1) we generalize the existing posdis metric to
better align with intuitions of compositionality, and 2) we propose a complexity-limited multi-task
training framework to increase compositionality.

4.1 GENERALIZATION OF POSITIONAL DISENTANGLEMENT

Rather than use the standard posdis metric, we propose a modified measure of compositionality,
positional disentanglement - mutual information (pdmi), defined as

pdmi =
1

L

∑
i∈[1,L]

maxf∈F I(si; f)∑
f∈F I(si; f)

(2)

where I(si; f) represents the mutual information of feature f with the symbol emitted at timestep i.
The pdmi metric is closely related to posdis as it depends upon the most informative feature for
a given timestep, and is maximized at 1.0. There are two important differences, however.

First, rather than compute the difference between the top-two most informative symbols, we only
use the most informative feature. This mitigates unintuitive behaviors that the posdis metric can
exhibit. For example, consider two speaker agents that communicate about three features: A, B,
and C. If one speaker communicates about A and B at t = 1, but not C, whereas the other speaker
communicates about all three fields at t = 1, they would have the same posdis value despite the
second speaker’s communication being more entangled. Conversely, as desired, pdmi is higher for
the first speaker, reflecting more compositional communication.

Second, we set the denominator in pdmi to be the sum of the mutual information about all fields at
a given timestep. When posdis is normalized by the entropy over symbols, this artificially low-
ers the disentanglement metric, even when information about distinct features is communicated at
precise timesteps in a message. Trivially, if two symbols encode the same information (much like
synonyms in natural language), this increases H(s); we believe that the presence of such synonym-
like communication should not be measured as lower compositionality. Conklin & Smith (2023)
also note that variation in ways of communicating may lower posdis measures even for highly
compositional communication. At the same time, some work suggests that EC agents naturally min-
imize the entropy of communication (Kharitonov et al., 2020); if so, the denominators in pdmi and
posdis are equivalent (although we did not find that to be the case in our experiments). We include
several simple examples illustrating the distinction between posdis and pdmi in Appendix A.

4.2 COMPLEXITY-LIMITED MULTI-TASK TRAINING

We proposed a complexity-limited multi-task training framework for training agents to learn compo-
sitional communication, depicted in Figure 1. Our framework comprises three parts, each of which
alone is not sufficient for compositional communication:
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Task: Digit

s1 s2
Utility: predict task feature 
early on

Informativeness: reconstruct whole input 
from whole message

Task prediction: 4

Reconstruction: 4, sneaker

Complexity: minimize bits per timestep

(a)

Task 1: Digit

Task 2: Clothing

Learn task-specific 
communication

(b)

Figure 1: Our proposed complexity-limited multi-task training framework. a) For a given task, a
speaker observes a multi-feature input and a task id, and communicates via multiple symbols (s1,
s2, etc.) to a listener. A complexity loss penalizes the number of bits transmitted, a utility loss
encourages early prediction of the task-specific feature, and a reconstruction loss encourages the
overall reconstruction of the input, given the full message. b) By training on a distribution of tasks,
we induce task-specific vocabulary, which is combined into compositional communication.

• Complexity regularization: limiting communication complexity decreases redundancy.
• Multiple tasks: training “impatient” agents according to a distribution of human-specified

tasks induces communication about specific fields.
• Informativeness: an informativeness loss causes agents to learn accurate reconstructions

of all fields via a combination of symbols.

Each term affords intuitive interpretations, which we corroborate in experiments. Without limits
on complexity, there is no pressure for agents to learn re-usable components that may be combined
into overall meanings. Thus, penalizing complexity biases agents towards learning compositional
communication, although not necessarily along desired axes. To induce agents to communicate ac-
cording to human-specified fields, we use a multi-task framework, where each task consists of agents
predicting the value of a specific field. By training on multiple tasks, with impatient agents (where
“impatient,” as introduced by Rita et al. (2020), signifies a pressure to make a correct prediction
in few timesteps), we force agents to learn field-specific vocabulary, for multiple fields separately.
Lastly, we train agents via an informativeness loss to predict all fields, based on the (unordered)
complete message; this encourages agents to combine field-specific symbols into an overall mes-
sage. The three terms – limiting complexity, learning field-specific communication, and enabling
overall understanding of a message – also align with pressures thought to guide natural languages:
communicative efficiency, pragmatics, and semantics, respectively (Gibson et al., 2019; Zaslavsky
et al., 2018; Goodman & Frank, 2016; Zaslavsky et al., 2020).

Our overall training loss, combining these three terms, is included in Equation 3.

max Ef∈F

λU

∑
t∈[1,L]

U(Yf , Ŷf (S1:t))− λC

∑
t∈[1,L]

I(X;St) + λII(X; Ŷ (S1:L))

 (3)

Given inputs, X , a speaker outputs communication, S, for a message over L timesteps. At each
timestep, a listener makes a prediction about field f (specified by the task) based on all previous
communication, Ŷf (S1:t), which is compared to the desired prediction Y , according to a utility
function U . Also over each timestep, the complexity of communication, measured as the mutual in-
formation between inputs and communication at that timestep, I(X;St), is penalized. We maximize
the informativeness of communication, measured as the mutual information between the input and
the listener’s prediction of all of the input’s features, based on the full communication vector. Scalar
weights regulate the relative importance of the utility, complexity, and informativeness terms. Lastly,
we instantiate our multi-task framework by taking the loss in expectation over fields to predict.

In practice, training to directly optimize Equation 3 is challenging due to the complexity term.
Therefore, as in prior literature, we use neural speaker architectures that support variational bounds
on complexity (I(X;St)) (Tucker et al., 2022). The listener is implemented via a transformer-
based architecture, allowing us to remove positional encoding information from the message (see
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Figure 2: Speaker (a) and listener (b) architectures used in experiments. The speaker generates a
latent representation, z, from input X and field id f . z is divided into L parts and passed through
identical communication heads (in green) to generate communication symbols s1...sL. The listener
takes in such symbols, attending to prior timesteps, and makes field predictions at each timestep
(Ŷf ) as well as reconstructs the overall input based on the full message (X̂).

high-level architectures in Figure 2, and implementation details in Appendix D). Lastly, while one
can use a variety of utility functions, U , in our experiments, we use a supervised loss to predict
categorical fields, Yf .

4.3 THEOREM ON REPETITION

Given the training framework proposed in the previous section, here, we show how a combination
of explicit pressures and inductive biases can give rise to compositional communication. First,
Theorem 1 states how our multi-task framework, in combination with positive λC , biases agents
towards learning to communicate about fields in a single timestep:
Theorem 1 (Penalizing complexity prevents repetition) Within our training framework, if λU >
λC , and λC > 0, agents will communicate about the task-specific field only at t = 1.

We include a proof in Appendix B. Briefly, for a sufficiently large λU to outweigh the complexity
regularization term, agents will communicate about the task-specific field at t = 1; for t > 1, there
is no additional benefit to communicating redundant information about that field and, assuming
λC > 0 and independent features, doing so incurs a cost.

Theorem 1 states that agents will learn a vocabulary that supports communicating complete informa-
tion about each field, f , in a single timestep. This is an important, but insufficient, step towards com-
positional communication, as agents could communicate about multiple fields in the same timestep.
One could explore further losses or architectural choices, such as limiting the vocabulary size, but
such changes still do not guarantee desired compositionality (Locatello et al., 2019). Thus, we
rely upon the evidence from our experiments to validate whether our complexity-limited multi-task
framework, in combination with the inductive biases of the neural architectures we use, are enough
to induce compositional communication.

5 EXPERIMENTS

We performed experiments in three domains, extending environments from prior literature. In all
experiments, speakers observed an input, x, as well as a feature id, f ; the listener predicted the
value of the feature specified by f , and reconstructed x. In training, we fixed λI = 1.0 and, by
varying λC and λU , found that our complexity-limited multi-task framework led to the greatest
compositionality.

In all experiments, we trained feed-forward agents by backpropagating the utility, reconstruction,
and complexity losses. Prior literature has established that REINFORCE-based training and back-
propagation converge to similar results, although backpropagation appears to converge faster and
more stably (Chaabouni et al., 2021a; 2020; Tucker et al., 2022). We tested speaker architectures
based on Gumbel-Softmax (GS) (Jang et al., 2017; Maddison et al., 2017), VQ-VIBN , and VQ-
VIBC (Tucker et al., 2022; Peng et al., 2023) (see Appendix C for details of architectures). In the
main paper, we present results using VQ-VIBC as it performed best and focus on compositionality
metrics. Results for GS and VQ-VIBN models, as well as additional metrics, including reconstruc-
tion accuracy, are included in Appendix E.
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Figure 3: Median pdmi (a) and topsim (b) results, over 5 trials, for varying utility and informative-
ness pressures in the Symbolic 2D domain. Small increases in λC catalyzed greater compositionality
compared to traditional training (λU = λC = 0). c) In training, agents first learned task-specific
communication (c.1) before learning to compose multiple fields over time (c.2).

5.1 SYMBOLIC - 2D

First, we discuss results from our simplest symbolic domain, inspired by Rita et al. (2022)’s ex-
periments, included to provide intuition for later findings. Inputs comprised two symbolic fields,
each taking on one of ten possible values; agents had two timesteps to communicate, using a vo-
cabulary of size 100. Borrowing notation from Rita et al. (2022), we re-write this scenario as
K = 2,V = 10,W = 100, L = 2. Intuitively, this scenario corresponds to our motivating ex-
ample of communicating about colors and shapes. Implementation details for training, in this and
other domains, are included in Appendix D.

Results from our experiments, for different combinations of λC and λU are included in Figure 3 a
and b. In each figure, the location of a point represents the λC and λU values used in training; the
color of each point represents the value of the reported metric.

Comparing compositionality metrics Figures 3 a and b show how small increases in λC in-
creased compositionality and that pdmi is a more sensitive measure of compositionality than
topsim. Notably, setting λC = λU = 0 (corresponding to no complexity or field-specific pres-
sures) led to pdmi of 0.57 (0.06) (medians and standard errors over 5 trials reported). Conversely,
using our proposed complexity-limited multi-task training via λC = 0.1, λU = 3.0, pdmi reached
a value of nearly 1.0, implying near-perfect compositionality. At the same time, even for the high-
pdmi agents with λC = 0.1, λU = 3.0, topsim was only 0.57, far below the maximum theoretical
value of 1.0. Median posdis was also only 0.53 (0.01) (Figure 9 in Appendix E). The differences
between compositionality metrics show important benefits of using pdmi: for λC = 0.1, λU = 3.0
agents clearly communicated about just one field at each timestep (per the pdmi metric); thus, the
low values of topsim and posdis reveal limitations of such metrics in reflecting compositional-
ity.

Non-monotonic benefits of λC Figures 3 a and b also confirm an important bound on useful val-
ues for λC . As λC increased past 0.1, both pdmi and topsim decreased, to a minimum value at
λC = 1.0. Recall that models were trained with λI = 1.0; it is therefore unsurprising that models
learned uninformative (and non-compositional) communication for λC = 1.0. By sweeping over
λC ∈ [0, 1], we covered the full range of meaningful communication (confirmed by reconstruc-
tion accuracy metrics, included in Appendix E). When conducting a Mixed Linear Effects Model
(MLEM) test estimating the effect of increasing λC for small (≤ 0.1) and large (> 0.1) values,
increasing λC a small amount significantly increased pdmi (p = 0.002), but increasing λC past
0.1 decreased pdmi (p < 0.001). Further details of the statistical test, for this and other domains,
are included in Appendix F. Overall, this non-monotonic benefit of penalizing complexity corrobo-
rates trends established by Kuciński et al. (2021), who found that adding a small amount of noise to
communication increased compositionality. Such a noise-based approach may be thought of as an
indirect way of imposing an information bottleneck, which we do directly.

Training dynamics Figure 3 c depicts learning dynamics that resulted in compositional commu-
nication (generated here for λC = 0.1, λU = 3.0). Each curve represents the decoder’s accuracy at
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Figure 4: pdmi (a) and topsim (b) in the Symbolic 4D domain, for varying λU and λC . Compared
to standard approaches (λC = λU = 0) compositionality increased for positive complexity (λC) and
multi-task training (λU ) weights. (c) Varying the listener’s learning rate (ρ) had minimal effects on
compositionality, whereas increasing λC consistently helped (results for λU = 10.0).

different timesteps, as a function of training episode. That is, the blue line represents the accuracy
of the decoder’s output after receiving one symbol, and the orange line represents the accuracy after
receiving two tokens (the full message). Early in training (highlighted as phase c.1), agents learned
field-specific communication and achieved approximately 50% reconstruction accuracy (because
the decoder could only identify one of the two fields correctly). In phase c.2, agents moved beyond
field-specific communication to improve reconstruction accuracy at the second timestep. Notably,
reconstruction accuracy after one timestep remained at 50%, indicating that agents still only com-
municated about one field at a time, and composed meanings about multiple fields across time. This
corroborates the high pdmi value found for this training setup.

Population training effects We implemented a population-heterogeneity baseline based on Rita
et al. (2022)’s approach by training teams of size N , with learning ratio ρ specifying the likelihood
of a gradient update for the listener agent at a given training step.1 Rita et al. (2022) found that
increasing N and decreasing ρ led to greater topsim values. We refer to the original paper for
further details; in general, this population-based approach is complementary to our own.

Overall, we largely reproduced Rita et al. (2022)’s results but found that our approach induced
greater compositionality. In the base case N = 1, ρ = 1.0, Rita et al. (2022) found that agents
learned communication with topsim = 0.51 (in their paper, see Figure 13, Appendix F). This
nearly exactly matches our results without any complexity or multi-task pressures: for λC = λU =
0: topsim= 0.53 (0.02), pdmi= 0.71 (0.06). Keeping λC = λU = 0, for N ∈ [1, 2, 4, 8]; ρ ∈
[0.25, 0.5, 0.75, 1.0], we found the greatest topsim value of 0.60 (0.05) (for N = 2, ρ = 0.25)
and the greatest pdmi value of 0.89 (0.07) (for N = 1, ρ = 0.25). The topsim value is almost
exactly equal to the maximum topsim value found by Rita et al. (2022), who never surpassed
0.59 for any population size. However, by setting λC = 0.1; λU = 3.0, our agents achieved pdmi
= 0.96 (0.02) and topsim= 0.65 (0.02), outperforming all tested N and ρ. Unfortunately, when
training agents via a combination of population dynamics (varying N, ρ as before) and varying
λC , λU , we found no benefit beyond simply varying λC , λU alone. That is, we always observed
maximum compositionality for N = 1, ρ = 1.0. Given the apparent complementary nature of our
approaches, the negative result of combining our methods warrants further exploration.

5.2 SYMBOLIC - 4D

We conducted similar experiments in a larger symbolic domain, also from Rita et al. (2022), with
K = 4, V = 4, W = 100, and L = 4. That is, there were 4 fields, taking on one of 4 values,
a vocabulary of size 100, and 4 timesteps. Results from such experiments corroborated the trends
established in the Symbolic 2D and are included in Figure 4.

As before, a small but positive λC , in combination with our multi-task framework, resulted in the
greatest compositionality. Traditional methods, with λC = λU = 0, achieved median pdmi =
0.40 (0.01) and topsim= 0.61 (0.02) (Figures 4 a and b). Conversely, for λC = 0.1;λU = 10.0,

1Rita et al. (2022) define ρS as the likelihood ratio of the speaker updating; we define ρ as the inverse.
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Table 1: Population heterogeneity effects for [4, 4, 4, 4] domain (medians and standard errors over
10 trials). Regardless of population dynamics (N and ρ), we achieve the greatest compositionality
metrics by increasing λC to limit communication complexity. All results for λU = 10.0.

N ρ λC Recons. topsim pdmi 90% Recons. Eps.

1
1 0 1.00 (0.00) 0.61 (0.02) 0.53 (0.01) 1000 (63)

0.1 0.99 (0.01) 0.75 (0.01) 0.65 (0.02) 1000 (126)

0.5 0 1.00 (0.00) 0.66 (0.02) 0.57 (0.01) 1000 (106))
0.1 0.99 (0.00) 0.70 (0.02) 0.63 (0.02) 1500 (162)

4
1 0 1.00 (0.00) 0.61 (0.02) 0.54 (0.01) 7000 (369)

0.1 0.98 (0.00) 0.72 (0.01) 0.58 (0.03) 6500 (387)

0.5 0 1.00 (0.00) 0.66 (0.02) 0.56 (0.01) 6000 (293)
0.1 0.98 (0.00) 0.72 (0.01) 0.62 (0.01) 8500 (308)

pdmi = 0.62 (0.03) and topsim = 0.76 (0.01). Mixed effects modeling, testing the effects of
λC on pdmi, confirmed that increasing λC significantly increased pdmi (p < 0.001). We note
that reconstruction accuracy decreased as λC increased (see Appendix E), indicating an important
tradeoff between inducing compositionality while retaining information.

As before, we evaluated Rita et al. (2022)’s population training method as a complementary baseline
and found that our framework alone afforded the greatest benefits. Results from such experiments
are included in Figure 4 c and Table 1. First, Figure 4 c shows how decreasing ρ, the ratio of gradient
updates for the listener agent vs. the speaker agent, for N = 1 had little to no effect on pdmi, while
simply setting λC = 0.1 continued to consistently increase compositionality.

Results from Table 1 corroborate such trends for different values of N, ρ, and λC . Full results for
N ∈ [1, 2, 4, 8] are included in Appendix E. Across population sizes and learning rates, penalizing
complexity increased compositionality: for every N , topsim and pdmi values were maximized
for λC = 0.1. For λC = 0, we reproduced some of the trends established by Rita et al. (2022):
decreasing ρ increased both topsim and pdmi. However, as in the Symbolic 2D domain, we found
that increasing λC had a greater effect, which masked the more subtle population-based effects.
Lastly, as highlighted in the rightmost column of Table 1, population-based training with greater N
took longer to converge, indicating a greater computational cost for such methods.

While results from this larger symbolic domain largely corroborate earlier trends, it exposes some
limitations of our current approach. Agents never achieved perfect pdmi or topsim scores in this
domain. Such sub-optimal performance appears to be the result of optimization failures. In partic-
ular, upon inspecting the communication of trained agents, we found that speakers tended to favor
a particular communication order (e.g., always f1 at timestep 1, f2 at timestep 2, etc...) even as
the training task changed, which, per Theorem 1, should change the order of communication. This
behavior emerged early in training and was therefore likely due to initialization effects. Fixed-order
communication aligns somewhat with natural languages (e.g., English speakers typically prefer to
say “the big red ball” instead of “the red big ball”) but worsens pdmi. We look forward to investi-
gating this phenomenon in future work.

5.3 MNIST

In our final experiments, we tested agents in an image domain and, once again, found that the combi-
nation of multi-task training and complexity penalization led to compositional communication. The
speaker agent observed two images stitched together, comprising one image from the FashionM-
NIST dataset (e.g., sneakers) and one image from the MNIST digit dataset (e.g., a handwritten “1”).
Agents had a vocabulary of size 100 and L = 2. We sought to induce compositional communication
in which agents communicated separately about items of clothing and digits.

Figure 5 a shows patterns from trained speakers’ compositional communication. The leftmost col-
umn designates the training task, specifying whether the utility function was based on predicting the
digit or clothing item class. For a given task, and across timesteps in the message, we measured the
mutual information between the speaker’s communication and the image classes. For example, for
the “Digit” task, symbols communicated at t = 1 shared 2.9 bits about the digit in the image (top
row) but only 0.1 bits about the item of clothing (second row). In the second timestep (rightmost
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Training task Feature t = 1 t = 2

Digit Digit 2.9 (0.0) 0.2 (0.0)
Fashion 0.1 (0.0) 2.3 (0.0)

Fashion Digit 0.1 (0.0) 2.6 (0.0)
Fashion 2.6 (0.0) 0.1 (0.0)

(a) Mutual information (in bits) between features and symbols
across timesteps. Done for λC = 0.1;λU = 3.0, pdmi = 0.96. 0 1 2 3

U

0.0

0.1

0.2

0.3

0.4

0.5

C

PDMI

0.70

0.75

0.80

0.85

0.90

0.95

(b) pdmi

Figure 5: MNIST results. a) Measuring the mutual information between features and symbols over
time, there is positional disentanglement and re-ordered communication depending upon the training
f (medians and std. err. for λC = 0.1, λU = 3.0). b) pdmi for varying λC , λU . Results mirror
trends from the symbolic domains: small but positive λC increased compositionality.

column), communication switched to be highly informative about clothing (2.3 bits) but not about
digit (0.2 bits). Lastly, the speaker’s communication order depended upon training task: for the
“Fashion” task, agents communicated first about clothing at t = 1 and then about digit. Overall,
these results, generated for λC = 0.1, λU = 3.0, show how agents learned to separate information
about different features into different timesteps.

Beyond the specific example considered in Figure 5 a, Figure 5 b depicts pdmi for varying λC

and λU . Results confirmed that our multi-task framework, with complexity penalization, induced
desired disentangled communication. For example, a traditional EC setup (λC = λU = 0) resulted
in median pdmi= 0.75 (0.06), but controlling complexity and using the multi-task framework via
λC = 0.1, λU = 3.0 led to pdmi = 0.96 (0.00). That is, having a small penalty on complexity,
and a loss encouraging task-specific communication, led to near perfect compositionality. Once
again, mixed linear effects statistical testing confirmed that increasing λC from 0 to 0.1 significantly
increased pdmi (p < 0.001). Lastly, we conducted population-based experiments, fixing λC =
0.1;λU = 3.0 and sweeping over N ∈ [1, 2, 4, 8]; ρ ∈ [0.25, 0.5, 1.0]. We found no benefit to
using larger N or lower ρ: peak pdmi occurred for N = 1; ρ = 1.0. Overall, results from this
domain corroborate trends from our symbolic domains, while further demonstrating that agents can
learn compositional communication from pixel-based inputs.

6 CONTRIBUTIONS

We proposed a complexity-limited multi-task framework for inducing compositional emergent com-
munication. By training on a distribution of tasks, agents learned field-specific symbols; by min-
imizing complexity, agents learned to combine field-specific symbols into overall messages. Our
work complements concurrent techniques in compositionality, while resolving outstanding ques-
tions on why complexity limits alone do not lead to desired behaviors. Lastly, our approach may be
interpreted as a cognitive model of how pragmatic communication, in combination with pressures
for communicative efficiency, gives rise to compositional human languages.

We look forward to future work building upon our step towards compositional communication. In
our work, we make several assumptions about training tasks, such as access to the full distribution
of tasks during training. Relaxing this assumption, perhaps to only include information about some
fields, could provide important insight into partial alignment of emergent communication and lan-
guage. In addition, some of our results raise interesting questions about combining multiple EC
training frameworks: our approach is theoretically complementary to population-based methods,
but in our experiments we did not find benefits to combining multiple approaches.
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