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ABSTRACT

Randomized smoothing has recently attracted attentions in the field of adversarial
robustness to provide provable robustness guarantees on smoothed neural network
classifiers. However, existing works show that vanilla randomized smoothing usu-
ally does not provide good robustness performance and often requires (re)training
techniques on the base classifier in order to boost the robustness of the result-
ing smoothed classifier. In this work, we propose two cost-effective approaches
to boost the robustness of randomized smoothing while preserving its standard
performance. In the first approach, we propose a new robust training method Ad-
vMacer that combines adversarial training and maximizing robustness certificate
for randomized smoothing. We show that AdvMacer can improve the robustness
performance of randomized smoothing classifiers compared to SOTA baselines.
The second approach introduces a post-processing method named EsbRS which
greatly improves the robustness certificate based on model ensembles. We explore
different aspects of model ensembles that has not been studied by prior works and
propose a mixed design strategy to further improve robustness of the ensemble.

1 INTRODUCTION

The existence of adversarial examples of deep neural networks (DNNs) (Szegedy et al., 2014; Good-
fellow et al., 2015) has raised serious concerns to deploy DNNs in real-world systems, especially
in the safety critical applications such as self-driving cars and aircraft control systems. Thus, many
research efforts have been devoted into developing effective defenses methods to safeguard DNNs.
One of the most promising direction is known as certified defense via randomized smoothing, where
the word certified means that the defense methods have provable theoretical guarantee as opposed to
easily broken heuristic defenses (Athalye et al., 2018), and randomized smoothing is a popular tech-
nique that allows scalable certified defenses for state-of-the-art DNNs against adversarial examples.

Randomized smoothing is recently proposed by Lecuyer et al. (2019); Li et al. (2018); Cohen et al.
(2019) and has achieved state-of-the-art robustness guarantees. Given any classifier f , denoted as
a base classifier, randomized smoothing predicts the most-likely class on the randomly perturbed
input x with Gaussian noises. Following this new prediction rule, randomized smoothing acts like
an operator on the original base classifier and produce a new smoothed classifier which is equipped
with provable robustness guarantees under various ℓp norm threat models (Lecuyer et al., 2019; Li
et al., 2019; Cohen et al., 2019).

Unfortunately, without specially-designed training techniques, the robustness certificate of vanilla
smoothed classifiers is usually very weak (Cohen et al., 2019). Thus there are a few recent
works (Salman et al., 2019; Zhai et al., 2019) proposed to design specialized robust training meth-
ods to improve the robustness certificate of the smoothed classifier. In Salman et al. (2019), the
authors propose an adversarial training method called SmoothAdv, which is similar to the PGD
training (Madry et al., 2018) but on the smoothed classifier. On the other hand, Zhai et al. (2019)
propose MACER, whose training objective involves a term to maximize the robustness certificate
directly. However, SmoothAdv often requires heavy tuning on a number of hyper-parameters for
different noise level σ which could be computationally challenging, meanwhile MACER needs a
much larger number of (3×) training epochs to train (and unfortunately the resulting models often
have weaker certificate despite higher clean accuracy).
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Motivated by the need of cost-effective robust training methods for randomized smoothing, in this
work, we propose two approaches to address the limitations of SmoothAdv and MACER. First, we
propose a new robust training method called AdvMacer , which takes the best of both worlds in
SmoothAdv and MACER: AdvMacer enjoys computational efficiency, and also gives larger ACR
while preserving good accuracy in most settings. Second, we propose to equip our AdvMacer mod-
els with a training-free ensemble method EsbRs, which can further enlarge the smoothed classifier’s
certified radius (by up to 8% compared with SmoothAdv and 15% compared with MACER), hence
establishing the new state-of-the-art result on certified radius. Crucially, we demonstrate the effect
of both intra-model ensembles and mixed-model ensembles from the experimental point of view.

2 RELATED WORKS AND BACKGROUNDS

In this section, we give backgrounds on randomized smoothing and review recent literature on ap-
plying ensemble methods to randomized smoothing.

Randomized smoothing Consider a neural network classifier f : Rd → Y that maps an input
sample x ∈ Rd to its predicted label in Y . Cohen et al. (2019) introduced a randomized smoothing
(RS) technique that can turn any base classifier f(x) into a smoothed classifier g(x) with provable
robustness guarantees. When taking a sample x, the smoothed classifier g returns the class that the
base classifier f is most likely to return under isotropic Gaussian noise perturbation of x:

g(x) = argmax
c∈Y

Pϵ∼N (0,σ2I)(f(x+ ϵ) = c),

where σ is the noise level that controls the trade-off between clean accuracy and model robustness.

Cohen et al. (2019) further proved the robustness guarantees of such smoothed classifier in Theo-
rem 2.1. Let Φ denote the cumulative density function (CDF) of the standard Gaussian distribution.
Suppose that under Gaussian perturbation ϵ ∼ N (0, σ2I), the most likely class cA is returned with
probability pA and the second most likely (runner-up) class cB is returned with probability pB , i.e.
cA = argmaxc∈Y P (f(x + ϵ) = c), cB = argmaxc ̸=cA P (f(x + ϵ) = c), pA = P (f(x + ϵ) =
cA), pB = P (f(x+ ϵ) = cB). In practice, Monte Carlo sampling is employed to obtain an estimate
of pA, see Cohen et al. (2019).
Theorem 2.1 (Theorem 1 of Cohen et al. (2019)). Assume pA attains a lower bound pA and pB
attains an upper bound p̄B with pA < p̄B , then g(x + δ) = cA for all ∥δ∥2 < R, where R =
σ
2 (Φ

−1(pA)− Φ−1(p̄B)).

Ensemble Model Ensemble is a popular technique in the machine learning literature to practically
improve model performance and reduce generalization errors (Allen-Zhu & Li, 2020). Recently,
there are a few works investigating the idea of using model ensemble to improve robustness of a
randomized smoothed classifier (Horváth et al., 2021; Yang et al., 2021). However, Horváth et al.
(2021) focused on ensemble the same type of models (i.e. models trained from the same process but
with different random seeds, which is denoted as intra-model ensemble in the following text) and did
not study the effect of using different types of models (i.e. mixed-model ensemble). Although Yang
et al. (2021) doesn’t have any explicit assumptions on model types, they only experimented using
same types of model to ensemble. In contrast, as will be introduced in Section 3.2, our proposed
EsbRs is a more general and effective ensemble method where we study the effect of mixed-model
ensembles.

3 OUR PROPOSED MAIN METHODS

In this section, we propose two novel and cost-effective approaches to improve robustness of a ran-
domized smoothed classifier. First, we introduce a new robust training method AdvMacer that aim
to maximize the certified radius over adversarial examples, and we present the intuitions, formula-
tions as well as the details of our algorithm in section 3.1. Next, in section 3.2, we propose a novel
ensemble method called EsbRs with motivation and empirical evaluation. Different from the two
recent works (Yang et al., 2021; Horváth et al., 2021), we provide a more general ensemble design
which does not require individual classifiers to come from the same training method, resulting in
richer model diversity and noticeable improvement in the robustness of ensemble models.
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Figure 1: The illustration of the idea behind AdvMacer : x (black dot) is the original data sample
and x̂ (red dot) is an adversarial example of x. The solid black line is the original decision boundary.
The blue line in (b) is the decision boundary using SmoothAdv and the green line in (c) is the
decision boundary after applying AdvMacer . SmoothAdv force the classifier to classify x̂ correctly
to get the red boundary. AdvMacer force x̂ to not only have correct prediction but also a large
margin. Therefore, AdvMacer can obtain larger certified radius R3 > certified radius of smoothadv
R2 > certified radius of the original classifier R1.

3.1 APPROACH 1: ADVMACER

Inspired by the prior work SmoothAdv (Salman et al., 2019) and MACER (Zhai et al., 2019) and to
address their limitations, we argue that a smoothed classifier can be trained to have larger certified
radius by directly optimizing the certified radius of adversarial examples instead of the clean data
points. Notice that this statement requires adversarial example to be predicted correctly (otherwise,
the certified radius of original data point may be actually decreased), see the intuition illustrated in
Figure 1. Based on the above idea, we propose the following formulation.

Formulation Given a data point x and its label y, our proposed AdvMacer loss consists of two
terms: LAdvMacer(x) = LCE(ẑ(x̂), y) + λLR(ẑ; x̂, y), where ẑ and LR are given in Eq 3 and Eq 4
in appendix respectively. The 1st term LCE(ẑ(x̂), y) is to encourage adversarial examples x̂ to be
classified correctly, and the 2nd term LR(ẑ; x̂, y) =

σ
2 max{γ − ξ̂θ(x̂, y), 0} 1(ĝ(x̂) = y) is to max-

imize the certified radius at the adversarial example x̂, where x̂ = argmax∥x′−x∥2≤ϵ LCE(ẑ(x
′), y).

To minimize the LAdvMacer(x), we generate adversarial examples x̂ via Eq 1 with T -step PGD using
SmoothAdv (Salman et al., 2019), i.e. in the i-th step, we update

xi+1 =
∏

B(x,ϵ)

(
xi +∇x

(
− log

( 1

m

m∑
k=1

F (x′ + δk)y

))∣∣∣∣
x=xi

)
,

where
∏

S(·) is the projection onto set S and we set x̂ = xT . The training objective is to mini-
mize LAdvMacer(x) by first-order optimization method, and a detailed algorithm is presented in the
Appendix due to page constraint.

Discussion and Comparison (I). SmoothAdv (Salman et al., 2019) adapted adversarial training
to defend against the least favorable samples but did not consider certified radius as another met-
ric. MACER (Zhai et al., 2019) used robust training to directly maximize certified radius on clean
samples instead of adversarial examples. In contrast, our proposed AdvMacer trains a model on
adversarial examples while taking certified radius into consideration. Compared with SmoothAdv,
AdvMacer doesn’t bring any additional computational overhead to calculate robust loss as there ex-
ist analytic formula for certified radius; in the meantime, compared with MACER, we require much
fewer number of epochs (3× smaller) to obtain a robust model with much larger certified radius.
From the experiments in section 4 (e.g. Table 1), it can be seen that AdvMacer outperforms both
SmoothAdv and MACER on various dataset. (II). SmoothAdv needs to tune a number of hyper-
parameters for different noise level σ, which becomes a significant challenge when the computing
resources are limited. Although MACER also has many tuning parameters, empirical experiments
showed that most of these parameters don’t change across different σ and datset. However, MACER
needs more training epochs (440 epochs per Zhai et al. (2019)) to yield a robust classifier, taking
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Table 1: Cifar-10: ACR of different models on the first 500 test images of Cifar-10 with varing σ.
Clean accuracy is reported in parenthesis. Reported models include SmoothAdv, MACER, Adv-
Macer , Esb-RS. N = 100k samples are used in certification unless otherwise specified.

Methods σ = 0.25 σ = 0.5 σ = 1.0

Baselines SmoothAdv (Salman et al., 2019) 0.541 (74.2%) 0.735 (56.4%) 0.758 (45.8%)
MACER (Zhai et al., 2019) 0.518 (79.4%) 0.682 (63.4%) 0.768 (42.4%)

Ours

AdvMacer 0.554 (76.0%) 0.742 (58.4%) 0.794 (47.6%)
EsbRs-AdvMacer ×3 0.583 (76.4%) 0.772 (58.8%) 0.805 (47.6%)
EsbRs-SmoothAdv×3 0.567 (76.6%) 0.777 (58.4%) 0.801 (46.6%)
EsbRs-AdvMacer ×1+SmoothAdv×2 0.572 (77.2%) 0.783 (59.4%) 0.810 (47.2%)
EsbRs-AdvMacer ×2+MACER×1 0.568 (79.8%) 0.728 (63.6%) 0.801 (42.8%)
EsbRs-AdvMacer ×1+MACER×2 0.570 (80.4%) 0.723 (65.0%) 0.760 (44.0%)

days to train a ResNet-110 (He et al., 2016) on Cifar-10 (Krizhevsky et al., 2009). Also, MACER
usually achieves better clean accuracy but smaller average certified radius (ACR). In contrast, our
AdvMacer takes the best of both world in Smoothadv and macer: AdvMacer enjoys computational
efficiency, gives larger ACR while preserves good accuracy in most settings. Besides, AdvMacer
attains a universal configuration that works well across different σ. Equipped with our proposed
ensemble method presented in section 3.2, AdvMacer also enriches the diversity of component
models, making mixed ensemble more robust. For a thorough comparison by experiments, see sec-
tion 4 for more details.

3.2 APPROACH 2: ESBRS

Ensemble is a cost-effective post-training technique to enhance model performance and reduce gen-
eralization error without spending much additional efforts on re-training the neural networks. By
simply averaging the output from several models, ensemble shows remarkable boost in test accuracy
and model robustness. Recently, there are a few works investigating the idea of using model ensem-
ble to improve robustness of a randomized smoothed classifier (Horváth et al., 2021; Yang et al.,
2021). However, the existing work mainly focused on ensembling similar classifiers with average
weights. In contrast, we also consider mixed-model ensemble with component classifiers coming
from different training methods, study its performance and compare with intra-model ensemble.

Formulation Suppose we have k trained soft classifiers F 1, . . . , F k : Rd → P (Y) and Y =
{1, . . . , c}. Consider soft-ensemble model H whose output is a weighted average of the log-
its from F 1, . . . , F k: H(x) =

∑k
l=1 wlF

l(x). Suppose the associated hard classifier is h(x) =

argmaxc∈Y
(
H(x)

)
c
. Then we apply RS to h and get the corresponding smoothed classifier g. Ex-

tensive experiments from section 4 show that ensembling the smoothed classifier g outperforms all
component classifiers F 1, . . . , F k in general, no matter F l comes from the same or different training
methods. Specifically, if F l comes from more than one training methods, we call g a mixed-model
ensemble, or mixed ensemble for short.

Discussion Compared with Horváth et al. (2021), we generalize their method to allow mixed en-
semble. Based on similar analysis (see appendix C for more details on our analysis), if the logits
from different types of models have smaller variance than those from the same type of models, mixed
ensemble can outperform intra-model ensemble, suggesting it’s not always necessary to ensemble
similar classifiers. To our best knowledge, we are the first work to conduct practical experiment with
mixed ensemble. We note that the two recent works (Yang et al., 2021; Horváth et al., 2021) did not
explore this direction.

4 EXPERIMENTS

In this section, we present experimental results that empirically evaluate the performance of our pro-
posed methods, AdvMacer and EsbRs, on Cifar-10 (Krizhevsky et al., 2009). We mainly evaluate
model performance on two metrics: clean accuracy and average certified radius (ACR).
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Clean accuracy is the classification accuracy when taking the original test images as the input and
to evaluate robustness, we use the ACR. We follow the standard evaluation protocol used in (Zhai
et al., 2019): for each test data (xi, yi) ∈ Stest, record the radius Ri that can be certified the by the
model g. Set Ri = 0 if xi can’t be classified correctly by g. Then ACR = 1

|Stest|
∑

i Ri. More
analysis on evaluation metrics will be introduced in appendix B.

Baseline models Two baseline models are discussed in this section: MACER and SmoothAdv.
For MACER, we follow the configurations given by Table 4 in Zhai et al. (2019). For SmoothAdv,
we pick the best models under different σ = 0.25, 0.50, 1.00 from the Github repo of Salman et al.
(2019). See Table 2 in appendix B for more details on hyper-parameter selection of SmoothAdv.

Figure 2: The plot of ACR against different
number of component models in EsbRs on
Cifar-10 with σ = 0.50. Intra-model en-
semble uses N AdvMacer models. Mixed
ensemble uses m AdvMacer models and
n SmoothAdv models, where m and n are
given in Table 3 of appendix B.

AdvMacer We apply Algorithm 1 to train our Ad-
vMacer models. On Cifar-10, we choose γ = 8.0,
λ = 12.0, β = 16.0 for all σ = 0.25, 0.50, 1.00.
The choice of T,m, ϵ are summarized in Table 2.
We follow the same training scheme as Salman et al.
(2019). The initial learning rate is 0.1 and decays by
a factor of 0.1 every 50 epochs. A batch size of 256
is used in the training. For more details, please refer
to Salman et al. (2019). Note that by the choice of
hyper-parameters, SmoothAdv and AdvMacer have
the same training time, which implies the improved
performance of AdvMacer is not gained from more
expensive computation. The experiment results on
Cifar-10 are summarized in Table 1.

EsbRs We also employ our proposed (both intra-
and mixed-) model ensemble techniques introduced
in section 3.2 to enhance robustness performance.
We use the following naming convention to report
our result: EsbRs-Model1×n+Model2×m repre-
sents the ensemble model obtained by n Model1 and
m Model2. Each component model’s configuration
is the same as that of the non-ensemble individual model for fair comparison. For example, EsbRs-
AdvMacer ×1+SmoothAdv×2 on Cifar-10 with σ = 0.25 represents the ensemble of one Adv-
Macer model and two SmoothAdv models with configuration from Table 2. Our empirical experi-
ments also verifies the success of mixed ensemble. In ensemble experiments, we independently train
all AdvMacer and SmoothAdv models on Cifar-10 with σ = 0.50 and the model configuration is
given by Table 2. For intra-model ensemble, we use 1/2/3/4/5/6 AdvMacer models. For mixed en-
semble, the number of component model from each category is summarized in Table 3 of appendix
B. In Figure 2, we observe that ACR improves as the number of component models increases. The
same observation holds for both intra-model and mixed-model ensemble. Besides, mixed ensemble
gives universally better ACR as shown in Figure 2, which suggests the power of our proposed mixed
ensemble.

Discussion Different from (Horváth et al., 2021), we allow mixed ensemble that are a mixture of
robust models from various training methods. The introduction of AdvMacer also enriches diversity
of component models that can be used in model ensemble to further improve the performance.

5 CONCLUSIONS

In this work, we have proposed two novel and cost-effective approaches to promote robustness
of randomized smoothed classifiers. Our first approach AdvMacer improves the robustness by
maximizing the certified radius over adversarial examples, and our second approach EsbRs can
further improve AdvMacer on both clean accuracy and robustness certificate. We show that we
could improve ACR by 15% compared with MACER and 8% compared with the best models of
SmoothAdv. Moreover, we show that mixed-model ensemble works better in certain scenarios,
which has not been studied in previous works.
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A RELATED WORK

Now we consider a smoothed soft classifier G(x) = Eδ∼N (0,σ2I)F (x+ δ).

SmoothAdv Salman et al. (2019) introduced SmoothAdv to find adversarial examples by PGD.
Denote LCE as the canonical cross entropy loss. Given a labeled data (x, y), SmoothAdv finds a
point x̂ that maximizes the cross entropy loss of G(x) in the local neighborhood of x:

x̂ = argmax
∥x′−x∥2≤ϵ

LCE(G(x′), y) = argmax
∥x′−x∥2≤ϵ

− logEδ∼N (0,σ2I)F (x′ + δ)y. (1)

Such optimization problem Eq 1 is solved by projected gradient descent (PGD). To estimate the gra-
dient of Eq 1, Salman et al. (2019) used Monte Carlo simulation to approximate ∇x′LCE(G(x′), y)
by

∇x′

(
− log

( 1

m

m∑
k=1

F (x′ + δk)y

))
,

where δ1, . . . , δm are drawn i.i.d. from N (0, σ2I).

MACER Since the certified radius is related to the difference between the top probability pA and
the runner-up probability pB , Zhai et al. (2019) constructed MACER loss LMACER, which consists
of classification loss and robustness loss to both minimize classification error and maximize the
certified radius of those correctly classified samples. Specifically,

LMACER(x) = LCE(G(x), y) + λLR(G;x, y), (2)

where λ ≥ 0 is a tuning parameter. The loss in Eq 2 involves the soft smoothed classifier G and
Zhai et al. (2019) proposes to approximate G(x) by Monte Carlo sampling:

G(x) ≈ ẑ(x) =
1

m

m∑
k=1

F (x+ δk), ĝ(x) = argmax
i∈Y

ẑi(x). (3)

where δ1, . . . , δm are drawn i.i.d. from N (0, σ2I). Denote by ĈR(x, y) the approximated certified
radius at x, then ĈR(x, y) = σ

2 (Φ
−1(ẑy(x)) − Φ−1(maxy′ ̸=y ẑy′(x))). Therefore, the robustness

loss LR(G;x, y) can also be approximated by

LR(G;x, y) ≈ LR(ẑ;x, y) = max{ϵ+ ϵ̃− ĈR(x, y), 0} 1(ĝ(x) = y)

=
σ

2
max{γ − ξ̂θ(x, y), 0} 1(ĝ(x) = y), (4)

where ϵ, ϵ̃ > 0 are hyper-parameters in hinge loss, γ = 2
σ (ϵ + ϵ̃), and ξ̂θ(x, y) = Φ−1(ẑy(x)) −

Φ−1(maxy′ ̸=y ẑy′(x)). Finally, MACER trains a base classifier by minimizing the approximated
MACER loss on training dataset. We refer readers to Zhai et al. (2019) for more details.

B ALGORITHM AND EXPERIMENT DETAILS

The algorithm for AdvMacer training in presented in Algorithm 1. We summarize the configuration
of the SmoothAdv and AdvMacer models on Cifar-10 in Table 2.

To make fair comparisons with previous baseline models, we use the same architectures as in Cohen
et al. (2019); Salman et al. (2019); Zhai et al. (2019): ResNet-110 (He et al., 2016). We train our
models with σ = 0.25, 0.50, 1.00 on Cifar-10. We train all models on a single NVIDIA V100 GPU
and the training time reported below is all from NVIDIA V100 GPU.

Evaluation We mainly evaluate model performance on two metrics: clean accuracy and average
certified radius (ACR). Clean accuracy is the classification accuracy when taking the original test
images as the input and to evaluate robustness we use the ACR. We follow the standard evaluation
protocol used in Cohen et al. (2019); Salman et al. (2019); Zhai et al. (2019) for fair comparison:
for each test data (xi, yi) ∈ Stest, record the radius Ri that can be certified the by the model g. Set
Ri = 0 if xi can’t be classified correctly by g. Then ACR = 1

|Stest|
∑

i Ri. Since the denominator is
the size of the full test set, one cannot obtain large ACR without high accuracy. Thus ACR becomes
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Algorithm 1 Our AdvMacer (σ,m, T, λ, β, γ)

Input: training set p̂data, noise level σ, number of Gaussian samples m, regularization parameter
λ, hinge factor γ, inverse temperature β, number of PGD step T
for each iteration do

1) Sample a mini-batch (x1, y1), . . . , (xn, yn) ∼ p̂data
2) For each (xi, yi), use T -step SmoothAdv to generate adversarial example x̂i

3) For each (x̂i, yi), draw m i.i.d. Gaussian samples xi1, . . . , xim from N (xi, σ
2I)

4) Obtain an estimation of Gθ(x̂) by ẑθ(x̂)← 1
m

∑m
k=1 Fθ(x̂ik), for i = 1, . . . , n

5) Collect the set of data with correct prediction: Sθ = {i : yi = argmaxc ẑθ(x̂i)c}
6) For each i ∈ Sθ, compute the second most likely class ŷi ← argmaxc̸=yi

ẑθ(x̂i)c

7) For each i ∈ Sθ, compute ξ̂(x̂i, yi)← Φ−1(ẑθ(x)yi
)− Φ−1(ẑθ(x)ŷi

)
8) Sample δ ∼ N (0, σ2I) and update θ with SGD to minimize

− 1

n

n∑
i=1

log ẑθ(x̂i + δ)yi +
λσ

2n

∑
i∈Sθ

max{γ − ξ̂θ(x̂i + δ, yi), 0}

end for
Output: model parameters θ

Table 2: Model configuration: main hyper-parameters and training time for SmoothAdv and
AdvMacer on Cifar-10 with varing σ. For the additional parameters in AdvMacer , we pick
λ = 12.0, γ = 8.0, β = 16.0.

Models T m ϵ Epochs σ Time

SmoothAdv
2 8 1.0 150 0.25 15.5h
2 8 2.0 150 0.50 15.5h
2 4 2.0 150 1.00 8h

AdvMacer
2 8 1.0 150 0.25 15.5h
2 8 2.0 150 0.50 15.5h
2 4 2.0 150 1.00 8h

a popular choice in most of the DL robustness literature. We use CERTIFY algorithm in Cohen et al.
(2019) to obtain certified radius and choose N0 = 100, N = 100, 000, α = 0.001 in CERTIFY. We
report model performance on the first 500 test images on Cifar-10. The details of the component
models for mixed ensemble in Figure 2 are given in Table 3.

Table 3: Component models in mixed ensemble experiment in Figure 2. The mixed ensemble with
totally N component models uses m AdvMacer and n SmoothAdv models. m and n are given as
follows.

N 1 2 3 4 5 6
m 1 1 1 2 3 3
n 0 1 2 2 2 3

C ENSEMBLE ANALYSIS

For a fixed query point x with a Gaussian perturbation ϵ ∼ N (0, σ2I), suppose logits vector yl ∈
P (Y) is returned by F l. Without loss of generality, assume 1 is the majority class in RS for all F l.
For simplicity, we can work with classification margin zli = yl1 − yli, for i ∈ Y . Let ȳ = H(x+ ϵ).
Therefore, ȳ =

∑k
l=1 wly

l. Similarly define z̄i = ȳ1 − ȳi. Consider E[z̄] ∈ Rc and Var(z̄) ∈
Rc×c , where the expectation is taken over the randomness in training process, including random
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initialization and stochasticity in gradient descent. Then we have

Var(z̄) = Var
( k∑

l=1

wlz
l
)
=

k∑
l=1

w2
l Var(zl) + 2

∑
l ̸=m

wlwmCov(zl, zm) (5)

Hence, Var(z̄i) = Var(z̄)ii. Denote pi(w) = Var(z̄i) as a function of w = [w1, . . . , wk]
⊤ and

αi = αi(s) = max
1≤l≤k

Var(zl)ii βi = βi(s) = max
l ̸=m

Cov(zl, zm)ii

Suppose there are a fixed number of training methods and denote this number by s, so the above
maximum is in fact taken over s different classes. As a result, αi(s), βi(s) = O(1) even as k →∞.
As a special case, consider wl =

1
k for all l = 1, . . . , k. By Eq 5, we derive

pi(w) = Var(z̄i) ≤
kαi + k(k − 1)βi

k2
= βi +

αi − βi

k
. (6)

These classifiers either come from different training methods, or same training method with differ-
ent random seeds. Thus, existing work all assumes that the logits from one classifier have larger
covariance αi than the logits from different classifiers βi. However, as we will see in the following
Discussion paragraph, ensemble may harm the performance if the above assumption doesn’t hold.
For now, let’s assume αi > βi. By Eq 6, we conclude that the upper bound of Var(zi) decreases to
a constant βi as k →∞.

Next, we explain how Var(z̄i) affects certified radius. From Theorem 2.1, we see that R =
σΦ−1(pA) if pA ≥ 1

2 , hence we only need to show a lower bound on the top class probability
pA increases as k becomes larger. Since we assume the majority class’s number is 1, we see that

p1 = P (z̄i > 0,∀i = 2, . . . , c) ≥ 1−
c∑

i=2

P (z̄i ≤ 0) (7)

By Chebyshev’s inequality, P (z̄i ≤ 0) ≤ P
(∣∣z̄i −E[z̄i]

∣∣ ≥ E[z̄i]
)
≤ Var(z̄i)

E[z̄i]2
and let ei = ei(s) =

minl E[zli], thus from Eq 7 we have

p1 ≥ 1−
c∑

i=2

Var(z̄i)
e2i

. (8)

The above equation suggests us to choose the weight w that maximizes the RHS of Eq 8 to have a
larger p1, hence larger certified radius. Since ei is independent of the choice of w, we can obtain the
optimal weight by solving

min
w∈Rk

c∑
i=2

aipi(w) s.t.
k∑

l=1

wl = 1, wl ≥ 0, (9)

where ai = e−2
i are constants. Note that when wl =

1
k for all l = 1, . . . , k, we have a lower bound

on p1 by Eq 6 and Eq 8:

p1 ≥ 1−
c∑

i=2

βi + (αi − βi)/k

e2i
→ 1−

c∑
i=2

βi

e2i
as k →∞.

This explains why larger k makes p1 and certified radius larger even in average ensemble.

Discussion Compared with Horváth et al. (2021), we generalize their analysis to allow both
weighted and mixed ensemble and hence have several new findings. First, if αi < βi, namely
the logits from one model have smaller variance than those from different models, the RHS of Eq
6 becomes an increasing function in k, which implies ensemble does not always work. Second,
suppose F 1, F 2 come from model category 1 (for example, SmoothAdv) and F 3 comes from model
category 2 (for example, AdvMacer ). If the logits from different types of models have smaller
variance than those from the same type of model, namely Cov(F 1, F 3) < Cov(F 1, F 2), βi will
become smaller and makes mixed ensemble work better than single ensemble. This phenomenon is
observed in Figure 2.
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