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Abstract

Large-scale pre-trained foundation models represent a breakthrough in cheminfor-
matics. These methods excel in tasks such as property prediction and molecule
generation by learning contextualized representations of input tokens through self-
supervised learning on large unlabeled corpora. Most chemical foundation models
available are based on the Transformers architecture and its core attention module.
The efficacy of self-attention is attributed to its ability to route information densely
within a context window, allowing it to model complex data. However, this property
brings fundamental drawbacks: an inability to model anything outside of a finite
window and quadratic scaling with respect to the window length. Structured state
space sequence models (SSMs) have recently emerged as a promising class of
architectures for sequence modeling. Mamba is a simplified end-to-end SSM-based
neural network architecture without attention or even MLP blocks. This paper
introduces a Mamba-based chemical foundational models pre-trained on a curated
dataset of 91 million SMILES samples sourced from PubChem, which is equivalent
to 4 billion of molecular tokens. These models support different complex tasks,
including molecular properties prediction, classification, molecular reconstruc-
tion, and synthesis yield prediction. Our experiments across multiple benchmark
datasets validate the SSM’s capacity of providing state-of-the-art results while is
designed for fast inference.

1 Introduction

Large-scale pre-training methodologies for chemical language models (LMs) represent a significant
advancement in cheminformatics [1]. These methodologies have shown impressive results in chal-
lenging molecular tasks such as predicting properties and generating molecules [2, 3]. The success of
these models can be attributed to their ability to learn contextualized representations of input tokens
through self-supervised learning on large unlabeled corpora [4].

Most chemical foundation models available are based on the Transformers architecture and its
core attention module [5, 6, 7, 8]. The efficacy of self-attention is attributed to its ability to route
information densely within a context window [9], allowing it to model complex data [10]. However,
this property brings fundamental drawbacks as the inability to model anything outside of a finite
window and quadratic scaling with respect to the window length [11]. A substantial amount of
research has emerged on more efficient variants of attention to overcome these drawbacks [12].
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Structured state space sequence models (SSMs) have recently emerged as a promising class of
architectures for sequence modeling [13]. These models can be interpreted as a combination of
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) [14]. This class of
models can be computed very efficiently as either a recurrence or convolution, with linear or near-
linear scaling in sequence length. Mamba is a simplified end-to-end SSM-based neural network
architecture without attention or even MLP blocks [15, 16]. Mamba enjoys fast inference and linear
scaling in sequence length [15].

In this study, we present a novel Mamba-based large foundation model, denoted as OSMI-SSM-336M .
Our OSMI-SSM-336M encoder-decoder foundation model was obtained using an efficient encoder
SSM-based model aligned with an auto-encoder mechanism pre-trained on a large corpus of 91
million carefully curated molecules from PubChem [17], resulting in 4 billion molecular tokens. Our
main contributions are:

• We pre-train a large-scale Mamba-based foundation model for molecules, denoted as OSMI-
SSM-336M , on over 91 million molecules carefully curated from PubChem [17], which is
equivalent to 4 billion of molecular tokens.

• We perform extensive experimentation on several classification and regression tasks from 11
benchmark datasets, covering quantum mechanical, physical, biophysical, and physiological
property prediction of small molecules.

• We evaluate the model’s ability to predict chemical reaction yields in synthetic and process
chemistry using the Buchwald–Hartwig cross-coupling reaction dataset. Reaction yields
refer to the percentage of input materials (reactants) that are converted into output materials
(products).

• We evaluate the reconstruction capacity of our OSMI-SSM-336M considering the MOSES
benchmarking dataset [18].

• Additionally, we present a study comparing the inference speed of our proposed Mamba-
based model with a Transformer-based model in predicting HOMO-LUMO properties for
10 million samples randomly selected from PubChem.

Our results section demonstrates that OSMI-SSM-336M achieves state-of-the-art (SOTA) performance
across various tasks, including molecular property prediction, chemical reaction yield prediction,
and molecule reconstruction. Furthermore, the findings indicate that the proposed model strikes a
balanced equilibrium between inference speed and performance, delivering state-of-the-art results in
half the time required by Transformer-based architectures.

2 Overview of the proposed approach

This section provides an overview of the proposed Mamba-based OSMI-SSM-336M foundation model
for chemistry. We detail the process of collecting, curating, and pre-processing the pre-training data,
along with the token encoding and SMILES encoder-decoder processes. Figure 1 illustrates the
general architecture of the base model.

Figure 1: This figure illustrates the general architecture of the base OSMI-SSM-336M model.
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2.1 Pre-training Data

The pretraining data was sourced from the PubChem data repository, a public database containing
information on chemical substances and their biological activities [17]. Initially, 113 million SMILES
strings were collected from PubChem. These molecular strings underwent deduplication and canoni-
calization to ensure uniqueness [19]. Following this, a molecular transformation process was applied
to validate the molecules derived from the unique SMILES strings, resulting in a final set of 91
million unique and valid molecules.

To construct the vocabulary, we utilized the molecular tokenizer proposed by [20]. The tokenization
process was applied to all 91 million curated molecules from PubChem, yielding a set of 4 billion
molecular tokens. From this output, we extracted 2,988 unique tokens, along with 5 special tokens.
In contrast, MoLFormer, which was trained on 1 billion samples with minimal curation, generated a
vocabulary of 2,362 tokens using the same tokenization method [2]. This indicates that our curation
process led to an enhanced vocabulary model. Detailed statistics of the pre-training dataset are
provided in Table 1.

Table 1: Pre-training dataset statistics.

Property Mean Std Min 25% 50% 75% Max
Number of Atoms 48.95 45.19 1.00 30.00 40.00 53.00 1687.00

Molecular Weight (Daltons) 344.15 137.79 1.01 265.32 330.37 402.47 18838.70
LogP 3.18 2.18 -88.97 2.12 3.29 4.36 59.81

Number of H-Bond Acceptors 4.29 2.62 0 3.00 4.00 5.00 191
Number of H-Bond Donors 1.18 1.48 0 0.00 1.00 2.00 116
Number of Rotatable Bonds 4.79 4.09 0 3.00 4.00 6.00 240

Topological Polar Surface Area 67.81 50.11 0 40.54 61.77 84.22 4201.50
Number of Aliphatic Rings 0.72 1.07 0 0.00 0.00 1.00 54
Number of Aromatic Rings 1.96 1.24 0 1.00 2.00 3.00 32

2.2 Model Architecture

We conduct training for OSMI-SSM-336M employing a Mamba-based encoder for tokens and an
encoder-decoder architecture for SMILES embeddings space. The hyper-parameters of the model are
detailed in Table 2.

Table 2: OSMI 289M base architecture specificity.

Hidden size Layers dt rank d state d conv expand factor dt min dt max dt scale dt init floor
768 24 auto 16 4 2 0.001 0.1 1.0 1e-4

conv bias bias lr start lr multiplier Vocab size # SMILES # Mol tokens # Encoder # Decoder Total params
True False 3e-5 1 2993 91M 4B 94M 242M 336M

Mamba models originates from a continuous-time system that maps an input function or sequence
x(t) ∈ RM to an output response signal y(t) ∈ RO through an implicit latent state h(t) ∈ RN which
can be mathematically formulated using the following ordinary differential equations.

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t)
(1)

where A ∈ RN×N and C ∈ RO×N control how the current state evolves over time and translates to
the output, B ∈ RN×M and D ∈ RO×M depict how the input influences the state and the output,
respectively.

The tokens extracted from SMILES trough the SSM encoder are embedded in a 768-dimensional
space. The encoder-decoder layer is designed to process molecular token embeddings, represented as
x ∈ RT×L, where T denotes the maximum number of tokens and L represents the embedding space
dimension. We limited T at 202 tokens, as 99.4% of molecules in the PubChem dataset contain fewer
tokens than this threshold [2].

In encoder-only models, a mean pooling layer is typically employed to represent tokens as SMILES
in the latent space [21]. However, this approach is limited by the lack of a natural inversion process
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for the mean pooling operation. To overcome this limitation, we aim to construct a latent space
representation for SMILES by submersing the x in a latent space, denoted as z, as described in Eq. 2.

z = (LayerNorm (GELU (xW1 + b1)))W2, (2)

where z ∈ RL, W1 ∈ RL, b1 ∈ RL, W2 ∈ RL×L, with L denoting the latent space size (specifically,
L = 768). Subsequently, we can immerse z back by calculating Eq. 3.

x̂ = (LayerNorm (GELU (zW3 + b3)))W4 (3)

where x̂ ∈ RT×L, W3 ∈ RL×L, b3 ∈ RL, W4 ∈ RL×T . Where T representing the output feature
space size (namely, T = 202).

A language layer (decoder) is used to process x̂, where it applies non-linearity and normalization,
and projects the resulting vector into a set of logits over the vocabulary, which can then be used to
predict the next token in the molecular [22]. This architecture serves as a tool for dimensionality
reduction and representation learning in the domain of molecular structures.

2.3 Pre-training strategies

Pre-training of OSMI-SSM-336M was performed for 130 epochs through the entire curated PubChem
dataset with a fixed learning rate of 3e-5 and a batch size of 128 molecules on a total of 24 NVIDIA
V100 (16G) GPUs parallelized into 4 nodes using DDP and torch run. It involves two distinct phases:
i) Learning of token embeddings through a masking process; ii) Subsequently, the token embeddings
are mapped into a common latent space that encapsulates the entire SMILES string. This latent space
not only facilitates the representation of the SMILES but also enables the reconstruction of both
individual tokens and complete SMILES strings. Consequently, the pre-training process involves
two separate loss functions: one for the token embeddings, which is based on the masking process,
and another for the encoder-decoder layer, which focuses on the reconstruction of tokens. Two
pre-training strategies are employed:

• In phase 1, the token encoder is initially pre-trained using 95% of the available samples,
while the remaining 5% is reserved for training the encoder-decoder layer. This partitioning
is necessary as the token embeddings may encounter convergence difficulties in the initial
epochs, which could adversely affect the training of the encoder-decoder layer.

• In phase 2, once the token embeddings layer has achieved convergence, the pre-training
process is expanded to utilize 100% of the available samples for both phases. This approach
leads to an enhancement in the performance of the encoder-decoder layer, particularly in
terms of token reconstruction.

For encoder pre-training we use the masked language model method defined in [23]. Initially 15% of
the tokens are selected for possible learning. From that selection, 80% of the tokens are randomly
selected and replaced with the [MASK] token, 10% of the tokens are randomly selected to be replaced
with a random token, while the remaining 10% of the tokens will be unchanged.

The adoption of different pre-training strategies has proven instrumental in enhancing the efficiency
of our model, as evidenced by improvements observed in the loss functions.

3 Experiments

To evaluate the effectiveness of our proposed Mamba-based model OSMI-SSM-336M , we conducted
experiments using a set of 11 datasets sourced from MoleculeNet [24] as demonstrated in Table 3.
Specifically, we evaluated 6 datasets for classification task and 5 datasets for regression tasks. To
ensure an unbiased assessment, we maintained consistency with the original benchmark by adopting
identical train/validation/test splits for all tasks [24]. We also conducted the experiments considered
10 different seeds for all the tests in other to guarantee the robustness of the approach.

We also conducted high-throughput experiments on Pd-catalyzed Buchwald–Hartwig C–N cross-
coupling reactions, measuring the yields for each reaction as described in [25]. The experiments
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Table 3: Evaluated datasets description

Dataset Description # compounds # tasks Metric
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC
HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC

BACE Binding results for a set of inhibitors for β – secretase 1 1513 1 ROC-AUC
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC
QM9 12 quantum mechanical calculations 133885 12 Average MAE
QM8 12 excited state properties of small molecules 21786 12 Average MAE
ESOL Water solubility dataset 1128 1 RMSE

FreeSolv Hydration free energy of small molecules in water 642 1 RMSE
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE

utilized three 1536-well plates, covering a matrix of 15 aryl and heteroaryl halides, four Buchwald
ligands, three bases, and 23 isoxazole additives, resulting in a total of 3,955 reactions. We employed
the same data splits as in [25] to assess our model’s performance with training sets of varying sizes.

To evaluate the reconstruction and decoder capabilities of OSMI-SSM-336M , we utilized the MOSES
benchmarking dataset [18], which contains 1,936,962 molecular structures. For the experiments,
we adopted the dataset split proposed by [18], dividing it into training, test, and scaffold test sets,
comprising approximately 1.6 million, 176,000, and 176,000 molecules, respectively. The scaffold
test set includes unique Bemis-Murcko scaffolds that are absent in the training and test sets, allowing
us to assess the model’s ability to generate previously unobserved scaffolds. Finally, we evaluated the
inference speed of OSMI-SSM-336M by predicting HOMO-LUMO properties for 10 million samples
randomly selected from PubChem.

4 Results and Discussion

In this section, we present an analysis of the results obtained using OSMI-SSM-336M across various
experiments conducted with different versions of the base model. The analysis includes: (i) A
comparison between frozen and fine-tuned versions of OSMI-SSM-336M , along with a comparison
against state-of-the-art models on various benchmarking datasets for molecular classification and
regression tasks; (ii) An evaluation of OSMI-SSM-336M for predicting chemical reaction yields;
(iii) An assessment of the Decoder module using the MOSES benchmarking dataset; and (iv) A
study comparing the inference speed for predicting HOMO-LUMO properties on 10 million samples
randomly selected from PubChem.

4.1 Comparison with SOTA on benchmarking tasks

Results for classification tasks: The analysis evaluates the comparative performance of OSMI-SSM-
336M in its fine-tuned and frozen states relative to state-of-the-art algorithms for molecular property
classification, as detailed in Table 4.

Table 4: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets
Method Dataset

BBBP ClinTox HIV BACE SIDER Tox21
GraphMVP [26] 72.4±1.6 79.1±2.8 77.0±1.2 81.2±0.9 63.9±1.2 75.9±0.5
GEM [27] 72.4±0.4 90.1±1.3 80.6±0.9 85.6±1.1 67.2±0.4 78.1±0.1
GROVERLarge [28] 69.5±0.1 76.2±3.7 68.2±1.1 81.0±1.4 65.4±0.1 73.5±0.1
ChemBerta [6] 64.3 90.6 62.2 - - -
ChemBerta2 [29] 71.94 90.7 - 85.1 - -
Galatica 30B [30] 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B [30] 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol [31] 72.9±0.6 91.9±1.8 80.8±0.3 85.7±0.2 65.9±1.3 79.6±0.5
MolFM [31] 72.9±0.1 79.7±1.6 78.8±1.1 83.9±1.1 64.2±0.9 77.2±0.7
MoLFormer [32] 73.6±0.8 91.2±1.4 80.5±1.65 86.3±0.6 65.5±0.2 80.46±0.2
SMI-TED289M (Frozen Weights) [33] 91.46±0.47 93.49±0.85 80.51±1.34 85.58±0.92 66.01±0.88 81.53 ±0.45
SMI-TED289M (Fine-tuned) [33] 92.26±0.57 94.27±1.83 76.85±0.89 88.24±0.50 65.68±0.45 81.85±1.42
OSMI-SSM-336M (Frozen) 90.81 ±0.85 86.36 ±0.74 77.04 ±0.64 83.83 ±0.76 63.52 ±0.3 81.42 ±0.8
OSMI-SSM-336M (Fine-tuned) 92.81 ±0.27 90.02 ±0.5 83.14 ±0.34 86.12 ±0.96 63.17 ±0.75 83.84 ±0.2

Table 4 summarizes the performance of various advanced methods across several benchmarking
datasets used for molecular classification tasks. OSMI-SSM-336M demonstrates comparative efficacy
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against Transformer-based approaches, outperforming them in three out of six datasets. Notably,
OSMI-SSM-336M with its initial configuration yields results on par with current state-of-the-art
methods. Further fine-tuning of OSMI-SSM-336M enhances its performance, indicating its substantial
potential for accurate molecular classification and suggesting that additional performance gains may
be achieved through further optimization.

Results for regression tasks: Subsequently, we applied OSMI-SSM-336M to the prediction of
chemical properties. The performance metrics across five regression benchmarks—QM9, QM8,
ESOL, FreeSolv, and Lipophilicity—are presented in Table 5.

Table 5: Methods and Performance for the regression tasks of MoleculeNet benchmark datasets.Blue
and Orange indicates best and second-best performing model, respectively.

Method Dataset
QM9 QM8 ESOL FreeSolv Lipophilicity

D-MPNN [34] 3.241±0.119 0.0143±0.0022 0.98±0.26 2.18±0.91 0.65±0.05
N-Gram [35] 2.51±0.19 0.032±0.003 1.074±0.107 2.688±0.085 0.812±0.028
PretrainGNN [36] - - 1.100±0.006 2.764±0.002 0.739±0.003
GROVERLarge [28] - - 0.895±0.017 2.272±0.051 0.823±0.010
ChemBERTa-2 [29] - - 0.89 - 0.80
SPMM [32] - - 0.818±0.008 1.907±0.058 0.692±0.008
MolCLRGIN [37] 2.357±0.118 0.0174±0.0013 1.11±0.01 2.20±0.20 0.65±0.08
Hu et al. [38] 4.349±0.061 0.0191±0.0003 1.22±0.02 2.83±0.12 0.74±0.00
MoLFormer [32] 1.5894±0.0567 0.0102 0.880±0.028 2.342±0.052 0.700±0.012
SMI-TED289M [33] 1.3246±0.0157 0.0095±0.0001 0.6112±0.0096 1.2233±0.0029 0.5522±0.0194
OSMI-SSM-336M (Frozen) 8.9546 ±0.0577 0.0194 ±0.0003 0.8135 ±0.0253 1.6374 ±0.0682 0.746 ±0.0029
OSMI-SSM-336M (Fine-tuned) 2.2175 ±0.3194 0.0104 ±0.0001 0.7222±0.0139 1.6288±0.0347 0.6048±0.0023

Results presented in Table 5 indicate that OSMI-SSM-336M achieves performance comparable to
state-of-the-art models, securing the second-best results in four of the five regression benchmarks
evaluated. This demonstrates the efficacy of the Mamba-based approach in delivering results on par
with Transformer-based methods, while also highlighting its robustness across a range of chemical
property prediction tasks. The design of OSMI-SSM-336M aims to strike an optimal balance between
predictive accuracy and inference efficiency. To exemplify this balance, we provide an analysis
comparing the inference time for predicting HOMO-LUMO properties on a dataset of 10 million
samples randomly selected from PubChem. This study underscores the model’s capability to maintain
high prediction accuracy while significantly reducing computational time, thereby offering practical
advantages for large-scale chemical property predictions.

Speed inference for HUMO-LUMO properties prediction: To assess the inference speed of the
proposed Mamba-based approach, we conducted predictions of HOMO-LUMO properties for 10 mil-
lion samples randomly selected from PubChem. For comparison, we evaluated the inference time of
SMI-TED289M, a Transformer-based model recognized for its state-of-the-art performance. Figure 2
illustrates the superior inference speed of OSMI-SSM-336M compared to SMI-TED289M. Specifi-
cally, SMI-TED289M required 20,606.76 seconds for HOMO property predictions and 21,038.43
seconds for LUMO property predictions using a single NVIDIA V100 32GB GPU. In contrast,
OSMI-SSM-336M completed HOMO predictions in 9,735.64 seconds and LUMO predictions in
9,823.64 seconds on the same GPU. These results highlight the substantial efficiency gains of the
OSMI-SSM-336M model in terms of inference speed.

The Mamba-base approach demonstrates a substantial improvement in efficiency, being approximately
54% faster and reducing GPU usage by 6 hours, while also decreasing CO2 emissions by an average
of 0.78 kg equivalent [39]. This reduction in computational resources is crucial for minimizing the
environmental impact of machine learning models, which requires significant energy consumption
and associated carbon footprints [40].

4.2 Reaction-yield prediction

Previously, we were able to show that the proposed Mamba-based model was able to perform com-
pared to transformer-based methods on single molecule properties prediction. Here, we investigate the
Mamba-based approach on chemical reactions. Chemical reactions in organic chemistry are described
by writing the structural formula of reactants and products separated by an arrow, representing the
chemical transformation by specifying how the atoms rearrange between one or several reactant
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Figure 2: The figure shows the inference speed for OSMI-SSM-336M and SMI-TED289M for HOMO-
LUMO predictions considering a dataset of 10M samples randomly selected from PubChem and a
single NVIDIA V100 32GB GPU.

molecules and one or several product molecules. Predicting outcomes of chemical reactions, such
as their yield based on data gathered in high-throughput screening, is an important task in machine
learning for chemistry. Fig. 3 the schema for chemical reaction.

Figure 3: This figure illustrates the schema for chemical reaction yield prediction based on reaction
SMILES considering the OSMI-SSM-336M model.

We assessed this architecture against state-of-the-art methods using a high-throughput dataset of
Buchwald–Hartwig cross-coupling reactions, focusing on predicting reaction yields [25]. This
involves estimating the percentage of reactants converted into products. Our evaluation adhered to
the schema and data divisions outlined in [25]. Table 6 presents the results for the OSMI-SSM-336M
model and compares its performance with existing state-of-the-art approaches.

Table 6: Performance of OSMI-SSM-336M compared with the state of the art in reaction-yield
prediction on experimentally determined yields of Buchwald–Hartwig reactions through HTEs.

Subset/Split DFT Yield-BERT Yield-BERT (Aug) DRFP YieldGNN MSR2-RXN Ours
Rand 70/30 0.92 0.95±0.005 0.97±0.003 0.95±0.005 0.96±0.005 0.94±0.005 0.9823 ±0.0007
Rand 50/50 0.9 0.92±0.01 0.95±0.01 0.93±0.01 - 0.93±0.01 0.982 ±0.0004
Rand 30/70 0.85 0.88±0.01 0.92±0.01 0.89±0.01 - 0.90±0.01 0.978 ±0.0013
Rand 20/80 0.81 0.86±0.01 0.89±0.01 0.87±0.01 - 0.87±0.01 0.973 ±0.0006
Rand 10/90 0.77 0.79±0.02 0.81±0.02 0.81±0.01 - 0.80±0.02 0.952 ±0.0023
Rand 5/95 0.68 0.61±0.04 0.74±0.03 0.73±0.02 - 0.69±0.03 0.903 ±0.0043

Rand 2.5/97.5 0.59 0.45±0.05 0.61±0.04 0.62±0.04 - 0.57±0.05 0.846 ±0.0044
Test 1 0.8 0.84±0.01 0.80±0.01 0.81±0.01 - 0.83±0.03 0.9827 ±0.0002
Test 2 0.77 0.84±0.03 0.88±0.02 0.83±0.003 - 0.83±0.01 0.9827 ±0.0005
Test 3 0.64 0.75±0.04 0.56±0.08 0.71±0.001 - 0.69±0.04 0.9823 ±0.0012
Test 4 0.54 0.49±0.05 0.43±0.04 0.49±0.004 - 0.51±0.04 0.9825 ±0.0008

Average 1-4 0.69 0.73 0.58±0.33 0.71±0.16 - 0.72±0.15 0.9826 ±0.0005

The results presented in Table 6 clearly demonstrate the superiority of the proposed Mamba-based
foundation model when benchmarked against state-of-the-art methods, including gradient-boosting
and fingerprint-based approaches (DRFP) [41], a DFT-based random forest model (DFT) [41], and
transformer-based models like Yield-BERT [42] and its augmented variant, Yield-BERT(aug.) [42],
and MSR2-RXN [43]. The performance of the Mamba-based model can be attributed to its pre-
training on an expansive dataset of 91 million curated molecules, which provides a robust foundation
of chemical knowledge that significantly enhances its predictive capabilities. This pre-training enables
the model to achieve high accuracy even with limited training data, as evidenced by its sustained
performance when trained on just 2.5% of the available samples—a scenario where task-specific
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models experience a marked decline in accuracy. To ensure the robustness of our model, we conducted
each experiment with 10 different random seeds.

One key observation is the model’s robustness across various data splits, particularly in low-resource
settings where only a small fraction of the dataset is used for training. This resilience underscores the
importance of leveraging large-scale pre-training to encode generalized chemical knowledge, which
can then be fine-tuned for specific tasks like reaction yield prediction. In contrast, models that are
tailored specifically for a given task tend to overfit to the nuances of the training data and struggle to
generalize when the training set size is reduced, highlighting a critical limitation in their design.

Moreover, the robustness of the Mamba-based model extends to its performance on out-of-domain
test sets. The ability to generalize well to data distributions that differ from the training set is a crucial
aspect of model evaluation, particularly in real-world applications where the diversity of chemical
reactions is vast. The Mamba-based model’s consistent performance across both in-domain and
out-of-domain test sets illustrates the efficacy of pre-training on a diverse and comprehensive dataset,
which equips the model with the flexibility to handle a wide range of chemical environments and
reaction conditions.

The comparative analysis between the Mamba-based model and other state-of-the-art methods also
sheds light on the limitations of traditional approaches like DFT-based models, which, despite
their theoretical grounding in quantum chemistry, may not capture the full complexity of reaction
mechanisms in practical scenarios. Similarly, while transformer-based models like Yield-BERT
and its augmented variant exhibit strong performance, they fall short of the Mamba-based model,
particularly in low-data regimes, indicating that the sheer scale and diversity of the pre-training data
play a pivotal role in achieving superior results.

These findings underscore the potential of foundation models in chemistry, where pre-training on
large, diverse datasets can serve as a powerful paradigm for developing models that are not only
accurate but also robust and generalizable. The implications of this work extend beyond reaction yield
prediction, suggesting that similar strategies could be applied to other domains within computational
chemistry and materials science, where the ability to generalize across diverse datasets is of paramount
importance.

4.3 Decoder evaluation over MOSES benchmarking dataset

Next, conducted a comparative evaluation of the OSMI-SSM-336M model against several baseline
models for SMILES reconstruction and decoding, using a test set comprising 176,000 molecules. The
evaluation metrics, detailed in Table 7, provide a comprehensive view of the model’s performance
in key areas such as fragment similarity (Frag), scaffold similarity (Scaf), similarity to the nearest
neighbor (SNN), internal diversity (IntDiv), and Fréchet ChemNet Distance (FCD).

Table 7: MOSES benchmarking dataset evaluation.

Metric Frag ↑ Scaf ↑ SNN ↑ IntDiv ↑ FCD ↓
CharRNN [18] 0.9998 0.9242 0.6015 0.8562 0.0732
VAE [18] 0.9984 0.9386 0.6257 0.8558 0.0990
JT-VAE [44] 0.9965 0.8964 0.5477 0.8551 0.3954
LIMO [45] 0.6989 0.0079 0.2464 0.9039 26.78
MolGen-7b [46] 0.9999 0.6538 0.5138 0.8617 0.0435
GP-MoLFormer [47] 0.9998 0.7383 0.5045 0.8655 0.0591
OSMI-SSM-336M 0.9999 0.9994 0.9960 0.8561 0.0025

The results indicate that OSMI-SSM-336M not only matches but surpasses the performance of state-
of-the-art models in generating unique, valid, and novel molecules. Its near-perfect score in the Frag
metric highlights its remarkable ability to retain the structural integrity of molecular fragments, a
crucial aspect in ensuring the generated molecules remain chemically viable and relevant to real-world
applications. This high fragment similarity, coupled with the model’s low FCD score, suggests that
the distribution of generated molecules closely mirrors that of natural molecules.

In addition to fragment-level accuracy, OSMI-SSM-336M demonstrates superior performance in
scaffold similarity (Scaf) and nearest neighbor similarity (SNN). These metrics are particularly
important in drug discovery and design, where the preservation of core molecular scaffolds is
essential for maintaining biological activity. The model’s ability to generate molecules with high
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scaffold similarity indicates that it can reliably reproduce the core structural features of molecules,
which is a requirement for generating candidate compounds that retain their intended biological
function.

Another significant finding is the model’s performance in internal diversity (IntDiv). While high
similarity scores are important, diversity within the generated set is equally crucial, especially in
scenarios where a broad exploration of chemical space is required. The OSMI-SSM-336M model
achieves a commendable balance, maintaining high similarity metrics while also generating molecules
with substantial pairwise dissimilarity. This capability to generate a diverse array of molecules
without sacrificing structural integrity makes the model highly valuable for applications in drug
discovery, where exploring a wide range of chemical possibilities is often necessary to identify
optimal candidates.

Furthermore, when compared to traditional methods such as CharRNN and more advanced ap-
proaches like JT-VAE and MolGen-7b, the OSMI-SSM-336M model consistently outperforms across
all evaluated metrics. This includes models like LIMO, which, despite its strong internal diversity,
fails to match the other metrics, indicating a trade-off in these approaches that OSMI-SSM-336M
successfully mitigates. The model’s ability to achieve high scaffold similarity while maintaining
diverse molecular structures suggests that its pre-training on a large-scale dataset equips it with a
broad understanding of chemical space, enabling it to generalize effectively across various molecular
configurations.

5 Conclusion

This paper introduces OSMI-SSM-336M , a Mamba-based chemical foundation model pre-trained on
a curated dataset of 91 million SMILES samples from PubChem, encompassing 4 billion molecular
tokens. The model is designed to achieve a balance between high performance in evaluation metrics
and faster inference capabilities.

The efficacy of OSMI-SSM-336M was rigorously assessed across a variety of tasks, including molecu-
lar property classification and prediction. The model not only achieved state-of-the-art results but
also demonstrated significant efficiency improvements. Specifically, it was approximately 54% faster
than existing state-of-the-art Transformer-based approaches, reducing GPU usage by 6 hours and
lowering CO2 emissions by an average of 0.78 kg CO2 equivalent [39] during the prediction of
HOMO-LUMO gaps for a dataset of 10 million randomly selected samples from PubChem.

We also explored the model’s capabilities in predicting chemical reaction outcomes, such as reaction
yields based on high-throughput screening data, a critical task in machine learning for chemistry.
The consistent performance of the Mamba-based model across both in-domain and out-of-domain
test sets underscores the effectiveness of pre-training on a diverse and comprehensive dataset. This
pre-training enables the model to adapt to a wide range of chemical environments and reaction
conditions. Our comparative analysis revealed that while traditional approaches, such as DFT-based
models, are grounded in quantum chemistry, they may not fully capture the complexity of reaction
mechanisms in practical scenarios. Similarly, transformer-based models like Yield-BERT and its
augmented variant, despite their strong performance, are outperformed by the Mamba-based model,
particularly in low-data regimes. This highlights the critical role that large-scale, diverse pre-training
data plays in achieving superior results.

Finally, we conducted a comparative evaluation of the OSMI-SSM-336M model against several
baseline models for SMILES reconstruction and decoding. The model’s performance across diverse
metrics demonstrates the importance of leveraging large-scale dataset for pre-training, which can
lead to models that not only excel in generating high-quality molecules but also possess the flexibility
required to tackle complex challenges in computational chemistry and drug design.

The Mamba-based foundation model presented in this paper offers both flexibility and scalability for
a wide range of scientific applications.
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