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ABSTRACT

Recommender systems often suffer from popularity bias, where items with high
historical engagement ensure a dominant presence in the recommendation lists
while equally relevant but less popular items (called niche items) remain under
exposed towards majority of the users, thus impacting their reach within main-
stream platforms. This bias arises partly due to the learning strategy of exist-
ing recommender models which display heavy reliance on interaction frequency
and shallow contextual features that characterize any item, which fail to capture
the true preferences of any users. To address this, we propose Expl-Debias, a
novel framework that leverages holistic explanations to enrich user–item prefer-
ence modeling and mitigate popularity bias. Expl-Debias operates in two stages:
(Stage-1) a base training phase that learns general user–item utility, and (Stage-2)
a contrastive explanation-aware training phase that incorporates LLM-generated
positive and negative explanations to explicitly guide relevance learning toward
personally aligned items and away from popular yet irrelevant ones. Extensive
experiments on three real-world datasets demonstrate that our approach signif-
icantly improves recommendation accuracy while substantially reducing popu-
larity bias, outperforming state-of-the-art LLM recommendation and debiasing
baselines. These results demonstrate that integrating contrastive explanations
offers an effective new direction for mitigating popularity bias in recommen-
dation by balancing the tradeoff occurring between the recommendation per-
formance and the negative effect of popularity bias. We provide our code at
https://anonymous.4open.science/r/Expl-Pop-Bias-089A/.

1 INTRODUCTION

Over the recent years, recommender systems have been very relevant for practical uses to bridge
the gap between users and products/services. Recommendation systems significantly enhance user
experience by providing personalized suggestions justifying why the suggestions predicted by any
recommender are presented to any user. Explanations offer advantages to all the different entities
of a recommender such as the users, manufacturers/provisioners and developers (Zhang and Chen,
2020; Chen et al., 2022b). Manufacturers/Provisioners can use explanations to their advantage for
increasing the visibility of their products/services by highlighting the important aspects which will
attract the users for further interaction. Beyond user trust, explanations also play a critical role in
evaluating and diagnosing the fairness of recommendation outcomes, highlighting potential biases
or disparities within the system. In practice, system developers leverage explanations to a major
extent in detecting/resolving any hidden issues existing within the model outcomes: such as bias
disparities (Pan et al., 2021; Ge et al., 2022a), privacy leakage (Ghazimatin et al., 2020; Zhao et al.,
2022) or model malfunctioning due to attacks (Fan et al., 2023; Tao et al., 2018) . From a practical
perspective, explanations could be utilized for practical diagnosis of model outcome disparities.

However, there has been significant work raised in literature which validates the fact that most of
the recommender algorithms exhibit algorithmic bias in their outcomes. In general, item-side bi-
ases are more implicit and they are much more difficult to detect. Additionally, item-side biases
such as popularity biases present numerous critical consequences which can impact both the users
and the manufacturers simultaneously (Zhao et al., 2025; Chen et al., 2021). Popularity bias occurs
when recommendation systems disproportionately promote items already enjoying high engage-
ment, thereby sidelining equally relevant but less popular alternatives, leading to a phenomenon
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Traditional Debiasing Methods Expl-Debias Framework

Excessive Popularity Bias leads to Matthew Effect Explanations help model learn the correct preferences

Item A : Trending #1 
Novel

Item B : Best-Selling 
Brand Novel

Item C : 2K+ bought 
this book last week

Item D: Relevant Book 1

Item E: Relevant Book 2

Item D
...likes because they 
like Japanese fantasy literature

...does not like because they are 
thriller novels you disliked earlier

Item E
...likes because they are literary 
fantasy

...does not like because the 
author does not write in English.

Item C : 2K+ bought 
this book last week

Item A : Trending #1 
Novel

Figure 1: Comparison between the recommendation suggestions provided by traditional debiasing
methods and our proposed Expl-Debias framework.

called Mathew’s Effect (Abdollahpouri, 2019). This phenomenon significantly impacts user expe-
rience by limiting exposure to diverse content and products and by repeatedly reinforcing the most
popular items within the existing market, thereby diminishing the user satisfaction. This effect could
disadvantage smaller creators or businesses who could eventually be phased out and therefore re-
duce their involvement with the platform. Meanwhile, it bears a major influence in disappointing
the providers since their products/services will also receive a limited reach across consumers which
would negatively impact their viability. Therefore, there is a dire requirement to ensure fairness
amongst the recommendation outcomes within any recommender algorithm.

There have been many methods which have inspected and mitigated item-side unfairness amongst
recommender systems. In general, most of these methods have diagnosed the root cause attributed
within recommendation algorithms being overly reliant on historical interaction data, inherently
favoring items with higher visibility and prior engagement. The main reason behind such reliance
is because traditional recommendation algorithms often lack a comprehensive modeling of user
preferences that considers the true relevance of items (Deldjoo et al., 2022; Yalcin and Bilge, 2021).
Although there have been previous works that have combined different forms of data which provide
additional information about items, there has been paucity of methods which have considered the
deeper relationship between any specific user and item.

In order to resolve this missing aspect, explanations can be leveraged to ensure clear input signals
that specify why certain items are recommended or ignored. This is because explanations have the
capabilities to specify both the pros and cons of each item towards any user in detail, thus providing
a solid base for improving the recommendation quality. For example, consider a user browsing an
online book database who frequently receives suggestions for most-popular/in-demand novels. A
traditional recommender, relying merely on past purchase data, some contextual information and
item popularity, may continue to promote these bestsellers, even if the user has recently shown
interest in underexplored genres such as “translated Japanese fantasy literature.” The quality of rec-
ommendations can be enhanced by leveraging explanations which would include direct display of
the user’s preferences towards such underexplored set of items. This behavior can be accentuated
through explanation texts such as: “This book is suggested because it matches your recent queries
about Japanese authors and literary fantasy fiction, while also slightly aligned with one of your dis-
liked thriller novels.” These explanations adds transparency within the model and it would help for
easier recognition of personally relevant recommendations and mitigates the dominance of already-
popular items in their recommendation list, as shown in Fig. 1. Therefore, using explanations while
modeling the personalized preferences can facilitate the strong likes and dislikes of any user.

In this work, we seek to mitigate popularity bias existing within recommendation algorithms by
enhancing the comprehensiveness of personalized preferences of each user. We focus our work pri-
marily towards including explanations that describe completely about an item’s pros and cons which
would be introduced while modeling user-item interaction data. Our study addresses the lack of
learning complete true user preferences and their effect on exacerbating popular bias by present-
ing a holistic approach that integrates explainability into recommender systems, demonstrating its
effectiveness in mitigating popularity bias. We enlist our contributions as follows:

• We propose a novel explanation-based perspective for recommendation, where both positive (pros)
and negative (cons) explanations are incorporated to model user–item relationships, offering a
more complete and fine-grained view of user preferences.
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• We design a two-stage debiasing framework, Expl-Debias, that first learns base latent user–item
preferences from interaction data (Stage-1), and then enhances the learning through contrastive
training on explanation embeddings (Stage-2) to explicitly align relevance learning by comparing
positive aspects with respect to the negative aspects for any item according to each user.

• We present an LLM-driven explanation generation and encoding pipeline that automatically con-
structs user-specific positive and negative explanations from textual profiles, enabling the model
to capture true preferences and substantially reduce the dominance of popular items in top-K
recommendations.

The remaining paper is organized as follows: Related work is discussed in Section 2. We detail our
framework’s methodology and design in Sections 3 and 4 respectively and offer the experimental
setup in Section 5. We provide result analysis and conclusions in Sections 6 and 7.

2 RELATED WORK

2.1 EXPLANATIONS INTO RECOMMENDATION

Prior work has mainly used explanations to help consumers understand why recommended items
match their preferences Chen et al. (2022b); Zhang and Chen (2020); Wardatzky et al. (2025), and
as tools for fairness diagnostics in AI and recommender systems, including counterfactual reasoning
Chang et al. (2024); Chen et al. (2024); Li et al. (2024); Ge et al. (2022b); Deldjoo et al. (2021). With
the rise of Large Language Models (LLMs), researchers have further leveraged rich semantic texts
to enhance user and item representations Silva et al. (2024); Xu et al. (2025a); Yang et al. (2024);
Wang et al. (2024). Empirical evidence shows that integrating detailed item descriptions Xu et al.
(2025b); Ren et al. (2024); Pauw et al. (2022) or preference-reasoning texts Zhang et al. (2023c);
Gao et al. (2023) can substantially strengthen model training. Accordingly, explanations have been
incorporated into objectives Sun et al. (2020); Dong et al. (2023) or training data Yu et al. (2024);
Bismay et al. (2024) to tightly couple explanation quality with recommendation performance.
Recent work has explored mitigating popularity bias through LLM-generated profile texts Xv et al.
(2022); Tang et al. (2024a); Liu et al. (2023); Wang et al. (2023), but these representations remain
indirect and do not encode users’ explicit likes and dislikes. Although generic explanation texts have
been used to address diversity or hate-bias concerns Lin et al. (2024a); Cai et al. (2022); Yang et al.
(2021), little attention has been paid to explanations that precisely articulate item pros and cons and
their alignment with users. Motivated by contrastive learning approaches that utilize both positive
and negative explanations Wang et al. (2025); Lin et al. (2024b), we introduce a method that tackles
item-side popularity bias by jointly exploiting positive and negative reasoning texts while improving
recommendation accuracy.

2.2 POPULARITY DEBIASING

Popularity bias occurs when the top recommendations provided by the users are mostly occupied
by the items interacted by many users (Zhu et al., 2022; 2021), leading to an unfair representation
of recommendations filled with mostly popular items over other items for any user. This problem
occurs in the user modeling phase of the feedback loop (Chen et al., 2021) and causes the over-
representation of certain items over the others by virtue of its increased concentration within the
interaction history of all the users. Most of the approaches are training-based in resolving the prob-
lem which mostly rely on regularization (Abdollahpouri et al., 2017; 2019; Wasilewski and Hurley,
2016; Chen et al., 2020; 2022a). There are certain novel approaches in resolving popularity bias
such as: adversarial-based (Krishnan et al., 2018), chronological adjustments (Ji et al., 2020; Zhu
et al., 2021), causality-related (Wang et al., 2021; Zhang et al., 2021; Bonner and Vasile, 2018) and
information-based approaches (Tang et al., 2024b; Chen et al., 2023). However, there are not many
approaches that have considered improving the deeper modeling of user-item interactions based on
their true relevance via explanations. Although some works have incorporated the aspect of rea-
soning into debiasing algorithms (Wei et al., 2021; Liu et al., 2024; Zhang et al., 2023a), they have
not directly included explanations into the learning schema. In this study, we focus on such an
explanation-based perspective for mitigating popularity bias.

3
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3 PRELIMINARY

In this section, we will describe the preliminaries and analyze the real-world feasibility of our study,
by highlighting the necessity of designing our method towards mitigating popularity bias.
3.1 POPULARITY BIAS IN RECOMMENDERS

We define dataset D comprising of m users U = {u1, u2 . . . um} and n items V = {v1, v2 . . . vn}.
For each item v ∈ V , we can arrange it in increasing order of the count of users who have in-
teracted with it (e.g., clicking/reviewing) and identify the most popular item set V P . Typically,
recommenders learn to rank items based on the input information Xu,v for any user-item pair (u, v)
that is either based on numerical ID values or contextual information that can be presented via texts
and images. Let us denote any recommender g that learns to predict the user-item matching score
for any user-item pair (u, v) as gΘ(X,u, v).

Typically, we observe that the user-item matching relies heavily on existing information X that de-
scribes either only about the user u (name, location, age) or the item v (title, description, brand).
However, such contextual information lacks an effective representation of direct correlations be-
tween the user and item. In order to resolve this problem, we propose leveraging explanations E for
learning to rank items.

We note that explanations can be leveraged to describe the pros and cons about any item. Positive
explanations E+ illustrate why a user might prefer or engage with a particular item, thus helping
the recommender model g to better capture preference patterns. Conversely, negative explanations
E− remark the reasons for disinterest or dissatisfaction, enabling g to recognize and avoid recom-
mending items that align poorly with user preferences. By integrating the two types of explanations,
recommender can learn in a more effective and deeper manner, leading towards more nuanced rec-
ommendation scoring. We can predict top-K recommendation list RK

u for each user u ∈ U with
Equation 1.

RK
u = arg

K
max
v∈V

gΘ(E+, E−, X, u, v) (1)

This approach inherently reduces the risk of overly promoting popular items v ∈ V P by guaran-
teeing more balanced exposure of niche or less-known items that align closely with individual user
interests. In this study, we express the goal of debiasing recommender g with utility loss Lutility(·; ·)
for each sample in D with label y mathematically in Equation 2.

minimize
Θ

Lutility(gΘ(E+, E−, X, u, v), y), ∀(u, v) ∈ D (2)

Here, positive explanations increase the relevance score when their semantics describe item aspects
that align with user preferences, while negative explanations reduce the score when they reveal
the disliked aspects about the item. Although we do not impose an explicit popularity-fairness
constraint, the model introduces an implicit debiasing effect through explanation-aware contrastive
scoring through both the explanations. We describe this difference more in detail in Section 4.2 in
Stage 2.

3.2 REAL-WORLD MOTIVATION

Popularity bias in recommender systems is increasingly apparent in real-world platforms, where
frequently interacted items disproportionately dominate user feeds, marginalizing less known yet
potentially relevant items. Consider a major online platform like Yelp, where highly popular busi-
nesses such as sea-food restaurants consistently dominate user recommendations due to their un-
usually increased presence across interaction of many customers. As a result, equally capable but
less popular restaurants, such as niche local restaurants or new cuisines, receive minimal visibil-
ity, thus restricting the choices of users and potentially decreasing overall satisfaction of customers.
We can observe similar phenomenon occurring across business-related e-commerce platforms like
Amazon/E-Bay.

This disparity caused by item-side popularity poses significant challenges. Firstly, it impairs the user
experience by limiting diversity and hindering the discovery of novel and personally relevant items.
Secondly, it disadvantages manufacturers of niche products, constraining their market reach and
growth opportunities. In order to mitigate such scenarios, there is a requirement for researchers to
ensure more relevant recommendations customized to each customer. Incorporating explainability

4
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User ID (u)

Item ID (v)

Stage-1 Framework- Recommendation Utility

Purchase 
History

HU

Stage-2 Framework - Contrastive Explanation Learning

LLM-
Explanation
-Generator

Positive 
Explanation 
Prompt ( P+)

Negative 
Explanation 
Prompt ( P- )

Negative Explanation

( E- )

Item Embedding

User Embedding

Positive Explanation 

( E+ )

Explanation-
Encoder

Pos Explanation Embedding (e+)

Neg Explanation Embedding (e-) Deep 
Factorization 

Machine

Training
Frozen

Figure 2: Our Expl-Debias Framework. Stage-1 consists of training user and item embeddings
within a typical BPR-based pairwise learning style. Stage-2 consists of learning using a contrastive
learning approach entirely based on positive and negative explanations across each user-item sample.

into recommendations can substantially resolve this issue. For instance, explicitly stating that a
recommendation was made because “this niche smartphone matches your preference for advanced
photography and long battery life” or that “this special cuisine aligns closely with your past visit
history” helps users understand and trust these suggestions. Transparent explanations encourage
users to explore and interact with less popular but personally relevant items, thereby fostering a
fairer distribution of visibility.

In this study, we wish to present an even-handed perspective of explanations while modeling user
interactions by providing both the pros and cons of any item according to each user.
4 EXPL-DEBIAS: SETUP AND DESIGN

In this section, we discuss our debiasing framework named Expl-Debias that primarily consists of
two training stages. Stage 1 involves training a recommender with basic ranking capabilities while
Stage 2 involves a fine-grained approach that trains each sample to rank based on its explanation
content for justifying the recommendation. Fig 2 represents our framework design. In Appendix
A.4, we present a popularity-based ranking algorithm which performs final ranking by improving
the unnecessary top ranking of popular items while maintaining the relevance of the recommender.

4.1 STAGE 1: VANILLA RECOMMENDATION UTILITY

In order to endow fundamental recommendation utilities to any recommender, we optimize a learn-
ing to rank objective that involves supervised training of user-item samples with their actual interac-
tion outcomes. This stage should enable any recommender to perform basic ranking utilities merely
using ID-based inputs. At this stage, the model is trained to distinguish user-preferred items using
only user and item IDs, without any auxiliary or explanation-based features. In order to ensure the
model can learn strong preferences amongst items, we guarantee that the recommender possesses
the capability of ranking one item over another for each user.

Therefore, we optimized our recommender using Bayesian Personalized Ranking (Rendle et al.,
2012) loss function that learns to rank positive items v+ ∈ V (items that have been inter-
acted/clicked: (u, v+) ∈ D ) higher than the negative items v− ∈ V (items that are not at all
interacted by user: (u, v−) ̸∈ D ). We express the optimization objective for recommender g with
model parameters Θ in Equation 3.

min
Θ

∑
(u,v+)∈D;(u,v−) ̸∈D

− log(σ(gΘ(u, v+))− σ(gΘ(u, v−))) (3)

where σ denotes the sigmoid function. This learning-to-rank objective lays the foundation for more
nuanced and fine-grained explanation-aware training in subsequent stages.

4.2 STAGE 2: CONTRASTIVE EXPLANATION LEARNING

In this stage, we increase the capabilities of the recommender to match user-item interactions based
on enhanced inputs. While most of the traditional recommenders optimize to distinguish positive
and negative items across all users, there is a lack of optimization in a more fine-grained approach.
These recommenders lack the capability of completely understanding the contributing aspects of rec-
ommending an item to any user. We hypothesize that this information can be supplemented through
explanations because they can be leveraged to describe the reasons for encouraging/discouraging
any item. These explanations provide salient features that improve modeling the relevance of any
item towards any user, thus offering increased advantages over existing traditional recommenders.

5
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Therefore, we include explanations (say E) into the training objectives to offer higher scope of
improvement in the recommendation quality.

However, explanations are typically generated post-hoc and in practice, most of the training
pipelines do not include explanations into the model objectives. In order to resolve this issue, we first
utilize the advanced capabilities of Large Language Models for generating explanations to explain
why an item would possibly be/not be recommended to any user. While explanations are typically
provided for encouraging item suggestion, we desire the true relevance of each user-item interaction.
Therefore, we leverage LLMGenerate to generate two sets of explanations: positive which specify rea-
sons why an item is recommended and negative which discourage by stating the possible disadvan-
tages of the item. For generating the explanations, we use instruction prompts P+ and P− with the
user/item information X found in the datasets. We describe the prompts and the context information
used for generating explanations in Appendix A.1.

With the intention of enriching the generation of explanations, we supplement P+ and P− with the
profiles of historical items Hu = {vu1 , vu2 , . . . } that have already been interacted by the user as well
as the current item that is being considered. We consider item titles and descriptions for creating
item profiles, indicated as Prof(·), and we concatenate profiles for each item in Hu for forming the
purchase history profiles. We formulate the mathematical expression for generating positive and
negative explanations (E+ and E− respectively) as follows in Equations 4 and 5

E+(u, v) = LLMGenerate(P+ ⊕ Prof(v)⊕ {Prof(i) ∀i ∈ Hu}) (4)
E−(u, v) = LLMGenerate(P− ⊕ Prof(v)⊕ {Prof(i) ∀i ∈ Hu}) (5)

where ⊕ represents concatenation of texts according to the prompt format.

Following this step, we aim to train the recommender g to learn personalized preferences in a nu-
anced and even-handed manner. In order to achieve this, we intend to encourage the matching
score of user-item interactions when provided with E+ while discouraging the matching score when
given E−. We embed the textual explanations into embedding vectors using LLMEmbed for repre-
senting the explanations as inputs to recommender g. Through this approach, we aim to present a
contrastive learning approach which matches with a higher probability when positive reasons are
provided while lower probability scores are predicted when negative reasons are offered. In order to
realize this goal, we again leverage BPR loss in a fine-grained level across each sample (u, v) ∈ D
for optimizing via a contrastive learning style as in Equation 6

min
Θ

∑
(u,v)∈D

− log
(
σ
(
gΘ(u, v, e+)

)
− σ

(
gΘ(u, v, e−)

))
(6)

where e+ = LLMEmbed(E+) and e− = LLMEmbed(E−).

Optimizing the contrastive objective in Equation 6 encourages to assign a larger value to
gΘ(u, v, e

+) when an item’s positive explanation fits the user’s preferences, and a smaller value
to gΘ(u, v, e

−) when the negative explanation highlights conflicting attributes. As a result, items
whose positive and negative explanation scores diverge strongly are ranked higher, while items
whose explanations provide weak alignment—often popular but irrelevant items—receive only a
small separation between gΘ(e

+) and gΘ(e
−). Hence, contrastive explanation learning reduces the

dominance of popular items. In order to verify the authenticity of the generated explanations, we
evaluate them against the product reviews found in the datasets which is discussed in Appendix A.2.
We additionally discuss the impact of Stage-2 on the model hidden layers in Appendix A.3.

5 EXPERIMENTS

In this section, we provide experimental setup supplementing details regarding datasets, models,
debiasing baseline methods and evaluation metrics. The training details are given in Appendix B.2.

5.1 DATASETS

For this study, we chose e-commerce datasets since this domain has been previously studied for
fairness works in literature and review-based explanations are prominent in this domain. We use
Yelp business and Amazon product review based datasets such as Beauty and Sports. We pre-
process the dataset such that each user and item has at least 5 reviews (5-core version). For

6
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Stage 1, we follow the common leave-one-out protocol: the most recent interaction for each
user is used as the test item, and the second most recent interaction is used for validation.1.
For Stage 2, we use exactly the same train–validation–test split as in Stage 1. The contrastive expla-
nation learning is performed solely on the training instances derived from the Stage 1 split, ensuring
that no information leakage is introduced. Table 1 displays the dataset statistics.

Table 1: Dataset Statistics
Dataset Users Items Reviews Sparsity(%)
Beauty 22,363 12,101 198,502 0.0734
Yelp 30,431 20,033 316,354 0.0519

Sports 35,598 18,357 296,337 0.0454
5.2 RECOMMENDER MODELS

While many non-LLM debiasing approaches exist (e.g., graph-based or ID-based frameworks), these
methods rely on user–item graphs or ID embeddings and are not directly applicable to text-centric
LLM recommenders. We therefore focus on LLM-based models in this study.

• TALLRec (Bao et al., 2023): This model leverages a Low-Rank adaptation-based (LoRA) fine-
tuning on LLaMa models. It only uses textual item data for recommendation tasks.

• CoLLM (Zhang et al., 2023b): This model combines both traditional IDs (Matrix Factorization
for this study) and collaborative textual information by learning user and item embeddings along
with finetuning LLaMa models.

• LLaRA (Liao et al., 2024): This model performs LoRA finetuning on large language models by
enhancing item representation within textual prompts that include item embeddings from Matrix
Factorization for all items along with text-based embeddings from LLaMa model.

5.3 DEBIASING BASELINES

To provide a competitive and fair comparison, we combine popular debiasing strategies with the
above recommenders. The debiasing baselines are:

• FairIPS (Jiang et al., 2024): This in-processing debiasing method optimizes a weighted-loss that
scores each sample based on the inverse popularity weight attached to the item’s popularity group.

• FairPrompt (Xu et al., 2024): This prompting-based method evaluates all trained models with a
unique fairness prompt that induces a much fairer recommendations by prompting them.

5.4 METRICS

We select standard recommendation metrics such as Normalized Discounted Cumulative Gain
(NDCG) and HitRate (HR) that focus on the ranking accuracy of each model. For measuring debias-
ing, we use metrics that track the presence of popular items across recommendations amongst users.
We discuss the debiasing metrics as follows and provide mathematical expressions in Appendix B.1.

• Popularity Rate (PopRate): The proportion of popular items amongst all the items across each
user’s top-K list.

• Kullback Leiber Divergence (KLD): The distributional divergence between the popular-niche
item group distribution across the overall sample population Dtrue = { |V

P |
V , |V |−|V P |

V } and the
predicted item group distribution Dpred in top-K lists.

• User Popular-item Coverage (UPC): The ratio of user count who have at least one popular item
v ∈ V P recommended in their top-K lists to the total number of users.

6 RESULTS

In this section, we discuss how Expl-Debias can improve recommendation performance while ef-
fectively controlling the popularity bias after Stages 1 and 2. We also analyze the effects of posi-
tive and negative explanations on the user preferences on popular and niche items qualitatively and
quantitively. Additionally, we present ablation studies on using different explanation generators and
encoders in Appendices C.2 and C.3, and our re-ranking algorithm results in Appendix C.4.

1This confirms that our test set reflects natural user behavior and is not constructed to contain a dispropor-
tionate number of popular items.
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6.1 DIFFERENT TRAINING STAGES

Table 2: Performance and fairness of all baselines on Beauty, for K = 3, 5, 10. Best results per
metric and K in bold while second-best results are underlined. ↑ means higher scores are better
while ↓ means lower scores are better. Our framework improvements against the best baseline in
each case are statistically significant (paired t-test and Wilcoxon signed-rank test, p < 0.05).

Method K = 3 K = 5 K = 10
NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓)

TallREC 0.0991 0.1239 0.5115 0.5365 0.8759 0.1182 0.1705 0.4599 0.4260 0.9485 0.1469 0.2599 0.3839 0.2829 0.9888
CoLLM 0.1574 0.2026 0.7037 1.0439 0.9549 0.1852 0.2702 0.6351 0.8446 0.9825 0.2202 0.3785 0.5121 0.5376 0.9953
LLARA 0.2184 0.2761 0.6610 0.9173 0.9261 0.2502 0.3535 0.5594 0.6484 0.9541 0.2861 0.4643 0.4004 0.3121 0.9803

TallREC-FairIPS 0.0869 0.1094 0.5328 0.5851 0.8922 0.1025 0.1476 0.4884 0.4856 0.9573 0.1296 0.2323 0.4079 0.3256 0.9899
CoLLM-FairIPS 0.1501 0.1922 0.7417 1.1638 0.9718 0.1763 0.2560 0.6639 0.9259 0.9896 0.2114 0.3646 0.5277 0.5733 0.9979
LLARA-FairIPS 0.1787 0.2127 0.6665 0.9333 0.9325 0.2063 0.2799 0.5662 0.6650 0.9614 0.2821 0.3922 0.4070 0.3238 0.9830

TallREC-FairPrompt 0.1079 0.1295 0.4473 0.4005 0.8156 0.1237 0.1681 0.3927 0.2983 0.8987 0.1476 0.2428 0.3259 0.1902 0.9655
CoLLM-FairPrompt 0.1136 0.1511 0.6022 0.7565 0.9238 0.1399 0.2155 0.5661 0.6649 0.9762 0.1756 0.3261 0.4844 0.4770 0.9964
LLARA-FairPrompt 0.1650 0.2137 0.4513 0.4087 0.8207 0.1946 0.2857 0.4135 0.3359 0.9202 0.2290 0.4591 0.3419 0.2144 0.9800

Stage-1 0.1755 0.1875 0.4257 0.3588 0.7610 0.1863 0.2139 0.3858 0.2862 0.8552 0.2044 0.2708 0.3184 0.1793 0.9458
Stage-2 0.2030 0.2057 0.3747 0.2672 0.7253 0.2071 0.2160 0.3552 0.2353 0.8460 0.2191 0.2537 0.3150 0.1745 0.9436

Table 3: Performance and fairness of all baselines on Yelp for K = 3, 5, 10. Other details are the
same as in Table 2.

Method K = 3 K = 5 K = 10
NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓)

TallREC 0.2948 0.3232 0.4601 0.4263 0.7987 0.3228 0.3915 0.4027 0.3161 0.8735 0.3648 0.5222 0.3327 0.2004 0.9352
CoLLM 0.2118 0.2602 0.5666 0.6660 0.8859 0.2416 0.3329 0.4948 0.4996 0.9379 0.2806 0.4540 0.3818 0.2794 0.9768
LLARA 0.3109 0.3875 0.5861 0.7149 0.8405 0.3563 0.4982 0.4831 0.4743 0.8624 0.4087 0.6602 0.3180 0.1787 0.9316

TallREC-FairIPS 0.3277 0.3448 0.4106 0.3306 0.7539 0.3472 0.3926 0.3703 0.2599 0.8439 0.3698 0.5000 0.3071 0.1633 0.9251
CoLLM-FairIPS 0.2035 0.2502 0.5081 0.5287 0.8456 0.2317 0.3190 0.4412 0.3885 0.9136 0.2710 0.4413 0.3441 0.2178 0.9673
LLARA-FairIPS 0.3074 0.3840 0.5893 0.7233 0.8411 0.3533 0.4958 0.4871 0.4829 0.8638 0.4060 0.6586 0.3225 0.1853 0.8878

TallREC-FairPrompt 0.2145 0.2584 0.4972 0.5048 0.7749 0.2427 0.3270 0.4550 0.4160 0.8456 0.2809 0.4456 0.3754 0.2685 0.9197
CoLLM-FairPrompt 0.1167 0.1504 0.4778 0.4631 0.8440 0.1375 0.2009 0.4110 0.3313 0.9175 0.1687 0.2982 0.3223 0.1850 0.9768
LLARA-FairPrompt 0.2091 0.2725 0.4759 0.4592 0.8002 0.2508 0.3742 0.4128 0.3345 0.8670 0.3019 0.5322 0.3127 0.1713 0.9299

Stage-1 0.3088 0.3118 0.3909 0.2951 0.7237 0.3158 0.3290 0.3710 0.2612 0.8383 0.3372 0.3967 0.3204 0.1822 0.8852
Stage-2 0.3565 0.3581 0.3839 0.2829 0.7430 0.3593 0.3649 0.3653 0.2516 0.8622 0.3816 0.3983 0.2982 0.1513 0.9551

Table 4: Performance and fairness of all baselines on Sports for K = 3, 5, 10. Other details are the
same as in Table 2.

Method K = 3 K = 5 K = 10
NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓) NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓)

TallREC 0.0353 0.0482 0.2619 0.1058 0.5974 0.0466 0.0759 0.2372 0.0787 0.7383 0.0664 0.1378 0.2034 0.0473 0.8956
CoLLM 0.0981 0.1273 0.7723 1.2662 0.9818 0.1177 0.1753 0.6780 0.9670 0.9938 0.1449 0.2287 0.5154 0.5453 0.9985
LLARA 0.1371 0.1749 0.5736 0.6836 0.9016 0.1614 0.2340 0.4841 0.4765 0.9495 0.1968 0.3444 0.3658 0.2526 0.9844

TallREC-FairIPS 0.0402 0.0539 0.3183 0.1793 0.6764 0.0512 0.0807 0.2816 0.1297 0.8048 0.0733 0.1499 0.2354 0.0770 0.9298
CoLLM-FairIPS 0.0963 0.1244 0.6269 0.8225 0.9270 0.1138 0.1673 0.5511 0.6284 0.9673 0.1387 0.2445 0.4316 0.3702 0.9915
LLARA-FairIPS 0.0978 0.1257 0.7063 1.0520 0.9645 0.1151 0.1679 0.6030 0.7586 0.9839 0.1393 0.2430 0.4492 0.4045 0.9957

TallREC-FairPrompt 0.0434 0.0548 0.1693 0.0226 0.4271 0.0536 0.0795 0.1642 0.0196 0.5918 0.0727 0.1393 0.1542 0.0143 0.8125
CoLLM-FairPrompt 0.0962 0.1250 0.7584 1.2192 0.9784 0.1155 0.1720 0.6637 0.9253 0.9924 0.1427 0.2567 0.5001 0.5113 0.9981
LLARA-FairPrompt 0.0671 0.0893 0.3143 0.1736 0.6676 0.0825 0.1269 0.2793 0.1268 0.7943 0.1090 0.2094 0.2327 0.0742 0.9205

Stage-1 0.1845 0.1860 0.4318 0.3705 0.7819 0.1879 0.1946 0.4122 0.3336 0.8888 0.2014 0.2372 0.3645 0.2504 0.9653
Stage-2 0.2139 0.2142 0.1214 0.0024 0.3198 0.2147 0.2160 0.1136 0.0010 0.4478 0.2187 0.2600 0.1072 0.0003 0.6648

6.1.1 STAGE 1: VANILLA RECOMMENDATION UTILITY

We observe that traditional BPR-style vanilla recommendation training achieves a recommendation
performance that is broadly comparable to existing baselines. This trend is consistent across all three
datasets, as shown in Tables 2, 3, and 4. Stage-1 establishes strong fundamental recommendation
capabilities by learning implicit user–item preferences through basic ID-based embeddings. Pair-
wise loss optimization induces strong relative ranking capabilities, which is reflected in consistently
high NDCG scores. However, HR values are not superior to those of other baselines across datasets,
since BPR primarily emphasizes the ordering of positive items over negatives and does not directly
optimize for maximizing the absolute presence of relevant items within the top-K lists.

Despite these advantages, Stage-1 exhibits limitations in mitigating popularity bias, particularly in
sparse datasets such as Sports (Table 4). For example, the PopRate@5 of 0.4122 remains high com-
pared to LLARA-FairPrompt (0.2793), even though Stage-1 achieves better NDCG scores. Another
observation is that Stage-1 is less competitive than more sophisticated LLM-based recommenders
such as LLARA on dense datasets like Beauty and Yelp, despite displaying stronger fairness met-
rics. This difference can be attributed to LLARA’s design of incorporating item embeddings from
the user’s interaction history directly into prompts, which enriches contextual learning compared
to the simpler ID-based Stage-1 training. Therefore, Stage-1 performs comparably to all the base-
lines across datasets with respect to both recommendation and item debiasing, without leveraging
explanations. Nonetheless, it does not fully alleviate popularity bias, as evidenced by the persistent
presence of popular items in top-K lists (e.g., Sports at K = 5). These observations motivate the
need for Stage-2 training, where explicit explanation-based preferences are integrated to achieve a
stronger balance between recommendation performance and debiasing popularity bias.

6.1.2 STAGE 2: CONTRASTIVE EXPLANATION TRAINING

Stage-2 training introduces positive and negative explanations, encoded as embeddings and opti-
mized using contrastive learning within the framework. Incorporating these contrastive explanation
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signals significantly boosts both recommendation quality and item-side fairness. As shown in Ta-
bles 2, 3, and 4, Stage-2 consistently improves ranking quality (higher NDCG and HR) while simul-
taneously reducing popularity bias (lower PopRate, KLD, and UPC), outperforming all baselines.
Importantly, Stage-2 also outperforms Stage-1 across all datasets. For example, on Sports, Stage-2
raises NDCG@5 from 0.1879 to 0.2147 while sharply reducing PopRate@5 from 0.4122 to 0.1136.
Similar trends hold for Beauty and Yelp, where improvements in NDCG are paired with consis-
tent reductions in KL Divergence and User Popular-item Coverage. Notably, Stage-2 always lowers
UPC, showing that the presence of at least one popular item in users’ top-K recommendations is
significantly reduced.

These results confirm that our Expl-Debias framework achieves significant improvements through
the introduction of contrastive explanation-based training. The generated explanations enhance rec-
ommendation performance by explicitly revealing true user preferences, highlighting both likes and
dislikes. Stage-2 training effectively captures fine-grained preferences by contrasting the pros and
cons of each item for a given user. In this process, positive explanations align with aspects that
users favor, thereby emphasizing item relevance, while negative explanations highlight unfavorable
aspects, allowing the model to better account for irrelevance.

Our framework also mitigates the negative effects of popularity bias in recommendation lists. This
advantage stems from Stage-2 training, which enables the recommender to both promote niche items
aligned with user-specific pros and demote popular but mismatched items associated with user-
specific cons through the positive and negative explanations respectively. As a result, the framework
not only improves the ranking performance but also enforces debiasing constraints, as reflected
by the consistently lower UPC values across datasets. Similar to Stage-1, NDCG exhibits larger
improvements than those in HR, which can be attributed to the pairwise loss optimization that pri-
oritizes relative ranking quality of items. In the meantime, HR also improves under Stage-2 and
in some cases performs better than all baselines, indicating that explanation-aware learning en-
sures better recommendation performance. Overall, explanation-aware Stage-2 integrates explicit
user preferences derived from explanations with the implicit preferences learned during ID-based
Stage-1 training. Therefore, Expl-Debias framework offers an empirically effective mechanism in
providing a principled approach to mitigating popularity bias without any major sacrifice towards
the recommendation performance.

6.2 EFFECT OF POSITIVE/NEGATIVE EXPLANATIONS

In this section, we discuss the direct impact of positive and negative explanations in order to visualize
our framework’s effectiveness in mitigating popularity bias. We focus this study towards analyzing
how positive explanations can promote in Table 5. We selected a random 1% subset of items that
lie in the bottom 10 percentile of item popularity (which we term as niche as they receive very little
exposure). Due to space limitation, analysis of negative explanations is given in Appendix C.1

.

Table 5: Effect of inducing positive explanation embeddings on a random subset of niche items in
Beauty. N-NDCG and N-HR denote the ranking scores of niche items in top-5 recommendations.
Mean Inverse Rank (MIR) is the average reciprocal rank of each niche item across users, and Avg.
Probability is the mean recommendation probability of a niche item. Blue indicates promotion
(higher probability and metric scores) compared to the no-explanations setting.

Setting N-NDCG@5 N-HR@5 MIR Avg. Probability
No Explanations 0.0221 0.0383 0.0451 0.4330
Positive Explanations 0.0457 0.0831 0.0883 0.9348

Improvement (in %) +106.79 ↑ +130.03 ↑ +95.79 ↑ +115.89 ↑

6.2.1 EFFECT OF POSITIVE EXPLANATIONS

In Table 5, we can observe that positive explanations are quite consistent in ensuring an overall pro-
motion towards increasing the presence of arbitrary niche items amongst top-5 recommendations
for each user within the Beauty dataset. Higher N-NDCG and N-HR scores manifest the fact that
the chosen subset of niche items are ranked higher and found more frequently amongst the top-5
ranked lists whenever positive explanations are introduced for predictions in comparison to the no-
explanation setting. Similarly, average probability and MIR increase by over 100%, indicating that
niche items are both ranked higher and assigned substantially larger user-item probability scores.
These results confirm that positive explanations are highly effective in promoting niche items, as they
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identify fine-grained relevant reasons that establish why any user truly prefers an item. Niche items
typically suffer from limited reach due to their minimal presence across historical user-item inter-
actions. However, by introducing positive explanations that explicitly include user-aligned positive
aspects that specify why a user prefers an item (e.g., highlighting beneficial features or attributes),
the model boosts their presence in the top-5 lists since they can identify the hidden true relevance
between any user and any niche item. As a result, positive explanations increase the relevance for
niche items, thereby promoting them, leading to improved ranking position and recommendation
probability.
6.3 CASE STUDY
Table 6: Case study showing how Stage-2 training promotes a niche item (just as in Section 6.2.1 and
demotes a popular item after being trained from Stage-1 for user ID AC1KIJ6OYGVSK in Beauty.
Blue indicates explicit reveal of positive aspects while Red reveals negative aspects of the product.

Item ID & Title Rank Shift Generated Explanations User-Written Review Snippets

B001KYRMBU (Niche Product)

L’Oreal Le Kohl Pencil Smooth Defining Eyeliner

6 → 1
↑ 5

Positive: . . . will purchase because consumer is
looking for a pencil eyeliner that would provide
a smooth, precise application on the skin.
Negative: . . . will not purchase because this
product is chemical eyeliner but consumer is
looking for environmental-friendly products.

Positive Aspects: “My skin feels even
smoother and I swear my spots are starting to
diminish.”, “It also leaves your skin feeling vel-
vety smooth”
Negative Aspects: “I HATE how it smells.
It has a weird Neutrogena glycerin soap
bar/plastic/vitamin odor that I can’t stand.”

B0018S8MZ8 (Popular Product)

Clean & Clear Blackhead Eraser Kit

2 → 19
↓ 17

Positive: . . . will purchase because this product
will induce relief in removing blackheads and
address blackheads into cleansing routine.
Negative: . . . will not purchase because this
product will raise hyper-pigmentation as side-
effect.

Positive Aspects: “pores relaxed a little bit”,“I
noticed this is a great pimple-zapper.”
Negative Aspects: “it’s just the discoloration I
really want to change.”

In this section, we provide a real-world scenario by analyzing how well the generated explanations
are aligned with the user reviews and how their effect can be observed across the ranking shift when
transitioning from Stage-1 to Stage-2. We can observe in Table 6 a consumer in the Beauty dataset
with user ID AC1KIJ6OYGVSK. The first row product L’Oreal eyeliner is not quite popular in the
Beauty dataset, but the product has been ranker higher to the 1st rank into the top-5 list from Stage-1
(the 6th rank). We can notice that the smooth skin requirements mentioned by the user regarding was
aligned directly through the positive explanations (repeated skin and smooth words) while negative
explanations mention regarding dislike towards chemical, but does not provide a specific match to
their reviews regarding their hate for glycerin. On the contrary, the second row shows a popular item
such as the Blackhead eraser kit, which is strongly demoted from the top-2 rank into the a much
lower rank outside the immediate consumer visibility. In this case, the negative explanation directly
matches with the user review snippets that reveal the skin discoloration concerns (hyperpigmentation
reference). Additionally, the positive explanations do not reveal much beyond relaxed skin pores,
which does not mention about the relief offered by the kit. From both examples, we can observe
how closely both the positive and negative explanations contribute to the recommendation abilities
of the model and justify the preferences of the consumer.

7 CONCLUSION

In this work, we propose Expl-Debias, a recommendation framework that incorporates explanation-
aware training to improve both recommendation and debiasing performance. Our framework solves
the existing problem of balancing recommendation accuracy along with controlling popularity bias
in order to enhance user satisfaction. Our two-stage training design incudes Stage-1 which estab-
lishes fundamental learning of strong recommendation utilities, and Stage-2 which leverages con-
trastive learning on each user-item sample. Stage-2 training contrasts positive and negative explana-
tions to promote niche items and demote irrelevant popular items, and reduce overall popularity bias.
We have empirically validated that our framework is effective in maintaining strong recommenda-
tion performance while also maintaining low popularity item presence. We discussed the qualitative
and quantitative aspects of our contrastive explanation learning approach towards recommendation
and debiasing performance.

Admittedly, our framework also possesses certain limitations. It currently relies on text-only expla-
nations without considering the impact of multi-modal data such as images/videos etc. Addition-
ally, other characteristics of recommendation fairness such as user-side fairness and how effective
our framework is towards resolving such problems are yet to be answered. Future work will focus
on scaling our solution towards real-world pipelines where mitigating popularity bias along with
maintaining recommendation is critical.
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A METHODOLOGY

A.1 EXPLANATION GENERATION PROMPTS

Positive Explanation Prompt (P+): Given the profiles of the purchasing history of this
consumer, can you provide a reason for why this consumer will purchase the current
product?

Answer with one sentence with the following format: “The consumer will purchase this
product because ...”

Profiles of Purchasing History: < Purchase-History-Profiles >
Current Product Profile: < Current-Item-Profile >

Negative Explanation Prompt (P−): Given the profiles of the purchasing history of this
consumer, can you provide a reason for why this consumer will not purchase the current
product?

Answer with one sentence with the following format: “The consumer will not purchase
this product because ...”

Profiles of Purchasing History: < Purchase-History-Profiles >
Current Product Profile: < Current-Item-Profile >

User feedback imbalance and applicability to low-history users. The proposed framework does
not rely on observed positive and negative interactions to construct the explanation pair (e+, e−).
Instead, both explanations are generated for every (u, v) pair using the same item context and the
user’s available review history, regardless of its size. This ensures that each user receives a bal-
anced positive–negative explanation pair, even when their observed feedback is highly asymmetric
or limited.
Because the explanations are conditioned primarily on the purchase history of the user, there is no
additional external information that causes a skew while generating the explanations. For generat-
ing the explanations, we supplement the item profiles through their titles and descriptions, which
provides sufficient information regarding user interests towards items. In practice, we observe that
users with minimal history still obtain meaningful explanation signals: the positive explanation em-
phasizes attributes consistent with the few known user preferences, while the negative explanation
highlights the disliked aspects. Thus, we conclude that we provide same information as context
and we confirm that this approach does not introduce imbalance between the positive and negative
explanation generated. During Stage-2, our framework only needs the relative alignment between
these two signals which provide an even-handed representation of the user’s likes and dislikes.

A.2 FIDELITY OF LLM-GENERATED EXPLANATIONS

Table 7: Evaluation of the positive explanations generated by our LLM model used for Stage-2
training. We evaluate all the positive explanations generated against the original user-written product
reviews found in the dataset. We report the macro-average Precision (P), Recall (R) and F1 (F1) of
BERTScore metrics along with the standard deviation reported in (±). Our results are statistically
significant with 95% confidence reported.

Dataset BERTScore-P (in %) BERTScore-R (in %) BERTScore-F1 (in %)
Beauty 84.25±1.89 83.17±2.19 83.68±1.64
Yelp 84.48±1.39 82.03±2.06 83.22±1.41
Sports 84.19±1.76 83.07±2.17 83.61±1.57
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Across all three datasets, the positive explanations generated by our LLM exhibit consistently strong
semantic fidelity to the ground-truth user reviews, as shown in Table 7. We evaluate each explana-
tion against the corresponding user-written review using BERTScore (Zhang et al., 2020), which
computes token-level semantic similarity via contextualized RoBERTa embeddings. This allows
us to assess whether an explanation is grounded in the review text without requiring lexical over-
lap. The results demonstrate high factual alignment: BERTScore Precision averages around 84%,
indicating that most tokens in each generated explanation are supported by content present in the
user’s review, thus avoiding hallucinated or spurious information. Recall remains similarly strong
(82–83%), showing that the explanations capture the majority of salient aspects mentioned in the
review, despite being considerably shorter (one–two sentences). The balanced macro-averaged F1
scores (83–84%) further confirm that explanations are both specific and comprehensive.

Table 8: Evaluation of the negative explanations generated by our LLM model used for Stage-
2 training. We evaluate all the negative explanations generated against the original user-written
product reviews found in the dataset. Similar description can be found in Table 7. Our results are
statistically significant with 95% confidence reported.

Dataset BERTScore-P (in %) BERTScore-R (in %) BERTScore-F1 (in %)
Beauty 83.75±1.74 82.71±2.14 83.21±1.56
Yelp 83.69±1.23 81.61±2.00 82.63±1.33
Sports 83.57±1.61 82.68±2.11 83.11±1.49

We observe a comparable pattern for negative explanations (Table 8). These counterfactual expla-
nations also exhibit high semantic fidelity (F1 scores of 82–83%), demonstrating that they do not
introduce information absent from the review and thus do not inject noise into the contrastive super-
vision used in Stage 2. Finally, the standard deviations across all metrics are small (±1.3–2.1), re-
ported with 95% confidence interval, indicating that explanation quality is highly stable. Therefore,
these results confirm that our LLM produces faithful and reliable positive and negative explanations,
providing high-quality training data for the contrastive debiasing procedure in Stage 2.

A.3 DEEPFM INTERNAL REPRESENTATIONS AFTER STAGE-2

Figure 3: Visualization of DeepFM model representations using t-SNE to compare the effect of
embedding changes between Stage-1 and Stage-2 on Beauty dataset. We visualize the DeepFM
hidden layer representation after Stage-1 and Stage-2 and we compare the difference between Stage-
1 and Stage-2 training.
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Fig. 3 shows a t-SNE projection of the contextual hidden layer representations of DeepFM for
the Beauty dataset across Stages 1 and 2. Stage-1 embeddings (in gray), form a dense and largely
unstructured cluster region. We can observe that the cluster is unstructured in general, indicating that
the model encodes minimal organization due to the simplistic training strategy followed during this
stage. This behavior is directly representative of the straight-forward BPR ranking objective offered
by Stage-1 which merely considers ID-based information for training and it does not guarantee an
effective balance in reducing the presence of unnecessary popular items.

However, Stage 2 embeddings (in blue), trained under the more sophisticated contrastive objective,
exhibit a different geometric pattern. For Stage 2, the blue cluster is much smoother and it rep-
resents coherent manifolds with clear global structure and occupy a region that is well separated
from the Stage 1 cluster. This reorganization provides direct visual evidence that Stage 2 modi-
fies the underlying representation space drastically. We can discuss this behavior with respect to
the explanation-aware training objective, which leads DeepFM to align more closely with the user
likes and dislikes, thus leading to more comprehensive understanding of the user-item relationships,
which ensures a better trade-off between the debiasing and recommendation utilities.

A.4 POPULARITY-AWARE RANKING

Algorithm 1 Popularity-constrained Ranking

Require: For each user u: candidate items V u, popular items V P , Candidate α values A ⊂ [0, 1],
Top-K, popularity constraint τ .

1: for each user u ∈ U do
2: Initialize bestNDCG ← −∞, optimal α∗

u ← 0
3: for each α ∈ A do
4: for each v ∈ V u do
5: s

(u,v)
pos ← σ(gΘ(u, v, e+))

6: s
(u,v)
neg ← σ(gΘ(u, v, e−))

7: s
(u,v)
zero ← σ(gΘ(u, v, e = 0))

8: S(u,v)(α)← α · (s(u,v)pos − s
(u,v)
neg ) + (1− α) · s(u,v)zero

9: end for
10: RK

u (α)← Top-K items ranked based on Su,v(α) scores.
11: NDCGu(α)← NDCG@K for RK

u (α):
12: PopRateu(α)←

|{v∈RK
u (α)∩V P }|
K

13: if PopRateu(α) ≤ τ then
14: if NDCGu(α) > bestNDCG then
15: bestNDCG ← NDCGu(α)
16: α∗

u ← α
17: end if
18: end if
19: end for
20: if bestNDCG = −∞ then
21: Select α∗

u with highest NDCG@K (ignore constraint)
22: end if
23: Output RK

u (α∗
u) as Top-K ranking for user u

24: end for

Following the two-stage training paradigm, we desire to achieve an enhanced ranking mechanism
that scores items by balancing the positive reasons and negative reasons when recommending
an item. For each user-item pair, we present an even balancing between explanation-informed
preferences and generic-attribute based preferences. Therefore, it is important to identify an
optimal balance across these terms by considering both the utility significance and popularity
bias constraints. This final step in our Expl-Debias framework addresses the well-documented
challenge of popularity bias by designing a post-hoc re-ranking mechanism, wherein the influence
of contrastive explanations is adaptively controlled at the level of each individual user. Our objective
is to maximize recommendation relevance while ensuring the presence of popular items within a
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controllable range for every user.

To this end, we design a holistic ranking approach leveraging the fact that our model is capable of
learning both general utility without any explanation and enhanced user-item relevance derived from
contrastive explanation embeddings. For each user u and candidate item v, we leverage three types
of scores obtained from the recommender gΘ:

• s
(u,v)
pos : Score from the positive explanation embedding e+.

• s
(u,v)
neg : Score from the negative explanation embedding e−.

• s
(u,v)
zero : Score from the zero explanation embedding2.

We propose a simple α-weighted linear combination to generate the final ranking score:

Su,v(αu) = αu · (s(u,v)pos − s(u,v)neg ) + (1− αu) · s(u,v)zero , (7)

where αu ∈ [0, 1]. The difference between the positive and negative explanation based scores pro-
vides a qualitative differential score for any user-item pair3 modeling regarding why an item should
be preferred and why it should not, thus mitigating the confounding effect of item popularity. In
order to realize the original utility based score, szero term retains the general ranking functionalities
learned from interaction data. However, there exists a challenge in determining the exact weight ratio
between the two terms in Equation 7 because it varies depending on each user’s specific preferences.
Therefore, we design an algorithm that automatically computes the optimal α∗

u by maximizing the
ranking relevance measured by NDCG for top-K recommendation lists. For each computed list, we
also ensure a popularity-based constraint τ ∈ [0, 1] on the ranking lists to enforce the item fairness
constraints. We present our popularity-aware ranking algorithm in Algorithm 1.

B EXPERIMENTAL SETUP

B.1 DEBIASING METRIC FORMULAS

PopRate@K =

∑
u∈U

∑
v∈RK

u
1(v ∈ V P )

K ·m

KLD(Dpred∥Dtrue) =
∑
i∈0,1

Dpred(i) ln(
Dpred(i)

Dtrue(i)
)

UPC@K =

∑
u∈U 1(v ∈ V P and v ∈ RK

u )

m

B.2 TRAINING DETAILS

We use Deep Factorization Machines (DeepFM) as the base recommender, LLaMa-
3 models for explanation generation, and LLaMa-2-7B for encoding the explanations
due to their open-source nature and resource efficiency.All models including the base-
lines are trained with a batch size of 16. We search hyperparameters such as
learning rate in range [1e−7, 1e−6, 1e−5, 5e−4, 1e−3, 1e−2] and weight decay in range
[1e−7, 1e−6, 1e−5, 5e−4, 1e−3, 1e−2] on the validation data for all DeepFM models and baselines.
This ensures that all baselines are tuned as rigorously and under the same search space as our pro-
posed model. We search embedding size x in {8, 16, 32, 64, 128, 256} and set 3 hidden layers of
sizes [4x, 2x, x]. TALLRec, CoLLM, and LLaRA are trained for up to 10 epochs with early stop-
ping (patience of 3). FairIPS uses the same optimizer and search space and was also trained for 10
epochs, with number of item groups chosen between [2, 5, 10], while FairPrompt applies a consistent
fairness prompt at inference across all recommenders.
Stage-1 training runs for 50 epochs at most while Stage-2 training (using frozen user and item

2This can be achieved by introducing zero-padded explanations into LLMEmbed
3This difference score is not the same as observed in Stage 2, and we do not train any data in this re-ranking

paradigm.
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embeddings) takes 5 epochs at most. We perform early stopping with tolerance up to 3 consecu-
tive epochs for all the models. Explanations are generated with a limit of 50 tokens and filtered
for grammatical and semantic consistency through direct supervision. We evaluate Stage-1 mod-
els with pad-filled explanations, indicating zero explanations, and use positive explanations for
Stage-2 evaluation4. We fine-tune all the models on four NVIDIA RTX A6000 GPUs. We provide
our code at https://anonymous.4open.science/r/Expl-Pop-Bias-089A/ for ad-
ditional details.

C RESULTS ANALYSIS

C.1 EFFECT OF NEGATIVE EXPLANATIONS

Table 9: Effect of inducing negative explanation embeddings on a random subset of popular items in
Beauty. P-NDCG and P-HR denote the ranking scores of popular items in top-5 recommendations.
MIR and Avg. Probability are defined similar to Table 5. Red indicates demotion (lower probability
and metric scores) compared to the no-explanations setting.

Setting P-NDCG@5 P-HR@5 MIR Avg. Probability
No Explanations 0.0974 0.1573 0.1225 0.7088
Negative Explanations 0.0005 0.0008 0.0183 0.1701

Decline (in %) -99.49 ↓ -99.49 ↓ -85.06 ↓ -76.00 ↓

We discuss the effect of negative explanations in demoting a randomly chosen subset of 1% popular
items in Table 9.

We observe that negative explanations exhibit a strong demotion effect upon a random subset of
popular items amongst the top-5 recommendation lists for any user. This can be noticed through the
steep decline (about 99.5% decline) of the P-NDCG and P-HR scores which indicate that popular
items on average are pushed lower in ranking and their overall presence is also reduced amongst
top-5 items. Lower MIR and Avg. Probability scores support our findings that the chosen subset of
popular items is strongly demoted through the inclusion of negative explanations in comparison to
the no-explanation setting. Popular items are often over-recommended due to their overwhelming
presence in historical interaction data, leading to redundancy in recommendation lists. However,
introducing negative explanations specifies why a user does not prefer an item by highlighting as-
pects or features that conflict with user preferences (e.g., features that the user may not prefer but
the item possesses). Therefore, these explanation texts induce the true holistic perspective about
popular items which refines the ranking process and reduces the undue dominance of popular items
in the top-5 lists. In conclusion, we can infer that negative explanations reduce the unnecessary
recommendations of popular items and effectively demote them.

C.2 DIFFERENT EXPLANATION GENERATORS

In this section, we study the effect of varying explanation generation sources in terms of the qual-
ity of explanations and their impact on the model performance. We evaluate three different LLM
generators: DeepSeek-7B, ChatGPT-4.1-mini and LLaMa-1B, with all sharing the same Stage-1
checkpoint (which does not involve explanations). In Fig. 4a, we notice that DeepSeek performs
the best with respect to the recommendation performance (NDCG@5 as 0.264) followed by GPT
(0.247) and then LLaMa (0.207). We can observe a similar trend of popularity bias mitigation in
Fig. 4b where DeepSeek (PopRate@5 as 0.298) and ChatGPT (0.281) models display lower pop-
ularity rate scores in comparison to LLaMa (0.355). The superior performance of DeepSeek with
respect to both aspects can be attributed to its larger size which offers high-quality explanation texts
for training Stage-2. Similarly, ChatGPT is a close-sourced LLM that has trained on a larger cor-
pus which includes human feedback, leading to more fluent and semantically rich completions and
higher-quality explanations. They can offer a better view of user-item interactions and thus induce
stronger alignment with the true user preferences. As a comparison, LLaMa-1B is smaller in size

4It is intuitive to perform top-K recommendation using positive reasons after Stage-2, evaluating based on
what encourages an item to be recommended to any specific user.
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(a) NDCG@5 (b) PopRate@5

Figure 4: Explanation LLM Generators comparison — NDCG@5 and PopRate@5 across the rec-
ommender trained on Beauty with different LLM generations. Stage-1 is shared for all the scenarios
since they do not utilize explanation texts during training.

(∼1B parameters) whose explanation generation capability may not be as advanced as ChatGPT or
DeepSeek.

Despite the performance gains in terms of both the recommendation and debiasing aspects as de-
picted in Fig. 4, we still choose LLaMa as our default generator because of its efficiency advantages.
With only ∼1B parameters, it provides much faster completions and lower memory cost compared
to larger models such as DeepSeek-7B, making it suitable for large-scale experiments. Moreover,
as an open-source model, LLaMA avoids request rate limits and latency constraints imposed by
close-sourced APIs (as in the case of ChatGPT) which requires longer time for serving a large num-
ber of requests and are thus practically infeasible. While its explanation quality is sub-optimal,
LLaMa still provides comparable generation capabilities and substantial improvements in speed and
cost-efficiency, highlighting lesser demand of computational resources, which make LLaMa-1B a
practical choice when balancing performance and efficiency.

C.3 DIFFERENT EXPLANATION ENCODERS

(a) NDCG@5 (b) PopRate@5

Figure 5: Encoder comparison — NDCG@5 and PopRate@5 across different encoders trained on
Beauty dataset. Each encoder represents texts to different embedding sizes leading to difference in
model architectures and thus each scenario requires separate training of both Stage-1 and Stage-2.

We study the ablation effect of different encoders used to transform textual explanations into nu-
merical embeddings. Specifically, we compare Word2Vec, BERT, and LLaMA-2-7B, which differ
in language modeling capabilities and embedding dimensionality. As shown in Fig. 5a, LLaMA
consistently delivers the strongest recommendation accuracy across both stages, followed by BERT
and then Word2Vec. This performance trend reflects the increasing representational power of the
encoders: more advanced language modeling yields richer semantic representations of positive and
negative explanation texts, leading to improved ranking quality. In contrast, BERT attains the lowest
PopRate@5 values (Fig. 5b), owing to its bidirectional masked language modeling objective, which
captures in-place contextual information within the explanation texts without overemphasizing upon
unnecessary pre-trained knowledge. This allows BERT to represent all the items in an even-handed

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

manner which contributes to reducing popularity bias. Word2Vec performs worst on both accuracy
and fairness due to its simplistic encoding strategy which may not possess valuable information that
reveals the user preferences. Another interesting observation is that Stage-2 training is consistently
better in terms of recommendation and debiasing than Stage-1 training irrespective of any encoder
being used.

Despite BERT’s advantage in fairness, we adopt LLaMA as the default encoder because of its su-
perior representational richness, driven by a larger embedding size (4096) compared to BERT (768)
and Word2Vec (300). Although BERT models perform best in reducing popularity bias, they are not
competent in retaining recommendation performance in comparison to LLaMa models. Our frame-
work is designed to prioritize strong recommendation performance while constraining popularity
bias within acceptable limits. Thus, we conclude that LLaMa offers the best tradeoff towards these
two aspects, while BERT models sacrifice recommendation performance largely in comparison to
their gain in debiasing capabilities.

C.4 EFFECT OF POPULARITY AWARE RE-RANKING

C.4.1 IMPROVEMENTS OVER STAGE-1 AND STAGE-2 EVALUATION

Table 10: Performance and fairness comparing Stage-1, Stage-2 and our Re-Ranking algorithm, for
K = 5 on Beauty. ↑ means higher scores are better while ↓ means lower scores are better. Best
results per metric and K in bold.

Method K = 5
NDCG (↑) HR (↑) PopRate (↓) KLD (↓) UPC (↓)

Stage-1 0.1863 0.2139 0.3858 0.2862 0.8552
Stage-2 0.2071 0.2160 0.3552 0.2353 0.8460
Re-Rank (τ = 1) 0.2604 0.3220 0.3439 0.2174 0.8199

In Table 10, we can notice that our Re-Rank performs even better than our already effective Stage-
2 based training, by offering a much better recommendation performance (larger NDCG and HR)
while also offering lesser popular item presence via lower PopRate, KLD and UPC scores. This
demonstrates that re-ranking can serve as an effective post-processing strategy that complements
the explanation-aware training of Stage-2.

The advantage of our re-ranking approach stems from its design: the algorithm enforces stricter
constraints on the inclusion of popular items within each user’s top-5 recommendations, while
greedily selecting the optimal weight factor (α) that maximizes NDCG whenever we are not able
to satisfy the constraints. By jointly emphasizing ranking utility and debiasing constraints during
re-scoring, the re-ranking step achieves a more favorable balance over mere stage-based training
alone. These results highlight that explanation-aware training and fairness-oriented re-ranking are
complementary—Stage-2 provides strong user–item preference signals, and re-ranking refines the
final recommendation list to ensure both high recommendation performance and reduced popularity
bias.

C.4.2 ABLATION OF HYPERPARAMETERS (τ )

We can observe that the re-ranking algorithm is effective in offering a reasonable trade-off between
NDCG@5 and LongTailRate@55, offering consistent trends across all the datasets in Fig. 6. As we
allow larger τ values, we can observe a visible reduction in the debiasing capabilities while there is
an improvement in the recommendation performance (moving left and upwards trends for increasing
τ in each plot). However, we can observe steeper trade-off curves across denser Beauty (in Fig. 6a)
and Yelp (in Fig. 6b) datasets while Sports dataset (in Fig. 6c) exhibits a much more relaxed trade-
off constraints especially across larger τ . Therefore, we can conclude that deciding τ depends on
whether recommendation performance or fairness performance is preferred, with smaller τ yielding
fairer but less accurate recommendation outcomes.

5It is defined as 1 - PopRate@5.
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(a) Beauty (b) Yelp (c) Sports

Figure 6: Ablation TAU study
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