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ABSTRACT

This paper introduces a novel approach to improve camera position estimation
in global Structure-from-Motion (SfM) frameworks by filtering inaccurate pose
graph edges, representing relative translation estimates, before applying translation
averaging. In SfM, pose graph vertices represent cameras and edges relative
poses (rotation and translation) between cameras. We formulate the edge filtering
problem as a vertex filtering in the dual graph – a line graph where the vertices
stem from edges in the original graph and the edges from cameras. Exploiting
such a representation, we frame the problem as a binary classification over nodes
in the dual graph. To learn such a classification and find outlier edges, we employ
a Transformer architecture-based technique. To address the challenge of memory
overflow often caused by converting to a line graph, we introduce a clustering-based
graph processing approach, enabling the application of our method to arbitrarily
large pose graphs. The proposed method outperforms existing relative translation
filtering techniques in terms of final camera position accuracy and can be seamlessly
integrated with any other filters. The source code will be made public.

1 INTRODUCTION

The task of generating 3D models from large sets of unordered images poses a significant challenge
within computer vision and robotics, catering to a diverse range of applications, including crowd-
sourced mapping, among others. The leading approach for accomplishing 3D reconstruction is the
Structure-from-Motion (SfM) algorithm, tasked with simultaneously estimating camera parameters
and generating a 3D point cloud (Ullman, 1979). This research domain is primarily divided into two
categories: Incremental (Heinly et al., 2015; Schönberger & Frahm, 2016; Snavely et al., 2006; 2008;
Wu, 2013) and Global methods (Cui & Tan, 2015; Zhu et al., 2018; Sweeney; Pan et al., 2024).

Incremental algorithms carefully integrate images into the 3D reconstruction, achieving accuracy
through repeated numerical optimizations. Although capable of yielding highly accurate results,
these approaches are computationally intensive due to the necessity for multiple bundle adjustment
runs (Triggs et al., 2000), rendering them less effective for reconstructing large datasets. In contrast,
global methods optimize the entire pose graph, contaminated by noise for all cameras, in a single run,
thus providing a fast and scalable solution. Even though global methods are generally seen as slightly
less accurate compared with incremental techniques (Cui et al., 2017), they offer promising directions
for rapid 3D model reconstruction. For example, recent advancements, such as GLOMAP (Pan et al.,
2024), have shown their potential for scalability and efficiency, achieving state-of-the-art run-time
and accuracy that is comparable to or surpassing COLMAP (Schönberger & Frahm, 2016). This
paper is dedicated to global strategies, specifically presenting an algorithm designed to enhance
camera position estimation. This is achieved using a Transformer architecture-based technique to
filter out outlier edges within the pose graph.

Global methods start by identifying image pairs that share a common field-of-view, utilizing image
retrieval techniques like the visual bag-of-words algorithm (Filliat, 2007) or NetVLAD (Arandjelovic
et al., 2016). Following this, relative pose estimation is conducted for these pairs through a robust
estimation method, for instance, RANSAC (Fischler & Bolles, 1981) or one of its state-of-the-art
variants (Barath et al.; 2022). With camera rotations established, the process estimates camera
translations, keeping the rotations fixed, and generates a 3D point cloud. The final step involves
applying bundle adjustment to enhance the precision of the 3D model and camera parameters.
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Figure 1: Learned outlier filtering takes a pose graph as input, where nodes represent images and
edges relative poses. To avoid memory issues, the graph is clustered into several subgraphs. Each
is converted into a line graph, where images become edges and the edges images. Each edge in the
line graph is equipped with the pre-estimated camera orientation and the embedding (Oquab et al.,
2023) of the underlying image and each vertex with the estimated relative pose (tijRij). Finally, a
Transformer network predicts inlier/outlier labels for the relative poses.

Translation averaging, alternatively known as synchronization, has a rich literature (Govindu, 2001;
Jiang et al., 2013; Moulon et al., 2013; Wilson & Snavely, 2014; Tron & Vidal, 2009; Ozyesil &
Singer, 2015; Arrigoni et al., 2015b; Zhuang et al., 2018) and stands as one of the most complex
challenges within global pipelines. It is typically approached as an optimization that seeks consistency
between estimated relative translations and the unknown global camera positions. The core difficulty
stems from the absence of known translation scales, making it hard to distinguish between short and
long translations based on angles alone. Noise significantly impacts the process, particularly affecting
short edges and often rendering them outliers. Furthermore, estimating robust relative translations
from view pairs is generally less stable than rotation estimation (Barath et al., 2022). These issues
make filtering outlier translation edges a crucial step to simplify the translation averaging problem.

Translation filtering, in contrast, has not been as extensively explored as averaging. 1DSfM (Wilson
& Snavely, 2014) introduced a theoretical method for discarding outlier edges, which, despite its solid
foundation, has been found to yield only marginal benefits in practice (Manam & Govindu, 2024).
Another recent notable effort (Manam & Govindu, 2024) shifts the focus from filtering outliers to
eliminating camera configurations detrimental to translation averaging, specifically, configurations
involving camera triplets representing quasi-linear motion.

The main contribution of this paper is a learning-based pipeline designed to identify outlier edges
within a pose graph of relative translations. Our approach (visualized in Fig. 1) transforms the pose
graph into a line graph, wherein cameras become edges and relative translations nodes. This setup
frames outlier detection as a binary classification task, where each node is assessed as either an inlier
or an outlier through a Transformer-based architecture. We introduce a graph clustering approach to
address the increase in memory associated with transforming the pose graph into a line graph. This
enables applying the proposed network to graphs of any size, facilitating scalability. Across a number
of large-scale and real-world datasets, the proposed pose graph filtering method leads to substantial
improvements in camera position estimation, compared to the baseline outlier filter, 1DSfM (Wilson
& Snavely, 2014). When our method is combined with the recent degeneracy filter (Manam &
Govindu, 2024), it leads to the best results in all tested accuracy metrics across all datasets.

2 RELATED WORK

Global Structure-from-Motion reconstructs the scene in 3D and obtains the global camera poses
by integrating estimates of relative poses between pairs. Predominantly, this integration is achieved
through subsequent rotation (Olsson & Enqvist, 2011; Moulon et al., 2013) and translation averag-
ing (Zhuang et al., 2018), though some studies have opted to perform averaging within SE(3) (Cui
& Tan, 2015). Following the determination of rotations, the method proceeds to ascertain trans-
lations and structural details that are, finally, jointly optimized by bundle adjustment. Several
open-source frameworks support global Structure-from-Motion, including Theia (Sweeney) and
OpenMVG (Moulon et al., 2016). We have incorporated our relative translation filtering method into
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the Theia framework, keeping the rest of the pipeline unchanged. Nonetheless, our advancements are
versatile and not restricted to this particular pipeline.

Rotation averaging has a long history in computer vision. Govindu (Govindu, 2001) linearizes the
problem using a quaternion representation, while Martinec and Pajdla (Martinec & Pajdla, 2007)
simplify it by omitting certain non-linear constraints. Wilson et al. (Wilson et al., 2016) examine
the conditions that make the problem tractable. Eriksson et al. (Eriksson et al., 2018) solve it via
strong duality. Semidefinite programming-based (SDP) relaxation approaches (Arie-Nachimson
et al., 2012; Fredriksson & Olsson, 2012) provide optimality guarantees by minimizing the chordal
distance (Hartley et al., 2013). Dellaert et al. (Dellaert et al., 2020) sequentially lift the problem into
higher-dimensional rotations SO(n) to avoid local minima where standard numerical optimization
techniques may fail (Levenberg, 1944; Marquardt, 1963). To handle outliers in relative rotations,
various robust loss functions have been investigated (Hartley et al., 2011; Chatterjee & Govindu,
2013; 2017; Sidhartha & Govindu, 2021; Zhang et al., 2023).

The objective of translation averaging is to determine the absolute camera positions by leveraging
estimated pairwise unscaled relative translations. Govindu (Govindu, 2001) approaches this by
minimizing the cross-product of input and derived directions from absolute translations. Jiang et
al. (Jiang et al., 2013) utilize the geometric constraints of triangle formations among triplets of
nodes to approach the problem. Moulon et al. (Moulon et al., 2013) suggest a solution involving the
minimization of a relaxed problem via the L∞ norm. Wilson et al. (Wilson & Snavely, 2014) aim to
reduce the discrepancy between the input directions and those deduced from absolute translations.
Tron et al. (Tron & Vidal, 2009) focus on minimizing squared relative displacements in a distributed
framework. Ozyesil et al. (Ozyesil & Singer, 2015) introduce the Least Unsquared Deviations (LUD)
method to extend (Tron & Vidal, 2009), incorporating L1 loss for enhanced robustness, thus framing
the problem within a convex program. Arrigoni et al. (Arrigoni et al., 2015b) aim at minimizing
the squared error from the orthogonal projection of estimated relative translations onto the input
directions. Similarly, Goldstein et al. (Goldstein et al., 2016) minimize orthogonal projections through
ADMM, adopting L1 loss for robustness. Zhuang et al. (Zhuang et al., 2018) offer a relaxation of the
cost metrics in (Wilson & Snavely, 2014) by aligning estimated relative translations with observed
directions, naming it Bilinear Angle-based Translation Averaging (BATA). Additional methodologies
include leveraging two-view and three-view camera geometry to frame the problem (Hartley &
Zisserman, 2003; Arie-Nachimson et al., 2012; Moulon et al., 2013), determining edge scales
via cycles in a network prior to solving for absolute translations (Arrigoni et al., 2015a; 2016),
or employing point correspondence constraints (Cui et al., 2015; 2016), refining input directions
iteratively (Manam & Govindu, 2022), averaging matrices from two-view geometries (Kasten et al.,
2019a;b), and making use of the matrix structure resulting from pairwise displacements (Dong et al.,
2020). While these algorithms are crucial to getting accurate camera positions, they often fail due to
degeneracies and outliers in the estimated pose graph edges.

Pose graph filtering serves as a strategy for removing inaccurate relative poses, thereby eliminating
outliers to enhance the robustness of pose averaging. Given that translation averaging tends to
be more prone to noise and outliers than rotation estimation in practice, most filtering methods
assume the rotations to be pre-estimated and focus on improving translations. Zach et al. (Zach
et al., 2010) introduce a method to exclude outlier edges based on loop consistency. The 1DSfM
approach (Wilson & Snavely, 2014) involves projecting relative translation directions onto randomly
selected 3D directions and then evaluating discrepancies within this one-dimensional subspace. This
random projection process is iterated multiple times to accumulate instances of inconsistency for
each edge. Such accumulated inconsistency metrics are then employed to eliminate discordant edges
across multiple random projections. Shen et al. (Shen et al., 2016) focus on identifying and retaining
a subset of reliable edges to ensure strong connectivity among cameras. The more recent study by
Manam et al. (Manam & Govindu, 2024) highlights that the main issue often lies not with the outlier
edges themselves but with edges that contribute to forming skewed triangles, which can lead to
degenerate conditions in translation averaging. Our method focuses on filtering outlier edges and can
be straightforwardly combined with any other filters, such as (Manam & Govindu, 2024).

Recently, learning-based approaches have emerged, primarily to solve the rotation averaging
problem. NeuRoRa (Purkait et al., 2020) introduces a dual-network system: one for cleaning the view
graph of relative rotations and another for fine-tuning, which optimizes an initialization of absolute
orientations derived from the cleaned graph in a single step. MSP (Yang et al., 2021) proposes
an end-to-end framework that initializes and optimizes orientations using multiple measurements
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Figure 2: In global Structure-from-Motion pipelines, an image collection is fed into the initialization
phase that selects potentially overlapping image pairs, performs feature detection and matching,
and, finally, estimates relative poses. Next, rotation averaging runs to obtain the global camera
orientations. Then the pose graph edges are filtered to remove outliers (e.g., by 1DSfM (Wilson &
Snavely, 2014) or the proposed method) or degenerate configurations (Manam & Govindu, 2024).
Translation averaging obtains the camera positions from the filtered graph with fixed orientations.
Finally, the 3D structure is triangulated, and bundle adjustment optimizes all parameters jointly.

and incorporates neighborhood information. PoGO-Net (Li & Ling, 2021) presents a novel pose
graph optimization (PGO) strategy implemented through a Graph Neural Network architecture,
aiming to estimate absolute camera orientations accurately. DMF-synch (Tejus et al., 2023) utilizes
a matrix factorization technique for pose extraction. While these methods show promising results,
they primarily focus on rotation estimation. Contrarily, we argue that rotation averaging, in practice,
tends to be significantly more accurate than estimating camera positions. Consequently, our work
concentrates on enhancing translation averaging by filtering outlier relative translation edges.

3 FILTERING OUTLIER EDGES IN A POSE GRAPH

Problem Statement. Let us assume that we are given a set of images I and a pose graph G = (V, E),
with V ⊆ I denoting the images within the graph and E = {(vi, vj) | vi, vj ∈ V} comprising the
edges. A mapping T : E → SE(3) is defined such that T (vi, vj) = (R, t) represents the relative
transformation from view vi to vj , where (vi, vj) ∈ E , R ∈ SO(3) is the relative rotation, and
t ∈ R3 is the relative translation, initially set to be unit-scaled (tTt = 1). The construction of graph
G, a preliminary step in both global and incremental SfM methods, involves image retrieval, feature
detection and matching, and robust two-view geometry estimation (Schonberger & Frahm, 2016;
Barath et al., 2021). An overview of global pipelines is depicted in Fig. 2.

Following the construction of the initial pose graph G, the global SfM process is approximately the
following. Initial steps include two-view geometry filtering, e.g., discarding edges with inlier counts
below a threshold, such as 30 (i.e., the default in Theia (Sweeney)). Subsequently, rotation averaging,
e.g., by using the robust method of Chatterjee et al. (Chatterjee & Govindu, 2013), determines the
absolute camera orientations independently of positions. Rotation averaging generally achieves
higher accuracy than position averaging, with errors typically within a few degrees (Li & Ling,
2021). Therefore, we assume known camera orientations Rv for all v ∈ V in the rest of the paper,
concentrating on estimating the global camera translations tv . In global SfM, the step after rotation
averaging usually involves re-estimating translations based on these orientations, filtering outlier
edges to ensure consistency or eliminate degeneracy, e.g., by projecting onto 1D subspaces (Wilson
& Snavely, 2014) or identifying degenerate motions (Manam & Govindu, 2024). The subsequent
phases encompass translation averaging to derive global positions from the refined pose graph edges,
triangulating to obtain a 3D point cloud, and executing bundle adjustment to jointly optimize all
parameters by minimizing the re-projection error in pixels.

Line Graph Representation. In this paper, we aim to learn a filter θ : E → {0, 1} that identifies an
edge (representing a relative translation estimate) as an inlier (1) or an outlier (0). To achieve this, we
utilize a Graph Neural Network (GNN). While the direct learning of an edge classifier is feasible (Kim
et al., 2019), we observed it to yield unstable results, often leading to excessive edge removal from
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the pose graph and, consequently, significant loss of cameras crucial for the 3D reconstruction. To
mitigate this issue, we propose converting the pose graph G into a line graph L(G).
A line graph L(G) is constructed from the original graph G by associating each vertex in L(G) with
an edge in G. Specifically, if G = (V, E), then in L(G) = (VL, EL), each edge (vi, vj) ∈ E becomes
a vertex vij ∈ EL. Two vertices vij and vkl in L(G) are connected by an edge if and only if their
corresponding edges in G share a common vertex, that is, vj = vk or vi = vl. Mathematically
speaking, the edge set EL of L(G) is defined as follows:

EL = {(vij , vkl) | (vi = vk ∨ vj = vl) ∧ (vi, vj), (vk, vl) ∈ E}. (1)

This transformation allows us to reformulate edge classification in G as vertex classification in L(G),
facilitating the application of vertex-focused GNN architectures for outlier detection.

Outlier Filtering with a Graph Neural Network. In the pose graph represented as a line graph
L(G), we attribute to each vertex – which corresponds to an edge in the original graph G – the
estimated relative pose, consisting of a 3D rotation and unscaled translation. Note that these relative
rotations are recalculated from the global camera orientations acquired earlier by rotation averaging.
For each edge in L(G), linked to vertex v in G, we assign two features concatenated into a single
vector: (1) The 3D global orientation Rv, and (2) the image embedding dv ∈ Rd corresponding
to the input image Iv ∈ I. We observed that leveraging context from the underlying image helps
recognize outlier edges. We obtain embedding dv using DINOv2 (Oquab et al., 2023) off-the-shelf,
which yields a 384-dimensional image embedding. Consequently, the concatenated feature vector
assigned to each edge in L(G) is 393-dimensional. DINOv2 features capture the content of images,
so neighboring images should have similar features, allowing the incorporation of such high-level
information directly into the view graph. If two images are connected in the graph, we expect them to
have overlapping views and, thus, similar DINOv2 features (Keetha et al., 2023).

Next, we will discuss the network structure. Our Graph Neural Network employs three
TransformerConv layers with ReLU and dropout operations, the latter nullifying elements
of the input node feature matrix with a 0.3 probability. TransformerConv is a Graph Convolu-
tional Network (GCN) layer enhanced with a self-attention mechanism. It integrates edge attributes
in both the computation of the attention coefficients and in the node update process. Operator
TransformerConv is from (Shi et al., 2020) and is implemented in PyTorch Geometric Library.
The node update mechanism, detailed in Eq. 2, combines the transformed representation of the
current node xi with aggregated information from its neighboring nodes j ∈ N (i) and the connecting
edges ei,j . The contribution of each neighbor xj and edge ei,j to the updated state x′

i of the node is
modulated by the attention coefficient αi,j , calculated using a scaled dot-product attention mecha-
nism. This attention framework, outlined in Eq. 3, leverages the query W3xi, the key W4xj , and the
dimensionality of hidden channels d, with transformed edges W5ei,j enriching the key as follows:

x′
i = W1xi +

∑
j∈N (i)

αi,j(W2xj +W6ei,j), (2)

where the attention weights αi,j are determined as follows:

αi,j = softmax
(
(W3xi)

T(W4xj +W5ei,j)√
d

)
. (3)

In the last layer, we employ a gated residual connection to prevent over-smoothing (Shi et al., 2020).
A parameter β is learned that controls how much of the previous and aggregated representations
contribute to the final representation as follows:

x′
i = βiW1xi + (1− βi)

( ∑
j∈N (i)

αijW2xj︸ ︷︷ ︸
mi

)
,

where β is calculated as follows:

βi = sigmoid
(
wT

6 [W1xi,mi,W2xi −mi]
)
.

Graph Clustering. Converting graph G to line graph L(G) might require a significant amount of
memory, depending on the connectivity of G. Precisely, the number of edges in the line graph |EL| is
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quadratic in the node degree in the original graph G as:

|EL| =
1

2

∑
v∈V

deg(v)2 −m, (4)

where m is the number of nodes in the line graph and v are the vertices in the original graph. This
property often leads to a memory explosion in a sufficiently large graph with well-connected images,
preventing running the proposed classification network.

To overcome this issue, we employ a graph clustering technique (Chen et al., 2020) to reduce the
size of the graph G before its conversion to the line graph L(G). With this clustering, we can control
the maximum number of edges in the line graphs and, thus, the maximum storage complexity of the
proposed method. The approach consists of partitioning the graph G into k clusters, C1, C2, . . . , Ck,
such that each cluster Ci contains a subset of vertices from V . This partitioning is designed to
minimize the intra-cluster edge cut while maximizing the inter-cluster separation. Formally, the
objective is to solve the optimization problem:

min

k∑
i=1

cut(Ci,V \ Ci), (5)

where cut(Ci,V \ Ci) denotes the total weight of edges removed to separate cluster Ci from the rest
of the graph. The optimization finds a partitioning that balances the cluster sizes while minimizing
the edge cuts across all clusters. We set the edge weights to equal the number of pose inliers found
by RANSAC, which proved to be a good indicator of the edge quality. During inference, an edge
may be part of multiple subgraphs, thus receiving more than one inlier/outlier vote. To make a final
decision, majority voting is applied. The algorithm is further detailed in the Alg. 1 in the appendix.

The resulting clusters are then treated as super-vertices in a reduced graph G′, with edges between
super-vertices representing the connections between clusters in the original graph G. The weight
of an edge between two super-vertices in G′ is determined by the sum of the weights of the edges
between vertices in the corresponding clusters in G. The reduced graph G′ is then converted to a line
graph L(G′), significantly reducing the memory requirements compared to directly converting the
original graph G to its line graph.

This clustering-based approach mitigates the memory explosion problem and preserves the essential
topological and connectivity information from the original graph, enabling the effective application
of the proposed classification network on large and densely connected graphs.

4 EXPERIMENTS

Implementation Details. Our global Structure-from-Motion (SfM) framework is implemented
using the Theia library (Sweeney), using its default settings except for the deactivation of relative
translation re-estimation, which was observed to impact final accuracy negatively. Relative pose
estimation between image pairs is performed using LO+-RANSAC (Lebeda et al., 2012). For
computing accurate global camera orientations, we employ the rotation averaging method proposed
by Chatterjee et al. (Chatterjee & Govindu, 2013). The revised LUD algorithm (Zhuang et al., 2018)
is employed to derive global positions from relative translations. Optimization of all camera and
point parameters is executed through the Levenberg-Marquardt algorithm (Levenberg, 1944), as
implemented in Ceres (Agarwal & Mierle, 2012), minimizing reprojection errors in pixels. For
calculating the error metrics, the reconstructions are aligned to reference data robustly by RANSAC.

Baselines. Our method is compared with various translation filters within the same framework,
including: No filter: Translation averaging without translation filtering. MSAC score: To have
a similar process as proposed in (Manam & Govindu, 2022), we assign a weight to each point
correspondence by calculating the implied MSAC score from its Sampson error given the estimated
relative pose. The weight of an edge is calculated as the sum of these weights, similar to what is done
in (Manam & Govindu, 2022), as follows:

score =
∑
inliers

(
1− Sampson Error

RANSAC Threshold

)
. (6)
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Table 1: Mean position errors and recall thresholded at 5 for reconstructions by Theia (Sweeney) on
the PhotoTourism dataset (Snavely et al., 2006), using unfiltered relative translations (w/o Filter),
MSAC score Manam & Govindu (2022), CleanNet (Purkait et al., 2020), the Triangle filter (Manam
& Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined with the Triangle filter, and
our proposed method, both standalone and in conjunction with the Triangle filter. Additionally, the
results of the Oracle filter, removing all outlier translations, are also presented. The best results are
shown in bold, and the second-best ones are underlined.

Scene B. Museum F. Cathedral L. Memorial M. Cathedral M. Rushmore Reichstag Sacre Coeur S. Familia St. P. Cathedral St. P. Square AVG

Mean position error (↓)
w/o Filter 2.83 2.26 2.49 1.97 2.79 2.66 1.95 1.77 2.29 2.79 2.38
MSAC score 2.75 2.22 2.56 1.99 2.79 2.60 1.97 1.77 2.32 2.78 2.37
CleanNet 2.53 2.25 2.50 1.99 2.79 2.64 1.95 1.76 2.28 2.79 2.35
Triangle 2.83 2.26 2.49 2.01 2.79 2.66 1.94 1.78 2.29 2.79 2.38
1DSfM 2.52 2.27 2.58 1.99 2.79 2.60 1.95 1.85 2.35 2.79 2.37
1DSfM+Tri. 2.88 2.25 2.58 2.01 2.79 2.63 1.96 1.77 2.30 2.82 2.40
Ours 2.52 2.14 2.49 1.98 2.79 2.69 1.86 1.74 2.29 2.79 2.33
Ours+Tri 2.52 1.89 2.49 1.98 2.79 2.42 1.86 1.74 2.29 2.79 2.28
Oracle 2.15 1.19 1.22 1.87 2.47 2.17 1.35 1.35 1.99 2.38 1.81

Position Recall@5 (↑)
w/o Filter 81.64 88.24 85.87 90.91 85.71 86.67 81.65 93.69 91.46 89.52 87.54
MSAC score 86.04 87.25 92.82 90.91 85.71 89.33 81.05 93.94 90.48 88.32 88.59
CleanNet 91.20 87.25 86.10 89.26 85.71 89.33 81.73 93.94 91.46 90.04 88.60
Triangle 83.61 89.22 92.70 90.08 85.71 90.67 81.82 93.94 90.97 89.64 88.84
1DSfM 92.11 89.22 87.28 91.74 85.71 88.00 81.73 92.42 89.98 90.04 88.82
1DSfM+Tri. 81.18 88.24 88.10 89.26 85.71 88.00 81.65 93.94 90.97 88.44 87.55
Ours 91.35 89.22 92.34 90.91 85.71 89.33 82.58 94.70 90.97 90.12 89.72
Ours+Tri 91.35 82.35 90.08 85.71 85.33 84.00 94.95 93.69 90.97 90.12 88.86

Oracle 94.23 98.04 98.94 93.39 84.96 90.67 91.76 95.71 92.45 93.08 93.32

Table 2: Mean position errors in meter and recall thresholded at 10 meter for reconstructions
by Theia (Sweeney) on the 1DSfM dataset (Wilson & Snavely, 2014), using unfiltered relative
translations (w/o Filter), MSAC score Manam & Govindu (2022), CleanNet (Purkait et al., 2020),
the Triangle filter (Manam & Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined
with the Triangle filter, and our proposed method, both standalone and in conjunction with the
Triangle filter. Additionally, the results of the Oracle filter, removing all outlier translations, are also
presented. On M. N. Dame, the MSAC score and our method could not be aligned with the COLMAP
reconstruction for evaluation due to reconstructing a different set of cameras. The best results are
shown in bold, and the second-best ones are underlined.

Scene Alamo E. Isl. Gendar. M. Metro M. N. Dame NYC Lib. N. Dame P. del Pop. Piccad. R. Forum T. of London Trafal. U. Square V. Cath. Yorkm. AVG

Mean position error (↓)
w/o Filter 10.99 96.48 46.44 30.61 8.52 17.43 5.44 20.38 17.45 25.39 53.18 1749.00 29.68 18.14 39.47 154.29
MSAC score 11.07 96.56 48.95 30.10 – 21.54 5.46 19.18 17.01 25.57 99.22 1762.31 30.30 18.24 38.18 158.83
CleanNet 10.86 96.84 54.48 29.94 8.61 16.29 5.45 19.10 17.16 25.50 48.51 1763.33 30.41 17.74 42.43 155.57
Triangle 6.66 19.82 46.38 21.75 6.08 6.36 5.45 18.56 11.06 22.15 36.57 78.22 14.95 13.86 14.78 22.61
1DSfM 11.02 96.46 49.87 30.28 11.10 17.36 5.46 19.11 17.73 27.53 55.97 1742.24 29.71 18.86 37.28 154.21
1DSfM+Tri. 6.77 19.87 51.18 23.02 9.77 6.01 5.32 19.26 9.69 23.95 41.78 75.03 14.75 13.74 16.34 23.34
Ours 10.80 23.69 42.89 27.80 – 10.81 5.44 19.00 16.90 23.57 39.80 73.07 27.43 16.29 40.03 26.97
Ours+Tri 6.62 21.56 43.85 19.95 – 6.06 5.29 19.16 10.90 21.18 29.08 73.29 14.18 14.02 10.95 21.15
Oracle 7.69 20.91 41.38 23.24 6.37 5.25 4.83 17.77 12.49 18.54 30.43 2082.17 17.08 13.06 10.83 164.69

Position Recall@10m (↑)
w/o Filter 65.18 37.28 13.53 25.12 77.73 49.63 87.43 37.38 64.51 35.29 19.90 13.04 40.22 41.65 23.83 39.57
MSAC score 65.05 37.28 21.24 23.24 – 52.58 87.43 37.74 64.66 34.46 4.48 14.28 37.29 39.59 23.47 38.77
CleanNet 66.36 38.70 15.93 25.12 75.30 52.33 87.13 37.62 65.29 34.23 19.07 6.96 37.60 41.75 25.27 39.53
Triangle 69.78 44.39 7.96 28.64 71.05 75.18 87.06 38.09 64.88 37.76 23.05 14.76 41.91 42.27 49.10 44.18
1DSfM 65.44 37.28 17.32 23.71 64.57 49.63 87.13 37.38 63.73 28.45 17.25 5.41 41.76 41.03 23.10 38.47
1DSfM+Tri. 68.46 42.81 18.84 28.17 69.64 72.24 87.06 37.50 61.94 30.93 14.93 15.15 42.99 41.24 43.68 43.28
Ours 64.91 41.55 14.16 25.59 – 60.44 87.06 38.92 65.85 32.06 20.9 15.27 40.06 35.26 28.88 40.78
Ours+Tri. 68.46 36.65 18.33 29.11 – 70.76 87.21 35.14 63.58 33.33 25.04 15.49 42.37 42.27 54.15 44.42
Oracle 76.74 45.34 28.45 38.03 79.55 88.94 89.39 50.12 80.51 48.87 34.83 8.93 61.17 59.69 77.98 56.36

We filter edges by removing those with a score lower than 30. Note that we cannot use directly
the weight from (Manam & Govindu, 2022) as they need the absolute camera positions. 1DSfM:
Utilizes the filter from (Wilson & Snavely, 2014) to eliminate incorrect relative translations through
projections into random 1D subspaces. Triangle: Employs a filter from (Manam & Govindu, 2024)
targeting the removal of degenerate camera triplet configurations rather than outliers. Skewed
triangles, where the minimal angle falls below a threshold, are removed from the pose graph. This
method can be straightforwardly combined with the proposed one, as we will demonstrate with
experiments. CleanNet: An outlier detection network that filters outliers in the initial stage of the
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Table 3: Mean position errors in meter and recall thresholded at 1 meter for reconstructions by
Theia (Sweeney) on the ScanNet dataset (Dai et al., 2017), using unfiltered relative translations
(w/o Filter), MSAC score Manam & Govindu (2022), CleanNet (Purkait et al., 2020), the Triangle
filter (Manam & Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined with the
Triangle filter, and our proposed method, both standalone and in conjunction with the Triangle filter.
Additionally, the results of the Oracle filter, removing all outlier translations, are also presented. The
best results are shown in bold, and the second-best ones are underlined. On Scene 0207, Oracle
reconstructs a different set of cameras than the proposed filter; thus, we exclude this scene from the
average recall and report the unnormalized recall on it.

Scene 0000 0059 0106 0169 0181 0207 AVG

Mean position error (↓)
w/o Filter 0.65 0.58 0.87 0.58 1.21 0.81 0.78
MSAC score 0.62 1.20 1.03 1.27 1.26 1.13 1.09
CleanNet 0.65 0.58 0.87 0.58 1.21 0.81 0.78
Triangle 0.65 0.60 0.87 0.48 1.17 0.59 0.73
1DSfM 0.69 0.58 1.08 0.55 1.26 0.80 0.83
1DSfM+Tri. 0.69 0.59 0.90 0.48 0.70 0.61 0.66
Ours 0.66 0.58 0.85 0.63 1.12 0.55 0.73
Ours+Tri. 0.66 0.60 0.57 0.50 1.02 0.36 0.62
Oracle 0.49 0.61 0.39 0.45 0.64 0.37 0.49

Position Recall@1m (↑)
w/o Filter 90.30 89.06 91.05 92.81 24.65 58.88 77.57
MSAC score 94.12 64.33 54.98 53.14 36.27 47.38 60.57
CleanNet 90.20 89.06 91.05 92.97 24.65 58.71 77.59
Triangle 90.24 89.06 90.94 93.71 28.03 97.97 78.40
1DSfM 82.66 90.35 72.87 93.93 20.45 58.38 72.05
1DSfM+Tri. 82.18 89.47 85.85 92.91 75.52 96.79 85.19
Ours 87.43 88.95 84.70 91.10 42.87 95.64 79.01
Ours+Tri. 86.86 88.77 94.12 92.43 66.36 99.49 85.71
Oracle 90.13 90.94 99.38 94.41 86.07 100.00 92.19

Figure 3: Reconstructions of scene Alamo from the 1DSfM dataset obtained by Theia’s Global SfM
pipeline (Sweeney) with different filtering methods. An example where only the proposed method
can remove incorrect cameras can be seen on the right side of the building.

NeuRoRA framework (Purkait et al., 2020) by assessing relative rotations. Oracle: Demonstrates the
potential maximum accuracy of an ideal outlier filter by excluding relative translations with errors
exceeding 20◦ w.r.t. ground truth. Please note that while the accuracy of Oracle may be the upper
bound without outliers, it can be surpassed by removing degenerate configurations.

Datasets. Evaluations were conducted on the 1DSfM (Wilson & Snavely, 2014), Photo-
Tourism (Snavely et al., 2006), and ScanNet (Dai et al., 2017) datasets. The 1DSfM dataset,
encompassing 15 landmark scenes with internet-sourced photos, includes two-view matches, epipolar
geometries, and a reference incremental SfM reconstruction (via Bundler (Snavely et al., 2006; 2008))
for error analysis. Given that Bundler is nowadays considered outdated, we generated new reference
reconstructions by COLMAP (Schonberger & Frahm, 2016). To ensure that the reconstruction is
approximately metric, we robustly align it with the provided Bundler reconstruction. The scenes used
for the PhotoTourism dataset are based on the CVPR Image Matching Challenge 2020. These scenes
are non-metric, thus, the reported position errors are not in meters. The ScanNet dataset (Dai et al.,
2017) consists of 1613 monocular sequences with ground truth poses and metric depth. To evaluate
relative translation filters, we utilize the same six sequences as what Zhu et al. (Zhu et al., 2022) use.

Training. We trained the proposed method on scene Piazza San Marco from the PhotoTourism dataset,
comprising 249 images and 10295 view graph edges in total. We use the COLMAP reconstruction to
provide target inlier/outlier labels. We label a relative translation outlier if its error is higher than 20◦,
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leading to 4418 outlier edges and to good performance in our experiments. As the validation set, we
split scene Taj Mahal. We exclude these scenes from the main experiments. The model is trained for
300 epochs, with 0.009 learning rate and Binary Cross Entropy Loss, 5 ∗ 10−4 weight decay, and
Adam optimizer (Kingma & Ba, 2014) on 3 subgraphs, shuffled during training. We use this model
in all experiments and on all datasets, demonstrating the generalization capabilities of the proposed
method. Specifically, we train it on a single outdoor scene and test it on three large-scale datasets
with significant domain gaps (indoor/outdoor), showing that it performs accurately across different
noise and outlier distributions. For a fair comparison, we performed hyper-parameter tuning for the
baselines on the same training data.

Metrics include mean position errors, recall rates at 1, 5 and 10. We report the mean error as it clearly
shows large failures in the reconstruction. We include recall as a robust metric to show the accuracy
of the well-reconstructed cameras. Other metrics are reported in the supplementary material. To
make the recall rates fair across methods, we take the reconstructed cameras after applying the Oracle
filter and calculate the accuracy on these cameras. For each camera missing from the reconstruction
with a particular filter, we consider the error to be infinity for recall calculation. On 1DSfM and
ScanNet, the errors are in meters, as the reference is a metric reconstruction. There, we report the
recall thresholded at 10 and 1 meters. On PhotoTourism, the errors have no units. Thus, we report the
recall at 5, which we chose so that the results are meaningful.

PhotoTourism. The results on the PhotoTourism dataset are shown in Table 1. MSAC score,
CleanNet, the standalone Triangle, the 1DSfM filters, and their combination have a negligible impact.
On average, upon integration with the Triangle filter, the proposed method outperforms the baselines
in all accuracy metrics. This clearly shows that the two filters complement each other, the proposed
one removes outliers, and the Triangle filter gets rid of the degenerate configurations. Employed
independently of the Triangle filter, our approach secures best or second-best results. As expected,
the Oracle filter achieves superior performance on nearly all scenes. However, it is crucial to highlight
that its excellence is in outlier removal and does not extend to identifying degenerate configurations,
which could adversely impact reconstruction quality. Moreover, the threshold of 20◦ employed for
removing incorrect translations may not be optimal in all scenes. These are the reasons why the
Oracle filter does not always lead to the best reconstructions.

1DSfM. Results on the 1DSfM dataset are shown in Table 2. Consistent with observations on
the PhotoTourism dataset, the proposed filtering significantly surpasses the conventional outlier
filtering technique, 1DSfM, in performance. Notably, it reduces the average position error by
approximately a factor of 5 and enhances the recall rate by approximately 6%. The MSAC score
baseline has significantly higher error implying that it fails to filter incorrect pose graph edges
effectively. CleanNet only has a minor impact on accuracy. The combined Ours+Triangle method
attains the highest recall and lowest mean errors.

In the reconstructions depicted in Fig. 3, COLMAP is used as the benchmark. The COLMAP
reconstruction shows no cameras floating above the building. Only our method, alone and combined
with the Triangle filter, avoids this issue, aligning with the cameras observed in COLMAP.

ScanNet. The performance on six scenes from ScanNet (Dai et al., 2017), as selected by (Zhu et al.,
2022), is reported in Table 3. The trends are similar to those observed on other datasets. MSAC score
is not improving over the baselines. Notably, CleanNet exhibits negligible enhancement over the
scenario without any filter applied. Interestingly, the conventional outlier filter, 1DSfM, decreases
the accuracy on average. However, combined with the Triangle filter, it enhances accuracy across all
metrics. The proposed filter, on the other hand, improves performance across all accuracy metrics
compared to the unfiltered approach, even without the Triangle filter. The proposed method achieves
a recall rate that is approximately 10% higher than 1DSfM. When integrated with the Triangle filter,
it attains the lowest mean errors and the highest recalls.

Runtime. The average run-time of the proposed method is 8.6 mins. for the PhotoTourism dataset,
2.55 mins. for the 1DSfM dataset, and 4.42 mins. for the ScanNet dataset. The running times on
all scenes for all baselines are detailed in Table 8 in the supplement. Although filters like 1DSfM
(Wilson & Snavely, 2014) are faster (1.8 secs. PhotoTourism, 0.6 secs. 1DSfM, 1.2 secs. ScanNet),
it is crucial to emphasize that none of the filtering methods, including 1DSfM filtering, nor SfM
itself are designed for real-time performance. Despite this, the global pipeline using Theia combined
with our filtering method remains orders-of-magnitude faster than an incremental approach like

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study averaged over scenes T. of London, M. Rushmore, and E. Island. We report
the mean position errors, the recall at 10, and the number of cameras.

Mean Position Error (↓) Recall@10 (↑) # of cameras (↑)
1DSfM 51.74 48.75 740
Ours w/o image features 37.78 46.14 464
Ours w/ 2 layers 24.39 47.33 565
Ours trained with 8 clusters 22.49 48.14 441
Ours inference w/o clustering 46.60 44.07 686

Proposed 22.09 51.39 548

COLMAP. For instance, on 11 scenes of the 1DSfM dataset, Theia takes an average of 23 minutes for
reconstruction, compared to COLMAP’s 886 minutes (Table 9 in the supplement). Thus, spending a
few additional minutes on filtering is inconsequential in a SfM pipeline.

Camera Numbers. The average number of cameras retained across the tested datasets for each
method is as follows: w/o Filter (1618), MSAC score (1612), CleanNet (1590), Triangle (1356),
1DSfM (1617), 1DSfM + Triangle (1318), Ours (1463), Ours + Triangle (1263), and Oracle (1341).
When combined with the Triangle filter, the proposed method retains fewer cameras than the Oracle
method. However, it is important to note that the reported recalls were calculated on the same set of
cameras returned by the Oracle filter. The combination of our method with the Triangle filter achieves
the best recalls while retaining the fewest cameras, indicating its effectiveness in removing inaccurate
poses from the graph – specifically, cameras that could not be recovered accurately.

Ablation studies. To gain a more nuanced understanding of the proposed filtering, we run the
following configurations on scenes T. of London, M. Rushmore, and E. Island, as presented in Table
4. Ours w/o image features removes the image embeddings from the network. Only two layers in the
graph neural network instead of three are used in Ours w/ 2 layers. The next ablation explores how
changing the number of clusters during training affects performance. In Ours trained with 8 clusters,
we increase the number of clusters from the usual three to eight. In Ours inference w/o clusters, we
do not employ our clustering method, so the entire graphs are used for inference. Additionally, we
show the results of the entire pipeline with 1DSfM filtering as baseline. In Table 10 of the appendix,
we provide additional ablations showing the importance of the network inputs.

Even without image features, the proposed method improves the mean position error upon the 1DSfM
baseline. Reducing the number of layers has a minor effect on the accuracy. Artificially increasing
the number of clusters during training leads to high camera loss due to splitting the graph into
too small subgraphs. Ours inference w/o clustering runs the method on entire graphs to evaluate
whether clustering introduces any approximation or loss of information. While it reconstructs the
most cameras after the baseline, it has lower recall and a higher mean error compared to our proposed
method. This shows that clustering followed by majority voting does not degrade performance, but
improves accuracy across all metrics by focusing on local subgraphs to detect outlier edges.

5 CONCLUSION

This paper presents a novel filtering method that enhances camera position estimation in global SfM,
demonstrating improved accuracy across a diverse set of datasets. By jointly addressing outliers with
the proposed method and degenerate configurations by (Manam & Govindu, 2024), our approach
ensures superior reconstruction quality while only being marginally slower than other alternatives.
The proposed method without (Manam & Govindu, 2024) is superior, in terms of accuracy, to the
standard outlier filtering techniques, e.g., 1DSfM (Wilson & Snavely, 2014). These results highlight
the critical role of advanced filtering in Structure-from-Motion. The source code will be made public.
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A APPENDIX

Next, we will provide additional metrics on the tested datasets and the processing times of all methods,
a complexity analysis, additional ablation studies on the network inputs, more description on the
clustering and visualizations.

B ADDITIONAL METRICS

The median position error and the number of reconstructed cameras using Theia (Sweeney) across all
datasets are presented in Tables 5, 6, and 7. Consistent with the mean position error and recall rates,
our method combined with the Triangle filter achieves the lowest median errors across all datasets.
Notably, our proposed method consistently outperforms the 1DSfM baseline. The proposed method
results in a similar number of reconstructed cameras to the baselines. However, combining it with
the Triangle filter results in a reduction in the number of reconstructed cameras. It is important to
highlight that the highest recall values achieved by the Ours+Triangle method (in the main paper)
indicate that it only removes cameras that could not be reconstructed accurately.

To achieve a clearer understanding of the removed and kept translation directions, we present the
angular error distribution for inliers and outliers as labeled by our proposed method or 1DSfM in
Fig. 4 for three scenes of the 1DSfM dataset. It can be seen that the outliers removed by the proposed
filter are mostly located in the right part of the histograms, indicating that the removed edges indeed
have high errors. The 1DSfM filter, on the other hand, barely removes any edges. For example,
1DSfM does not remove anything in the Milan Cathedral scene. While the removed edges usually
have high errors, such a minimal filtering has negligible impact on the final accuracy, as can be seen
in the tables of the main paper.

On average, the relative error in degrees is significantly lower for inlier edges (37.69◦ 1DSfM, 43.19◦
PhotoTourism) compared to outlier edges (43.49◦ 1DSfM, 50.56◦ PhotoTourism) demonstrating
that the proposed method effectively filters out less accurate edges and retains relative translations
with reduced angular error. Across all six scenes analyzed, the distribution shows that inliers are
more concentrated in regions with lower angular error, while outliers are more frequently observed in
regions with higher angular error. This distinction underscores the method’s capability to discriminate
between potential inliers and outliers.

Figure 4: Relative error distribution of different scenes filtered with our proposed method and 1DSfM
filter. Shown here are scenes British Museum, Lincoln Memorial Statue and Milan Cathedral from
the PhotoTourism dataset.
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Table 6: Median position errors and the number of cameras reconstructed by Theia (Sweeney) on
the 1DSfM dataset (Wilson & Snavely, 2014), using unfiltered relative translations (w/o Filter),
MSAC score Manam & Govindu (2022), CleanNet (Purkait et al., 2020), the Triangle filter (Manam
& Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined with the Triangle filter, and
our proposed method, both standalone and in conjunction with the Triangle filter. Additionally, the
results of the Oracle filter, removing all outlier translations, are also presented. The best results are
shown in bold, and the second-best ones are underlined.

Scene Alamo E. Island Gendarm. M. Metro M. N. Dame NYC Library N. Dame P. del Popolo Piccad. R. Forum T. of London Trafalgar U. Square V. Cath. Yorkm. AVG

Median position error (↓)
w/o Filter 5.38 16.10 41.38 21.79 5.30 10.97 2.43 14.66 6.83 14.71 31.81 58.64 12.78 12.90 22.44 19.49
MSAC score 5.67 16.12 30.49 22.56 – 9.48 2.41 14.03 6.87 15.23 84.55 60.32 12.95 13.95 23.15 22.70
CleanNet 5.22 16.61 50.56 22.52 5.11 9.74 2.44 14.02 6.74 14.61 32.37 41.30 13.22 12.31 21.69 18.81
Triangle 3.34 7.65 39.85 13.77 4.73 4.13 2.30 13.51 5.55 13.59 25.19 59.38 10.04 10.96 9.36 15.62
1DSfM 5.25 16.29 45.76 22.09 6.74 11.12 2.44 14.29 7.08 17.02 34.42 64.41 12.17 12.64 25.22 20.73
1DSfM+Tri. 3.40 8.94 43.76 16.67 5.97 3.74 2.38 13.13 5.96 15.57 29.06 56.69 9.79 11.24 10.52 16.49
Ours 5.27 10.23 36.93 20.37 – 6.97 2.35 12.98 6.58 14.00 27.41 55.72 12.12 12.25 20.34 17.39
Ours+Tri. 3.38 9.19 36.95 12.57 – 3.92 2.30 12.60 5.61 12.81 18.18 54.58 9.72 10.66 6.65 14.22
Oracle 3.77 13.28 31.74 14.78 4.54 2.99 2.02 9.98 3.94 10.37 16.46 36.68 7.50 7.96 5.51 11.93

# of cameras (↑)
w/o Filter 943 1229 1093 751 1507 1135 1422 1095 3615 1678 872 5092 1293 1704 645 1605
MSAC score 938 1212 1091 745 – 1123 1419 1078 3586 1677 863 5025 1251 1675 645 1595
CleanNet 918 1173 1048 681 1460 1018 1422 1047 3496 1635 813 4896 1174 1509 621 1527
Triangle 689 703 853 394 469 411 1400 836 2810 1378 603 3472 760 982 322 1072
1DSfM 943 1229 1093 751 1507 1135 1422 1095 3615 1678 854 5072 1291 1704 645 1602
1DSfM+Tri. 689 703 852 393 469 410 1396 831 2779 1370 607 3408 741 979 321 1063
Ours 929 761 970 675 – 886 1416 1051 3407 1522 744 3989 1268 1490 563 1405
Ours+Tri. 684 586 853 328 – 403 1391 753 2692 1160 534 3123 731 944 265 1032

Oracle 789 795 817 534 1435 487 1355 870 2959 1500 618 4256 691 1474 277 1248

Table 5: Median position errors and the number of cameras reconstructed by Theia (Sweeney) on
the PhotoTourism dataset (Snavely et al., 2006), using unfiltered relative translations (w/o Filter),
MSAC score Manam & Govindu (2022), CleanNet (Purkait et al., 2020), the Triangle filter (Manam
& Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined with the Triangle filter, and
our proposed method, both standalone and in conjunction with the Triangle filter. Additionally, the
results of the Oracle filter, removing all outlier translations, are also presented. The best results are
shown in bold, and the second-best ones are underlined.

Scene B. Museum F. Cathedral L. Memorial M. Cathedral M. Rushmore Reichstag Sacre Coeur S. Familia St. P. Cathedral St. P. Square AVG

Median position error (↓)
w/o Filter 2.03 1.42 2.18 1.16 1.29 1.37 0.53 1.07 1.10 1.61 1.38
MSAC score 1.96 1.48 2.27 1.20 1.28 1.49 0.54 1.14 1.09 1.71 1.42
CleanNet 2.03 1.48 2.18 1.23 1.23 1.39 0.53 1.10 1.13 1.65 1.40
Triangle 2.03 1.48 2.18 1.22 1.23 1.37 0.54 1.06 1.10 1.61 1.38
1DSfM 2.04 1.49 2.09 1.23 1.24 1.40 0.54 1.06 1.07 1.64 1.38
1DSfM+Tri.. 2.03 1.46 2.12 1.20 1.24 1.45 0.54 1.06 1.09 1.71 1.39
Ours 2.01 1.18 2.14 1.22 1.22 1.52 0.51 1.15 1.09 1.66 1.37
Ours+Tri. 2.01 0.98 2.14 1.22 1.22 1.39 0.51 1.15 1.09 1.66 1.34
Oracle 1.67 0.66 0.87 1.09 0.78 1.13 0.35 0.75 0.95 1.37 0.96

# of cameras (↑)
w/o Filter 660 108 850 123 138 75 1177 401 612 2503 665
MSAC score 660 108 850 123 138 75 1177 401 612 2503 665
CleanNet 660 108 850 123 138 75 1177 401 612 2503 665
Triangle 660 108 850 122 138 75 1177 401 612 2503 665
1DSfM 660 108 850 123 138 75 1177 401 612 2503 665
1DSfM+Tri. 660 108 850 123 138 75 1177 401 612 2503 665
Ours 660 107 850 123 138 75 1177 401 612 2503 665
Ours+Tri. 660 96 850 123 138 75 1177 401 612 2503 664

Oracle 659 102 849 121 133 75 1177 396 609 2501 662

C PROCESSING TIME

The runtime of all filtering methods applied to the datasets PhotoTourism, 1DSfM, and ScanNet
is detailed in Table 8. Among these methods, 1DSfM is the most efficient, closely followed by
CleanNet (Purkait et al., 2020), MSAC score based on (Manam & Govindu, 2022) and Triangle, the
latter being a brute force implementation in C++ based on (Manam & Govindu, 2024). The Oracle
filter also demonstrates speed, implemented in Python. It compares each edge in the view graph
against the relative translation obtained from COLMAP. When our method is run prior to applying the
Triangle filter, the Triangle filter is more efficient on many scenes, as it needs to iterate through fewer
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Table 7: Median position errors and the number of cameras reconstructed by Theia (Sweeney) on
the ScanNet dataset (Dai et al., 2017), using unfiltered relative translations (w/o Filter), MSAC
score Manam & Govindu (2022), CleanNet (Purkait et al., 2020), the Triangle filter (Manam &
Govindu, 2024), 1DSfM (Wilson & Snavely, 2014), 1DSfM combined with the Triangle filter, and
our proposed method, both standalone and in conjunction with the Triangle filter. Additionally, the
results of the Oracle filter, removing all outlier translations, are also presented. The best results are
shown in bold, and the second-best ones are underlined.

Scene 0000 0059 0106 0169 0181 0207 AVG

Median position error (↓)
w/o Filter 0.60 0.49 0.77 0.45 1.23 0.79 0.72
MSAC score 0.62 1.25 0.98 1.40 1.23 1.15 1.10
CleanNet 0.59 0.50 0.77 0.45 1.23 0.79 0.72
Triangle 0.59 0.52 0.76 0.36 1.18 0.58 0.66
1DSfM 0.61 0.49 0.87 0.43 1.27 0.79 0.74
1DSfM+Tri. 0.60 0.51 0.71 0.37 0.73 0.58 0.58
Ours 0.59 0.50 0.75 0.49 1.07 0.51 0.65
Ours+Tri. 0.59 0.53 0.52 0.38 0.87 0.30 0.53
Oracle 0.36 0.63 0.34 0.34 0.49 0.36 0.42

# of cameras (↑)
w/o Filter 5572 1806 2259 2026 1885 1953 2584
MSAC score 5572 1806 2260 2022 1862 1941 2577
CleanNet 5571 1806 2259 2024 1876 1943 2580
Triangle 5560 1803 2256 1922 1686 760 2331
1DSfM 5572 1806 2259 2026 1885 1953 2584
1DSfM+Tri. 5537 1783 2234 1903 1172 741 2228
Ours 5571 1806 1911 2025 1498 1098 2318
Ours+Tri. 5542 1799 1546 1845 1238 588 2093

Oracle 5472 1730 1788 1891 1213 591 2114

edges compared to when it operates independently. As expected, the proposed filtering method is
the slowest. It runs for 8.60 (PhotoTourism), 2.59 (1DSfM), and 4.42 (ScanNet) minutes on average.
Let us note that this is still negligible compared with other components of a Structure-from-Motion
pipeline, e.g., feature matching and final bundle adjustment. Moreover, our code can be further
optimized by moving all its parts from Python to C++. Table 9 compares the runtime between Theia
and COLMAP across 11 scenes from the 1DSfM dataset.

D COMPLEXITY ANALYSIS

The computational complexity of the method is described below and in algorithms 1 2 3 4.

1. Graph clustering. The graph clustering 1 has a time complexity of O(|E|). The function for
computing the k-way partition is implemented in COLMAP and utilizes the METIS library (Karypis
& Kumar, 1997). It has a complexity of O(|E|) as discussed in (Karypis & Kumar, 1997). Thus, the
complexity of the graph clustering is linear in the number of edges.

2. Convert to line graph. The complexity of line graph conversion 2 is dominated by the nested
loops for adding the edges to the line graph, resulting in a total complexity of O(|V| ∗ degavg(V))2,
where degavg(V) is the average node degree. In the 1DSfM dataset, the average node degree is 45.
The function is implemented in the NetworkX library (Hagberg et al., 2004–2024) and can be easily
parallelized to convert each edge from the original graph to a node in the line graph.

3. Create edge attributes. Assigning relative rotations and relative translations to every edge in the
line graph 3 scales linearly with the number of edges in the line graph, implying complexity O(|E|).
4. Create node attributes. To create the node attribute 4, we stack the relative rotations and positions
in the linegraph L(G) into a tensor. The output is a node attribute tensor, created inO(|VL|) = O(|E|)
time.

5. Graph Neural Network Inference. We run the GNN to classify all nodes in the line graph.
Each layer computes the scaled dot-product attention for all nodes, where each node calculates the
attention from all its neighbors. Therefore, the node update has a time complexity dominated by
O(degavg(VL) ∗ |VL|) = O(degavg(VL) ∗ |E|), where degavg(VL) is the average node degree in the
line graph.
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Table 8: Runtime in minutes using the baseline based on (Manam & Govindu, 2022) abbrevi-
ated as MSAC score, CleanNet (Purkait et al., 2020), Triangle filter (Manam & Govindu, 2024),
1DSfM (Wilson & Snavely, 2014), 1DSfM combined with Triangle Filter and our proposed method,
both standalone and in conjunction with the Triangle filter. Additionally, the results of the Oracle
filter, removing all outlier translations, are also presented.

Method MSAC score CleanNet Triangle 1DSfM 1DSfM + Tri. Ours Ours+Tri. Oracle

PhotoTourism dataset (minutes (↓))
B. Museum 0.03 0.06 0.37 0.02 0.36 4.87 5.19 0.21
F. Cathedral 0.00 0.06 0.00 0.00 0.00 0.09 0.09 0.00
L. Memorial 0.04 0.06 0.34 0.02 0.30 4.81 5.03 0.23
M. Cathedral 0.00 0.00 0.00 0.00 0.00 0.12 0.13 0.01
M. Rushmore 0.00 0.00 0.00 0.00 0.00 0.16 0.16 0.01
Reichstag 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.00
Sacre Coeur 0.13 0.10 0.65 0.03 0.59 8.68 8.96 0.37
S. Familia 0.01 0.02 0.04 0.01 0.04 1.01 1.04 0.06
St. P. Cathedral 0.03 0.05 0.26 0.01 0.25 3.33 3.45 0.17
St P. Square 0.51 0.37 11.45 0.16 10.93 62.90 64.35 1.48

AVG 0.08 0.07 1.31 0.03 1.25 8.60 8.85 0.25

1DSfM dataset (minutes (↓))
Alamo 0.01 0.02 0.02 0.00 0.02 1.34 1.38 0.06
E. Island 0.00 0.01 0.00 0.00 0.00 1.29 1.31 0.01
Gendarm. 0.01 0.01 0.00 0.00 0.00 1.03 1.05 0.03
M. Metro 0.00 0.00 0.00 0.00 0.00 0.62 0.63 0.01
M. N. Dame 0.01 0.01 0.00 0.00 0.01 – – 0.03
NYC Library 0.00 0.01 0.00 0.00 0.00 1.17 1.19 0.02
N. Dame 0.08 0.07 0.34 0.02 0.32 6.85 7.00 0.27
P. del Popolo 0.00 0.01 0.00 0.00 0.01 1.73 1.76 0.01
Piccad. 0.03 0.04 0.04 0.02 0.05 5.88 5.99 0.14
R. Forum 0.01 0.01 0.00 0.00 0.01 2.21 2.24 0.04
T. of London 0.00 0.01 0.00 0.00 0.00 1.17 1.19 0.02
Trafalgar 0.08 0.04 0.06 0.03 0.10 8.08 8.22 0.15
U. Square 0.02 0.01 0.00 0.00 0.00 1.10 1.11 0.02
V. Cath. 0.08 0.02 0.02 0.01 0.02 2.24 2.28 0.06
Yorkminster 0.00 0.00 0.00 0.00 0.00 1.62 0.80 0.01

AVG 0.02 0.02 0.03 0.01 0.04 2.59 2.64 0.07

ScanNet dataset (minutes (↓))
0000 0.12 0.15 0.25 0.06 0.20 14.21 14.47 0.92
0059 0.02 0.03 0.02 0.01 0.02 2.77 2.82 0.18
0106 0.05 0.03 0.02 0.01 0.02 2.90 2.95 0.19
0169 0.04 0.04 0.02 0.01 0.02 3.76 3.83 0.20
0181 0.01 0.02 0.00 0.00 0.01 1.34 1.37 0.08
0207 0.01 0.01 0.00 0.00 0.01 1.56 1.59 0.08

AVG 0.04 0.05 0.05 0.02 0.04 4.42 4.50 0.28

Table 9: Running time in minutes for reconstruction using the COLMAP and Theia pipelines on
11 scenes of the 1DSfM dataset. The feature detection and matching times are not included in the
runtimes.

Scene Alamo E. Isl. Gendar. M. Metro N. Dame P. del Pop. R. Forum T. of London. U. Square V. Cath. Yorkm. AVG

Time in minutes (↓)
Theia 27 12 21 9 61 13 32 13 12 34 14 23
COLMAP 2039 496 819 99 1800 306 561 592 596 1167 1272 886

Algorithm 1 Graph Clustering

1: Input: view graph G = (V, E), weights
2: k ← 3 ▷ initial cluster number O(1)
3: while (max(|EL|) > max edges that fit into memory) do
4: Solve k-way graph partitioning ▷ using METIS O(|E|)
5: Build k subgraphs ▷ O(|E|)
6: Compute max(|EL|) for linegraphs of all subgraphs: |EL| = 1

2

∑
v∈V deg(v)2 −m ▷ O(|E|)

7: k ← k + 1 ▷ O(1)
8: end while
9: Output: k clusters
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Algorithm 2 Line Graph Construction

1: Input: graph G = (V, E)
2: for all v ∈ V do ▷ O(|V|)
3: for all adjacent edges to v do ▷ O(deg(v))
4: VL ← add edge ▷ O(1
5: end for
6: for all a ∈ VL do ▷ O(deg(v))
7: for all b ∈ VL \ {a} do ▷ O(deg(v))
8: EL ← add edge (a, b) if they share a common node ▷ O(1)
9: end for

10: end for
11: end for
12: Output: line graph L(G) = (VL, EL)

Algorithm 3 Create Edge Attributes

1: Input: line graph L(G) = (VL, EL)
2: identify common nodes for all edge pairs ▷ O(EL)
3: retrieve rotations and features for common nodes ▷ O(EL)
4: concatenate into one tensor per edge ▷ O(EL)
5: stack into final edge attribute tensor ▷ O(EL)
6: Output: edge attribute tensor

Algorithm 4 Create Node Attributes

1: Input: graph L(G) = (VL, EL), relative poses
2: for all v ∈ VL do ▷ O(|VL|)
3: stack rel. rotations and rel. positions to tensor
4: end for
5: Output: node attribute tensor

E ADDITIONAL ABLATION STUDIES

To demonstrate the importance of global rotations, relative rotations, and relative translations as
network inputs, we trained the network without each of these components individually in Ours w/o
rotations, Ours w/o rel. rotations and Ours w/o rel. translations. The results are presented in table 10.
Our method, using all inputs, halves the mean position error compared to Ours w/o rel. rotations
and reconstructs more cameras with higher accuracy than Ours w/o rel. translations. We framed
the proposed method as a filtering technique for translation averaging under the assumption that
rotation averaging is generally a less complicated problem. While incorporating global rotations
into the filtering process yields the best results, we observe improvements even in the absence of
rotations - Ours w/o rotations achieves good mean position error and recall, suggesting that the
filter can be applied prior to rotation averaging. We would like to highlight that a poor-quality view
graph negatively impacting the quality of the reconstruction is a general limitation of global SfM, not
specific to translation filtering. As demonstrated in the experiments, the proposed method actually
reduces the sensitivity of SfM to noisy pose graphs by removing outlier edges.

F ADDITIONAL DESCRIPTION OF CLUSTERING

Algorithm 1 outlines the clustering procedure to ensure that all graphs fit into memory. We begin by
initializing the cluster number k to 3 to obtain the initial cluster labels. Next, we compute the number
of edges in the line graph of each cluster. If the edge count of a subgraph exceeds the maximum
allowable number, we increment k by one and restart the procedure. The maximum number of edges
can be set automatically based on the current hardware, for example, by testing multiple values and
selecting the one that results in subgraphs fitting into memory.
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Table 10: Ablation study averaged over scenes Tower of London, Mount Rushmore, and Ellis Island.
We report the mean position errors, the recall at 10, and the number of cameras.

Mean Position Error (↓) Recall@10 (↑) # of cameras (↑)
1DSfM 51.74 48.75 740
w/o line graph 43.82 51.19 582
Ours w/o rel. rotations 50.93 49.07 525
Ours w/o rel. translations 23.19 47.62 459
Ours w/o rotations 33.98 49.92 485

Proposed 22.09 51.39 548

G ADDITIONAL RECONSTRUCTIONS

Visualization as shown in Figures 5 and 6. We used the default settings of Theia (Sweeney), now
utilizing translation re-estimation, which was observed to reconstruct a larger number of points. For
Gendarmenmarkt, the gate appears with enhanced details in comparison to alternative approaches.
In scene Madrid Metropolis, the highlighted area in Ours+Triangle represents the spacing between
the architecture better. In scene Tower of London, both the standalone method and its combination
with the Triangle Filter distinctly show two walls, highlighted in the green circle. Union Square
shows minimal variance across methods, though the COLMAP reconstruction displays fewer points.
In the Phototourism dataset in Fig. 6, scene Reichstag shows little variations among methods, all
capturing details effectively. The Florence Cathedral Side COLMAP reconstruction shows the left
wall as upright. However, only our method, both on its own and when used with the Triangle Filter,
accurately captures the wall’s orientation and aligns with the COLMAP reference.
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Figure 5: Reconstructions obtained by COLMAP (Schonberger & Frahm, 2016) as reference and
Theia’s Global SfM pipeline (Sweeney), from left to right, utilizing no filter, our proposed filtering
method, the combination of our method and Triangle Filter, and Triangle Filter standalone. The
scenes from 1DSfM datasets top to bottom are Gendarmenmarkt, Madrid Metropolis, Tower of
London and Union Square.

Figure 6: Reconstructions obtained by COLMAP (Schonberger & Frahm, 2016) as reference and
Theia’s Global SfM pipeline (Sweeney), from left to right, utilizing no filter, our proposed filtering
method, the combination of our method and Triangle Filter, and Triangle Filter standalone. The
scenes from PhotoTourism datasets top to bottom are Reichstag and Florence Cathedral Side.
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