
Bayesian Optimization of Function Networks

Raul Astudillo
Cornell University

ra598@cornell.edu

Peter I. Frazier
Cornell University
pf98@cornell.edu

Abstract

We consider Bayesian optimization of the output of a network of functions, where
each function takes as input the output of its parent nodes, and where the net-
work takes significant time to evaluate. Such problems arise, for example, in
reinforcement learning, engineering design, and manufacturing. While the stan-
dard Bayesian optimization approach observes only the final output, our approach
delivers greater query efficiency by leveraging information that the former ignores:
intermediate output within the network. This is achieved by modeling the nodes of
the network using Gaussian processes and choosing the points to evaluate using,
as our acquisition function, the expected improvement computed with respect to
the implied posterior on the objective. Although the non-Gaussian nature of this
posterior prevents computing our acquisition function in closed form, we show that
it can be efficiently maximized via sample average approximation. In addition, we
prove that our method is asymptotically consistent, meaning that it finds a globally
optimal solution as the number of evaluations grows to infinity, thus generalizing
previously known convergence results for the expected improvement. Notably,
this holds even though our method might not evaluate the domain densely, instead
leveraging problem structure to leave regions unexplored. Finally, we show that
our approach dramatically outperforms standard Bayesian optimization methods in
several synthetic and real-world problems.

1 Introduction

We consider Bayesian optimization (BO) of objective functions defined by a series of time-consuming-
to-evaluate functions, f1, . . . , fK , arranged in a directed acyclic network, so that each function takes
as input the output of its parent nodes. As we detail below, these problems arise in BO-based policy
search in reinforcement learning (Lizotte et al., 2007), optimization of complex systems modeled via
simulation, and calibration of time-consuming physics-based models.

To illustrate, we introduce a running example of vaccine manufacturing (Sekhon and Saluja, 2011),
focusing on the portion of the manufacturing process that uses live cells to produce proteins needed
in a vaccine. It begins with a cell culture, in which living cells are grown and used as “factories”
to produce proteins. This process is controlled by a vector, x1, containing the temperature, pH,
and CO2 content used when growing these cells. The output of this process is the quantity of the
desired protein y1 = f1(x1), i.e., the yield of this step, along with other byproducts. This output is
passed into a second process, purification, which removes byproducts and is controlled by a vector
x2 comprising temperature, pressure, and flow rate. The yield of the desired protein from this second
step is y2 = f2(x2, y1). This output enters a third step, formulation, in which we formulate the raw
protein into a form that can be distributed as controlled by a third set of parameters. This determines
the yield of the overall process y3 = f3(x3, y2). We wish to choose (x1, x2, x3) to maximize overall
protein yield. This problem is summarized as a function network in Figure 1.

The problem described above and other similar problems can be tackled with Bayesian optimization
(BO), which has been shown to perform well compared to other derivative-free global optimization

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



methods for time-consuming-to-evaluate objective functions (Snoek et al., 2012; Frazier, 2018). A
standard BO algorithm would fit a Gaussian process (GP) (Rasmussen and Williams, 2006) model
on the objective function (y3, which depends on (x1, x2, x3)) and use it, along with an acquisition
function, to sequentially choose the points to evaluate. Under this standard approach, however,
evaluations of the intermediate nodes, f1, . . . , fK−1, would be ignored despite being available when
computing the objective function. In the example above, this corresponds to looking only at the yield
of the overall process, and not of each individual step.

f1 f2 f3

x1 x2 x3

y1 y2 y3

Figure 1: Vaccine manufacturing as a function network. Protein y1 = f1(x1) is created, then
purified with yield y2 = f2(x2, y1), and formulated with yield y3 = f3(x3, y2). The goal is to find
(x1, x2, x3) that maximizes y3.

In this paper, we introduce a novel BO approach that leverages function network structure for
substantially more efficient optimization. This approach models the individual nodes of the network
using distinct GPs. This allows incorporating observations of each node’s output recursively into a
non-Gaussian posterior on the network’s overall output. Our approach then chooses the points to
evaluate using the expected improvement (Jones et al., 1998) computed with respect to this implied
posterior on the objective function. The non-Gaussian nature of this posterior prevents the expected
improvement from having a closed form. However, we show that it can still be efficiently maximized
via sample average approximation (Kleywegt et al., 2002).

Our approach can outperform standard BO by leveraging information from internal nodes unavailable
to standard methods. We briefly explain one way this can happen, in the context of the example
above. In vaccine manufacturing, each function fk(xk, yk−1), k = 2, 3, is bounded between 0 and
yk−1 because new protein cannot be created in the purification and formulation stages. Moreover,
application experts have a prior on what values for fk(xk, yk−1)/yk−1 should be achievable if xk
is set well. Thus, if we see that y3 is unexpectedly poor, information from intermediate nodes can
be extremely valuable: if y1 and y2 are as expected, then this suggests the problem is with x3; if y1
is as expected but y2 is poor, then the problem is likely with x2; and if y1 is poor then the problem
is likely with x1. (If there is a problem with xk, there may also be a problem with xk′ , k′ > k, but
we can focus on fixing xk first.) Thus, by observing intermediate nodes, we can instantly reduce the
effective dimensionality of the input space by a factor of K = 3.

We show that our method is asymptotically consistent, i.e., that it discovers the global optimum given
sufficiently many samples. Remarkably, in contrast with most BO methods, it may do so without
measuring densely over the feasible domain, instead leveraging function network structure to exclude
regions as unnecessary to explore. This indicates the power of function network structure to improve
query efficiency.

We demonstrate through numerical experiments that access to additional information available in a
problem formulated as a function network can dramatically accelerate optimization. We study four
synthetic problems and four real-world problems: a manufacturing problem similar in spirit to the
vaccine example above, an active learning problem with a robotic arm, and two problems arising in
epidemiology, one calibrating an epidemic model and the other designing a testing strategy to control
the spread of COVID-19. Our method significantly outperforms competing methods that utilize less
information, in some cases by ∼5% and in other cases by several orders of magnitude.

2 Related Work

Our work occurs within BO, a framework for global optimization of expensive-to-evaluate black-box
functions that originated with the work of Zhilinskas (1975) and Močkus (1975), and has recently
become popular due to its remarkable performance in hyperparameter tuning of machine learning
algorithms (Snoek et al., 2012; Swersky et al., 2013; Wu et al., 2019). We refer the reader to Shahriari
et al. (2016) and Frazier (2018) for modern introductions to BO.

2



Our approach can be catalogued as a grey-box BO method since it does not treat the objective
function entirely as a black box, and instead exploits known structure to improve sampling efficiency.
Other examples of grey-box BO approaches include multi-fidelity BO (Kandasamy et al., 2017; Wu
et al., 2019), which leverages cheaper approximations of the objective function; BO of objective
functions that are the integral of an expensive-to-evaluate integrand (Williams et al., 2000; Toscano-
Palmerin and Frazier, 2018; Cakmak et al., 2020); BO of objective functions that are a sum of squared
errors (Uhrenholt and Jensen, 2019); and, more generally, BO of objective functions that are the
composition of an expensive-to-evaluate inner function and a known inexpensive-to-evaluate outer
function (Astudillo and Frazier, 2019), of which our work can be seen as a significant generalization.
We refer the reader to Astudillo and Frazier (2021) for a tutorial on grey-box BO.

Our work is also closely related to Marque-Pucheu et al. (2019), which proposes a method for efficient
sequential experimental design of nested computer codes, also using GPs. This work focuses on
the case where there are only two node functions, and one takes as input the output of the other. In
contrast with our work, the goal of the proposed method is to learn the output code as accurately as
possible within a limited evaluation budget, but optimization is not pursued.

Optimization of composite (a.k.a nested) functions has also been considered in the gradient-based
optimization literature (Shapiro, 2003; Drusvyatskiy and Paquette, 2019; Charisopoulos et al., 2021;
Balasubramanian et al., 2020). In contrast with ours, these works assume that evaluations are
inexpensive, and often also some form of convexity, along with availability of gradients. However,
this literature is similar in spirit to ours in that information from inner functions improves efficiency.

Function networks arise in many application areas. While these applications have not, to our
knowledge, been previously formulated as specific instances of the general function network model
we propose, their literatures are nonetheless relevant to our work.

• In engineering and aerospace design, function networks arise in multidisciplinary opti-
mization (Cramer et al., 1994; Amaral et al., 2014; Benaouali and Kachel, 2019), where
simulators focusing on different physical laws are coupled into a function network. For
example, a simulation of airflow over a wing may output the forces on the wing to another
simulation of mechanical stress on the wing structure.

• In drug discovery and materials design, function networks arise from the sequence-structure-
function (Sadowski and Jones, 2009) and composition-structure-property (Hattrick-Simpers
et al., 2016) paradigms. Here, decision variables (composition, e.g., what fraction of what
raw materials are used) determine the structure of the material (how the atoms combine
together), which in turn determines how the material behaves (properties).

• Function networks arise in the design of queuing networks (Fu and Henderson, 2017; Arcelli,
2020). This includes manufacturing systems (Ghasemi et al., 2018), where the partially-
processed output of one workstation is input to the next workstation, the design of service
systems (Wang et al., 2020) such as hospitals and airport security checkpoints, and choosing
traffic signal timings for a city’s street network (Osorio and Bierlaire, 2013).

• Finally, function networks arise in reinforcement learning (Sutton and Barto, 2018) and
Markov decision processes (Puterman, 1990), where the transition kernel transforms the
state variable at the start of a time range to another state variable at the end of this range.
This outputted state variable is the input to the next time range. §5.2 shows an example.

3 Problem Setting

We consider objective functions evaluated via a series of functions, f1, . . . , fK , arranged in a
directed network so that each function in this network takes as input the output of its parent nodes,
and assume that evaluating this collection of functions is time-consuming. The network structure
is encoded as a directed graph with nodes V = {1, . . . ,K} and directed edges E = {(j, k) :
fk take as input the output of fj}. We assume that this graph is acyclic and has a single leaf node
whose output is the objective to optimize.

Let J(k) denote the set of parent nodes of node k1. We assume, without loss of generality, that the
nodes are ordered such that j < k for all j ∈ J(k). In addition to the output of its parent nodes, we

1We allow J(k) = ∅, which corresponds to the root node(s).

3



assume that each function, fk, takes as input a (potentially empty) subset, I(k) ⊂ {1, . . . , D}, of the
components of the decision vector x ∈ RD.

Let h1(x), . . . , hK(x) denote the values of the K nodes in the function network when it is evaluated
at x. These values are defined recursively by

hk(x) = fk
(
xI(k), hJ(k)(x)

)
, k = 1, . . . ,K,

i.e., by evaluating each function in the network as the values of its parent nodes become available.
This recursion is well-defined by our assumption that the graph is acyclic. The objective function is
then g = hK , and the goal is to solve

max
x∈X

g(x),

where X ⊂ RD is a simple compact set, such as a hyper-rectangle.

The standard BO approach to this problem models g using a GP prior distribution. This approach
iteratively chooses the next point at which to evaluate g as follows. Given n observations of the
objective function, g(x1), . . . , g(xn), it computes the posterior distribution on g, which is itself a
GP. It then uses this posterior distribution to compute an acquisition function (Frazier, 2018) that
quantifies the value of the information that would result from a function evaluation at any given
point. Finally, it chooses the next point to evaluate, xn+1, as the point that maximizes this acquisition
function. Notably, although the outputs of f1, . . . , fK−1 would be observed as part of this approach,
these evaluations would be ignored by standard BO when calculating the posterior distribution and
corresponding acquisition function.

4 Bayesian Optimization with Full Network Observations

This section describes our approach. Like standard BO, it consists of a statistical model and an
acquisition function. Unlike standard BO, however, our approach leverages the network structure
of the problem by utilizing intermediate outputs within the network. As we describe below, this
is achieved by modeling the node functions, f1, . . . , fK , as GPs, which in turn implies a non-
Gaussian distribution on g (§4.1). Our acquisition function is the expected improvement under this
posterior distribution (§4.2), which no longer has a closed form and thus we maximize it via sample
average approximation (§4.3). We end up this section by proving that our acquisition function is
asymptotically consistent despite not necessarily sampling X densely (§4.4).

4.1 Statistical Model

Instead of modeling g directly, we model f1, . . . , fK , as drawn from independent GP prior distribu-
tions. Let µ0,k and Σ0,k denote the prior mean and covariance functions of fk, k = 1, . . . ,K, respec-
tively. When g is evaluated at x, we also get to observe the value of fk at

(
xI(k), hJ(k)(x)

)
. Thus,

after querying g at n points, x`, ` = 1, . . . , n, the observations of the values of fk, k = 1, . . . ,K,
at
(
x`,I(k), hJ(k) (x`)

)
, ` = 1, . . . , n, imply posterior distributions on f1, . . . , fK , which are again

(conditionally) independent GPs with mean and covariance functions µn,k and Σn,k
2, k = 1, . . . ,K.

These can be computed in closed form using the standard GP regression equations (see, e.g., Ras-
mussen and Williams 2006). For completeness, we include these equations in §F of the supplement.

The posterior distributions on f1, . . . , fK , described above imply a posterior distribution on g. This
distribution is in general non-Gaussian. Thus, unlike in the standard setting, where g is modeled as a
GP, classical acquisition functions such as the expected improvement cannot be computed in closed
form. However, as we describe next, drawing samples from this distribution is simple.

Thanks to the acyclic structure of the underlying network that defines g, a sample, ĝ(x) = ĥK(x)
from the posterior distribution on g at x can be obtained following the iterative process described
next. In each iteration, k = 1, . . . ,K, we obtain a sample, ĥk(x), from the posterior distribution
on hk(x) by drawing a sample from the normal distribution with mean µn,k

(
xI(k), ĥJ(k)(x)

)
and

2For ease of presentation we assume that all the functions in the network are expensive-to-evaluate, and thus
require to be modeled as GPs. However, if any of the functions, say fk, is not expensive-to-evaluate, we can
simply take µk ≡ fk and Σk ≡ 0.

4



standard deviation

σn,k

(
xI(k), ĥJ(k)

)
= Σn,k

(
xI(k), ĥJ(k)(x), xI(k), ĥJ(k)(x)

)1/2
.

Supporting efficient calculation, the samples ĥJ(k)(x) will have already been obtained in previous
iterations of the for loop since j < k for all j ∈ J(k) (Note that J(1) = ∅). This procedure is
summarized in Algorithm 1.

Algorithm 1 Draw one sample from the posterior on g(x)

Require: x ∈ X
1: for k = 1, . . . ,K do

2: ĥk(x) ∼ N
(
µn,k

(
xI(k), ĥJ(k)(x)

)
, σn,k

(
xI(k), ĥJ(k)(x)

)2)
3: end for
4: return ĝ(x) = ĥK(x)

We end this section by noting that, while the statistical model described above could be catalogued as
a deep GP (Damianou and Lawrence, 2013), in the sense that we have GP layers in an architecture
described by a directed acyclic graph, inference in our model is faster. Typically, deep GP inference
requires marginalization over latent values of GP layers. In our setting, however, observation structure
creates conditional independence across layers, avoiding the need to marginalize.

4.2 Expected Improvement for Function Networks

Our acquisition function is the expected improvement, computed with respect to the implied posterior
distribution on g under the statistical model described in §4.1:

EI-FNn(x) = En
[
{g(x)− g∗n}+

]
,

where g∗n = maxi=1,...,n g (xn) is the best value observed so far, and En is the expectation computed
with respect to the GP time-n posterior distributions on f1, . . . , fK . To distinguish it from the
classical expected improvement, we refer to our acquisition function as the expected improvement
for function networks (EI-FN) in the remainder of this work.

4.3 Maximization of EI-FN via Sample Average Approximation

Since the posterior distribution on g is non-Gaussian, in contrast with the classical expected improve-
ment acquisition function, EI-FNn does not admit a closed form expression. However, EI-FNn(x)
can be computed with arbitrary precision following a simple Monte Carlo (MC) approach:

EI-FNn(x) ≈ 1

M

M∑
m=1

{
ĝ(x)(m) − g∗n

}+

,

where ĝ(x)(1), . . . , ĝ(x)(M) are samples drawn from the posterior distribution on g(x), which can be
obtained following the approach described in §4.1.

Following the above MC scheme to approximately compute EI-FN, one can aim to maximize this
function using a derivative-free global optimization algorithm for inexpensive-to-evaluate functions,
such as CMA (Hansen, 2016), by drawing samples, ĝ(x)(1), . . . , ĝ(x)(M) independently for each x
at which EI-FNn is evaluated. However, this approach is slow since evaluations of EI-FN are noisy
and derivative information is not leveraged. Instead, we propose to maximize EI-FN following a
sample average approximation (SAA) approach (Kleywegt et al., 2002; Balandat et al., 2020).

Succinctly, the SAA approach works by building a MC approximation of EI-FN that is deterministic
given a finite set of random variables not depending on x, and maximizing this approximation instead
of EI-FN itself. The key observation for creating this approximation is that a sample, ĝ(x), can be
obtained as ĝ(x) = ĥK(x), where ĥ1(x), . . . , ĥK(x) are defined recursively by

ĥk (x;Z) = µn,k

(
xI(k), ĥJ(k)(x;Z)

)
+ σn,k

(
xI(k), ĥJ(k)(x;Z)

)
Zk,

5



where Z = (Z1, . . . , ZK)
> is a standard normal random vector, and we write ĥk(x) as ĥk (x;Z) to

make its dependence on Z explicit. Analogously, we also write ĝ(x) as ĝ(x;Z). This can be seen as
an extension of the so-called reparametrization trick for acquisition functions (Wilson et al., 2018).

If we now fix M samples drawn from the K-dimensional standard normal distribution,
Z(1), . . . , Z(M), then

ÊI-FNn
(
x;Z(1:M)

)
:=

1

M

M∑
m=1

{
ĝ
(
x;Z(m)

)
− g∗n

}+

is a MC approximation of EI-FN that is deterministic given Z(1), . . . , Z(M), as desired. Moreover,
Proposition 1 below shows that, under mild regularity conditions, any maximizer of the above SAA
converges in probability exponentially fast to a maximizer of EI-FNn as M →∞, thus suggesting
that in practice it is safe to use small values of M . This result is a generalization of Theorem 1 in
Balandat et al. (2020). Its proof can be found in §A of the supplement.
Proposition 1. Suppose that the functions µn,k and σn,k, k = 1, . . . ,K, are all Lipschitz continuous
and let

x̂
(M)
∗ ∈ argmax

x∈X
ÊI-FNn

(
x;Z(1:M)

)
, X∗ = argmax

x∈X
EI-FNn(x).

Then, for every ε > 0, there exist A,α > 0 such that P
(

dist
(
x̂
(M)
∗ , X∗

)
> ε
)
≤ Ae−αM , M ∈ N.

Finally, we note that ÊI-FNn is differentiable with respect to x, provided that µk,n and Σk,n, k =

1, . . . ,K, are all differentiable. Thus, ÊI-FNn can be maximized using a gradient-based deterministic
optimization algorithm such as L-BFGS-B (Byrd et al., 1995), with multiple restarts.

4.4 Asymptotic Consistency of EI-FN without Dense Measurements

To shed light on the convergence properties of the expected improvement acquisition function under
our statistical model, we prove that, under suitable regularity conditions, EI-FN is asymptotically
consistent, meaning that it finds the global optimum of the objective function as the number of
evaluations grows to infinity. This builds on results shown for the classical expected improvement
(Vazquez and Bect, 2010; Bect et al., 2019) and the expected improvement for composite functions
(Astudillo and Frazier, 2019), and we rely on similar assumptions. This result is stated in Theorem 1
below and its proof can be found in §B of the supplement.
Theorem 1. Suppose that xn+1 ∈ argmaxx∈X EI-FNn(x) for all n. Then, under regularity condi-
tions stated precisely in the supplement, g∗n → maxx∈X g(x) as n → ∞ almost surely under the
prior distribution on f1, . . . , fK .

Significant novelty in our proof arises from the fact that EI-FN’s measurements are not necessarily
dense in X. In nearly all existing work, consistency of BO methods is shown by first showing that the
measurements are dense in the objective’s domain (see, e.g., Vazquez and Bect 2010). Surprisingly,
the function network structure may allows us to exclude certain regions of X as suboptimal after only
finitely many measurements, allowing our method to be consistent without measuring everywhere.
Such ability gives insight into EI-FN’s strong empirical performance compared to methods ignoring
function network structure. As stated in Proposition 2 below, we provide a function network where
EI-FN provides a consistent estimate of the global optimum without sampling densely.
Proposition 2. There exists a function network (detailed in §C of the supplement) in which EI-FN is
consistent but whose measurements are not necessarily dense in X.

5 Numerical Experiments

We compare the performance of our algorithm (EI-FN) against the classical expected improvement
(EI), i.e., the expected improvement under a GP model over g. We also compare with the performance
of two other standard algorithms: the algorithm that chooses the points to evaluate uniformly at
random over X (Random); and the knowledge gradient (KG) (also under a GP model over g), a
more sophisticated acquisition function that often delivers a better performance than the expected
improvement (Wu and Frazier, 2016). The problems in §5.2 and §5.3 fall within the framework

6



of Astudillo and Frazier (2019) and we include its proposed EI-CF algorithm as a benchmark. All
algorithms were implemented in BoTorch (Balandat et al., 2020).

We evaluate on 4 synthetic problems and 5 real-world problems. These are described below or
in §D of the supplement, with the supplement describing a manufacturing problem building on
§1, a COVID-19 testing problem building on §5.3, and a robot control problem similar to the
one described in §5.2. In all problems, a first stage of evaluations is performed using 2(d + 1)
points chosen uniformly at random over X. A second stage (pictured in plots) is then performed
using each of the algorithms. Error bars in Figure 2 show the mean of the best objective value
observed so far, plus and minus 1.96 times the standard deviation divided by the square root of
the number of replications. Since the difference in performance in some of our experiments is
better appreciated in a logarithmic scale, we also include plots showing the log10-regret for such
experiments in Figure 3. Each experiment was replicated 30 times. Experimental setup details and
runtimes are available in the supplement. Code to reproduce our numerical experiments can be found
at https://github.com/RaulAstudillo06/BOFN.

5.1 Synthetic Test Functions

We create synthetic test problems by arranging standard test functions from the global optimization
literature (Jamil and Yang, 2013) into function networks. These explore a variety of network structures
in an easy-to-reproduce form, and are named after the standard test function used to define the function
network. We describe these briefly here and then in full detail in §D of the supplement.

Alpine2 and Rosenbrock both arrange K nodes in series, where each node except the first node
takes the output of the previous node as input. Additionally, in Alpine2, each node takes a distinct
dimension of the decision vector x as input. In Rosenbrock, x1 and x2 are inputs to the first node,
x2 and x3 are inputs to the second, and so on. These network architectures arise in manufacturing
problems like the example in §1, as well as business operations with queues like boarding an aircraft
or fulfilling drive-through orders. For Alpine2 we set K = 6, and for Rosenbrock we set K = 4.

Ackley has 3 nodes. The first two nodes each take the same 6-dimensional input. Their outputs
are passed to the third node that produces the final output. This type of function network arises in
algorithm design for two-sided markets (Li et al., 2021), like Uber and AirBnB, where the first node
simulates an intervention’s effect on riders (or guests), the second simulates its effect on drivers (or
hosts), and the third simulates the matching process where riders and drivers (or guests and hosts)
interact to produce transactions.

Drop-Wave has two nodes. The first node takes a two-dimensional vector x as input. This node’s
output is passed to the second node, which produces the objective value. This network architecture is
representative of multidisciplinary engineering design (Benaouali and Kachel, 2019), for example
in aerospace, where a small number of distinct black-box simulators simulate processes governed
by physical laws that affect each other through a small number of channels, such as an aircraft
engine simulation (the first node) determining heat generated while flying, which is then inputted to a
temperature-dependent simulation of mechanical stress on the aircraft’s frame (the second node).

5.2 Fetch-and-Reach with a Robotic Arm

This test problem is obtained by adapting the Fetch environment from OpenAI Gym (see Plappert
et al. (2018)). The goal is to move the gripper of a robotic arm to a target location with only three
movements. We formulated this problem as a function network with 3 nodes, each representing a
movement of the robotic arm. Each of these nodes takes as input the current location of the gripper
along with a vector of forces to be applied to the robotic arm in that step, and produces as output
the location of the arm after this movement is complete. (Note that the output of each node is
3-dimensional and thus this can also be thought of as a function network with 9 single-output nodes).
The objective to minimize is the distance between the gripper and the target in the final step. Figure 4
shows an animation of this problem.

We formalize the above problem as follows. Let zinit, ztarget ∈ R3 denote the object’s initial and
target locations, respectively. At each time step, t, we choose the vector of forces to be applied
to the robotic arm xt ∈ [−1, 1]3. After this movement, the location of the object becomes zt+1.
The goal is to choose xt for t = 1, . . . , T to minimize ‖ztarget − zT ‖2. We set zinit = (0, 0, 0),

7

https://github.com/RaulAstudillo06/BOFN


0 25 50 75 100
number of evaluations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

be
st

 o
bj

ec
tiv

e 
va

lu
e

drop-wave

0 20 40
number of evaluations

300

200

100

0

be
st

 o
bj

ec
tiv

e 
va

lu
e

rosenbrock, K = 4

0 25 50 75 100
number of evaluations

4

3

2

1

0

be
st

 o
bj

ec
tiv

e 
va

lu
e

ackley

0 25 50 75 100
number of evaluations

0

100

200

300

400

be
st

 o
bj

ec
tiv

e 
va

lu
e

alpine2, K = 6

0 20 40
number of evaluations

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

be
st

 o
bj

ec
tiv

e 
va

lu
e

manufacturing line

0 25 50 75 100
number of evaluations

10.75

10.50

10.25

10.00

9.75

9.50

9.25

be
st

 o
bj

ec
tiv

e 
va

lu
e

covid-19 group testing

0 10 20 30
number of evaluations

10

8

6

4

2

0

be
st

 o
bj

ec
tiv

e 
va

lu
e

fetch-and-reach

0 25 50 75 100
number of evaluations

1.0

0.8

0.6

0.4

0.2

0.0

be
st

 o
bj

ec
tiv

e 
va

lu
e

epidemic model calibration

Random
KG
EI
EI-CF
EI-FN

Figure 2: Top: Results on synthetic problems that adapt widely used synthetic test functions into
function networks. Bottom: Results on realistic problems: manufacturing line, design of testing
protocols for COVID-19, fetch-and-reach with a robotic arm, and calibration of an epidemic model.
EI-FN substantially improves over benchmark methods, with larger improvements for problems with
higher-dimensional decision vectors and more nodes.

0 20 40
number of evaluations

3

2

1

0

1

2

lo
g 1

0(
re

gr
et

)

rosenbrock, K = 4

0 25 50 75 100
number of evaluations

1.0

0.8

0.6

0.4

0.2

0.0

0.2

lo
g 1

0(
re

gr
et

)

covid-19 group testing

0 10 20 30
number of evaluations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g 1

0(
re

gr
et

)

fetch-and-reach

0 50 100 150
number of evaluations

8

6

4

2

0

lo
g 1

0(
re

gr
et

)

epidemic model calibration

Random
KG
EI
EI-CF
EI-FN

Figure 3: Results on four of our test problems. In contrast with Figure 2 above, which shows the best
objective value found, here we plot the log10-regret.

ztarget = (−12, 13, 0.2), and T = 3. This can be interpreted as a function network by associating
each time step with a triplet of node functions ft = (ft,1, ft,2, ft,3) which take xt as input and
produce xt+1 = ft(xt) as output.

A very similar experiment to the one described above can be found in §E of the supplement. It
considers a a variation of the active learning for robot pushing problem introduced by Wang and
Jegelka (2017) whose goal is to teach a robot to push an object to a predetermined target location. As
in the experiments here, EI-FN outperforms other methods significantly, including EI-CF.

5.3 Calibration of an Epidemic Model

Here we consider calibration of compartmental stochastic models to data, a widely-used tool in
epidemiology, medical modeling, and ecology (Sandberg, 1978). Function networks are well-suited
to exploit the structure of such models. We focus on calibration of a specific epidemic model for
influenza, building toward a COVID-19 mitigation benchmark in the next section. We first describe
the epidemic model, then the calibration problem and, finally, formulation as a function network.

SIS Epidemiological Model: We calibrate to data a widely used epidemiological model, the SIS
model (see, e.g., Garnett 2002), that models diseases like influenza capable of reinfecting individuals
multiple times. In this model, individuals either do not have the disease and are “susceptible” (S) or

8



Figure 4: A sequence of screenshots showing three consecutive movements performed by the robotic
arm described in §5.2.

have the disease and are “infectious” (I). We consider a SIS model of two interacting populations,
where infections occur at population-dependent rates.

The model is dynamic, with time indexed by t = 0, 1 . . . , T . At the beginning of each time period t,
the fraction of population i ∈ {0, 1} that is infectious is Ii,t. We assume each population is of equal
size, N . During this time period, each person in group i comes into close physical contact with βi,j,t
people from group j. When this contact is between an infectious person and a susceptible one, it
infects the susceptible person. A fraction Ij,t of the people from group j involved in such interactions
are infectious and a fraction (1− Ii,t) from group i are susceptible. A number of new infections in
group i result, N(1− Ii,t)βi,j,tIj,t. As a fraction of group i’s population, this is (1− Ii,t)βi,j,tIj,t.
Summing across j, we have (1 − Ii,t)

∑
j βi,j(t)Ij,t new group i infections. At the same time,

infections resolve at a rate of γ per period. This results in a decrease in the infectious population in
group i of γIi,t. Putting this together, the number of infectious individuals in group i at the start of
the next time period is Ii,t+1 = Ii,t(1− γ) + (1− Ii,t)

∑
j βi,j,tIj,t.

Calibration: The SIS model has parameters Ii,0, γ and βi,j,t, where 0 ≤ t < T and i, j ∈ {1, 2}.
We calibrate the parameters ~β = (βi,j,t : i, j, t) while fixing γ = 0.5 and Ii,0 = .01 (for both i). We
simulate a trajectory of infections from t = 0 up to T = 3, using a held-out value for ~β. We let Iobsi,t
denote the fraction of group i observed to be infected at time t in this trajectory. We then search for
the vector ~β that, when passed to the SIS model, minimizes the mean squared error between this
trajectory and the SIS model predictions. Letting Ii,t(~β) indicate this predicted value, the goal is to
minimize the mean-squared error (MSE), MSE(~β) :=

∑T
t=1(Iobsi,t − Ii,t(~β))2. We do not include

t = 0 since Ii,0(~β) is the same for all ~β.

Formulation as a Function Network: We encode this as a function network using 2T + 1 nodes,
as illustrated in Figure 5. For each time period t and each group i, a node takes input It := (Ij,t :
j = 0, 1) and βt := (βj,j′,t : j, j′ ∈ {0, 1}) and produces output Ii,t+1. (For t = 0, the input
I0 is not needed since this is the same for all ~β.) Then, one additional node takes the output of
the other nodes (Ii,t : i = 0, 1, t = 1, . . . , T ) as its input and produces the sum of squared errors∑T
t=1(Iobsi,t − Ii,t(~β))2 as output. We treat this final node as known (its GP prior has a kernel of 0).

EI-CF benchmark: The fact that the final node in this problem (denoted “MSE” in Figure 5)
has known structurre permits comparing against the EI-CF method for BO of composite functions
(Astudillo and Frazier, 2019) as a benchmark. EI-CF is substantially less general than our method
(EI-FN): it is restricted to settings with one time-consuming black-box multi-output node that provides
input to one fast-to-evaluate node with known structure. To apply EI-CF to this problem, the single
black-box multi-output node takes ~β as input and produces the vector (Ii,t(~β) : i, t) as output. This
output is then supplied to the “MSE” node. This approach ignores the fact that Ii,t does not depend
on βt′ , t′ > t, and depends only indirectly on βt′ , t < t through Ij,t−1, j = 1, 2.

5.4 Discussion

Across the wide range of problems considered, EI-FN significantly improves query efficiency over
standard BO methods that ignore the function network structure of evaluations. The benefits range

9



I1,1 I1,2 I1,3

β1 β2 β3 MSE

I2,1 I2,2 I2,3

L1 L2 L3

∑
t Lt

I1 I2 I3

R1 R2 R3

x1 x2 x3

Figure 5: Function network for the (left) epidemic calibration problem in §5.3 and (right) the
COVID-19 pooled testing optimization problem described in the supplement.

from a 5% improvement in the value of the best point found on the Drop-Wave and manufacturing
problems to several orders of magnitude in the Rosenbrock and epidemic model calibration problems.

The largest benefit arise when the control input is high-dimensional but the input to individual nodes
is low-dimensional. On the epidemic model calibration problem, we see EI-CF (Astudillo and Frazier,
2019) outperforming EI and KG by several orders of magnitude, and EI-FN outperforming EI-CF
by several additional orders of magnitude. As noted above, EI-CF can be seen as a special case of
EI-FN using a less informative function network that hides observations from some nodes. This is
consistent with observations of function network structure allowing substantial improvement in query
efficiency, and observing more of the internal function network structure providing more value.

6 Conclusion

We introduced a novel BO approach for objective functions defined by a series of expensive-to-
evaluate functions, arranged in a network so that each function takes as input the output of its parent
nodes. These objective functions arise in a wide range of application domains. However, existing
methods cannot leverage this structure. Our approach models the outputs of the functions in this
network instead of only the objective function, as is standard in BO. Our experiments show that, by
doing so, this approach can dramatically outperform standard BO methods.

Though we see substantial benefits from our approach, there are limitations. First, it requires more
computation than standard BO methods, as explored in the supplement. (When the objective is
time-consuming, the improved query efficiency more than makes up for the additional computation
required.) Second, while we have demonstrated our method in problems with up to 9 nodes, and
computational speed would support more, our method does not (yet) scale to hundreds of nodes.
Third, while we show consistency, it would be instructive to complement our empirical results
showing fast convergence with a theoretical understanding of convergence rates. Existing approaches
to prove convergence rates for the classical expected improvement heavily rely on properties of
its analytical expression (Bull, 2011; Ryzhov, 2016), and thus are not directly generalizable to our
setting. This is, however, an exciting direction for future work.

As with any powerful new method for optimizing time-consuming-to-compute black-box functions,
ours can accelerate many applications. While this includes innovations that generally benefit society,
such as improvements to public health and vaccine manufacturing, it also includes the design of
weapons and other engineering systems that could harm individuals. Thus, it is important that society
enact guardrails that ensure proper use of our methodology.

Acknowledgments

The authors were partially supported by AFOSR FA9550-19-1-0283 and FA9550-20-1-0351.

10



References
Amaral, S., Allaire, D., and Willcox, K. (2014). A decomposition-based approach to uncertainty

analysis of feed-forward multicomponent systems. International Journal for Numerical Methods
in Engineering, 100(13):982–1005.

Arcelli, D. (2020). Exploiting queuing networks to model and assess the performance of self-adaptive
software systems: A survey. Procedia Computer Science, 170:498–505.

Astudillo, R. and Frazier, P. I. (2019). Bayesian optimization of composite functions. In Chaudhuri,
K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 354–363. PMLR.

Astudillo, R. and Frazier, P. I. (2021). Thinking inside the box: A tutorial on grey-box Bayesian
optimization. In Proceedings of the 2021 Winter Simulation Conference. Institute of Electrical and
Electronics Engineers, Inc.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).
Botorch: A framework for efficient Monte-Carlo Bayesian optimization. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 21524–21538. Curran Associates, Inc.

Balasubramanian, K., Ghadimi, S., and Nguyen, A. (2020). Stochastic multi-level composition opti-
mization algorithms with level-independent convergence rates. arXiv preprint arXiv:2008.10526.

Bect, J., Bachoc, F., and Ginsbourger, D. (2019). A supermartingale approach to Gaussian process
based sequential design of experiments. Bernoulli, 25(4A):2883–2919.

Benaouali, A. and Kachel, S. (2019). Multidisciplinary design optimization of aircraft wing using
commercial software integration. Aerospace Science and Technology, 92:766–776.

Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12(88):2879–2904.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

Cakmak, S., Astudillo Marban, R., Frazier, P., and Zhou, E. (2020). Bayesian optimization of
risk measures. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors,
Advances in Neural Information Processing Systems, volume 33, pages 20130–20141. Curran
Associates, Inc.

Charisopoulos, V., Chen, Y., Davis, D., Díaz, M., Ding, L., and Drusvyatskiy, D. (2021). Low-
rank matrix recovery with composite optimization: Good conditioning and rapid convergence.
Foundations of Computational Mathematics, 21(6):1505–1593.

Cramer, E. J., Dennis, Jr, J. E., Frank, P. D., Lewis, R. M., and Shubin, G. R. (1994). Problem
formulation for multidisciplinary optimization. SIAM Journal on Optimization, 4(4):754–776.

Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian processes. In Carvalho, C. M. and
Ravikumar, P., editors, Proceedings of the 16th International Conference on Artificial Intelligence
and Statistics, volume 31 of Proceedings of Machine Learning Research, pages 207–215. PMLR.

Drusvyatskiy, D. and Paquette, C. (2019). Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, 178(1):503–558.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.

Fu, M. C. and Henderson, S. G. (2017). History of seeking better solutions, AKA simulation
optimization. In Chan, W. K. V., D’Ambrogio, A., Zacharewicz, G., N. Mustafee, G. W., and Page,
E., editors, Proceedings of the 2017 Winter Simulation Conference, pages 131–157. Institute of
Electrical and Electronics Engineers, Inc.

Garnett, G. P. (2002). An introduction to mathematical models in sexually transmitted disease
epidemiology. Sexually transmitted infections, 78(1):7–12.

11



Ghasemi, A., Heavey, C., and Laipple, G. (2018). A review of simulation-optimization methods
with applications to semiconductor operational problems. In Rabe, M., Juan, A. A., Mustafee,
N., Skoogh, A., Jain, S., and Johansson, B., editors, Proceedings of the 2018 Winter Simulation
Conference, pages 3672–3683. Institute of Electrical and Electronics Engineers, Inc.

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772.

Hattrick-Simpers, J. R., Gregoire, J. M., and Kusne, A. G. (2016). Perspective: Composition–
structure–property mapping in high-throughput experiments: Turning data into knowledge. APL
Materials, 4(5):053211.

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for global optimization
problems. arXiv preprint arXiv:1308.4008.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492.

Kandasamy, K., Dasarathy, G., Schneider, J., and Póczos, B. (2017). Multi-fidelity Bayesian
optimisation with continuous approximations. In Precup, D. and Teh, Y. W., editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1799–1808. PMLR.

Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002). The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502.

Li, H., Zhao, G., Johari, R., and Weintraub, G. Y. (2021). Interference, bias, and variance in two-sided
marketplace experimentation: Guidance for platforms. arXiv preprint arXiv:2104.12222.

Lizotte, D. J., Wang, T., Bowling, M. H., and Schuurmans, D. (2007). Automatic gait optimization
with Gaussian process regression. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 944–949.

Marque-Pucheu, S., Perrin, G., and Garnier, J. (2019). Efficient sequential experimental design for
surrogate modeling of nested codes. ESAIM: PS, 23:245–270.

Močkus, J. (1975). On Bayesian methods for seeking the extremum. In Marchuk, G. I., editor,
Optimization Techniques IFIP Technical Conference, volume 27 of Lecture Notes in Computer
Science, pages 400–404. Springer-Verlag.

Osorio, C. and Bierlaire, M. (2013). A simulation-based optimization framework for urban trans-
portation problems. Operations Research, 61(6):1333–1345.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464.

Puterman, M. L. (1990). Markov decision processes. In Stochastic Models, volume 2 of Handbooks
in Operations Research and Management Science, pages 331–434. Elsevier.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Ryzhov, I. O. (2016). On the convergence rates of expected improvement methods. Operations
Research, 64(6):1515–1528.

Sadowski, M. and Jones, D. (2009). The sequence–structure relationship and protein function
prediction. Current Opinion in Structural Biology, 19(3):357–362.

Sandberg, I. (1978). On the mathematical foundations of compartmental analysis in biology, medicine,
and ecology. IEEE transactions on Circuits and Systems, 25(5):273–279.

Sekhon, B. S. and Saluja, V. (2011). Biosimilars: An overview. Biosimilars, 1(1):1–11.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2016). Taking the human out
of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175.

12



Shapiro, A. (2003). On a class of nonsmooth composite functions. Mathematics of Operations
Research, 28(4):677–692.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine learn-
ing algorithms. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems, volume 25, pages 2951–2959. Curran Associates, Inc.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task Bayesian optimization. In Burges, C.
J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems, volume 26, pages 2004–2012. Curran Associates, Inc.

Toscano-Palmerin, S. and Frazier, P. I. (2018). Bayesian optimization with expensive integrands.
arXiv preprint arXiv:1803.08661.

Uhrenholt, A. K. and Jensen, B. S. (2019). Efficient Bayesian optimization for target vector estimation.
In Chaudhuri, K. and Sugiyama, M., editors, Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research,
pages 2661–2670. PMLR.

Vazquez, E. and Bect, J. (2010). Convergence properties of the expected improvement algorithm with
fixed mean and covariance functions. Journal of Statistical Planning and Inference, 140(11):3088–
3095.

Wang, X., Gong, X., Geng, N., Jiang, Z., and Zhou, L. (2020). Metamodel-based simulation
optimisation for bed allocation. International Journal of Production Research, 58(20):6315–6335.

Wang, Z. and Jegelka, S. (2017). Max-value entropy search for efficient Bayesian optimization. In
Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 3627–3635. PMLR.

Williams, B. J., Santner, T. J., and Notz, W. I. (2000). Sequential design of computer experiments to
minimize integrated response functions. Statistica Sinica, 10(4):1133–1152.

Wilson, J., Hutter, F., and Deisenroth, M. (2018). Maximizing acquisition functions for bayesian
optimization. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 31, pages
9884–9895. Curran Associates, Inc.

Wu, J. and Frazier, P. (2016). The parallel knowledge gradient method for batch Bayesian optimization.
In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 29, pages 3134–3142. Curran Associates, Inc.

Wu, J., Toscano-Palmerin, S., Frazier, P. I., and Wilson, A. G. (2019). Practical multi-fidelity Bayesian
optimization for hyperparameter tuning. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence.

Zhilinskas, A. (1975). Single-step Bayesian search method for an extremum of functions of a single
variable. Cybernetics, 11(1):160–166.

13


	Introduction
	Related Work
	Problem Setting
	Bayesian Optimization with Full Network Observations
	Statistical Model
	Expected Improvement for Function Networks
	Maximization of EI-FN via Sample Average Approximation
	Asymptotic Consistency of EI-FN without Dense Measurements

	Numerical Experiments
	Synthetic Test Functions
	Fetch-and-Reach with a Robotic Arm
	Calibration of an Epidemic Model
	Discussion

	Conclusion

