
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCORE: SIMILARITY-AWARE CONTEXTUAL OVERLAP-
REDUNDANCY EVICTION FOR EFFICIENT KV CACHE
COMPRESSION IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have unlocked remarkable long-
context capabilities, enabling breakthroughs across diverse NLP tasks. However,
despite architectural progress and compression techniques such as quantization,
the key-value (KV) cache remains a critical memory bottleneck during inference.
Prior work has explored cache optimization via eviction strategies, yet most rely on
heuristic or single-axis importance metrics, neglecting the nuanced and dynamic
interplay between layers and attention heads. In this paper, we propose SCORE
(Similarity-aware Contextual Overlap-Redundancy Eviction), a novel framework
that introduces a distance-based multi-level similarity metric to quantify and elim-
inate structural redundancy within the KV cache. By dynamically reallocating
cache budgets across layers and heads and employing a redundancy-aware greedy
token selection mechanism, SCORE preserves semantic diversity while minimizing
memory overhead. Extensive experiments on long-context benchmarks such as
LongBench and NeedleBench show that SCORE retains 95% of full KV cache
performance using only 1.5% of the cache, consistently outperforming state-of-
the-art baselines under strict memory constraints. These results underscore the
value of fine-grained, context-aware cache management for scalable and efficient
long-context inference in LLMs.

1 INTRODUCTION

Head 0

Head 1
Head N

L
ay

er
 0

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Layer-level

Token In Cache Evicted In Cache Recent Window

L
ay

er
 1

L
ay

er
 N

Head-level Multi-level (ours)

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Head 0

Head 1
Head N

Same
budget

Same 
budget

Different 
budget

Different 
budget

Figure 1: KV cache eviction strategies: (a) Layer-
wise allocation assigns distinct budgets across lay-
ers; (b) Head-wise allocation enables finer-grained
control; (c) SCORE combines both to reduce re-
dundancy and optimize cache usage.

Large language models (LLMs) have shown ex-
ceptional long-context understanding, achieving
state-of-the-art performance across a wide range
of natural language processing (NLP) tasks, in-
cluding multi-turn dialogue, document summa-
rization, and information retrieval Zhao et al.
(2023). Recent models, such as GPT-4 Achiam
et al. (2023), Claude 3.5 Anthropic (2024),
LLaMA 3.1 Grattafiori et al. (2024), and Mis-
tral Jiang et al. (2023), demonstrate significantly
improved long-context capabilities, with some
supporting up to one million tokens Anthropic
(2024), enabling the stable processing of sub-
stantially extended input sequences. Moreover,
recent advances—accompanied by various com-
pression techniques such as quantization Kim
et al. (2024); Choi & Kim (2025)—have further accelerated efforts to deploy LLMs in resource-
constrained environments, including on-device settings Kwon et al. (2023); Xu et al. (2024); Li et al.
(2024b). However, the key-value (KV) cache remains a major memory bottleneck for long-context
processing, significantly limiting efficiency.

Accordingly, recent research has focused on optimizing the KV cache without altering model archi-
tecture Dao (2023); Acharya et al. (2024). A key direction is the eviction of low-importance KV pairs
to reduce memory usage Ge et al. (2023); Zhang et al. (2023); Xiao et al. (2023), typically guided by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

attention scores or heuristic rules. However, as shown in Dong et al. (2021); Zhang et al. (2022), the
contribution of layers and attention heads to text generation is highly uneven and context-dependent.
Efficient cache utilization thus requires fine-grained, dynamic strategies that account for this vari-
ability. To address such non-uniformity, prior work has explored both layer-level and head-level
budgeting. For example, PyramidKV Cai et al. (2024) allocates cache budgets based on information
density across layers, whereas Cake Qin et al. (2025) employs a cascading mechanism to adjust
budgets during prefill, as illustrated in Figure 1(a). More fine-grained methods like SnapKV Li et al.
(2024c) and AdaKV Feng et al. (2024) estimate head-level importance and reallocate budgets accord-
ingly, as shown in Figure 1(b). However, these methods rely primarily on simple statistics—such as
entropy or variance—without leveraging richer signals (L1). Moreover, they fail to jointly capture
redundancy across layer–head interactions, which further limits their effectiveness (L2). In addition,
their simplistic budget allocation often leads to limited token diversity, resulting in poor coverage and
making it difficult to capture the overall context (L3).

To mitigate these limitations, we introduce Similarity-aware Contextual Overlap-Redundancy
Eviction (SCORE), a cache management framework that quantifies representational redundancy
across layers and heads using a distance-based multi-level similarity metric, as illustrated in Fig-
ure 1(c). SCORE enables the removal of semantically redundant tokens while preserving contextual
diversity through dynamic budget reallocation and selective cache retention. This design captures
representational divergence and contextual progression more effectively than prior heuristics-based
methods, enhancing redundancy-aware information preservation.

The main contributions of SCORE are as follows: (i) SCORE is the first to introduce a distance-based
metric to precisely measure and eliminate redundancy within the KV cache (for L1). (ii) Redundancy-
aware multi-level metric. To capture hierarchical information flow and representational diversity, we
introduce multi-level similarity metrics that quantify redundancy across layers and heads in the KV
cache (for L2). (iii) Hierarchical budget allocation. The proposed SCORE framework dynamically
reallocates cache budgets across layers and heads based on redundancy scores, prioritizing informative
and non-redundant tokens under constrained memory. (iv) Greedy token selection. Our redundancy-
aware, greedy token selection algorithm maximizes information diversity in the cache by accounting
for similarity (for L3).

2 BACKGROUNDS

2.1 INFERENCE OPERATIONS WITH KV CACHE

Inference in transformer-based LLMs typically consists of two stages: a prefill stage that encodes the
input sequence, and a decode stage that sequentially generates output tokens.

Prefill stage: Given an input prompt tensor X ∈ RS×D, where S denotes the sequence length and D
the hidden dimension, the key and value representations are computed as follows:

Q = XWQ, K = XWK , V = XWV , (1)

where, WQ,WK ,WV ∈ RD×D are the learnable projection matrices that map the input sequence
to query, key, and value representations, respectively. The resulting key and value tensors are then
stored in the KV cache, where they are reused during the subsequent decode stage to avoid redundant
computation.

Decode stage: During decoding, for each newly generated token xi ∈ R1×D at time step i, the
corresponding key and value are computed, while previous information is retrieved from the KV
cache. The new key and value are then appended to the existing cache along the sequence dimension
via concatenation, as follows:

K ← K ∪ xiWK , V ← V ∪ xiWV , (2)

Then, the current query qi = xiWQ computes attention weights via a scaled dot-product with the full
K, and aggregates V accordingly to produce the output xi,out as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Intra R

… 3.2 Multi-level Redundancy

Layer1 Layer2

EMA EMA

…Layer0

Temporal Intra RTemporal Intra RTemporal

3.3 Adaptive Budget Allocation

Prompt Encoding

…

Multi-level
Redundancy

Layer 
Budget

Head
Budget

G
re

ed
y

to
ke

n
 S

el
ec

t 3.4 Greedy Token Select

Layer N

Head R Head R

EMA

Novelty
layer

Total budget

Novelty
layer

Layer budget

u
n

if
o

rm

u
n

if
o

rm
Novelty
layer N

Headwise Top K select

1

1

1

5

5

5

9

10

9

17

17

18

22

20

21

Greedy select

1

1

5

5

9

9

17

17

22

20

21

5

1 18

10

H
ea

d
w

is
e

Figure 2: An overview of SCORE. The model computes redundancy scores across layers and heads,
which guide a dynamic budget allocation strategy and inform redundancy-aware token selection to
achieve diverse representation. For each layer: left shows temporal redundancy with the previous
layer; right shows intra-layer head similarity.

xi,out = Softmax
(qiK⊤
√
D

)
V (3)

As decoding progresses, the size of the KV cache increases linearly (e.g., 62.5GB in Llama3-8B-
Instruct Shi et al. (2024)), which becomes a major bottleneck in terms of memory usage and latency.
Efficient cache compression and management are therefore essential for long-context processing.

2.2 KV CACHE EVICTION

H2O Zhang et al. (2023) improves efficiency by focusing on important tokens (heavy hitters), while
ROCO Ren & Zhu (2024) and Scissorhands Liu et al. (2023) similarly retain key tokens based on
attention scores. StreamingLLM Xiao et al. (2023) and LM-Infinite Han et al. (2023) prioritize nearby
tokens relevant to generation, but uniform eviction often leads to information loss. To address this,
dynamic budget allocation methods have emerged. PyramidKV Cai et al. (2024) employs a pyramidal
attention pattern, allocating more cache to lower layers while summarizing higher-layer information.
CAKE Qin et al. (2025) analyzes attention dispersion and temporal shifts to reassign cache budgets in
a cascading manner. However, both rely solely on layer-level budgeting. To enable finer granularity,
SnapKV Li et al. (2024c) clusters attention distributions at the head level, and HeadKV Fu et al. (2024)
introduces a theoretical allocation scheme to minimize post-eviction degradation. AdaKV Feng et al.
(2024) estimates head-level importance based on retrieval and reasoning contributions. While these
methods achieve budgeting at either the layer or head level (L2), they fail to jointly consider both
dimensions and rely heavily on attention scores (L1), which limits their ability to capture semantic
redundancy. Moreover, even with well-determined budgets, token-level diversity is overlooked (L3),
leading to overlapping selections and limited coverage. To overcome these limitations, we propose
SCORE, a unified framework that quantifies redundancy via distance-based similarity and integrates
it into both budget allocation and token eviction.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE OF SCORE

As illustrated in Figure 2, SCORE is a redundancy-aware KV cache management framework. It
consists of three core components: a multi-level redundancy scoring module (Section 3.2) that
quantifies representational redundancy across layers and heads; a dynamic budget allocation strategy
(Section 3.3) that selectively retains KV entries based on their relative importance; and a token
selection mechanism (Section 3.4) that prioritizes diverse and informative tokens for cache retention.
Algorithm 1 summarizes the end-to-end pipeline of the proposed SCORE framework.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(c) Low IR, High TD(b) Low IR, Low TD (d) High IR, High TD(a) Distance Matrix (e) Head Redundancy

High HD

L
o
w
H
D

Intra

Temporal

Intra Intra

Temporal Temporal

Figure 3: Head-wise cosine distance matrices. From left to right: (a) the full similarity matrix D
across all heads and layers; (b)–(d) three examples of 3×3 layer-wise similarity matrices, each
showing different levels of intra-layer redundancy and inter-layer diversity; (e) an illustrative example
highlighting head-level redundancy. Brighter colors indicate higher similarity.

3.2 MULTI-LEVEL REDUNDANCY SCORING

According to prior studies Michel et al. (2019); Dalvi et al. (2020), many layers and attention heads in
transformer models often learn functionally similar representations, leading to structural redundancy.
To quantitatively assess such redundancy and diversity, we propose multi-level evaluation metrics
based on inter-head similarity and mitigate L1, L2. Specifically, we sample k token positions from
each head and compute the average pairwise distance of their attention scores. Given a distance
function δ(·, ·) between two attention scores, the distance between head i and head j is defined as:

D(i,j) =
1

k2

k−1∑
s=0

k−1∑
t=0

δ(a
(s)
i , a

(t)
j ), (4)

where a
(s)
i ∈ Rn denotes the attention score vector of head i at the s-th sampled token for indices

i, j ∈ {0, 1, . . . , (L ·H − 1)}. Figure 3(a) visualizes the distance matrix D, which contains pairwise
distances between attention heads across all layers. It intuitively reveals that redundant representations
are often concentrated in specific layers or heads, serving as the foundation for the hierarchical analysis
metrics proposed in the subsequent sections.

Intra-layer redundancy. To analyze the extent of redundant representations within each layer, we
define the intra-layer redundancy (IR) of layer l as the average similarity across its attention heads,
computed by evaluating a similarity measure D over all pairs of heads (h, h′) within the same layer:

IRl =
1

H2

H−1∑
h,h′=0

DlH+h, lH+h′ , (5)

Here, lower IRl indicates higher redundancy due to increased similarity across heads, whereas
higher IRl suggests greater functional diversity.

Temporal deviation. To quantify the degree of novel information introduced relative to the preceding
layer, we introduce the temporal deviation (T D) metric. It tracks changes across layers by contin-
uously comparing the similarity between adjacent outputs against an exponential moving average
(EMA). For layer l, T Dl is defined as follows:

T Dl = |µl − El−1| , (6)

where µl denotes the average similarity between layer l and its previous layer, computed in a manner
similar to Eq. 5, but based on the distance matrix D between two distinct layers rather than within a
single layer. For the first layer, we set T D0 = IR0. El−1 represents the accumulated EMA-based
deviation up to layer l − 1, and is updated as follows:

El = γ · El−1 + (1− γ) · µl, (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Multi-level budget allocation

Input: accumulate attention score Al ∈ RH×S , num-
ber of layers L, number of heads H, Total cache
budget Btotal

Output: Retained cache set C = {K(m)
l,h , V

(m)
l,h }

// Layer-wise budget allocation. Cascading strategy
adapted from CAKE

1: for stage m = 0 to L− 1 do
2: C(m) ← C(m−1) ∪ {K(m), V (m)}
3: Compute distance matrix D ∈ RH×2H using

Eq. 4
4: IR, T D are computed by slicing D (Eq. 5- 7)
5: IR(m) ← IR(m−1) ∪ IRm,

T D(m) ← T D(m−1) ∪ T Dm

6: B(m) ← {B(m)
l | l ∈ [0,m]}, where each

B
(m)
l is computed according to Eq. 10

// Head-wise budget allocation and evict
7: Extract attention matrix Am ∈ RH×S

8: Ωm ← select top-B(m)
m token with attention

9: Compute Tm,h by counting token-to-head as-
signments using Eq. 11

10: for head h = 0 to H − 1 do
11: Compute head distinctness HDm,h Eq. 8
12: Allocate head-wise budget B(m)

m,h using Tm,h

andHDm,h as in Eq. 12
// Greedy token selection

13: Penalized attention score Ãm using Eq. 13
14: I

(m)
m,h ← TopK

(
Ãm[h], B

(m)
m,h

)
15: K̂

(m)
m,h, V̂

(m)
m,h ← K

(m)
m,h

[
I
(m)
m,h

]
, V

(m)
m,h

[
I
(m)
m,h

]
16: C(m)[m][h]← {K̂(m)

m,h, V̂
(m)
m,h }

17: end for
18: end for
19: return C = {K(L−1)

l,h , V
(L−1)
l,h }

where γ controls responsiveness to temporal
shifts in layer-wise representations. Higher T Dl

indicates that layer l produces more novel and
distinctive outputs compared to the accumulated
patterns of preceding layers. Figure 2 (specif-
ically, inside the box corresponding 3.2) illus-
trates this by comparing the left temporal ma-
trices across layers, where notable increases in
deviation reveal points of significant represen-
tational change. Figures 3(b)-(d) present varied
examples with different levels of redundancy
and temporal variation, clarifying the hierar-
chical structure and functional differentiation.
Additional visualizations are provided in Ap-
pendix D.2.

Head-level distinctness. Beyond analyzing re-
dundancy at the layer level, we introduce the
head-level distinctness (HD) metric to quantita-
tively assess the uniqueness of individual atten-
tion heads. This metric quantifies how distinct
a head’s attention pattern is compared to others
in the same and preceding layers. An illustrative
example is shown in Figure 3(e). For a head h
in layer l,HD is defined as follows:

HDl,h =
1

2H

1∑
i=0

H−1∑
h′=0

DlH+h, (l−i)H+h′ (8)

Here, higher HDl,h indicates the head is more
distinguishable from its neighbors, suggesting
greater likelihood of fulfilling a unique func-
tional role. The metric complements layer-level
averages by enabling fine-grained evaluation of
diversity and redundancy at the head level.

3.3 HIERARCHICAL BUDGET ALLOCATION

Layer budget allocation. We build on the cascading strategy from Qin et al. (2025) and introduce
adaptive budget reallocation driven by the importance of hierarchical representations. At each
stage, only interactions between active layers and their immediate predecessors are considered.
Accordingly, the pairwise distance matrix D is computed only between adjacent layers. Cache budgets
are dynamically assigned based on a novelty scoreNl, which integrates inter-layer redundancy (IRl)
and temporal dynamics (T Dl) as follows:

Nl = λ1 · IRl + λ2 · T Dl, (9)

where λ1, λ2 ∈ R≥ 0 are weighting factors that control the relative importance of each term. The
novelty score N l quantifies the diversity and informational distinctiveness of layer l, and guides the
allocation of the total computational budget Btotal:

B
(m)
l =

Nl∑L−1
k=0 Nk

·Btotal, B
(m)
l < B

(m−1)
l , (10)

At cascading stage m, the cache budget for layer l is assigned in proportion to its novelty score,
enabling adaptive allocation based on importance (Algorithm 1, lines 1–6).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Head budget allocaction. As shown in Figure 2, cache budgets are first allocated at the layer level and
then uniformly distributed across heads. To account for variations in novelty and importance across
heads, we propose a fine-grained, head-wise allocation strategy. Given the accumulated attention score
matrix Al ∈ RH×S for layer l, we select the top-Bl scores globally. Let Ωl denote the corresponding
set of important tokens. For each token s ∈ Ωl, we identify its source head and compute head-wise
contributions accordingly:

Tl,h = |{(h′, s) ∈ Ωl | h′ = h}| , (11)

The resulting vector Tl = [Tl,1, Tl,2, . . . , Tl,H ] ∈ RH therefore serves as an explicit representation
of the relative importance of each head, capturing how frequently individual heads contribute to
the set of top-ranked tokens. This is then combined with the head redundancy measure HDl,h, to
determine the head-wise budget Bl,h as follows:

Bl,h = Bl ·

(
HDl,h∑H

h′=1 HDl,h′

)
· Tl,h (12)

This strategy refines layer-level cache allocation by jointly considering head-wise relevance and
redundancy, effectively addressing the L2 and preserving distinctive information. It serves as a key
mechanism for improving eviction performance in LLMs (Algorithm 1, lines 7–17).

3.4 GREEDY TOKEN SELECTION

The multi-level budget allocation strategy improves cache efficiency by quantitatively assessing
redundancy and contribution at both the layer and head levels. However, despite this fine-grained
allocation, redundant heads often select overlapping tokens, concentrating attention on specific
positions and leading to coverage bias. The ‘Top-K select’ example in Figure 2 illustrates this
overlooked limitation.

To mitigate this issue, we propose a redundancy-aware soft selection mechanism that promotes
diversity across attention heads during token selection. The method lowers the selection priority of
tokens redundantly chosen by multiple heads, with the penalty strength determined by the degree of
head-wise diversity within the layer. By discouraging redundant selection, this approach alleviates
head-level concentration and fosters more diverse and informative representations. The resulting
penalized attention score is defined as follows:

Ãl[h, s] = Al[h, s] · exp
(
− α

HDl,h
· rs
)

(13)

where α > 0 is a hyperparameter that controls the attenuation strength of the penalty, and rs denotes
the number of times token s has been selected across multiple heads. Higher redundancy leads to
stronger penalties, encouraging greater dispersion in head-wise token selection. This method can be
seamlessly integrated into existing token selection pipelines with little additional overhead, while
effectively enhancing informational diversity and addressing the L3 by ensuring that different heads
contribute complementary rather than redundant evidence.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Baseline Models. We evaluate representative open-source LLMs with context lengths from 4K to
128K tokens, including two multi-head attention models: Llama2-Chat Touvron et al. (2023) (7B
and 13B), and two grouped-query attention models: Llama3-8B-Instruct Grattafiori et al. (2024)
and Mistral-7B-Instruct-v0.3 Jiang et al. (2023). To evaluate memory allocation strategies under
constrained cache budgets, we adopt CAKE Qin et al. (2025), which dynamically reallocates cache
in a cascading manner during prefilling to retain informative tokens.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Mean performance across 16 LongBench datasets for varying KV cache sizes. The dashed
line indicates the performance with the full KV cache.

Table 1: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 128. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

Full KV 18.39 21.13 35.54 31.35 25.61 10.64 25.57 22.18 26.26 65.5 89.41 41.03 6.00 8.50 58.67 53.00
StreamingLLM 11.27 15.93 28.45 24.77 20.92 6.46 15.42 16.8 18.97 60.55 79.42 35.32 3.00 2.00 50.82 45.22
H2O 11.82 17.75 29.70 24.98 21.95 8.33 16.98 18.49 20.49 62.50 80.79 36.78 3.50 3.00 51.95 46.68
HeadKV 14.86 19.25 28.40 27.39 24.30 8.38 18.29 20.01 21.10 63.50 81.99 37.92 4.00 4.50 53.54 48.34
SnapKV 14.12 18.50 27.25 28.45 21.83 7.94 17.23 20.04 20.30 58.00 81.85 37.43 4.00 4.00 52.05 46.41
PyramidKV 15.20 18.70 29.02 29.72 23.57 7.95 17.87 20.01 20.32 60.50 82.59 36.71 4.00 4.00 52.58 46.68
CAKE 15.62 19.01 32.10 29.46 24.78 9.48 18.75 20.01 22.52 63.50 82.95 38.75 4.50 6.00 54.59 48.66
SCORE(ours) 16.90 19.84 35.49 30.52 24.88 10.55 19.30 20.02 22.32 64.10 84.00 38.86 5.50 7.00 56.45 49.63

L
la

m
a2

-1
3B

Full KV 19.15 26.38 36.77 36.57 33.93 14.32 25.89 20.33 26.06 65.00 87.70 35.57 6.50 10.50 51.26 53.40
StreamingLLM 12.02 8.21 22.33 9.37 7.49 2.63 18.40 18.81 18.93 61.05 84.35 40.00 2.00 13.05 35.02 36.75
H2O 13.29 11.44 24.15 12.84 10.38 3.65 20.75 20.21 20.99 64.50 86.77 40.41 3.60 15.25 38.13 39.42
HeadKV 13.20 13.04 25.27 12.09 11.00 2.73 20.72 20.30 22.20 68.00 86.00 39.55 3.07 14.75 41.36 41.06
SnapKV 12.61 11.91 23.78 13.71 9.98 3.87 19.97 19.96 21.40 63.50 86.75 39.89 3.00 16.75 40.51 38.57
PyramidKV 13.64 11.50 26.04 14.01 10.60 5.40 20.32 19.63 21.65 64.50 86.25 39.54 3.50 16.25 41.08 39.69
CAKE 13.64 11.87 25.41 11.80 10.49 4.50 20.94 20.30 21.77 65.50 86.86 42.48 3.50 15.75 39.80 38.98
SCORE(ours) 14.06 14.64 27.87 11.71 11.14 5.16 21.98 20.68 24.06 69.65 87.96 41.82 3.60 16.50 44.96 44.82

L
la

m
a3

-8
B

-I
ns

tr
uc

t

Full KV 25.56 39.43 45.23 45.37 35.65 21.63 28.63 23.35 26.81 74.00 90.48 42.52 4.80 69.25 56.97 52.42
StreamingLLM 20.58 28.66 25.17 37.45 18.72 18.87 19.01 20.17 18.81 62.02 88.57 38.96 3.51 67.79 55.42 50.86
H2O 21.90 30.11 26.55 38.95 20.01 20.29 20.37 21.58 20.18 63.50 89.96 40.39 4.40 69.25 56.83 52.30
HeadKV 22.47 30.13 40.38 44.90 31.06 21.10 20.70 22.31 21.91 71.00 90.82 39.62 4.35 69.50 57.65 52.65
SnapKV 22.17 28.96 36.29 42.10 29.25 19.78 20.11 22.56 21.46 66.00 89.72 38.89 4.50 69.00 57.24 52.97
PyramidKV 22.10 26.94 36.86 40.38 29.42 16.34 20.34 22.70 21.99 67.00 89.35 39.77 4.50 69.00 56.55 51.67
CAKE 22.10 32.19 34.52 39.06 30.45 20.72 20.40 21.85 20.98 46.00 89.64 39.74 4.50 69.50 56.46 52.14
SCORE(ours) 24.65 33.31 40.22 45.27 34.29 21.45 21.63 22.36 22.93 72.30 90.66 40.20 5.00 69.50 57.03 52.76

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 Full KV 29.53 41.58 53.13 49.22 39.51 28.58 34.68 26.42 27.82 80.50 92.14 47.44 5.50 98.00 58.45 59.54

StreamingLLM 22.83 25.80 41.54 39.11 23.73 15.44 18.04 16.34 15.86 45.55 83.82 37.55 3.00 75.00 43.54 40.46
H2O 23.29 27.23 42.08 40.68 24.86 16.48 18.75 17.65 17.07 56.50 85.03 38.88 4.50 80.00 44.53 42.44
HeadKV 26.04 30.25 47.93 43.17 32.13 22.63 20.73 18.24 18.79 65.50 85.29 40.69 5.00 76.50 44.93 44.95
SnapKV 25.72 28.56 46.34 43.52 29.10 20.86 19.51 18.09 18.49 64.50 84.81 40.20 5.50 78.50 43.99 43.68
PyramidKV 25.50 27.47 46.23 44.02 30.05 21.10 20.08 18.15 18.10 63.50 85.02 40.37 4.50 78.50 43.52 40.73
CAKE 26.17 27.26 43.73 41.30 25.89 17.30 20.22 18.01 17.65 57.50 85.53 39.11 5.00 82.00 45.89 43.39
SCORE(ours) 25.95 32.65 50.54 44.44 31.91 23.89 20.73 19.89 19.95 69.00 86.33 41.28 4.50 81.50 46.54 46.61

Tasks. We evaluate model performance under compressed KV cache settings using LongBench Bai
et al. (2023), which covers a range of long-context tasks. For fine-grained retrieval and long-range
reasoning, we use NeedleBench Li et al. (2024a) and Reasoning-in-a-Haystack Kuratov et al. (2024),
respectively. We also include Longbench V2 Bai et al. (2024) and InfiniteBench Zhang et al. (2024)
for extreme long-context settings.

Implementation. All experiments were conducted on an NVIDIA A100 80GB GPU with cache
budgets ranging from 64L to 2048L. To ensure fair comparison, all methods were evaluated under
identical conditions and cache capacities. Hyperparameter details are provided in Appendix A.

4.2 MAIN RESULTS

Evaluation on Longbench. We evaluate SCORE on the LongBench benchmark, which includes
16 long-context tasks. All experiments are conducted under identical conditions for fair comparison.
As shown in Figure 4, SCORE consistently outperforms baseline methods across varying KV cache
budgets, with a significant advantage in low-cache settings (Btotal ≤ 128L) due to its ability to
preserve contextual diversity by selectively retaining salient tokens. Table 1 reports results in low-
cache scenarios, where SCORE outperforms existing methods on most tasks. On LLaMA3-8B,
it achieves an average score of 40.85—surpassing HeadKV by +0.82—while retaining 95.1% of
full-cache performance. Full results across cache sizes are available in Appendix E.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Layer-level budget (b) Head-level budget

Figure 5: Redundancy metrics used for budget allocation. (a) Layer-wise distributions of IR and
T D averaged over the entire LongBench dataset; head-wise redundancy for the first 12 layers on the
NarrativeQA and corresponding head-wise budget allocation.

Table 2: Performance comparison on Llama3-8B-
Instruct over LongBench V2. Results are measured
with cache sizes of 128 and 1024.

Method Easy Hard Short Medium Long Avg.

Full KV 31.25 25.08 34.44 24.19 22.22 27.44

Llama3-8B-Instruct, Cache size=128

CAKE 29.27 21.13 32.98 21.22 20.18 24.96
HeadKV 29.53 22.74 32.25 22.97 20.10 25.52
SCORE 29.94 23.11 32.78 23.73 20.33 25.98

Llama3-8B-Instruct, Cache size=1024

CAKE 29.50 21.31 33.25 22.61 21.06 25.55
HeadKV 30.22 23.97 33.24 23.23 20.14 26.16
SCORE 30.25 24.08 33.89 24.19 21.45 26.77

Evaluation on LongBench V2. We further
evaluate SCORE under realistic scenarios us-
ing LongBench-v2, a long-context benchmark
designed to overcome the limitations of prior
datasets that relied heavily on synthetic data or
extraction-style tasks. It covers six categories
and twenty sub-tasks—including QA, in-context
learning, dialogue, code, and structured data
reasoning—with context lengths ranging from
8K up to 2M words. Table 2 reports the detailed
results on LLaMA3-8B-Instruct. Across both
cache sizes (128 and 1024), SCORE consistently
outperforms competitive baselines, indicating
that the proposed method provides benefits re-
gardless of the memory budget available. In the
extreme compression setting with cache size 128, where most baselines struggle to maintain stable
accuracy, SCORE achieves an average score of 25.98, surpassing HeadKV and CAKE by +0.46 and
+1.02, respectively. Importantly, this performance gap is not limited to a particular type of task but
persists across difficulty levels and input lengths. In particular, SCORE demonstrates clear advantages
in the Hard and Medium scenarios, where long-range reasoning and multi-step comprehension are
crucial. These results highlight that the method is capable of preserving critical information under
severe compression, achieving stable performance even in extreme long-context conditions, which
suggests strong potential for deployment in practical large-scale applications.

4.3 JUSTIFYING REDUNDANCY-AWARE MODELING

Figure 6: LongBench performance by cache budget for each
distance matrix.

Redundancy Observations. We com-
pare pairwise similarities across
all heads and layers using five
distance metrics: Cosine similarity
(COS), Pearson correlation (COR),
Jensen–Shannon distance (JSD), Bhat-
tacharyya coefficient (BCD), and Eu-
clidean distance (ECD). Appendix D.1
presents qualitative visualizations for
each metric to illustrate how they
capture token-level relationships. Fig-
ure 6 reports their average accuracy
across all tasks under varying cache budgets. The results reveal that COS consistently achieves the
highest performance in all settings, regardless of cache size. This indicates that COS not only provides
a stable criterion for token retrieval in high-dimensional embedding spaces but also remains robust
when computational resources are constrained. Taken together, these findings highlight the reliability
of cosine similarity and motivate its use as the default metric throughout our experiments.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Redundancy-Aware Allocation SCORE adaptively allocates cache budgets across layers and heads
based on quantified redundancy levels. As illustrated in Figure 5, components exhibiting greater
information diversity tend to receive larger cache budgets, while highly redundant ones are assigned
less. For instance, in Figure 11, lower layers tend to exhibit lower similarity to others, resulting in
high T D in Figure 5(a), and are thus prioritized in layer-level budget assignment. Figure 5(b) further
reveals that certain heads within these layers carry unique information, leading to increased head-level
budget allocations. This analysis suggests that SCORE effectively leverages distance-based similarity
metrics to identify structural redundancy and maximize informational diversity under constrained
resources. Furthermore, Appendix D.3 validates the robustness and generality of SCORE through
quantitative comparisons and visualizations.

4.4 EVALUATION ON LONG-CONTEXT TASKS

Table 3: Reasoning-in-a-Haystack results on
Mistral-7B-Instruct with 128L KV cache. Scores
are averaged over QA1–QA5 tasks at each context
length.

Method 0k 1k 2k 4k 8k 16k 32k Avg.

FullKV 61.30 55.30 53.40 42.10 40.30 34.00 31.80 45.46

SnapKV 55.40 50.20 46.40 37.20 35.00 32.80 29.20 40.89
PyramidKV 57.20 50.80 47.60 36.20 36.20 31.40 28.20 41.09
HeadKV 58.60 53.80 52.20 38.20 37.60 31.80 30.40 43.23
CAKE 58.40 54.00 51.30 38.40 37.20 31.80 30.20 43.04
SCORE 58.40 54.20 51.80 38.30 37.80 32.10 30.60 43.31

To further assess the generalizability of
SCORE’s long-context reasoning, we conduct
experiments on diverse benchmarks. Table 3
presents results on the Reasoning in a Haystack
task under limited cache budgets and varying
input lengths. SCORE consistently outperforms
baselines across all lengths, indicating its ability
to preserve precise reasoning. While prior meth-
ods often struggle as context grows, SCORE
maintains strong performance, showing that
its cache strategy—balancing importance and
diversity—is effective for long-range depen-
dency reasoning. Extended results on NeedleBench and InfiniteBench, provided in Appendix B
and Appendix C, further support its robustness under diverse long-context conditions.

4.5 EVALUATION ON MEMORY AND THROUGHPUT

Figure 7: Comparison of TTFT (left) and decod-
ing latency (right) across KV cache strategies in
Mistral-7B-Instruct-v0.3.

To evaluate the practicality of SCORE, we com-
pare it against prior methods in terms of time
to first token (TTFT) and decoding latency. As
shown in Figure 7, despite the need to compute
a distance matrix, SCORE achieves compara-
ble latency to existing approaches across all in-
put lengths. This is notable given that SCORE
estimates importance based on distance-based
similarity between representations across layers
and heads. Instead of computing full pairwise
distances across all layers, SCORE adopts a cas-
cading strategy that computes local distances
only between adjacent layers, significantly reducing computation. Furthermore, the number of sample
vectors used for similarity estimation is carefully controlled to further mitigate computational over-
head. These results demonstrate that SCORE maintains responsiveness on par with existing methods,
despite its more sophisticated scoring mechanism.

5 CONCLUSION

In this paper, we propose SCORE, a cache management framework that addresses structural re-
dundancy and resource inefficiency in long-context processing. SCORE employs distance-based,
multi-level similarity metrics to quantify representational redundancy across layers and attention
heads. Using these estimates, it performs hierarchical budget reallocation and redundancy-aware
token selection to preserve salient contextual information. To our knowledge, SCORE is the first
method to directly measure redundancy for cache budgeting, enabling more effective modeling
of inter-layer information flow than prior statistics-based approaches. Extensive experiments on
long-context benchmarks demonstrate that SCORE consistently outperforms existing methods under
tight cache constraints, particularly in tasks requiring complex reasoning and retrieval.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shantanu Acharya, Fei Jia, and Boris Ginsburg. Star attention: Efficient llm inference over long
sequences. arXiv preprint arXiv:2411.17116, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Dahun Choi and Hyun Kim. Gradq-vit: Robust and efficient gradient quantization for vision transform-
ers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 16019–16027,
2025.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in
pretrained transformer models. arXiv preprint arXiv:2004.04010, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International conference on machine
learning, pp. 2793–2803. PMLR, 2021.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter: A
head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. 2023.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023.
URL https://api.semanticscholar.org/CorpusID:263830494.

Nam Joon Kim, Jongho Lee, and Hyun Kim. Hyq: hardware-friendly post-training quantization
for cnn-transformer hybrid networks. In Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, pp. 4291–4299, 2024.

10

https://api.semanticscholar.org/CorpusID:263830494


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yury Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
Advances in Neural Information Processing Systems, 37:106519–106554, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and
reasoning in 1 million context window? arXiv preprint arXiv:2407.11963, 2024a.

Xiang Li, Zhenyan Lu, Dongqi Cai, Xiao Ma, and Mengwei Xu. Large language models on mobile
devices: Measurements, analysis, and insights. In Proceedings of the Workshop on Edge and
Mobile Foundation Models, pp. 1–6, 2024b.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024c.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Siyu Ren and Kenny Q Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference. arXiv preprint arXiv:2402.06262, 2024.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device language
models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? Journal of Machine
Learning Research, 23(67):1–28, 2022.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. infty bench: Extending long context evaluation
beyond 100k tokens. arXiv preprint arXiv:2402.13718, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A MORE IMPLEMENTATION SETTINGS.

Figure 8: Performance comparison on LongBench
for different λ1 and λ2 combinations.

Details of Hyper-parameters. The algorithm
of SCORE consists of three main stages: multi-
level redundancy estimation, layer-wise budget
allocation and cache management, and salient
token selection. In the redundancy estimation
stage (Section 3.2), we sample representations
from each attention head and compute pairwise
distances to extract multi-level redundancy. This
process captures similarity patterns across lay-
ers, serving as the basis for quantifying cache
necessity. In particular, we compute the T D be-
tween consecutive layers to assess the novelty
of information introduced at each layer. To sta-
bilize estimation, we apply EMA to T D, search-
ing γ ∈ [0.1, 0.9] and setting it to 0.5. In the
budget allocation and cache management stage
(Section 3.3), we assign layer-wise KV cache
budgets based on the estimated redundancy and
perform eviction accordingly. We perform grid
search over λ1, λ2 ∈ [1.0, 2.0] with 0.2 step size
for adaptive budget scaling. See Figure 8 for performance across different combinations. In the final
stage (Section 3.4), we grid-search λ1, λ2 ∈ [1.0, 2.0] (step 0.2) for adaptive scaling. This process is
guided by a penalty term α that controls the preference for retaining high-redundancy tokens. The
value of α is tuned within the range [0.001, 0.01], where larger values encourage more aggressive
eviction of less salient tokens. We select α = 0.004 based on this search.

Table 4: Performance comparison of sample se-
lection strategies on LongBench using Llama3-
8B under 128-cache. Reported values are average
scores per task.

Method Single-Doc. Multi-Doc. Summ. Few-shot Synthetic Code

Full 32.97 33.65 22.39 66.92 38.99 55.17
Random 33.01 33.25 22.17 66.50 39.70 55.06
Top-k 31.10 29.11 20.74 65.20 32.74 53.39
Middle 32.72 33.67 22.30 67.72 39.75 54.89

Analysis of sample selection. To evaluate the im-
pact of sample selection on assessment reliability,
we fix a subset of 200 samples and compare three
strategies: (1) top-k scoring, (2) uniform random
sampling, and (3) mid-range random sampling,
which excludes tokens from the initial and final
context windows. As shown in Table 4, the mid-
range strategy consistently yields more stable per-
formance estimates. Excluding boundary regions
mitigates evaluation artifacts caused by position-
specific attention patterns. Mid-range sampling
reduces the influence of positional biases and better captures model behavior in regions where
memory and generalization demands are more representative of typical usage.

Table 5: Ablation study on Llama3-8B-Instruct
with LongBench V2. We analyze the effect of
different sample sizes (K = 200 and K = 400)
for our method (SCORE) under cache size 128,
compared against CAKE and HeadKV.

Method Easy Hard Short Medium Long Avg.

Full KV 31.25 25.08 34.44 24.19 22.22 27.44

Llama3-8B-Instruct, Cache size=128

CAKE 29.27 21.13 32.98 21.22 20.18 24.96
HeadKV 29.53 22.74 32.25 22.97 20.10 25.52
SCORE (K = 200) 29.94 23.11 32.78 23.73 20.33 25.98
SCORE (K = 400) 29.85 23.40 32.71 23.80 20.61 26.07

Ablation on Sample Size. To keep computa-
tion cost stable regardless of sequence length,
we fix the number of sampled tokens K when
estimating head-wise similarity. Nevertheless, in
extremely long-context scenarios, model perfor-
mance could in principle depend on the choice
of K. Table 5 therefore presents an ablation on
Llama3-8B-Instruct with LongBench V2 (input
sequences extended up to ∼2M tokens) under
a cache size of 128, comparing SCORE with
K = 200 and K = 400 against baseline methods.
The results show that the performance gap be-
tween different K values remains minimal, con-
firming that even a relatively small K is sufficient
and that SCORE is robust to the sampling.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B EXPERIMENTS ON NEEDLEBENCH DATASET

To assess the retrieval capabilities of our proposed method, SCORE, we conduct comprehensive
evaluations on the Needle-in-a-Haystack benchmark. This benchmark is specifically designed to test
a model’s ability to accurately identify and extract salient information (needle) from extensive input
sequences (haystack). We evaluate on both LLaMA-3-8B-Instruct and Mistral-7B-Instruct-v0.3, set-
ting the maximum context lengths to 8K and 32K tokens, respectively, as summarized in Figure 9,10.
At a cache size of 128, SCORE demonstrates strong retrieval fidelity in short-context settings while
exhibiting minimal degradation in performance under long-context conditions. Notably, SCORE
achieves an accuracy of 96.7 on the Mistral-7B-Instruct-v0.3 model, outperforming the previous
state-of-the-art method, HeadKV, which attains 95.5—representing a relative improvement of 1.2
points. Similarly, on Llama3-8B-Instruct, SCORE consistently matches or exceeds the performance
of existing methods across varying context lengths. These results demonstrate that SCORE is highly
capable of retrieving and processing salient information even under ultra-long context conditions.
Importantly, SCORE maintains robust retrieval performance even when the KV cache size is sig-
nificantly reduced (e.g., 128), with only negligible accuracy degradation compared to FullKV. This
highlights the effectiveness of SCORE in balancing memory efficiency and performance, offering a
promising solution for memory-constrained long-context language modeling.

Figure 9: Needle-in-a-Haystack test results on Llama-3-8B-Instruct with KV cache = 128. Our
proposed SCORE method significantly outperform all strong baselines.

Figure 10: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 128. Our
proposed SCORE method significantly outperform all strong baselines.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C EXPERIMENTS ON INFINITEBENCH DATASET

In this section, we evaluate the effectiveness of the proposed method, SCORE, on InfiniteBench—
a challenging benchmark specifically designed to assess the long-context processing capabilities
of large language models. A detailed comparison of results across models and cache budgets is
provided in Table 6,7. Compared to prior benchmarks such as LongBench, InfiniteBench introduces
substantially greater difficulty by incorporating ultra-long input sequences, with an average context
length of 145K tokens and a maximum of up to 214K tokens. The benchmark spans five diverse
domains—Retrieval, Code, Math, Novels, and Dialogue—providing a comprehensive testbed for
evaluating a model’s ability to understand, reason over, and extract salient information from extremely
long contexts. We conduct experiments using both Llama3-8B-Instruct and Mistral-7B-Instruct-v0.3,
evaluating performance across 10 datasets from InfiniteBench under two KV cache budgets: 128L
and 1024L. At a cache size of 128L, SCORE achieves the highest average accuracy of 17.98 on
Mistral-7B-Instruct-v0.3, outperforming the previous best-performing method, CAKE, which attains
17.57—a margin of 0.41. When the cache size is increased to 1024L, SCORE further improves to
19.54, again surpassing CAKE (18.99), with a larger margin of 0.55. These results demonstrate the
effectiveness of SCORE in compressing and retaining salient information within memory-constrained
settings, even under extreme sequence lengths. Importantly, SCORE maintains consistent performance
improvements across both low and high cache budgets, underscoring its robustness and scalability.
This highlights SCORE as a compelling solution for long-context language modeling, effectively
balancing memory efficiency with task performance across a wide range of domains and input lengths.

Table 6: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 128L cache. The best result is highlighted in
bold, the second best in underline.

Retrieval Code Math Novels Dialogue

Method Ret.PassK
ey

Ret.Number

Code.Debug

Code.Run
Math.Find

En.Sum
En.QA

En.choice
Chn.QA

En.Dia

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 4.98 4.46 39.00 0.50 19.64 19.49 0.01 41.06 1.94 0.00
H2O 5.30 5.57 40.19 0.50 20.32 20.01 0.01 41.16 2.21 0.00
HeadKV 6.14 6.14 43.54 1.50 26.51 23.37 0.09 47.43 3.67 0.00
SnapKV 6.34 6.32 43.32 1.50 25.83 23.45 0.10 48.25 3.41 0.00
PyramidKV 6.48 6.21 43.44 1.50 26.24 23.32 0.16 48.03 3.16 0.50
CAKE 6.22 6.51 43.48 1.50 26.74 25.11 0.05 48.16 3.75 0.50
SCORE(ours) 6.53 5.93 43.61 2.00 26.86 23.78 0.03 48.24 3.98 0.50

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 StreamingLLM 24.10 5.56 28.17 0.00 21.56 20.03 0.10 40.56 8.01 0.00

H2O 25.02 5.63 29.28 0.25 22.74 20.12 0.10 40.98 7.89 0.00
HeadKV 26.75 6.27 32.74 0.25 27.43 22.74 0.31 49.10 10.32 0.50
SnapKV 25.95 6.95 31.47 0.50 22.57 23.14 0.32 48.76 9.69 0.00
PyramidKV 26.78 6.69 33.25 0.25 23.43 21.92 0.28 49.53 9.01 0.00
CAKE 26.68 6.64 32.49 0.50 28.14 21.45 0.33 49.56 9.93 0.00
SCORE(ours) 26.89 7.01 32.89 0.50 28.57 22.29 0.39 50.16 10.16 1.00

Table 7: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 1024L cache. The best result is highlighted in
bold, the second best in underline.

Retrieval Code Math Novels Dialogue

Method Ret.PassK
ey

Ret.Number

Code.Debug

Code.Run
Math.Find

En.Sum
En.QA

En.choice
Chn.QA

En.Dia

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 5.89 5.78 40.78 1.50 25.21 20.79 0.05 41.87 2.78 0.50
H2O 5.48 6.14 42.23 1.00 25.49 21.31 0.05 42.65 3.12 0.50
HeadKV 6.73 6.61 44.53 2.00 26.98 25.10 0.04 49.87 3.77 0.50
SnapKV 6.42 6.58 44.91 2.50 27.13 24.64 0.05 48.42 3.34 0.50
PyramidKV 6.59 6.44 44.87 2.25 27.17 25.00 0.15 49.47 4.10 1.00
CAKE 6.71 6.76 44.79 2.50 27.43 24.28 0.10 50.12 3.68 0.50
SCORE(ours) 6.78 6.78 45.16 3.00 27.43 25.12 0.25 50.66 4.14 1.00

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 StreamingLLM 26.00 8.51 30.28 0.50 25.67 21.01 0.05 47.13 8.78 0.00

H2O 26.21 8.98 29.78 0.50 26.97 20.31 0.09 48.78 9.24 0.00
HeadKV 27.00 10.12 35.28 1.00 28.71 21.65 0.45 50.51 10.48 0.00
SnapKV 26.98 9.37 33.25 1.00 30.29 21.68 0.19 49.79 10.59 1.00
PyramidKV 26.45 9.49 34.26 1.00 26.86 22.24 0.33 49.65 10.54 1.00
CAKE 27.02 12.15 36.80 1.00 29.71 22.27 0.33 49.23 10.34 1.00
SCORE(ours) 27.12 12.20 39.09 1.50 30.71 22.68 0.28 50.66 10.65 1.50

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

BCD ECD JSDCOR COS

Figure 11: Head-to-head similarity matrices across various metrics for NarrativeQA. Each value
represents the average distance between 200 sampled attention vectors per head.

D ADDITIONAL DETAILED ANALYSIS AND VISUALIZATION

D.1 EFFECT OF DISTANCE METRIC CHOICE

Figure 11 visualizes pairwise similarities across all heads and layers using various distance metrics:
Cosine similarity (COS), Pearson correlation (COR), Jensen–Shannon distance (JSD), Bhattacharyya
coefficient (BCD), and Euclidean distance (ECD). Bright regions indicate high similarity, with
all metrics revealing consistent alignment across specific layers and heads. These metrics span a
diverse range of similarity formulations, from distribution-based measures (JSD, BCD) to correlation-
or geometry-based ones (COR, EUD), providing a comprehensive comparison. Despite differing
statistical bases, these metrics capture similar redundancy signals, suggesting pronounced structural
redundancy in model representations. This highlights the potential of redundancy-aware selection to
improve efficiency.

D.2 VISUALIZATION OF DISTANCE MATRIX

To further analyze the behavior of the cosine distance metric in our retrieval framework, we vi-
sualize the pairwise distance matrices computed using cosine similarity across different datasets
in LongBench, as shown in Figure 12. Each matrix represents the inter-token similarity structure
within heads, with darker regions indicating lower similarity (i.e., higher cosine distance). Across
datasets, we observe consistent patterns of redundancy, where certain groups of heads exhibit strong
mutual similarity. While the specific patterns vary depending on the dataset domain and structure,
the presence of high-similarity clusters is a common characteristic. These clusters often correspond
to repeated representations. Such redundancy can degrade retrieval efficiency and content diversity
if not properly managed. SCORE addresses this by leveraging cosine distance not only to capture
salient content but also to suppress over-represented or semantically repetitive tokens. This behavior
is especially beneficial in budget-constrained settings, where the selection of maximally informative
yet diverse tokens is critical.

D.3 VISUALIZATION OF BUDGET ALLOCATION

To better understand how retrieval budgets are distributed across the model’s architecture, we visualize
intra-layer similarity patterns across different datasets in LongBench, as shown in Figure 13. Each
heatmap captures the pairwise similarity within heads at each layer, providing insight into redundancy
and representational diversity. We observe a consistent trend across datasets: the lower layers generally
exhibit higher diversity, as indicated by lower intra-head similarity. These layers tend to capture
localized, fine-grained features, making their token representations less redundant. Consequently,
they receive a larger share of the retrieval budget, allowing more tokens to be selected from them. In
contrast, middle layers often show pronounced redundancy, with many heads producing highly similar
token embeddings. The final column in Figure 13 further breaks down the intra-layer budget allocation
at the head level. Within a given layer, heads exhibiting high distinctiveness are allocated more budget.
This fine-grained allocation strategy ensures that the most informative and non-redundant heads are
prioritized, aligning with the principles described in Section 3.3.

Despite variations in domain and task, several datasets exhibit notably similar similarity profiles
across layers and heads, suggesting that token representation patterns are influenced not only by
data but also by the model’s inherent architecture. This structural consistency points to a promising
direction for developing more generalized, architecture-aware retrieval strategies.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 12: Cosine distance matrices for various datasets in LongBench.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 13: Cosine distance matrices for various datasets in LongBench.

E EXPERIMENTS ON LONGBENCH DATASET

We provide a full breakdown of the LongBench evaluation results for LlaMA-2-7B, LlaMA-2-13B,
LlaMA-3-8B-Instruct, and Mistral-7B-v0.3-Instruct. The results are presented in ascending order of
cache size: 64L (Table 8), 256L (Table 9), 512L (Table 10), and 1024L (Table 11).

Results on Llama3-8B-Instruct. SCORE consistently outperforms prior works across all cache
sizes on the LongBench benchmark. The advantage is especially prominent in the low-cache regime,
notably at 64L (Table 8), where SCORE demonstrates a significantly higher score compared to other
methods. A key observation is that existing works often select redundant key-value pairs under tight
cache budgets, leading to poor coverage and lower performance. In contrast, SCORE maintains
accuracy even at 64L through diversity-aware selection, yielding more informative memory allocation.

Results on Mistral-7B-Instruct-v0.3. Similar to the observations with Llama3-8B-Instruct, our
method (SCORE) shows strong and stable performance across cache sizes when evaluated on Mistral-
7B-Instruct-v0.3. Notably, even under the extreme low-cache setting of 64L, SCORE preserves 85.9%
of its performance relative to the full-cache setting, demonstrating robustness.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 64. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 10.70 15.36 27.88 24.20 20.35 5.89 14.85 16.23 18.40 55.00 78.85 34.75 2.50 1.50 50.25 44.65
H2O 11.33 17.26 29.21 24.49 21.46 7.84 16.49 18.00 20.00 62.00 80.30 36.29 5.00 2.50 51.46 46.19
HeadKV 14.41 18.80 27.95 26.94 23.85 7.93 17.84 19.56 20.65 63.00 81.54 37.47 5.50 4.00 53.09 47.89
SnapKV 13.67 18.05 26.80 28.00 21.38 7.49 16.78 19.59 19.85 57.50 81.40 36.98 5.50 3.50 51.60 45.96
PyramidKV 14.75 18.25 28.57 29.27 23.12 7.50 17.42 19.56 19.87 60.00 82.14 36.26 5.50 3.50 52.13 46.23
CAKE 15.49 18.88 31.97 29.33 24.65 9.35 18.62 19.88 22.21 63.00 82.82 38.62 6.00 6.00 54.46 48.53
SCORE(ours) 15.48 18.75 32.12 29.01 23.91 10.01 18.43 20.02 20.29 63.00 83.47 36.67 6.00 5.50 53.77 47.11

L
la

m
a2

-1
3B

StreamingLLM 10.45 7.56 21.95 9.03 7.13 1.61 17.45 16.75 17.73 60.00 82.10 37.31 0.50 12.50 32.45 35.89
H2O 11.84 9.31 23.36 9.12 9.00 3.26 18.88 19.39 19.93 59.50 85.94 37.86 1.50 14.72 37.67 36.07
HeadKV 11.99 12.14 23.53 10.65 9.03 3.70 19.28 19.86 19.85 64.00 84.74 38.48 2.50 15.75 35.92 36.22
SnapKV 11.51 10.87 22.92 10.24 8.84 3.20 18.60 19.25 19.19 50.50 86.84 36.28 2.00 16.75 34.97 33.60
PyramidKV 12.55 11.44 24.53 10.84 10.04 4.01 18.92 19.83 20.15 57.00 86.31 38.18 2.00 16.25 37.19 35.49
CAKE 12.69 10.11 22.41 10.21 9.70 2.81 20.03 20.20 21.63 67.50 87.12 39.29 2.00 15.75 42.76 41.25
SCORE(ours) 12.96 12.44 24.20 10.56 9.73 3.70 20.37 20.27 22.18 68.00 87.50 40.13 2.00 16.75 43.22 40.61

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 20.26 16.29 30.02 34.81 25.73 13.70 15.26 19.30 12.94 60.50 80.77 30.62 4.63 60.50 48.87 43.84
H2O 20.76 17.78 32.43 38.28 27.08 16.01 17.72 20.61 16.36 61.50 88.26 35.95 4.88 68.00 50.56 48.41
HeadKV 23.67 17.46 32.72 39.81 27.50 17.39 19.14 22.12 20.04 65.00 90.20 37.27 4.77 69.00 54.68 51.52
SnapKV 21.56 17.98 32.35 38.45 26.40 17.01 18.38 21.99 18.86 51.50 89.32 36.11 5.00 69.50 53.13 49.81
PyramidKV 21.76 18.56 33.01 39.45 28.47 17.42 18.58 21.77 18.58 58.50 88.14 37.26 5.00 69.50 52.05 47.27
CAKE 22.06 18.17 32.98 40.53 31.56 17.98 19.94 22.30 21.27 70.50 90.40 38.85 6.00 69.50 54.62 49.75
SCORE(ours) 22.68 18.77 33.26 41.06 31.58 17.84 20.41 22.20 21.58 72.00 91.00 38.78 5.50 70.00 56.08 50.69

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 19.54 25.07 37.66 40.13 21.43 12.69 17.47 16.93 15.99 51.00 84.00 37.20 4.00 70.00 41.44 39.34
H2O 20.10 25.40 37.92 40.48 21.78 13.00 17.73 17.51 16.37 57.00 84.50 37.62 4.50 75.00 41.83 39.96
HeadKV 23.18 26.31 38.77 40.94 21.20 13.38 18.51 17.68 16.74 62.50 85.00 38.47 4.50 69.50 42.35 41.38
SnapKV 22.21 26.53 37.83 39.96 20.10 13.00 17.20 17.33 16.00 50.00 85.00 36.54 5.00 76.50 41.22 38.60
PyramidKV 21.89 26.53 37.90 40.52 22.17 13.41 17.78 17.69 19.66 54.50 84.00 36.56 5.50 77.50 40.16 37.42
CAKE 23.89 26.89 39.12 42.08 25.26 13.97 19.38 18.03 18.25 64.50 85.00 40.22 5.00 78.00 45.02 42.94
SCORE(ours) 23.77 27.86 38.81 42.12 25.28 13.83 19.07 18.98 18.38 67.00 85.50 40.54 5.00 78.50 45.22 44.10

Table 9: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 256. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 15.09 18.87 29.73 29.60 23.70 8.72 18.69 19.32 20.98 62.50 82.69 34.00 3.00 6.00 55.04 48.80
H2O 15.63 19.41 30.27 30.14 24.24 9.26 19.23 19.86 21.52 63.00 83.23 34.54 3.50 6.50 55.58 49.34
HeadKV 15.66 20.29 30.95 30.52 24.50 9.87 19.78 20.33 21.93 64.00 83.19 35.18 5.00 5.50 56.01 50.13
SnapKV 16.10 20.16 30.59 30.44 24.89 9.78 20.15 20.37 21.78 63.50 83.90 34.78 4.50 6.00 56.97 49.98
PyramidKV 16.32 18.99 30.47 30.65 24.53 9.32 18.95 20.07 22.05 63.00 83.80 34.85 5.00 10.00 56.97 49.12
CAKE 15.91 19.69 30.55 30.42 24.52 9.54 19.51 20.14 21.80 63.00 83.51 34.82 4.50 7.00 55.86 49.62
SCORE(ours) 17.24 21.35 35.52 30.69 25.43 9.76 20.52 20.46 23.83 64.00 84.30 34.98 5.00 9.50 57.45 51.49

L
la

m
a2

-1
3B

StreamingLLM 12.45 13.66 25.71 11.03 9.27 3.81 20.97 19.47 22.54 68.00 85.42 44.77 4.50 12.00 42.88 41.58
H2O 12.99 14.20 26.25 11.57 9.81 4.35 21.51 20.01 23.08 68.00 85.96 45.31 4.00 14.75 43.42 42.12
HeadKV 13.77 15.17 27.50 11.94 10.48 4.01 21.78 20.54 23.57 69.00 86.83 46.38 5.50 14.25 43.95 42.69
SnapKV 12.56 12.82 26.13 12.49 10.38 4.85 22.61 20.44 23.56 69.00 86.15 45.82 3.05 14.75 44.33 43.36
PyramidKV 13.85 15.82 26.33 11.49 9.76 5.38 21.35 20.24 23.30 69.00 86.09 44.94 5.57 16.75 43.18 41.51
CAKE 13.27 14.48 26.53 11.85 10.09 4.63 21.79 20.29 23.36 68.50 86.24 45.59 4.50 15.25 43.70 42.40
SCORE(ours) 13.68 16.58 28.97 12.70 12.34 4.77 22.38 20.46 24.67 69.00 87.56 47.16 5.50 16.25 44.25 43.38

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 22.87 31.41 40.45 43.13 31.64 19.79 20.69 21.66 21.88 70.50 89.70 39.24 4.50 68.48 56.46 52.83
H2O 23.41 31.95 40.99 43.67 32.18 20.33 21.23 22.20 22.42 71.00 90.24 39.78 5.50 69.02 57.00 53.37
HeadKV 24.08 34.01 42.64 44.52 33.54 21.31 21.79 22.33 23.09 72.00 90.57 40.62 5.75 69.50 57.68 55.29
SnapKV 23.39 33.50 40.73 43.80 32.84 20.10 21.69 22.57 22.79 71.50 90.86 39.85 5.51 69.50 58.14 53.82
PyramidKV 23.95 29.53 40.81 43.90 31.37 20.77 21.42 22.89 22.59 71.50 90.48 40.08 5.91 69.25 56.37 52.20
CAKE 23.71 32.25 41.29 43.97 32.48 20.63 21.53 22.50 22.72 71.50 90.54 40.08 5.50 69.32 57.30 53.67
SCORE(ours) 25.09 35.68 42.93 45.61 35.63 21.37 22.80 22.69 24.25 72.50 90.56 41.98 5.78 69.25 57.23 53.01

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 26.00 30.63 49.01 43.47 31.20 22.43 20.29 18.32 19.01 67.00 84.42 40.70 4.50 79.39 45.22 45.79
H2O 26.54 31.17 49.55 44.01 31.74 22.97 20.83 18.86 19.55 68.00 84.96 41.24 5.00 79.93 45.76 46.33
HeadKV 27.66 32.30 49.98 44.79 32.35 23.32 20.99 20.16 20.03 69.50 85.30 42.35 6.00 79.50 46.96 48.83
SnapKV 26.55 31.24 49.58 43.57 31.80 23.14 21.44 18.93 20.03 68.00 85.01 41.36 5.00 81.00 46.45 46.85
PyramidKV 26.61 31.18 50.28 44.87 32.28 23.65 21.27 18.69 19.80 67.50 85.78 41.22 5.50 80.50 45.07 44.50
CAKE 26.34 31.99 49.39 44.02 31.80 23.28 21.28 18.86 19.90 68.00 85.17 41.54 5.00 80.77 46.21 46.26
SCORE(ours) 27.05 34.74 49.52 44.81 32.53 24.26 22.32 20.15 21.06 70.50 85.91 43.23 5.50 82.00 48.32 48.63

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 512. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 15.94 19.52 33.89 30.44 24.12 9.20 20.32 19.56 22.40 63.00 82.56 34.29 4.00 6.00 56.85 50.41
H2O 16.48 20.06 34.43 30.98 24.66 9.74 20.86 20.10 22.94 63.00 83.10 34.83 4.50 6.50 57.39 50.95
HeadKV 17.02 21.38 35.27 31.48 25.08 9.50 21.59 20.76 22.59 64.00 83.02 34.77 6.00 5.50 57.98 51.65
SnapKV 17.02 19.96 34.18 31.37 24.95 10.51 21.74 20.22 23.79 64.00 83.57 35.12 5.00 7.00 58.54 50.98
PyramidKV 16.60 20.03 35.03 31.30 25.16 10.40 20.46 20.52 23.63 64.00 83.90 35.80 5.00 8.00 56.85 51.41
CAKE 16.76 20.34 34.71 31.26 24.94 10.02 21.14 20.38 23.22 63.88 83.38 35.11 4.50 7.05 57.67 51.23
SCORE(ours) 18.29 21.57 35.95 30.78 24.88 10.84 22.08 20.74 24.63 64.00 83.75 35.01 5.00 9.50 58.72 52.17

L
la

m
a2

-1
3B

StreamingLLM 12.89 14.57 26.60 10.71 10.68 4.05 22.06 19.62 23.88 68.50 84.81 45.60 3.50 15.75 44.09 43.89
H2O 13.43 15.11 27.14 11.25 11.22 4.59 22.60 20.16 24.42 69.00 85.35 46.14 5.00 16.25 44.63 44.43
HeadKV 14.00 16.05 27.53 11.15 12.32 4.10 22.89 20.52 24.63 69.50 85.36 47.19 5.00 15.75 45.10 44.10
SnapKV 13.53 15.49 26.77 11.74 10.86 5.23 23.58 20.47 25.14 69.50 85.68 46.44 5.00 17.25 45.10 46.04
PyramidKV 13.95 14.99 28.32 12.05 11.69 5.63 22.52 20.68 24.70 69.50 86.21 45.98 5.00 17.75 45.10 44.36
CAKE 13.71 15.39 27.42 11.53 11.50 4.87 22.88 20.44 24.70 69.38 85.63 46.42 5.50 16.80 44.91 44.71
SCORE(ours) 13.49 16.45 27.91 12.45 12.49 4.71 23.90 20.61 25.66 68.50 87.75 47.73 5.00 17.75 45.67 46.97

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 24.54 33.31 41.46 43.95 32.30 18.66 22.20 21.90 23.44 71.00 89.60 40.07 5.00 69.25 56.46 53.75
H2O 25.08 33.85 42.00 44.49 32.84 19.20 22.74 22.44 23.98 71.50 90.14 40.61 5.50 69.50 57.00 54.29
HeadKV 25.77 34.67 43.11 45.02 34.04 20.28 22.95 23.02 24.33 73.00 90.56 41.63 6.00 69.50 57.96 55.59
SnapKV 25.61 33.63 43.28 44.78 33.78 20.58 23.07 22.62 24.31 71.50 90.44 40.66 6.00 68.50 57.01 55.30
PyramidKV 25.06 34.44 40.82 44.87 31.91 17.93 23.41 22.89 24.49 72.00 90.61 40.74 6.00 69.50 57.24 53.19
CAKE 25.38 34.15 42.30 44.79 33.14 19.50 23.04 22.74 24.28 72.07 90.44 40.91 5.50 69.50 57.30 54.59
SCORE(ours) 25.68 38.26 44.27 45.81 36.53 21.05 24.50 23.13 25.51 74.00 90.64 41.63 5.00 68.50 57.52 53.62

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 26.72 33.71 49.98 44.55 31.82 22.40 22.10 19.27 20.75 68.50 84.74 41.75 4.00 80.00 47.47 48.57
H2O 27.26 34.25 50.52 45.09 32.36 22.94 22.64 19.81 21.29 69.00 85.28 42.29 4.60 80.50 48.01 49.11
HeadKV 27.97 35.21 51.28 45.64 32.90 24.37 22.94 20.94 21.65 70.50 85.41 42.80 5.00 82.00 48.97 50.49
SnapKV 28.11 34.54 50.70 45.38 32.92 22.70 23.36 19.89 21.70 70.00 85.50 43.07 5.00 80.50 48.58 49.62
PyramidKV 26.89 34.21 50.78 45.46 32.46 22.96 22.81 19.80 21.73 68.50 86.13 42.20 5.00 81.00 47.67 48.43
CAKE 26.87 35.09 50.21 45.06 32.38 23.09 23.05 19.82 21.56 68.93 85.55 42.39 4.50 81.10 48.06 49.13
SCORE(ours) 26.82 37.71 50.35 45.53 32.97 24.82 24.18 20.97 22.45 69.50 86.21 43.09 5.50 83.00 49.13 50.55

Table 11: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 1024. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 15.28 18.90 31.55 28.54 22.38 7.00 19.22 17.12 22.31 61.00 81.52 37.84 3.00 3.00 46.66 47.94
H2O 17.01 20.74 32.04 30.37 24.64 8.90 20.59 18.88 24.43 63.00 81.95 39.98 5.50 4.00 45.69 48.79
HeadKV 18.99 21.04 35.40 31.29 25.26 10.63 21.60 20.64 26.39 64.00 83.55 40.57 6.00 7.00 58.42 52.60
SnapKV 17.79 21.91 35.68 31.96 26.21 9.61 22.1 21.08 25.01 64.00 82.95 40.84 6.00 7.50 57.78 48.54
PyramidKV 17.25 21.02 37.33 31.29 25.50 9.80 22.45 20.61 24.97 64.00 83.81 40.09 6.00 8.00 56.98 51.78
CAKE 18.44 21.95 35.95 31.60 25.01 10.10 22.75 20.26 25.09 64.00 85.99 40.59 6.00 7.00 52.52 51.98
SCORE(ours) 18.47 22.04 35.99 31.64 25.58 10.51 23.75 20.58 25.39 64.00 89.39 41.00 6.00 7.50 58.58 52.87

L
la

m
a2

-1
3B

StreamingLLM 10.40 11.80 23.70 8.93 9.34 1.31 22.54 17.51 23.36 65.00 57.55 44.99 2.00 14.75 39.01 40.07
H2O 12.15 12.12 25.10 10.66 10.33 3.34 24.39 19.35 25.61 66.50 86.95 46.88 3.50 16.75 40.23 41.02
HeadKV 13.80 16.46 28.42 12.00 13.21 4.59 23.63 20.97 25.76 69.00 86.83 41.89 4.00 14.75 45.83 46.47
SnapKV 13.38 15.69 28.36 10.68 13.33 5.05 24.71 20.76 25.83 69.50 85.84 41.41 3.55 15.75 45.83 46.93
PyramidKV 13.31 16.34 28.10 11.92 12.36 6.50 24.37 20.47 26.07 71.50 87.34 42.24 3.54 16.75 45.56 45.34
CAKE 13.55 16.37 27.20 12.10 13.24 4.18 25.58 20.57 26.00 68.50 87.05 47.99 4.50 15.75 42.68 44.01
SCORE(ours) 14.14 16.56 27.07 12.31 12.50 5.01 25.89 20.75 26.36 68.50 87.75 42.32 4.50 16.75 45.70 47.19

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 22.84 34.94 40.61 43.54 33.06 19.86 24.24 20.30 21.36 69.00 80.91 40.09 3.55 67.50 50.26 48.20
H2O 23.49 35.44 40.01 44.67 34.52 21.13 24.79 21.04 21.59 69.00 90.10 40.96 5.00 69.00 50.16 49.32
HeadKV 25.79 37.69 43.56 45.72 36.23 20.25 24.38 22.93 25.72 74.00 90.56 41.53 5.39 69.25 57.77 54.34
SnapKV 25.76 36.41 43.38 45.16 34.29 20.40 24.65 22.90 25.58 73.00 90.56 41.23 5.39 69.25 57.16 54.75
PyramidKV 25.56 36.39 42.54 45.55 34.61 22.05 21.96 22.74 25.68 72.50 90.56 41.44 5.75 69.25 57.01 54.66
CAKE 25.09 37.34 44.11 45.30 34.49 21.49 26.59 22.45 24.03 72.50 90.61 42.11 5.00 69.15 53.25 49.97
SCORE(ours) 25.41 39.32 45.03 45.38 37.06 22.30 26.78 23.40 26.41 74.00 90.64 42.13 5.65 69.25 57.41 54.73

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 24.93 32.81 46.42 43.67 28.77 22.05 21.99 19.09 18.29 67.00 83.64 40.34 3.50 80.00 43.15 46.39
H2O 25.68 32.38 48.01 44.24 29.31 23.97 24.36 20.09 23.55 67.50 84.37 40.90 4.50 81.00 48.02 47.24
HeadKV 27.76 36.91 50.13 45.80 32.83 24.36 24.61 21.09 23.15 70.50 85.33 43.44 5.50 83.00 49.26 50.06
SnapKV 26.56 35.87 49.52 45.03 33.06 24.05 25.60 21.08 23.65 71.00 85.21 42.43 5.50 82.50 49.56 48.48
PyramidKV 27.11 36.18 50.96 46.16 32.95 24.55 24.57 20.65 23.51 70.00 86.23 43.32 7.00 83.00 49.74 49.72
CAKE 27.11 37.74 48.73 46.16 32.92 24.03 26.52 20.98 24.40 70.00 85.81 42.71 6.00 82.00 49.18 48.44
SCORE(ours) 28.89 37.78 49.62 45.29 32.99 24.88 26.89 21.10 24.50 71.00 86.33 43.53 7.00 83.00 49.78 50.51

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F LIMITATIONS

Despite its effectiveness in managing multi-level redundancy in the KV cache, SCORE has several
limitations. (1) It requires sampling representations from each attention head and computing pairwise
distances, which can be more computationally expensive than simple statistical metrics (e.g., variance
or entropy), especially as the number of samples increases. Although this trade-off does not signifi-
cantly impact overall performance, it remains a consideration for large-scale or real-time applications.
Our cascading design and sampling limits help reduce this cost, but further optimization may be
needed for broader scalability. (2) SCORE relies on fixed distance metrics that may not perfectly
align with downstream task performance. Integrating task-aware or learned similarity measures
could improve redundancy estimation. (3) This work focuses on inference-time cache management;
extending SCORE to training scenarios such as fine-tuning or continual learning remains an open
direction for future research.

20


	Introduction
	Backgrounds
	Inference Operations with KV Cache
	KV Cache Eviction

	Proposed Method
	Overall Architecture of SCORE
	Multi-Level Redundancy Scoring
	Hierarchical Budget Allocation
	Greedy Token Selection

	Experiments and Analysis
	Experimental Setup
	Main Results
	Justifying Redundancy-aware Modeling
	Evaluation on Long-context Tasks
	Evaluation on Memory and Throughput

	Conclusion
	More Implementation Settings.
	Experiments on NeedleBench Dataset
	Experiments on InfiniteBench Dataset
	Additional Detailed Analysis and Visualization
	Effect of Distance Metric Choice
	Visualization of Distance Matrix
	Visualization of Budget Allocation

	Experiments on LongBench Dataset
	Limitations

