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ABSTRACT

Recent advances in large language models (LLMs) have unlocked remarkable long-
context capabilities, enabling breakthroughs across diverse NLP tasks. However,
despite architectural progress and compression techniques such as quantization,
the key-value (KV) cache remains a critical memory bottleneck during inference.
Prior work has explored cache optimization via eviction strategies, yet most rely on
heuristic or single-axis importance metrics, neglecting the nuanced and dynamic
interplay between layers and attention heads. In this paper, we propose SCORE
(Similarity-aware Contextual Overlap-Redundancy Eviction), a novel framework
that introduces a distance-based multi-level similarity metric to quantify and elim-
inate structural redundancy within the KV cache. By dynamically reallocating
cache budgets across layers and heads and employing a redundancy-aware greedy
token selection mechanism, SCORE preserves semantic diversity while minimizing
memory overhead. Extensive experiments on long-context benchmarks such as
LongBench and NeedleBench show that SCORE retains 95% of full KV cache
performance using only 1.5% of the cache, consistently outperforming state-of-
the-art baselines under strict memory constraints. These results underscore the
value of fine-grained, context-aware cache management for scalable and efficient
long-context inference in LLMs.

1 INTRODUCTION
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Figure 1: KV cache eviction strategies: (a) Layer-
wise allocation assigns distinct budgets across lay-
ers; (b) Head-wise allocation enables finer-grained
control; (c) SCORE combines both to reduce re-
dundancy and optimize cache usage.

Large language models (LLMs) have shown ex-
ceptional long-context understanding, achieving
state-of-the-art performance across a wide range
of natural language processing (NLP) tasks, in-
cluding multi-turn dialogue, document summa-
rization, and information retrieval Zhao et al.
(2023). Recent models, such as GPT-4 Achiam
et al. (2023), Claude 3.5 Anthropic (2024),
LLaMA 3.1 Grattafiori et al. (2024), and Mis-
tral Jiang et al. (2023), demonstrate significantly
improved long-context capabilities, with some
supporting up to one million tokens Anthropic
(2024), enabling the stable processing of sub-
stantially extended input sequences. Moreover,
recent advances—accompanied by various com-
pression techniques such as quantization Kim
et al. (2024); Choi & Kim (2025)—have further accelerated efforts to deploy LLMs in resource-
constrained environments, including on-device settings Kwon et al. (2023); Xu et al. (2024); Li et al.
(2024b). However, the key-value (KV) cache remains a major memory bottleneck for long-context
processing, significantly limiting efficiency.

Accordingly, recent research has focused on optimizing the KV cache without altering model archi-
tecture Dao (2023); Acharya et al. (2024). A key direction is the eviction of low-importance KV pairs
to reduce memory usage Ge et al. (2023); Zhang et al. (2023); Xiao et al. (2023), typically guided by
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attention scores or heuristic rules. However, as shown in Dong et al. (2021); Zhang et al. (2022), the
contribution of layers and attention heads to text generation is highly uneven and context-dependent.
Efficient cache utilization thus requires fine-grained, dynamic strategies that account for this vari-
ability. To address such non-uniformity, prior work has explored both layer-level and head-level
budgeting. For example, PyramidKV Cai et al. (2024) allocates cache budgets based on information
density across layers, whereas Cake Qin et al. (2025) employs a cascading mechanism to adjust
budgets during prefill, as illustrated in Figure 1(a). More fine-grained methods like SnapKV Li et al.
(2024c) and AdaKV Feng et al. (2024) estimate head-level importance and reallocate budgets accord-
ingly, as shown in Figure 1(b). However, these methods rely primarily on simple statistics—such as
entropy or variance—without leveraging richer signals (L1). Moreover, they fail to jointly capture
redundancy across layer–head interactions, which further limits their effectiveness (L2). In addition,
their simplistic budget allocation often leads to limited token diversity, resulting in poor coverage and
making it difficult to capture the overall context (L3).

To mitigate these limitations, we introduce Similarity-aware Contextual Overlap-Redundancy
Eviction (SCORE), a cache management framework that quantifies representational redundancy
across layers and heads using a distance-based multi-level similarity metric, as illustrated in Fig-
ure 1(c). SCORE enables the removal of semantically redundant tokens while preserving contextual
diversity through dynamic budget reallocation and selective cache retention. This design captures
representational divergence and contextual progression more effectively than prior heuristics-based
methods, enhancing redundancy-aware information preservation.

The main contributions of SCORE are as follows: (i) SCORE is the first to introduce a distance-based
metric to precisely measure and eliminate redundancy within the KV cache (for L1). (ii) Redundancy-
aware multi-level metric. To capture hierarchical information flow and representational diversity, we
introduce multi-level similarity metrics that quantify redundancy across layers and heads in the KV
cache (for L2). (iii) Hierarchical budget allocation. The proposed SCORE framework dynamically
reallocates cache budgets across layers and heads based on redundancy scores, prioritizing informative
and non-redundant tokens under constrained memory. (iv) Greedy token selection. Our redundancy-
aware, greedy token selection algorithm maximizes information diversity in the cache by accounting
for similarity (for L3).

2 BACKGROUNDS

2.1 INFERENCE OPERATIONS WITH KV CACHE

Inference in transformer-based LLMs typically consists of two stages: a prefill stage that encodes the
input sequence, and a decode stage that sequentially generates output tokens.

Prefill stage: Given an input prompt tensor X ∈ RS×D, where S denotes the sequence length and D
the hidden dimension, the key and value representations are computed as follows:

Q = XWQ, K = XWK , V = XWV , (1)

where, WQ,WK ,WV ∈ RD×D are the learnable projection matrices that map the input sequence
to query, key, and value representations, respectively. The resulting key and value tensors are then
stored in the KV cache, where they are reused during the subsequent decode stage to avoid redundant
computation.

Decode stage: During decoding, for each newly generated token xi ∈ R1×D at time step i, the
corresponding key and value are computed, while previous information is retrieved from the KV
cache. The new key and value are then appended to the existing cache along the sequence dimension
via concatenation, as follows:

K ← K ∪ xiWK , V ← V ∪ xiWV , (2)

Then, the current query qi = xiWQ computes attention weights via a scaled dot-product with the full
K, and aggregates V accordingly to produce the output xi,out as follows:
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Figure 2: An overview of SCORE. The model computes redundancy scores across layers and heads,
which guide a dynamic budget allocation strategy and inform redundancy-aware token selection to
achieve diverse representation. For each layer: left shows temporal redundancy with the previous
layer; right shows intra-layer head similarity.

xi,out = Softmax
(qiK⊤
√
D

)
V (3)

As decoding progresses, the size of the KV cache increases linearly (e.g., 62.5GB in Llama3-8B-
Instruct Shi et al. (2024)), which becomes a major bottleneck in terms of memory usage and latency.
Efficient cache compression and management are therefore essential for long-context processing.

2.2 KV CACHE EVICTION

H2O Zhang et al. (2023) improves efficiency by focusing on important tokens (heavy hitters), while
ROCO Ren & Zhu (2024) and Scissorhands Liu et al. (2023) similarly retain key tokens based on
attention scores. StreamingLLM Xiao et al. (2023) and LM-Infinite Han et al. (2023) prioritize nearby
tokens relevant to generation, but uniform eviction often leads to information loss. To address this,
dynamic budget allocation methods have emerged. PyramidKV Cai et al. (2024) employs a pyramidal
attention pattern, allocating more cache to lower layers while summarizing higher-layer information.
CAKE Qin et al. (2025) analyzes attention dispersion and temporal shifts to reassign cache budgets in
a cascading manner. However, both rely solely on layer-level budgeting. To enable finer granularity,
SnapKV Li et al. (2024c) clusters attention distributions at the head level, and HeadKV Fu et al. (2024)
introduces a theoretical allocation scheme to minimize post-eviction degradation. AdaKV Feng et al.
(2024) estimates head-level importance based on retrieval and reasoning contributions. While these
methods achieve budgeting at either the layer or head level (L2), they fail to jointly consider both
dimensions and rely heavily on attention scores (L1), which limits their ability to capture semantic
redundancy. Moreover, even with well-determined budgets, token-level diversity is overlooked (L3),
leading to overlapping selections and limited coverage. To overcome these limitations, we propose
SCORE, a unified framework that quantifies redundancy via distance-based similarity and integrates
it into both budget allocation and token eviction.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE OF SCORE

As illustrated in Figure 2, SCORE is a redundancy-aware KV cache management framework. It
consists of three core components: a multi-level redundancy scoring module (Section 3.2) that
quantifies representational redundancy across layers and heads; a dynamic budget allocation strategy
(Section 3.3) that selectively retains KV entries based on their relative importance; and a token
selection mechanism (Section 3.4) that prioritizes diverse and informative tokens for cache retention.
Algorithm 1 summarizes the end-to-end pipeline of the proposed SCORE framework.

3
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Figure 3: Head-wise cosine distance matrices. From left to right: (a) the full similarity matrix D
across all heads and layers; (b)–(d) three examples of 3×3 layer-wise similarity matrices, each
showing different levels of intra-layer redundancy and inter-layer diversity; (e) an illustrative example
highlighting head-level redundancy. Brighter colors indicate higher similarity.

3.2 MULTI-LEVEL REDUNDANCY SCORING

According to prior studies Michel et al. (2019); Dalvi et al. (2020), many layers and attention heads in
transformer models often learn functionally similar representations, leading to structural redundancy.
To quantitatively assess such redundancy and diversity, we propose multi-level evaluation metrics
based on inter-head similarity and mitigate L1, L2. Specifically, we sample k token positions from
each head and compute the average pairwise distance of their attention scores. Given a distance
function δ(·, ·) between two attention scores, the distance between head i and head j is defined as:

D(i,j) =
1

k2

k−1∑
s=0

k−1∑
t=0

δ(a
(s)
i , a

(t)
j ), (4)

where a
(s)
i ∈ Rn denotes the attention score vector of head i at the s-th sampled token for indices

i, j ∈ {0, 1, . . . , (L ·H − 1)}. Figure 3(a) visualizes the distance matrix D, which contains pairwise
distances between attention heads across all layers. It intuitively reveals that redundant representations
are often concentrated in specific layers or heads, serving as the foundation for the hierarchical analysis
metrics proposed in the subsequent sections.

Intra-layer redundancy. To analyze the extent of redundant representations within each layer, we
define the intra-layer redundancy (IR) of layer l as the average similarity across its attention heads,
computed by evaluating a similarity measure D over all pairs of heads (h, h′) within the same layer:

IRl =
1

H2

H−1∑
h,h′=0

DlH+h, lH+h′ , (5)

Here, lower IRl indicates higher redundancy due to increased similarity across heads, whereas
higher IRl suggests greater functional diversity.

Temporal deviation. To quantify the degree of novel information introduced relative to the preceding
layer, we introduce the temporal deviation (T D) metric. It tracks changes across layers by contin-
uously comparing the similarity between adjacent outputs against an exponential moving average
(EMA). For layer l, T Dl is defined as follows:

T Dl = |µl − El−1| , (6)

where µl denotes the average similarity between layer l and its previous layer, computed in a manner
similar to Eq. 5, but based on the distance matrix D between two distinct layers rather than within a
single layer. For the first layer, we set T D0 = IR0. El−1 represents the accumulated EMA-based
deviation up to layer l − 1, and is updated as follows:

El = γ · El−1 + (1− γ) · µl, (7)
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Algorithm 1 Multi-level budget allocation

Input: accumulate attention score Al ∈ RH×S , num-
ber of layers L, number of heads H, Total cache
budget Btotal

Output: Retained cache set C = {K(m)
l,h , V

(m)
l,h }

// Layer-wise budget allocation. Cascading strategy
adapted from CAKE

1: for stage m = 0 to L− 1 do
2: C(m) ← C(m−1) ∪ {K(m), V (m)}
3: Compute distance matrix D ∈ RH×2H using

Eq. 4
4: IR, T D are computed by slicing D (Eq. 5- 7)
5: IR(m) ← IR(m−1) ∪ IRm,

T D(m) ← T D(m−1) ∪ T Dm

6: B(m) ← {B(m)
l | l ∈ [0,m]}, where each

B
(m)
l is computed according to Eq. 10

// Head-wise budget allocation and evict
7: Extract attention matrix Am ∈ RH×S

8: Ωm ← select top-B(m)
m token with attention

9: Compute Tm,h by counting token-to-head as-
signments using Eq. 11

10: for head h = 0 to H − 1 do
11: Compute head distinctness HDm,h Eq. 8
12: Allocate head-wise budget B(m)

m,h using Tm,h

andHDm,h as in Eq. 12
// Greedy token selection

13: Penalized attention score Ãm using Eq. 13
14: I

(m)
m,h ← TopK

(
Ãm[h], B

(m)
m,h

)
15: K̂

(m)
m,h, V̂

(m)
m,h ← K

(m)
m,h

[
I
(m)
m,h

]
, V

(m)
m,h

[
I
(m)
m,h

]
16: C(m)[m][h]← {K̂(m)

m,h, V̂
(m)
m,h }

17: end for
18: end for
19: return C = {K(L−1)

l,h , V
(L−1)
l,h }

where γ controls responsiveness to temporal
shifts in layer-wise representations. Higher T Dl

indicates that layer l produces more novel and
distinctive outputs compared to the accumulated
patterns of preceding layers. Figure 2 (specif-
ically, inside the box corresponding 3.2) illus-
trates this by comparing the left temporal ma-
trices across layers, where notable increases in
deviation reveal points of significant represen-
tational change. Figures 3(b)-(d) present varied
examples with different levels of redundancy
and temporal variation, clarifying the hierar-
chical structure and functional differentiation.
Additional visualizations are provided in Ap-
pendix D.2.

Head-level distinctness. Beyond analyzing re-
dundancy at the layer level, we introduce the
head-level distinctness (HD) metric to quantita-
tively assess the uniqueness of individual atten-
tion heads. This metric quantifies how distinct
a head’s attention pattern is compared to others
in the same and preceding layers. An illustrative
example is shown in Figure 3(e). For a head h
in layer l,HD is defined as follows:

HDl,h =
1

2H

1∑
i=0

H−1∑
h′=0

DlH+h, (l−i)H+h′ (8)

Here, higher HDl,h indicates the head is more
distinguishable from its neighbors, suggesting
greater likelihood of fulfilling a unique func-
tional role. The metric complements layer-level
averages by enabling fine-grained evaluation of
diversity and redundancy at the head level.

3.3 HIERARCHICAL BUDGET ALLOCATION

Layer budget allocation. We build on the cascading strategy from Qin et al. (2025) and introduce
adaptive budget reallocation driven by the importance of hierarchical representations. At each
stage, only interactions between active layers and their immediate predecessors are considered.
Accordingly, the pairwise distance matrix D is computed only between adjacent layers. Cache budgets
are dynamically assigned based on a novelty scoreNl, which integrates inter-layer redundancy (IRl)
and temporal dynamics (T Dl) as follows:

Nl = λ1 · IRl + λ2 · T Dl, (9)

where λ1, λ2 ∈ R≥ 0 are weighting factors that control the relative importance of each term. The
novelty score N l quantifies the diversity and informational distinctiveness of layer l, and guides the
allocation of the total computational budget Btotal:

B
(m)
l =

Nl∑L−1
k=0 Nk

·Btotal, B
(m)
l < B

(m−1)
l , (10)

At cascading stage m, the cache budget for layer l is assigned in proportion to its novelty score,
enabling adaptive allocation based on importance (Algorithm 1, lines 1–6).
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Head budget allocaction. As shown in Figure 2, cache budgets are first allocated at the layer level and
then uniformly distributed across heads. To account for variations in novelty and importance across
heads, we propose a fine-grained, head-wise allocation strategy. Given the accumulated attention score
matrix Al ∈ RH×S for layer l, we select the top-Bl scores globally. Let Ωl denote the corresponding
set of important tokens. For each token s ∈ Ωl, we identify its source head and compute head-wise
contributions accordingly:

Tl,h = |{(h′, s) ∈ Ωl | h′ = h}| , (11)

The resulting vector Tl = [Tl,1, Tl,2, . . . , Tl,H ] ∈ RH therefore serves as an explicit representation
of the relative importance of each head, capturing how frequently individual heads contribute to
the set of top-ranked tokens. This is then combined with the head redundancy measure HDl,h, to
determine the head-wise budget Bl,h as follows:

Bl,h = Bl ·

(
HDl,h∑H

h′=1 HDl,h′

)
· Tl,h (12)

This strategy refines layer-level cache allocation by jointly considering head-wise relevance and
redundancy, effectively addressing the L2 and preserving distinctive information. It serves as a key
mechanism for improving eviction performance in LLMs (Algorithm 1, lines 7–17).

3.4 GREEDY TOKEN SELECTION

The multi-level budget allocation strategy improves cache efficiency by quantitatively assessing
redundancy and contribution at both the layer and head levels. However, despite this fine-grained
allocation, redundant heads often select overlapping tokens, concentrating attention on specific
positions and leading to coverage bias. The ‘Top-K select’ example in Figure 2 illustrates this
overlooked limitation.

To mitigate this issue, we propose a redundancy-aware soft selection mechanism that promotes
diversity across attention heads during token selection. The method lowers the selection priority of
tokens redundantly chosen by multiple heads, with the penalty strength determined by the degree of
head-wise diversity within the layer. By discouraging redundant selection, this approach alleviates
head-level concentration and fosters more diverse and informative representations. The resulting
penalized attention score is defined as follows:

Ãl[h, s] = Al[h, s] · exp
(
− α

HDl,h
· rs
)

(13)

where α > 0 is a hyperparameter that controls the attenuation strength of the penalty, and rs denotes
the number of times token s has been selected across multiple heads. Higher redundancy leads to
stronger penalties, encouraging greater dispersion in head-wise token selection. This method can be
seamlessly integrated into existing token selection pipelines with little additional overhead, while
effectively enhancing informational diversity and addressing the L3 by ensuring that different heads
contribute complementary rather than redundant evidence.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Baseline Models. We evaluate representative open-source LLMs with context lengths from 4K to
128K tokens, including two multi-head attention models: Llama2-Chat Touvron et al. (2023) (7B
and 13B), and two grouped-query attention models: Llama3-8B-Instruct Grattafiori et al. (2024)
and Mistral-7B-Instruct-v0.3 Jiang et al. (2023). To evaluate memory allocation strategies under
constrained cache budgets, we adopt CAKE Qin et al. (2025), which dynamically reallocates cache
in a cascading manner during prefilling to retain informative tokens.

6
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Figure 4: Mean performance across 16 LongBench datasets for varying KV cache sizes. The dashed
line indicates the performance with the full KV cache.

Table 1: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 128. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
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MF-en
HotpotQA

2WikiMQA
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GovReport

QMSum
MultiN
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TREC
TriviaQA

SAMSum
PCount
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Full KV 18.39 21.13 35.54 31.35 25.61 10.64 25.57 22.18 26.26 65.5 89.41 41.03 6.00 8.50 58.67 53.00
StreamingLLM 11.27 15.93 28.45 24.77 20.92 6.46 15.42 16.8 18.97 60.55 79.42 35.32 3.00 2.00 50.82 45.22
H2O 11.82 17.75 29.70 24.98 21.95 8.33 16.98 18.49 20.49 62.50 80.79 36.78 3.50 3.00 51.95 46.68
HeadKV 14.86 19.25 28.40 27.39 24.30 8.38 18.29 20.01 21.10 63.50 81.99 37.92 4.00 4.50 53.54 48.34
SnapKV 14.12 18.50 27.25 28.45 21.83 7.94 17.23 20.04 20.30 58.00 81.85 37.43 4.00 4.00 52.05 46.41
PyramidKV 15.20 18.70 29.02 29.72 23.57 7.95 17.87 20.01 20.32 60.50 82.59 36.71 4.00 4.00 52.58 46.68
CAKE 15.62 19.01 32.10 29.46 24.78 9.48 18.75 20.01 22.52 63.50 82.95 38.75 4.50 6.00 54.59 48.66
SCORE(ours) 16.90 19.84 35.49 30.52 24.88 10.55 19.30 20.02 22.32 64.10 84.00 38.86 5.50 7.00 56.45 49.63
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3B

Full KV 19.15 26.38 36.77 36.57 33.93 14.32 25.89 20.33 26.06 65.00 87.70 35.57 6.50 10.50 51.26 53.40
StreamingLLM 12.02 8.21 22.33 9.37 7.49 2.63 18.40 18.81 18.93 61.05 84.35 40.00 2.00 13.05 35.02 36.75
H2O 13.29 11.44 24.15 12.84 10.38 3.65 20.75 20.21 20.99 64.50 86.77 40.41 3.60 15.25 38.13 39.42
HeadKV 13.20 13.04 25.27 12.09 11.00 2.73 20.72 20.30 22.20 68.00 86.00 39.55 3.07 14.75 41.36 41.06
SnapKV 12.61 11.91 23.78 13.71 9.98 3.87 19.97 19.96 21.40 63.50 86.75 39.89 3.00 16.75 40.51 38.57
PyramidKV 13.64 11.50 26.04 14.01 10.60 5.40 20.32 19.63 21.65 64.50 86.25 39.54 3.50 16.25 41.08 39.69
CAKE 13.64 11.87 25.41 11.80 10.49 4.50 20.94 20.30 21.77 65.50 86.86 42.48 3.50 15.75 39.80 38.98
SCORE(ours) 14.06 14.64 27.87 11.71 11.14 5.16 21.98 20.68 24.06 69.65 87.96 41.82 3.60 16.50 44.96 44.82
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H2O 21.90 30.11 26.55 38.95 20.01 20.29 20.37 21.58 20.18 63.50 89.96 40.39 4.40 69.25 56.83 52.30
HeadKV 22.47 30.13 40.38 44.90 31.06 21.10 20.70 22.31 21.91 71.00 90.82 39.62 4.35 69.50 57.65 52.65
SnapKV 22.17 28.96 36.29 42.10 29.25 19.78 20.11 22.56 21.46 66.00 89.72 38.89 4.50 69.00 57.24 52.97
PyramidKV 22.10 26.94 36.86 40.38 29.42 16.34 20.34 22.70 21.99 67.00 89.35 39.77 4.50 69.00 56.55 51.67
CAKE 22.10 32.19 34.52 39.06 30.45 20.72 20.40 21.85 20.98 46.00 89.64 39.74 4.50 69.50 56.46 52.14
SCORE(ours) 24.65 33.31 40.22 45.27 34.29 21.45 21.63 22.36 22.93 72.30 90.66 40.20 5.00 69.50 57.03 52.76

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 Full KV 29.53 41.58 53.13 49.22 39.51 28.58 34.68 26.42 27.82 80.50 92.14 47.44 5.50 98.00 58.45 59.54

StreamingLLM 22.83 25.80 41.54 39.11 23.73 15.44 18.04 16.34 15.86 45.55 83.82 37.55 3.00 75.00 43.54 40.46
H2O 23.29 27.23 42.08 40.68 24.86 16.48 18.75 17.65 17.07 56.50 85.03 38.88 4.50 80.00 44.53 42.44
HeadKV 26.04 30.25 47.93 43.17 32.13 22.63 20.73 18.24 18.79 65.50 85.29 40.69 5.00 76.50 44.93 44.95
SnapKV 25.72 28.56 46.34 43.52 29.10 20.86 19.51 18.09 18.49 64.50 84.81 40.20 5.50 78.50 43.99 43.68
PyramidKV 25.50 27.47 46.23 44.02 30.05 21.10 20.08 18.15 18.10 63.50 85.02 40.37 4.50 78.50 43.52 40.73
CAKE 26.17 27.26 43.73 41.30 25.89 17.30 20.22 18.01 17.65 57.50 85.53 39.11 5.00 82.00 45.89 43.39
SCORE(ours) 25.95 32.65 50.54 44.44 31.91 23.89 20.73 19.89 19.95 69.00 86.33 41.28 4.50 81.50 46.54 46.61

Tasks. We evaluate model performance under compressed KV cache settings using LongBench Bai
et al. (2023), which covers a range of long-context tasks. For fine-grained retrieval and long-range
reasoning, we use NeedleBench Li et al. (2024a) and Reasoning-in-a-Haystack Kuratov et al. (2024),
respectively. We also include Longbench V2 Bai et al. (2024) and InfiniteBench Zhang et al. (2024)
for extreme long-context settings.

Implementation. All experiments were conducted on an NVIDIA A100 80GB GPU with cache
budgets ranging from 64L to 2048L. To ensure fair comparison, all methods were evaluated under
identical conditions and cache capacities. Hyperparameter details are provided in Appendix A.

4.2 MAIN RESULTS

Evaluation on Longbench. We evaluate SCORE on the LongBench benchmark, which includes
16 long-context tasks. All experiments are conducted under identical conditions for fair comparison.
As shown in Figure 4, SCORE consistently outperforms baseline methods across varying KV cache
budgets, with a significant advantage in low-cache settings (Btotal ≤ 128L) due to its ability to
preserve contextual diversity by selectively retaining salient tokens. Table 1 reports results in low-
cache scenarios, where SCORE outperforms existing methods on most tasks. On LLaMA3-8B,
it achieves an average score of 40.85—surpassing HeadKV by +0.82—while retaining 95.1% of
full-cache performance. Full results across cache sizes are available in Appendix E.
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(a) Layer-level budget (b) Head-level budget

Figure 5: Redundancy metrics used for budget allocation. (a) Layer-wise distributions of IR and
T D averaged over the entire LongBench dataset; head-wise redundancy for the first 12 layers on the
NarrativeQA and corresponding head-wise budget allocation.

Table 2: Performance comparison on Llama3-8B-
Instruct over LongBench V2. Results are measured
with cache sizes of 128 and 1024.

Method Easy Hard Short Medium Long Avg.

Full KV 31.25 25.08 34.44 24.19 22.22 27.44

Llama3-8B-Instruct, Cache size=128

CAKE 29.27 21.13 32.98 21.22 20.18 24.96
HeadKV 29.53 22.74 32.25 22.97 20.10 25.52
SCORE 29.94 23.11 32.78 23.73 20.33 25.98

Llama3-8B-Instruct, Cache size=1024

CAKE 29.50 21.31 33.25 22.61 21.06 25.55
HeadKV 30.22 23.97 33.24 23.23 20.14 26.16
SCORE 30.25 24.08 33.89 24.19 21.45 26.77

Evaluation on LongBench V2. We further
evaluate SCORE under realistic scenarios us-
ing LongBench-v2, a long-context benchmark
designed to overcome the limitations of prior
datasets that relied heavily on synthetic data or
extraction-style tasks. It covers six categories
and twenty sub-tasks—including QA, in-context
learning, dialogue, code, and structured data
reasoning—with context lengths ranging from
8K up to 2M words. Table 2 reports the detailed
results on LLaMA3-8B-Instruct. Across both
cache sizes (128 and 1024), SCORE consistently
outperforms competitive baselines, indicating
that the proposed method provides benefits re-
gardless of the memory budget available. In the
extreme compression setting with cache size 128, where most baselines struggle to maintain stable
accuracy, SCORE achieves an average score of 25.98, surpassing HeadKV and CAKE by +0.46 and
+1.02, respectively. Importantly, this performance gap is not limited to a particular type of task but
persists across difficulty levels and input lengths. In particular, SCORE demonstrates clear advantages
in the Hard and Medium scenarios, where long-range reasoning and multi-step comprehension are
crucial. These results highlight that the method is capable of preserving critical information under
severe compression, achieving stable performance even in extreme long-context conditions, which
suggests strong potential for deployment in practical large-scale applications.

4.3 JUSTIFYING REDUNDANCY-AWARE MODELING

Figure 6: LongBench performance by cache budget for each
distance matrix.

Redundancy Observations. We com-
pare pairwise similarities across
all heads and layers using five
distance metrics: Cosine similarity
(COS), Pearson correlation (COR),
Jensen–Shannon distance (JSD), Bhat-
tacharyya coefficient (BCD), and Eu-
clidean distance (ECD). Appendix D.1
presents qualitative visualizations for
each metric to illustrate how they
capture token-level relationships. Fig-
ure 6 reports their average accuracy
across all tasks under varying cache budgets. The results reveal that COS consistently achieves the
highest performance in all settings, regardless of cache size. This indicates that COS not only provides
a stable criterion for token retrieval in high-dimensional embedding spaces but also remains robust
when computational resources are constrained. Taken together, these findings highlight the reliability
of cosine similarity and motivate its use as the default metric throughout our experiments.
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Redundancy-Aware Allocation SCORE adaptively allocates cache budgets across layers and heads
based on quantified redundancy levels. As illustrated in Figure 5, components exhibiting greater
information diversity tend to receive larger cache budgets, while highly redundant ones are assigned
less. For instance, in Figure 11, lower layers tend to exhibit lower similarity to others, resulting in
high T D in Figure 5(a), and are thus prioritized in layer-level budget assignment. Figure 5(b) further
reveals that certain heads within these layers carry unique information, leading to increased head-level
budget allocations. This analysis suggests that SCORE effectively leverages distance-based similarity
metrics to identify structural redundancy and maximize informational diversity under constrained
resources. Furthermore, Appendix D.3 validates the robustness and generality of SCORE through
quantitative comparisons and visualizations.

4.4 EVALUATION ON LONG-CONTEXT TASKS

Table 3: Reasoning-in-a-Haystack results on
Mistral-7B-Instruct with 128L KV cache. Scores
are averaged over QA1–QA5 tasks at each context
length.

Method 0k 1k 2k 4k 8k 16k 32k Avg.

FullKV 61.30 55.30 53.40 42.10 40.30 34.00 31.80 45.46

SnapKV 55.40 50.20 46.40 37.20 35.00 32.80 29.20 40.89
PyramidKV 57.20 50.80 47.60 36.20 36.20 31.40 28.20 41.09
HeadKV 58.60 53.80 52.20 38.20 37.60 31.80 30.40 43.23
CAKE 58.40 54.00 51.30 38.40 37.20 31.80 30.20 43.04
SCORE 58.40 54.20 51.80 38.30 37.80 32.10 30.60 43.31

To further assess the generalizability of
SCORE’s long-context reasoning, we conduct
experiments on diverse benchmarks. Table 3
presents results on the Reasoning in a Haystack
task under limited cache budgets and varying
input lengths. SCORE consistently outperforms
baselines across all lengths, indicating its ability
to preserve precise reasoning. While prior meth-
ods often struggle as context grows, SCORE
maintains strong performance, showing that
its cache strategy—balancing importance and
diversity—is effective for long-range depen-
dency reasoning. Extended results on NeedleBench and InfiniteBench, provided in Appendix B
and Appendix C, further support its robustness under diverse long-context conditions.

4.5 EVALUATION ON MEMORY AND THROUGHPUT

Figure 7: Comparison of TTFT (left) and decod-
ing latency (right) across KV cache strategies in
Mistral-7B-Instruct-v0.3.

To evaluate the practicality of SCORE, we com-
pare it against prior methods in terms of time
to first token (TTFT) and decoding latency. As
shown in Figure 7, despite the need to compute
a distance matrix, SCORE achieves compara-
ble latency to existing approaches across all in-
put lengths. This is notable given that SCORE
estimates importance based on distance-based
similarity between representations across layers
and heads. Instead of computing full pairwise
distances across all layers, SCORE adopts a cas-
cading strategy that computes local distances
only between adjacent layers, significantly reducing computation. Furthermore, the number of sample
vectors used for similarity estimation is carefully controlled to further mitigate computational over-
head. These results demonstrate that SCORE maintains responsiveness on par with existing methods,
despite its more sophisticated scoring mechanism.

5 CONCLUSION

In this paper, we propose SCORE, a cache management framework that addresses structural re-
dundancy and resource inefficiency in long-context processing. SCORE employs distance-based,
multi-level similarity metrics to quantify representational redundancy across layers and attention
heads. Using these estimates, it performs hierarchical budget reallocation and redundancy-aware
token selection to preserve salient contextual information. To our knowledge, SCORE is the first
method to directly measure redundancy for cache budgeting, enabling more effective modeling
of inter-layer information flow than prior statistics-based approaches. Extensive experiments on
long-context benchmarks demonstrate that SCORE consistently outperforms existing methods under
tight cache constraints, particularly in tasks requiring complex reasoning and retrieval.
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APPENDIX

A MORE IMPLEMENTATION SETTINGS.

Figure 8: Performance comparison on LongBench
for different λ1 and λ2 combinations.

Details of Hyper-parameters. The algorithm
of SCORE consists of three main stages: multi-
level redundancy estimation, layer-wise budget
allocation and cache management, and salient
token selection. In the redundancy estimation
stage (Section 3.2), we sample representations
from each attention head and compute pairwise
distances to extract multi-level redundancy. This
process captures similarity patterns across lay-
ers, serving as the basis for quantifying cache
necessity. In particular, we compute the T D be-
tween consecutive layers to assess the novelty
of information introduced at each layer. To sta-
bilize estimation, we apply EMA to T D, search-
ing γ ∈ [0.1, 0.9] and setting it to 0.5. In the
budget allocation and cache management stage
(Section 3.3), we assign layer-wise KV cache
budgets based on the estimated redundancy and
perform eviction accordingly. We perform grid
search over λ1, λ2 ∈ [1.0, 2.0] with 0.2 step size
for adaptive budget scaling. See Figure 8 for performance across different combinations. In the final
stage (Section 3.4), we grid-search λ1, λ2 ∈ [1.0, 2.0] (step 0.2) for adaptive scaling. This process is
guided by a penalty term α that controls the preference for retaining high-redundancy tokens. The
value of α is tuned within the range [0.001, 0.01], where larger values encourage more aggressive
eviction of less salient tokens. We select α = 0.004 based on this search.

Table 4: Performance comparison of sample se-
lection strategies on LongBench using Llama3-
8B under 128-cache. Reported values are average
scores per task.

Method Single-Doc. Multi-Doc. Summ. Few-shot Synthetic Code

Full 32.97 33.65 22.39 66.92 38.99 55.17
Random 33.01 33.25 22.17 66.50 39.70 55.06
Top-k 31.10 29.11 20.74 65.20 32.74 53.39
Middle 32.72 33.67 22.30 67.72 39.75 54.89

Analysis of sample selection. To evaluate the im-
pact of sample selection on assessment reliability,
we fix a subset of 200 samples and compare three
strategies: (1) top-k scoring, (2) uniform random
sampling, and (3) mid-range random sampling,
which excludes tokens from the initial and final
context windows. As shown in Table 4, the mid-
range strategy consistently yields more stable per-
formance estimates. Excluding boundary regions
mitigates evaluation artifacts caused by position-
specific attention patterns. Mid-range sampling
reduces the influence of positional biases and better captures model behavior in regions where
memory and generalization demands are more representative of typical usage.

Table 5: Ablation study on Llama3-8B-Instruct
with LongBench V2. We analyze the effect of
different sample sizes (K = 200 and K = 400)
for our method (SCORE) under cache size 128,
compared against CAKE and HeadKV.

Method Easy Hard Short Medium Long Avg.

Full KV 31.25 25.08 34.44 24.19 22.22 27.44

Llama3-8B-Instruct, Cache size=128

CAKE 29.27 21.13 32.98 21.22 20.18 24.96
HeadKV 29.53 22.74 32.25 22.97 20.10 25.52
SCORE (K = 200) 29.94 23.11 32.78 23.73 20.33 25.98
SCORE (K = 400) 29.85 23.40 32.71 23.80 20.61 26.07

Ablation on Sample Size. To keep computa-
tion cost stable regardless of sequence length,
we fix the number of sampled tokens K when
estimating head-wise similarity. Nevertheless, in
extremely long-context scenarios, model perfor-
mance could in principle depend on the choice
of K. Table 5 therefore presents an ablation on
Llama3-8B-Instruct with LongBench V2 (input
sequences extended up to ∼2M tokens) under
a cache size of 128, comparing SCORE with
K = 200 and K = 400 against baseline methods.
The results show that the performance gap be-
tween different K values remains minimal, con-
firming that even a relatively small K is sufficient
and that SCORE is robust to the sampling.
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B EXPERIMENTS ON NEEDLEBENCH DATASET

To assess the retrieval capabilities of our proposed method, SCORE, we conduct comprehensive
evaluations on the Needle-in-a-Haystack benchmark. This benchmark is specifically designed to test
a model’s ability to accurately identify and extract salient information (needle) from extensive input
sequences (haystack). We evaluate on both LLaMA-3-8B-Instruct and Mistral-7B-Instruct-v0.3, set-
ting the maximum context lengths to 8K and 32K tokens, respectively, as summarized in Figure 9,10.
At a cache size of 128, SCORE demonstrates strong retrieval fidelity in short-context settings while
exhibiting minimal degradation in performance under long-context conditions. Notably, SCORE
achieves an accuracy of 96.7 on the Mistral-7B-Instruct-v0.3 model, outperforming the previous
state-of-the-art method, HeadKV, which attains 95.5—representing a relative improvement of 1.2
points. Similarly, on Llama3-8B-Instruct, SCORE consistently matches or exceeds the performance
of existing methods across varying context lengths. These results demonstrate that SCORE is highly
capable of retrieving and processing salient information even under ultra-long context conditions.
Importantly, SCORE maintains robust retrieval performance even when the KV cache size is sig-
nificantly reduced (e.g., 128), with only negligible accuracy degradation compared to FullKV. This
highlights the effectiveness of SCORE in balancing memory efficiency and performance, offering a
promising solution for memory-constrained long-context language modeling.

Figure 9: Needle-in-a-Haystack test results on Llama-3-8B-Instruct with KV cache = 128. Our
proposed SCORE method significantly outperform all strong baselines.

Figure 10: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 128. Our
proposed SCORE method significantly outperform all strong baselines.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C EXPERIMENTS ON INFINITEBENCH DATASET

In this section, we evaluate the effectiveness of the proposed method, SCORE, on InfiniteBench—
a challenging benchmark specifically designed to assess the long-context processing capabilities
of large language models. A detailed comparison of results across models and cache budgets is
provided in Table 6,7. Compared to prior benchmarks such as LongBench, InfiniteBench introduces
substantially greater difficulty by incorporating ultra-long input sequences, with an average context
length of 145K tokens and a maximum of up to 214K tokens. The benchmark spans five diverse
domains—Retrieval, Code, Math, Novels, and Dialogue—providing a comprehensive testbed for
evaluating a model’s ability to understand, reason over, and extract salient information from extremely
long contexts. We conduct experiments using both Llama3-8B-Instruct and Mistral-7B-Instruct-v0.3,
evaluating performance across 10 datasets from InfiniteBench under two KV cache budgets: 128L
and 1024L. At a cache size of 128L, SCORE achieves the highest average accuracy of 17.98 on
Mistral-7B-Instruct-v0.3, outperforming the previous best-performing method, CAKE, which attains
17.57—a margin of 0.41. When the cache size is increased to 1024L, SCORE further improves to
19.54, again surpassing CAKE (18.99), with a larger margin of 0.55. These results demonstrate the
effectiveness of SCORE in compressing and retaining salient information within memory-constrained
settings, even under extreme sequence lengths. Importantly, SCORE maintains consistent performance
improvements across both low and high cache budgets, underscoring its robustness and scalability.
This highlights SCORE as a compelling solution for long-context language modeling, effectively
balancing memory efficiency with task performance across a wide range of domains and input lengths.

Table 6: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 128L cache. The best result is highlighted in
bold, the second best in underline.

Retrieval Code Math Novels Dialogue

Method Ret.PassK
ey

Ret.Number

Code.Debug

Code.Run
Math.Find

En.Sum
En.QA

En.choice
Chn.QA

En.Dia

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 4.98 4.46 39.00 0.50 19.64 19.49 0.01 41.06 1.94 0.00
H2O 5.30 5.57 40.19 0.50 20.32 20.01 0.01 41.16 2.21 0.00
HeadKV 6.14 6.14 43.54 1.50 26.51 23.37 0.09 47.43 3.67 0.00
SnapKV 6.34 6.32 43.32 1.50 25.83 23.45 0.10 48.25 3.41 0.00
PyramidKV 6.48 6.21 43.44 1.50 26.24 23.32 0.16 48.03 3.16 0.50
CAKE 6.22 6.51 43.48 1.50 26.74 25.11 0.05 48.16 3.75 0.50
SCORE(ours) 6.53 5.93 43.61 2.00 26.86 23.78 0.03 48.24 3.98 0.50

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 StreamingLLM 24.10 5.56 28.17 0.00 21.56 20.03 0.10 40.56 8.01 0.00

H2O 25.02 5.63 29.28 0.25 22.74 20.12 0.10 40.98 7.89 0.00
HeadKV 26.75 6.27 32.74 0.25 27.43 22.74 0.31 49.10 10.32 0.50
SnapKV 25.95 6.95 31.47 0.50 22.57 23.14 0.32 48.76 9.69 0.00
PyramidKV 26.78 6.69 33.25 0.25 23.43 21.92 0.28 49.53 9.01 0.00
CAKE 26.68 6.64 32.49 0.50 28.14 21.45 0.33 49.56 9.93 0.00
SCORE(ours) 26.89 7.01 32.89 0.50 28.57 22.29 0.39 50.16 10.16 1.00

Table 7: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 1024L cache. The best result is highlighted in
bold, the second best in underline.

Retrieval Code Math Novels Dialogue

Method Ret.PassK
ey

Ret.Number

Code.Debug

Code.Run
Math.Find

En.Sum
En.QA

En.choice
Chn.QA

En.Dia

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 5.89 5.78 40.78 1.50 25.21 20.79 0.05 41.87 2.78 0.50
H2O 5.48 6.14 42.23 1.00 25.49 21.31 0.05 42.65 3.12 0.50
HeadKV 6.73 6.61 44.53 2.00 26.98 25.10 0.04 49.87 3.77 0.50
SnapKV 6.42 6.58 44.91 2.50 27.13 24.64 0.05 48.42 3.34 0.50
PyramidKV 6.59 6.44 44.87 2.25 27.17 25.00 0.15 49.47 4.10 1.00
CAKE 6.71 6.76 44.79 2.50 27.43 24.28 0.10 50.12 3.68 0.50
SCORE(ours) 6.78 6.78 45.16 3.00 27.43 25.12 0.25 50.66 4.14 1.00

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3 StreamingLLM 26.00 8.51 30.28 0.50 25.67 21.01 0.05 47.13 8.78 0.00

H2O 26.21 8.98 29.78 0.50 26.97 20.31 0.09 48.78 9.24 0.00
HeadKV 27.00 10.12 35.28 1.00 28.71 21.65 0.45 50.51 10.48 0.00
SnapKV 26.98 9.37 33.25 1.00 30.29 21.68 0.19 49.79 10.59 1.00
PyramidKV 26.45 9.49 34.26 1.00 26.86 22.24 0.33 49.65 10.54 1.00
CAKE 27.02 12.15 36.80 1.00 29.71 22.27 0.33 49.23 10.34 1.00
SCORE(ours) 27.12 12.20 39.09 1.50 30.71 22.68 0.28 50.66 10.65 1.50
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BCD ECD JSDCOR COS

Figure 11: Head-to-head similarity matrices across various metrics for NarrativeQA. Each value
represents the average distance between 200 sampled attention vectors per head.

D ADDITIONAL DETAILED ANALYSIS AND VISUALIZATION

D.1 EFFECT OF DISTANCE METRIC CHOICE

Figure 11 visualizes pairwise similarities across all heads and layers using various distance metrics:
Cosine similarity (COS), Pearson correlation (COR), Jensen–Shannon distance (JSD), Bhattacharyya
coefficient (BCD), and Euclidean distance (ECD). Bright regions indicate high similarity, with
all metrics revealing consistent alignment across specific layers and heads. These metrics span a
diverse range of similarity formulations, from distribution-based measures (JSD, BCD) to correlation-
or geometry-based ones (COR, EUD), providing a comprehensive comparison. Despite differing
statistical bases, these metrics capture similar redundancy signals, suggesting pronounced structural
redundancy in model representations. This highlights the potential of redundancy-aware selection to
improve efficiency.

D.2 VISUALIZATION OF DISTANCE MATRIX

To further analyze the behavior of the cosine distance metric in our retrieval framework, we vi-
sualize the pairwise distance matrices computed using cosine similarity across different datasets
in LongBench, as shown in Figure 12. Each matrix represents the inter-token similarity structure
within heads, with darker regions indicating lower similarity (i.e., higher cosine distance). Across
datasets, we observe consistent patterns of redundancy, where certain groups of heads exhibit strong
mutual similarity. While the specific patterns vary depending on the dataset domain and structure,
the presence of high-similarity clusters is a common characteristic. These clusters often correspond
to repeated representations. Such redundancy can degrade retrieval efficiency and content diversity
if not properly managed. SCORE addresses this by leveraging cosine distance not only to capture
salient content but also to suppress over-represented or semantically repetitive tokens. This behavior
is especially beneficial in budget-constrained settings, where the selection of maximally informative
yet diverse tokens is critical.

D.3 VISUALIZATION OF BUDGET ALLOCATION

To better understand how retrieval budgets are distributed across the model’s architecture, we visualize
intra-layer similarity patterns across different datasets in LongBench, as shown in Figure 13. Each
heatmap captures the pairwise similarity within heads at each layer, providing insight into redundancy
and representational diversity. We observe a consistent trend across datasets: the lower layers generally
exhibit higher diversity, as indicated by lower intra-head similarity. These layers tend to capture
localized, fine-grained features, making their token representations less redundant. Consequently,
they receive a larger share of the retrieval budget, allowing more tokens to be selected from them. In
contrast, middle layers often show pronounced redundancy, with many heads producing highly similar
token embeddings. The final column in Figure 13 further breaks down the intra-layer budget allocation
at the head level. Within a given layer, heads exhibiting high distinctiveness are allocated more budget.
This fine-grained allocation strategy ensures that the most informative and non-redundant heads are
prioritized, aligning with the principles described in Section 3.3.

Despite variations in domain and task, several datasets exhibit notably similar similarity profiles
across layers and heads, suggesting that token representation patterns are influenced not only by
data but also by the model’s inherent architecture. This structural consistency points to a promising
direction for developing more generalized, architecture-aware retrieval strategies.
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Figure 12: Cosine distance matrices for various datasets in LongBench.
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Figure 13: Cosine distance matrices for various datasets in LongBench.

E EXPERIMENTS ON LONGBENCH DATASET

We provide a full breakdown of the LongBench evaluation results for LlaMA-2-7B, LlaMA-2-13B,
LlaMA-3-8B-Instruct, and Mistral-7B-v0.3-Instruct. The results are presented in ascending order of
cache size: 64L (Table 8), 256L (Table 9), 512L (Table 10), and 1024L (Table 11).

Results on Llama3-8B-Instruct. SCORE consistently outperforms prior works across all cache
sizes on the LongBench benchmark. The advantage is especially prominent in the low-cache regime,
notably at 64L (Table 8), where SCORE demonstrates a significantly higher score compared to other
methods. A key observation is that existing works often select redundant key-value pairs under tight
cache budgets, leading to poor coverage and lower performance. In contrast, SCORE maintains
accuracy even at 64L through diversity-aware selection, yielding more informative memory allocation.

Results on Mistral-7B-Instruct-v0.3. Similar to the observations with Llama3-8B-Instruct, our
method (SCORE) shows strong and stable performance across cache sizes when evaluated on Mistral-
7B-Instruct-v0.3. Notably, even under the extreme low-cache setting of 64L, SCORE preserves 85.9%
of its performance relative to the full-cache setting, demonstrating robustness.
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Table 8: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 64. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 10.70 15.36 27.88 24.20 20.35 5.89 14.85 16.23 18.40 55.00 78.85 34.75 2.50 1.50 50.25 44.65
H2O 11.33 17.26 29.21 24.49 21.46 7.84 16.49 18.00 20.00 62.00 80.30 36.29 5.00 2.50 51.46 46.19
HeadKV 14.41 18.80 27.95 26.94 23.85 7.93 17.84 19.56 20.65 63.00 81.54 37.47 5.50 4.00 53.09 47.89
SnapKV 13.67 18.05 26.80 28.00 21.38 7.49 16.78 19.59 19.85 57.50 81.40 36.98 5.50 3.50 51.60 45.96
PyramidKV 14.75 18.25 28.57 29.27 23.12 7.50 17.42 19.56 19.87 60.00 82.14 36.26 5.50 3.50 52.13 46.23
CAKE 15.49 18.88 31.97 29.33 24.65 9.35 18.62 19.88 22.21 63.00 82.82 38.62 6.00 6.00 54.46 48.53
SCORE(ours) 15.48 18.75 32.12 29.01 23.91 10.01 18.43 20.02 20.29 63.00 83.47 36.67 6.00 5.50 53.77 47.11

L
la

m
a2

-1
3B

StreamingLLM 10.45 7.56 21.95 9.03 7.13 1.61 17.45 16.75 17.73 60.00 82.10 37.31 0.50 12.50 32.45 35.89
H2O 11.84 9.31 23.36 9.12 9.00 3.26 18.88 19.39 19.93 59.50 85.94 37.86 1.50 14.72 37.67 36.07
HeadKV 11.99 12.14 23.53 10.65 9.03 3.70 19.28 19.86 19.85 64.00 84.74 38.48 2.50 15.75 35.92 36.22
SnapKV 11.51 10.87 22.92 10.24 8.84 3.20 18.60 19.25 19.19 50.50 86.84 36.28 2.00 16.75 34.97 33.60
PyramidKV 12.55 11.44 24.53 10.84 10.04 4.01 18.92 19.83 20.15 57.00 86.31 38.18 2.00 16.25 37.19 35.49
CAKE 12.69 10.11 22.41 10.21 9.70 2.81 20.03 20.20 21.63 67.50 87.12 39.29 2.00 15.75 42.76 41.25
SCORE(ours) 12.96 12.44 24.20 10.56 9.73 3.70 20.37 20.27 22.18 68.00 87.50 40.13 2.00 16.75 43.22 40.61

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 20.26 16.29 30.02 34.81 25.73 13.70 15.26 19.30 12.94 60.50 80.77 30.62 4.63 60.50 48.87 43.84
H2O 20.76 17.78 32.43 38.28 27.08 16.01 17.72 20.61 16.36 61.50 88.26 35.95 4.88 68.00 50.56 48.41
HeadKV 23.67 17.46 32.72 39.81 27.50 17.39 19.14 22.12 20.04 65.00 90.20 37.27 4.77 69.00 54.68 51.52
SnapKV 21.56 17.98 32.35 38.45 26.40 17.01 18.38 21.99 18.86 51.50 89.32 36.11 5.00 69.50 53.13 49.81
PyramidKV 21.76 18.56 33.01 39.45 28.47 17.42 18.58 21.77 18.58 58.50 88.14 37.26 5.00 69.50 52.05 47.27
CAKE 22.06 18.17 32.98 40.53 31.56 17.98 19.94 22.30 21.27 70.50 90.40 38.85 6.00 69.50 54.62 49.75
SCORE(ours) 22.68 18.77 33.26 41.06 31.58 17.84 20.41 22.20 21.58 72.00 91.00 38.78 5.50 70.00 56.08 50.69

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 19.54 25.07 37.66 40.13 21.43 12.69 17.47 16.93 15.99 51.00 84.00 37.20 4.00 70.00 41.44 39.34
H2O 20.10 25.40 37.92 40.48 21.78 13.00 17.73 17.51 16.37 57.00 84.50 37.62 4.50 75.00 41.83 39.96
HeadKV 23.18 26.31 38.77 40.94 21.20 13.38 18.51 17.68 16.74 62.50 85.00 38.47 4.50 69.50 42.35 41.38
SnapKV 22.21 26.53 37.83 39.96 20.10 13.00 17.20 17.33 16.00 50.00 85.00 36.54 5.00 76.50 41.22 38.60
PyramidKV 21.89 26.53 37.90 40.52 22.17 13.41 17.78 17.69 19.66 54.50 84.00 36.56 5.50 77.50 40.16 37.42
CAKE 23.89 26.89 39.12 42.08 25.26 13.97 19.38 18.03 18.25 64.50 85.00 40.22 5.00 78.00 45.02 42.94
SCORE(ours) 23.77 27.86 38.81 42.12 25.28 13.83 19.07 18.98 18.38 67.00 85.50 40.54 5.00 78.50 45.22 44.10

Table 9: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 256. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 15.09 18.87 29.73 29.60 23.70 8.72 18.69 19.32 20.98 62.50 82.69 34.00 3.00 6.00 55.04 48.80
H2O 15.63 19.41 30.27 30.14 24.24 9.26 19.23 19.86 21.52 63.00 83.23 34.54 3.50 6.50 55.58 49.34
HeadKV 15.66 20.29 30.95 30.52 24.50 9.87 19.78 20.33 21.93 64.00 83.19 35.18 5.00 5.50 56.01 50.13
SnapKV 16.10 20.16 30.59 30.44 24.89 9.78 20.15 20.37 21.78 63.50 83.90 34.78 4.50 6.00 56.97 49.98
PyramidKV 16.32 18.99 30.47 30.65 24.53 9.32 18.95 20.07 22.05 63.00 83.80 34.85 5.00 10.00 56.97 49.12
CAKE 15.91 19.69 30.55 30.42 24.52 9.54 19.51 20.14 21.80 63.00 83.51 34.82 4.50 7.00 55.86 49.62
SCORE(ours) 17.24 21.35 35.52 30.69 25.43 9.76 20.52 20.46 23.83 64.00 84.30 34.98 5.00 9.50 57.45 51.49

L
la

m
a2

-1
3B

StreamingLLM 12.45 13.66 25.71 11.03 9.27 3.81 20.97 19.47 22.54 68.00 85.42 44.77 4.50 12.00 42.88 41.58
H2O 12.99 14.20 26.25 11.57 9.81 4.35 21.51 20.01 23.08 68.00 85.96 45.31 4.00 14.75 43.42 42.12
HeadKV 13.77 15.17 27.50 11.94 10.48 4.01 21.78 20.54 23.57 69.00 86.83 46.38 5.50 14.25 43.95 42.69
SnapKV 12.56 12.82 26.13 12.49 10.38 4.85 22.61 20.44 23.56 69.00 86.15 45.82 3.05 14.75 44.33 43.36
PyramidKV 13.85 15.82 26.33 11.49 9.76 5.38 21.35 20.24 23.30 69.00 86.09 44.94 5.57 16.75 43.18 41.51
CAKE 13.27 14.48 26.53 11.85 10.09 4.63 21.79 20.29 23.36 68.50 86.24 45.59 4.50 15.25 43.70 42.40
SCORE(ours) 13.68 16.58 28.97 12.70 12.34 4.77 22.38 20.46 24.67 69.00 87.56 47.16 5.50 16.25 44.25 43.38

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 22.87 31.41 40.45 43.13 31.64 19.79 20.69 21.66 21.88 70.50 89.70 39.24 4.50 68.48 56.46 52.83
H2O 23.41 31.95 40.99 43.67 32.18 20.33 21.23 22.20 22.42 71.00 90.24 39.78 5.50 69.02 57.00 53.37
HeadKV 24.08 34.01 42.64 44.52 33.54 21.31 21.79 22.33 23.09 72.00 90.57 40.62 5.75 69.50 57.68 55.29
SnapKV 23.39 33.50 40.73 43.80 32.84 20.10 21.69 22.57 22.79 71.50 90.86 39.85 5.51 69.50 58.14 53.82
PyramidKV 23.95 29.53 40.81 43.90 31.37 20.77 21.42 22.89 22.59 71.50 90.48 40.08 5.91 69.25 56.37 52.20
CAKE 23.71 32.25 41.29 43.97 32.48 20.63 21.53 22.50 22.72 71.50 90.54 40.08 5.50 69.32 57.30 53.67
SCORE(ours) 25.09 35.68 42.93 45.61 35.63 21.37 22.80 22.69 24.25 72.50 90.56 41.98 5.78 69.25 57.23 53.01

M
is

tr
al

-7
B

-I
ns

tr
uc

tio
n-

v0
.3

StreamingLLM 26.00 30.63 49.01 43.47 31.20 22.43 20.29 18.32 19.01 67.00 84.42 40.70 4.50 79.39 45.22 45.79
H2O 26.54 31.17 49.55 44.01 31.74 22.97 20.83 18.86 19.55 68.00 84.96 41.24 5.00 79.93 45.76 46.33
HeadKV 27.66 32.30 49.98 44.79 32.35 23.32 20.99 20.16 20.03 69.50 85.30 42.35 6.00 79.50 46.96 48.83
SnapKV 26.55 31.24 49.58 43.57 31.80 23.14 21.44 18.93 20.03 68.00 85.01 41.36 5.00 81.00 46.45 46.85
PyramidKV 26.61 31.18 50.28 44.87 32.28 23.65 21.27 18.69 19.80 67.50 85.78 41.22 5.50 80.50 45.07 44.50
CAKE 26.34 31.99 49.39 44.02 31.80 23.28 21.28 18.86 19.90 68.00 85.17 41.54 5.00 80.77 46.21 46.26
SCORE(ours) 27.05 34.74 49.52 44.81 32.53 24.26 22.32 20.15 21.06 70.50 85.91 43.23 5.50 82.00 48.32 48.63
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Table 10: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 512. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
la

m
a2

-7
B

StreamingLLM 15.94 19.52 33.89 30.44 24.12 9.20 20.32 19.56 22.40 63.00 82.56 34.29 4.00 6.00 56.85 50.41
H2O 16.48 20.06 34.43 30.98 24.66 9.74 20.86 20.10 22.94 63.00 83.10 34.83 4.50 6.50 57.39 50.95
HeadKV 17.02 21.38 35.27 31.48 25.08 9.50 21.59 20.76 22.59 64.00 83.02 34.77 6.00 5.50 57.98 51.65
SnapKV 17.02 19.96 34.18 31.37 24.95 10.51 21.74 20.22 23.79 64.00 83.57 35.12 5.00 7.00 58.54 50.98
PyramidKV 16.60 20.03 35.03 31.30 25.16 10.40 20.46 20.52 23.63 64.00 83.90 35.80 5.00 8.00 56.85 51.41
CAKE 16.76 20.34 34.71 31.26 24.94 10.02 21.14 20.38 23.22 63.88 83.38 35.11 4.50 7.05 57.67 51.23
SCORE(ours) 18.29 21.57 35.95 30.78 24.88 10.84 22.08 20.74 24.63 64.00 83.75 35.01 5.00 9.50 58.72 52.17

L
la

m
a2

-1
3B

StreamingLLM 12.89 14.57 26.60 10.71 10.68 4.05 22.06 19.62 23.88 68.50 84.81 45.60 3.50 15.75 44.09 43.89
H2O 13.43 15.11 27.14 11.25 11.22 4.59 22.60 20.16 24.42 69.00 85.35 46.14 5.00 16.25 44.63 44.43
HeadKV 14.00 16.05 27.53 11.15 12.32 4.10 22.89 20.52 24.63 69.50 85.36 47.19 5.00 15.75 45.10 44.10
SnapKV 13.53 15.49 26.77 11.74 10.86 5.23 23.58 20.47 25.14 69.50 85.68 46.44 5.00 17.25 45.10 46.04
PyramidKV 13.95 14.99 28.32 12.05 11.69 5.63 22.52 20.68 24.70 69.50 86.21 45.98 5.00 17.75 45.10 44.36
CAKE 13.71 15.39 27.42 11.53 11.50 4.87 22.88 20.44 24.70 69.38 85.63 46.42 5.50 16.80 44.91 44.71
SCORE(ours) 13.49 16.45 27.91 12.45 12.49 4.71 23.90 20.61 25.66 68.50 87.75 47.73 5.00 17.75 45.67 46.97

L
la

m
a3

-8
B

-I
ns

tr
uc

t

StreamingLLM 24.54 33.31 41.46 43.95 32.30 18.66 22.20 21.90 23.44 71.00 89.60 40.07 5.00 69.25 56.46 53.75
H2O 25.08 33.85 42.00 44.49 32.84 19.20 22.74 22.44 23.98 71.50 90.14 40.61 5.50 69.50 57.00 54.29
HeadKV 25.77 34.67 43.11 45.02 34.04 20.28 22.95 23.02 24.33 73.00 90.56 41.63 6.00 69.50 57.96 55.59
SnapKV 25.61 33.63 43.28 44.78 33.78 20.58 23.07 22.62 24.31 71.50 90.44 40.66 6.00 68.50 57.01 55.30
PyramidKV 25.06 34.44 40.82 44.87 31.91 17.93 23.41 22.89 24.49 72.00 90.61 40.74 6.00 69.50 57.24 53.19
CAKE 25.38 34.15 42.30 44.79 33.14 19.50 23.04 22.74 24.28 72.07 90.44 40.91 5.50 69.50 57.30 54.59
SCORE(ours) 25.68 38.26 44.27 45.81 36.53 21.05 24.50 23.13 25.51 74.00 90.64 41.63 5.00 68.50 57.52 53.62
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-I
ns
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n-

v0
.3

StreamingLLM 26.72 33.71 49.98 44.55 31.82 22.40 22.10 19.27 20.75 68.50 84.74 41.75 4.00 80.00 47.47 48.57
H2O 27.26 34.25 50.52 45.09 32.36 22.94 22.64 19.81 21.29 69.00 85.28 42.29 4.60 80.50 48.01 49.11
HeadKV 27.97 35.21 51.28 45.64 32.90 24.37 22.94 20.94 21.65 70.50 85.41 42.80 5.00 82.00 48.97 50.49
SnapKV 28.11 34.54 50.70 45.38 32.92 22.70 23.36 19.89 21.70 70.00 85.50 43.07 5.00 80.50 48.58 49.62
PyramidKV 26.89 34.21 50.78 45.46 32.46 22.96 22.81 19.80 21.73 68.50 86.13 42.20 5.00 81.00 47.67 48.43
CAKE 26.87 35.09 50.21 45.06 32.38 23.09 23.05 19.82 21.56 68.93 85.55 42.39 4.50 81.10 48.06 49.13
SCORE(ours) 26.82 37.71 50.35 45.53 32.97 24.82 24.18 20.97 22.45 69.50 86.21 43.09 5.50 83.00 49.13 50.55

Table 11: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 1024. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method NtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique
GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum
PCount

PR-en
Lcc RB-P

L
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m
a2

-7
B

StreamingLLM 15.28 18.90 31.55 28.54 22.38 7.00 19.22 17.12 22.31 61.00 81.52 37.84 3.00 3.00 46.66 47.94
H2O 17.01 20.74 32.04 30.37 24.64 8.90 20.59 18.88 24.43 63.00 81.95 39.98 5.50 4.00 45.69 48.79
HeadKV 18.99 21.04 35.40 31.29 25.26 10.63 21.60 20.64 26.39 64.00 83.55 40.57 6.00 7.00 58.42 52.60
SnapKV 17.79 21.91 35.68 31.96 26.21 9.61 22.1 21.08 25.01 64.00 82.95 40.84 6.00 7.50 57.78 48.54
PyramidKV 17.25 21.02 37.33 31.29 25.50 9.80 22.45 20.61 24.97 64.00 83.81 40.09 6.00 8.00 56.98 51.78
CAKE 18.44 21.95 35.95 31.60 25.01 10.10 22.75 20.26 25.09 64.00 85.99 40.59 6.00 7.00 52.52 51.98
SCORE(ours) 18.47 22.04 35.99 31.64 25.58 10.51 23.75 20.58 25.39 64.00 89.39 41.00 6.00 7.50 58.58 52.87
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m
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-1
3B

StreamingLLM 10.40 11.80 23.70 8.93 9.34 1.31 22.54 17.51 23.36 65.00 57.55 44.99 2.00 14.75 39.01 40.07
H2O 12.15 12.12 25.10 10.66 10.33 3.34 24.39 19.35 25.61 66.50 86.95 46.88 3.50 16.75 40.23 41.02
HeadKV 13.80 16.46 28.42 12.00 13.21 4.59 23.63 20.97 25.76 69.00 86.83 41.89 4.00 14.75 45.83 46.47
SnapKV 13.38 15.69 28.36 10.68 13.33 5.05 24.71 20.76 25.83 69.50 85.84 41.41 3.55 15.75 45.83 46.93
PyramidKV 13.31 16.34 28.10 11.92 12.36 6.50 24.37 20.47 26.07 71.50 87.34 42.24 3.54 16.75 45.56 45.34
CAKE 13.55 16.37 27.20 12.10 13.24 4.18 25.58 20.57 26.00 68.50 87.05 47.99 4.50 15.75 42.68 44.01
SCORE(ours) 14.14 16.56 27.07 12.31 12.50 5.01 25.89 20.75 26.36 68.50 87.75 42.32 4.50 16.75 45.70 47.19
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StreamingLLM 22.84 34.94 40.61 43.54 33.06 19.86 24.24 20.30 21.36 69.00 80.91 40.09 3.55 67.50 50.26 48.20
H2O 23.49 35.44 40.01 44.67 34.52 21.13 24.79 21.04 21.59 69.00 90.10 40.96 5.00 69.00 50.16 49.32
HeadKV 25.79 37.69 43.56 45.72 36.23 20.25 24.38 22.93 25.72 74.00 90.56 41.53 5.39 69.25 57.77 54.34
SnapKV 25.76 36.41 43.38 45.16 34.29 20.40 24.65 22.90 25.58 73.00 90.56 41.23 5.39 69.25 57.16 54.75
PyramidKV 25.56 36.39 42.54 45.55 34.61 22.05 21.96 22.74 25.68 72.50 90.56 41.44 5.75 69.25 57.01 54.66
CAKE 25.09 37.34 44.11 45.30 34.49 21.49 26.59 22.45 24.03 72.50 90.61 42.11 5.00 69.15 53.25 49.97
SCORE(ours) 25.41 39.32 45.03 45.38 37.06 22.30 26.78 23.40 26.41 74.00 90.64 42.13 5.65 69.25 57.41 54.73
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v0
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StreamingLLM 24.93 32.81 46.42 43.67 28.77 22.05 21.99 19.09 18.29 67.00 83.64 40.34 3.50 80.00 43.15 46.39
H2O 25.68 32.38 48.01 44.24 29.31 23.97 24.36 20.09 23.55 67.50 84.37 40.90 4.50 81.00 48.02 47.24
HeadKV 27.76 36.91 50.13 45.80 32.83 24.36 24.61 21.09 23.15 70.50 85.33 43.44 5.50 83.00 49.26 50.06
SnapKV 26.56 35.87 49.52 45.03 33.06 24.05 25.60 21.08 23.65 71.00 85.21 42.43 5.50 82.50 49.56 48.48
PyramidKV 27.11 36.18 50.96 46.16 32.95 24.55 24.57 20.65 23.51 70.00 86.23 43.32 7.00 83.00 49.74 49.72
CAKE 27.11 37.74 48.73 46.16 32.92 24.03 26.52 20.98 24.40 70.00 85.81 42.71 6.00 82.00 49.18 48.44
SCORE(ours) 28.89 37.78 49.62 45.29 32.99 24.88 26.89 21.10 24.50 71.00 86.33 43.53 7.00 83.00 49.78 50.51
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F LIMITATIONS

Despite its effectiveness in managing multi-level redundancy in the KV cache, SCORE has several
limitations. (1) It requires sampling representations from each attention head and computing pairwise
distances, which can be more computationally expensive than simple statistical metrics (e.g., variance
or entropy), especially as the number of samples increases. Although this trade-off does not signifi-
cantly impact overall performance, it remains a consideration for large-scale or real-time applications.
Our cascading design and sampling limits help reduce this cost, but further optimization may be
needed for broader scalability. (2) SCORE relies on fixed distance metrics that may not perfectly
align with downstream task performance. Integrating task-aware or learned similarity measures
could improve redundancy estimation. (3) This work focuses on inference-time cache management;
extending SCORE to training scenarios such as fine-tuning or continual learning remains an open
direction for future research.
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