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ABSTRACT

Recent advances in large language models (LLMs) have unlocked remarkable long-
context capabilities, enabling breakthroughs across diverse NLP tasks. However,
despite architectural progress and compression techniques such as quantization,
the key-value (KV) cache remains a critical memory bottleneck during inference.
Prior work has explored cache optimization via eviction strategies, yet most rely on
heuristic or single-axis importance metrics, neglecting the nuanced and dynamic
interplay between layers and attention heads. In this paper, we propose SCORE
(Similarity-aware Contextual Overlap-Redundancy Eviction), a novel framework
that introduces a distance-based multi-level similarity metric to quantify and elim-
inate structural redundancy within the KV cache. By dynamically reallocating
cache budgets across layers and heads and employing a redundancy-aware greedy
token selection mechanism, SCORE preserves semantic diversity while minimizing
memory overhead. Extensive experiments on long-context benchmarks such as
LongBench and NeedleBench show that SCORE retains 95% of full KV cache
performance using only 1.5% of the cache, consistently outperforming state-of-
the-art baselines under strict memory constraints. These results underscore the
value of fine-grained, context-aware cache management for scalable and efficient
long-context inference in LLMs.

1 INTRODUCTION

Large language models (LLMs) have shown ex-
ceptional long-context understanding, achieving
state-of-the-art performance across a wide range
of natural language processing (NLP) tasks, in-
cluding multi-turn dialogue, document summa-
rization, and information retrieval [Zhao et al.
(2023). Recent models, such as GPT-4 |Achiam
et al.| (2023), Claude 3.5 |Anthropic| (2024),
LLaMA 3.1 Grattafior1 et al.| (2024), and Mis-
tral Jiang et al.|(2023)), demonstrate significantly [roken i Gache [Jevictoa n Cache [l Recont Window

improved long-context capabilities, with some

supporting up to one million tokens [Anthropic| Figure 1: KV cache eviction strategies: (a) Layer-
(2024), enabling the stable processing of sub- wise allocation assigns distinct budgets across lay-
stantially extended input sequences. Moreover, ers; (b) Head-wise allocation enables finer-grained
recent advances—accompanied by various com- control; (¢) SCORE combines both to reduce re-
pression techniques such as quantization [Kim| dundancy and optimize cache usage.

et al.| (2024)); Choi & Kim|(2025)—have further accelerated efforts to deploy LLMs in resource-
constrained environments, including on-device settings [Kwon et al.|(2023); Xu et al.[(2024); |L1 et al.
(2024b)). However, the key-value (KV) cache remains a major memory bottleneck for long-context
processing, significantly limiting efficiency.
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Accordingly, recent research has focused on optimizing the KV cache without altering model archi-
tecture [Daol (2023)); |/Acharya et al.| (2024). A key direction is the eviction of low-importance KV pairs
to reduce memory usage |Ge et al.|(2023); [Zhang et al.| (2023)); Xiao et al.| (2023)), typically guided by



Under review as a conference paper at ICLR 2026

attention scores or heuristic rules. However, as shown in|Dong et al.| (2021); Zhang et al.|(2022), the
contribution of layers and attention heads to text generation is highly uneven and context-dependent.
Efficient cache utilization thus requires fine-grained, dynamic strategies that account for this vari-
ability. To address such non-uniformity, prior work has explored both layer-level and head-level
budgeting. For example, PyramidKV |Cai et al.| (2024) allocates cache budgets based on information
density across layers, whereas Cake |Qin et al.| (2025) employs a cascading mechanism to adjust
budgets during prefill, as illustrated in Figure [I[a). More fine-grained methods like SnapKV [Li et al.
(2024c) and AdaKV [Feng et al.| (2024) estimate head-level importance and reallocate budgets accord-
ingly, as shown in Figure[I(b). However, these methods rely primarily on simple statistics—such as
entropy or variance—without leveraging richer signals (LI). Moreover, they fail to jointly capture
redundancy across layer—head interactions, which further limits their effectiveness (L2). In addition,
their simplistic budget allocation often leads to limited token diversity, resulting in poor coverage and
making it difficult to capture the overall context (L3).

To mitigate these limitations, we introduce Similarity-aware Contextual Overlap-Redundancy
Eviction (SCORE), a cache management framework that quantifies representational redundancy
across layers and heads using a distance-based multi-level similarity metric, as illustrated in Fig-
ure[Tfc). SCORE enables the removal of semantically redundant tokens while preserving contextual
diversity through dynamic budget reallocation and selective cache retention. This design captures
representational divergence and contextual progression more effectively than prior heuristics-based
methods, enhancing redundancy-aware information preservation.

The main contributions of SCORE are as follows: (i) SCORE is the first to introduce a distance-based
metric to precisely measure and eliminate redundancy within the KV cache (for L1). (ii) Redundancy-
aware multi-level metric. To capture hierarchical information flow and representational diversity, we
introduce multi-level similarity metrics that quantify redundancy across layers and heads in the KV
cache (for L2). (iii) Hierarchical budget allocation. The proposed SCORE framework dynamically
reallocates cache budgets across layers and heads based on redundancy scores, prioritizing informative
and non-redundant tokens under constrained memory. (iv) Greedy token selection. Our redundancy-
aware, greedy token selection algorithm maximizes information diversity in the cache by accounting
for similarity (for L3).

2 BACKGROUNDS

2.1 INFERENCE OPERATIONS WITH KV CACHE

Inference in transformer-based LLMs typically consists of two stages: a prefill stage that encodes the
input sequence, and a decode stage that sequentially generates output tokens.

Prefill stage: Given an input prompt tensor X € R%*P where S denotes the sequence length and D
the hidden dimension, the key and value representations are computed as follows:

Q=XWqo, K=XWgk, V=XWy, 1)

where, Wo, Wi, Wy € RPXD are the learnable projection matrices that map the input sequence
to query, key, and value representations, respectively. The resulting key and value tensors are then
stored in the KV cache, where they are reused during the subsequent decode stage to avoid redundant
computation.

Decode stage: During decoding, for each newly generated token x; € R at time step i, the
corresponding key and value are computed, while previous information is retrieved from the KV
cache. The new key and value are then appended to the existing cache along the sequence dimension
via concatenation, as follows:

K+ KUz Wg, V< VUx;Wy, 2)

Then, the current query ¢; = ;W computes attention weights via a scaled dot-product with the full
K, and aggregates V' accordingly to produce the output ; o, as follows:
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Figure 2: An overview of SCORE. The model computes redundancy scores across layers and heads,
which guide a dynamic budget allocation strategy and inform redundancy-aware token selection to
achieve diverse representation. For each layer: left shows temporal redundancy with the previous
layer; right shows intra-layer head similarity.
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As decoding progresses, the size of the KV cache increases linearly (e.g., 62.5GB in Llama3-8B-

Instruct |Shi et al.| (2024))), which becomes a major bottleneck in terms of memory usage and latency.

Efficient cache compression and management are therefore essential for long-context processing.

2.2 KV CACHE EVICTION

H20 Zhang et al.|(2023) improves efficiency by focusing on important tokens (heavy hitters), while
ROCO Ren & Zhu| (2024)) and Scissorhands|Liu et al.|(2023)) similarly retain key tokens based on
attention scores. StreaminglLLM Xiao et al.|(2023)) and LM-Infinite|Han et al.|(2023)) prioritize nearby
tokens relevant to generation, but uniform eviction often leads to information loss. To address this,
dynamic budget allocation methods have emerged. PyramidKV |Cai et al.| (2024) employs a pyramidal
attention pattern, allocating more cache to lower layers while summarizing higher-layer information.
CAKE |Qin et al|(2025) analyzes attention dispersion and temporal shifts to reassign cache budgets in
a cascading manner. However, both rely solely on layer-level budgeting. To enable finer granularity,
SnapKV |Li et al.|(2024c)) clusters attention distributions at the head level, and HeadKV [Fu et al.| (2024)
introduces a theoretical allocation scheme to minimize post-eviction degradation. AdaKV |Feng et al.
(2024) estimates head-level importance based on retrieval and reasoning contributions. While these
methods achieve budgeting at either the layer or head level (L2), they fail to jointly consider both
dimensions and rely heavily on attention scores (L), which limits their ability to capture semantic
redundancy. Moreover, even with well-determined budgets, token-level diversity is overlooked (L3),
leading to overlapping selections and limited coverage. To overcome these limitations, we propose
SCORE, a unified framework that quantifies redundancy via distance-based similarity and integrates
it into both budget allocation and token eviction.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE OF SCORE

As illustrated in Figure 2] SCORE is a redundancy-aware KV cache management framework. It
consists of three core components: a multi-level redundancy scoring module (Section [3.2)) that
quantifies representational redundancy across layers and heads; a dynamic budget allocation strategy
(Section [3.3)) that selectively retains KV entries based on their relative importance; and a token
selection mechanism (Section [3.4) that prioritizes diverse and informative tokens for cache retention.
Algorithm [I|summarizes the end-to-end pipeline of the proposed SCORE framework.
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Figure 3: Head-wise cosine distance matrices. From left to right: (a) the full similarity matrix D
across all heads and layers; (b)—(d) three examples of 3x3 layer-wise similarity matrices, each
showing different levels of intra-layer redundancy and inter-layer diversity; (e) an illustrative example
highlighting head-level redundancy. Brighter colors indicate higher similarity.

3.2 MULTI-LEVEL REDUNDANCY SCORING

According to prior studiesMichel et al.|(2019); Dalvi et al.| (2020), many layers and attention heads in

transformer models often learn functionally similar representations, leading to structural redundancy.
To quantitatively assess such redundancy and diversity, we propose multi-level evaluation metrics
based on inter-head similarity and mitigate L1, L2. Specifically, we sample k token positions from
each head and compute the average pairwise distance of their attention scores. Given a distance
function §(-, -) between two attention scores, the distance between head 7 and head j is defined as:
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where ags) € R" denotes the attention score vector of head 7 at the s-th sampled token for indices

i,7€40,1,...,(L-H —1)}. Figure a) visualizes the distance matrix D, which contains pairwise
distances between attention heads across all layers. It intuitively reveals that redundant representations
are often concentrated in specific layers or heads, serving as the foundation for the hierarchical analysis
metrics proposed in the subsequent sections.

Intra-layer redundancy. To analyze the extent of redundant representations within each layer, we
define the intra-layer redundancy (ZR) of layer [ as the average similarity across its attention heads,
computed by evaluating a similarity measure D over all pairs of heads (h, h’) within the same layer:

H—-1
1
IR, = 72l h;O Difrin, 1H+n (5)

Here, lower Z'R; indicates higher redundancy due to increased similarity across heads, whereas
higher ZR; suggests greater functional diversity.

Temporal deviation. To quantify the degree of novel information introduced relative to the preceding
layer, we introduce the temporal deviation (7 D) metric. It tracks changes across layers by contin-
uously comparing the similarity between adjacent outputs against an exponential moving average
(EMA). For layer [, TD; is defined as follows:

TD; = | —Ei—1], (6)

where p; denotes the average similarity between layer [ and its previous layer, computed in a manner
similar to Eq.[3] but based on the distance matrix D between two distinct layers rather than within a
single layer. For the first layer, we set 7Dy = ZR. E;_; represents the accumulated EMA-based
deviation up to layer [ — 1, and is updated as follows:

E =~ -E1+(1—7) w, )
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where y controls responsiveness to temporal
shifts in layer-wise representations. Higher 7D,
indicates that layer [ produces more novel and
distinctive outputs compared to the accumulated
patterns of preceding layers. Figure [2] (specif-
ically, inside the box corresponding|3.2)) illus-
trates this by comparing the left temporal ma-
trices across layers, where notable increases in
deviation reveal points of significant represen-
tational change. Figures [3(b)-(d) present varied
examples with different levels of redundancy
and temporal variation, clarifying the hierar-

Algorithm 1 Multi-level budget allocation

Input: accumulate attention score A4; € R > num-

ber of layers L, number of heads H, Total cache
budget Btotal

Output: Retained cache set C = {K| l(f;;), Vl(hm)}

// Layer-wise budget allocation. Cascading strategy
adapted from CAKE

1: for stagem =0to L —1do

2. M —om by {K(m)7 V(m)}

3:  Compute distance matrix D € RH*2H

Eq.[

using

chical structure and functional differentiation.  4:
Additional visualizations are provided in Ap- 5:

pendix [D.2]

Head-level distinctness. Beyond analyzing re-
dundancy at the layer level, we introduce the
head-level distinctness (D) metric to quantita-
tively assess the uniqueness of individual atten-
tion heads. This metric quantifies how distinct ¢,
a head’s attention pattern is compared to others

in the same and preceding layers. An illustrative (.
example is shown in Figure[3{e). Forahead h  17:

IR, TD are computed by slicing D (Eq.[5}
IR™ « IRV UIRn,
TD™ « 7DD UTD,,
6: BM™ {Bl(m) | I € [0,m]}, where each
Bl(m) is computed according to Eq.
// Head-wise budget allocation and evict
7.  Extract attention matrix A,, € RF*S
Q< select top—Bﬁnm) token with attention
Compute 7', 5 by counting token-to-head as-
signments using Eq.
forheadh =0to H — 1do
Compute head distinctness H D, 1, Eq. E]

o]

inlayer [, HD is defined as follows: 12: Allocate head-wise budget Bfnm})b using T p
and HD,, 1, as in Eq.[12] 7
// Greedy token selection
1 L -l 13: Penalized attention score A, using Eq.
HDy ) = oYi Z Z Digyn, q—iymsn 8) 14 10"« TopK (Am[h], B™)
=0 h'=0 15: R prm)  pelm) [ﬂm)] V) [ﬂ’")]
. m,h? " m,h myh |Tm,h | Y m,h m,h

Here, higher HD, j, indicates the head is more 16:
distinguishable from its neighbors, suggesting {7.
greater likelihood of fulfilling a unique func-
tional role. The metric complements layer-level
averages by enabling fine-grained evaluation of
diversity and redundancy at the head level.

O [ml[] — {K5, Vi)
end for ' '
18: end for
19: return C = {Kl(i_n,vlf,f_l)}

3.3 HIERARCHICAL BUDGET ALLOCATION

Layer budget allocation. We build on the cascading strategy from |Qin et al.|(2025)) and introduce
adaptive budget reallocation driven by the importance of hierarchical representations. At each
stage, only interactions between active layers and their immediate predecessors are considered.
Accordingly, the pairwise distance matrix D is computed only between adjacent layers. Cache budgets
are dynamically assigned based on a novelty score A, which integrates inter-layer redundancy (ZR;)
and temporal dynamics (7 D;) as follows:

Ni=X-IR;+ X2-TDy, )

where A1, A2 € R> 0 are weighting factors that control the relative importance of each term. The
novelty score N1 quantifies the diversity and informational distinctiveness of layer I, and guides the
allocation of the total computational budget By

B(m) _ M

m m—1
.= ﬂ : Btolal»Bl( ) < Bl( )7

(10)

At cascading stage m, the cache budget for layer ! is assigned in proportion to its novelty score,
enabling adaptive allocation based on importance (Algorithm [T} lines 1-6).
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Head budget allocaction. As shown in Figure[2] cache budgets are first allocated at the layer level and
then uniformly distributed across heads. To account for variations in novelty and importance across
heads, we propose a fine-grained, head-wise allocation strategy. Given the accumulated attention score
matrix A; € R¥ > for layer I, we select the top-B; scores globally. Let €; denote the corresponding
set of important tokens. For each token s € ), we identify its source head and compute head-wise
contributions accordingly:

Tin={(h,s) € u | W =h}], )

The resulting vector T; = [1}.1, T2, ..., 11| € R therefore serves as an explicit representation
of the relative importance of each head, capturing how frequently individual heads contribute to
the set of top-ranked tokens. This is then combined with the head redundancy measure HD; ;, to
determine the head-wise budget B; j, as follows:

HD
Bin=B| =) T (12)
> w—1 HDu

This strategy refines layer-level cache allocation by jointly considering head-wise relevance and
redundancy, effectively addressing the L2 and preserving distinctive information. It serves as a key
mechanism for improving eviction performance in LLMs (Algorithm I} lines 7—17).

3.4 GREEDY TOKEN SELECTION

The multi-level budget allocation strategy improves cache efficiency by quantitatively assessing
redundancy and contribution at both the layer and head levels. However, despite this fine-grained
allocation, redundant heads often select overlapping tokens, concentrating attention on specific
positions and leading to coverage bias. The “Top-K select’ example in Figure [2| illustrates this
overlooked limitation.

To mitigate this issue, we propose a redundancy-aware soft selection mechanism that promotes
diversity across attention heads during token selection. The method lowers the selection priority of
tokens redundantly chosen by multiple heads, with the penalty strength determined by the degree of
head-wise diversity within the layer. By discouraging redundant selection, this approach alleviates
head-level concentration and fosters more diverse and informative representations. The resulting
penalized attention score is defined as follows:

Kl s] = Aifh 5] - exp (_Hgl , -rs> (13)

where o > 0 is a hyperparameter that controls the attenuation strength of the penalty, and 75 denotes
the number of times token s has been selected across multiple heads. Higher redundancy leads to
stronger penalties, encouraging greater dispersion in head-wise token selection. This method can be
seamlessly integrated into existing token selection pipelines with little additional overhead, while
effectively enhancing informational diversity and addressing the L3 by ensuring that different heads
contribute complementary rather than redundant evidence.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Baseline Models. We evaluate representative open-source LLMs with context lengths from 4K to
128K tokens, including two multi-head attention models: Llama2-Chat Touvron et al.|(2023) (7B
and 13B), and two grouped-query attention models: Llama3-8B-Instruct |Grattafiori et al.| (2024)
and Mistral-7B-Instruct-v0.3 [Jiang et al.| (2023). To evaluate memory allocation strategies under
constrained cache budgets, we adopt CAKE |Qin et al.|(2025)), which dynamically reallocates cache
in a cascading manner during prefilling to retain informative tokens.
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Figure 4: Mean performance across 16 LongBench datasets for varying KV cache sizes. The dashed
line indicates the performance with the full KV cache.

Table 1: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 128. The best score is marked in bold, and the second best is marked with underline.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
e L ot e o

Method qup Qﬁv@‘ ﬂ\?&“ “ow“‘Q . \ﬂ\@\ »W‘q“& 00"?&? @ N\g\\“‘ - “\\\v‘«e < &© “.\&QP' SP»‘“$“ ?Co\x\\ R s ‘&v
Full KV 18.39 21.13 35.54 31.35 25.61 10.64 25.57 22.18 26.26 65.5 89.41 41.03 6.00 8.50 58.67 53.00
@ StreamingLLM  11.27 15.93 28.45 2477 20.92 6.46 1542 16.8 18.97 60.55 79.42 3532 3.00 200 50.82 4522
E H20 11.82 17.75 29.70 24.98 21.95 8.33 16.98 18.49 20.49 62.50 80.79 36.78 3.50 3.00 5195 46.68
E HeadKV 14.86 19.25 2840 27.39 24.30 8.38 18.29 20.01 21.10 63.50 81.99 37.92 4.00 450 5354 4834
2 SnapKV 14.12 18.50 27.25 28.45 21.83 7.94 17.23 20.04 20.30 58.00 81.85 3743 4.00 400 5205 4641
= PyramidKV 15.20 18.70 29.02 29.72 23.57 7.95 17.87 20.01 20.32 60.50 82.59 36.71 4.00 4.00 5258 46.68
CAKE 15.62 19.01 32.10 29.46 24.78 9.48 18.75 20.01 2252 63.50 82.95 38.75 4.50 6.00 5459 48.66
SCORE(ours) 1690  19.84 3549  30.52 24.88 10.55 19.30 20.02 2232 64.10 84.00 38.86 5.50 7.00 5645 49.63
Full KV 19.15 2638 3677 3657 33.93 1432 25.89 2033 26.06 65.00 87.70 35.57 6.50 1050 5126 53.40
2 StreamingLLM 12.02 8.21 22.33 9.37 7.49 2.63 18.40 18.81 18.93 61.05 84.35 40.00 2.00 13.05 3502 3675
by H20 13.29 11.44 24.15 12.84 10.38 3.65 20.75 20.21 20.99 64.50 86.77 40.41 3.60 1525 3813 3942
9 HeadKV 13.20 13.04 25.27 12.09 11.00 2.73 20.72 20.30 22.20 68.00 86.00 39.55 3.07 1475  41.36  41.06
E SnapKV 12.61 11.91 23.78 13.71 9.98 3.87 19.97 19.96 21.40 63.50 86.75 39.89 3.00 16.75 4051 38.57
= PyramidKV 13.64 11.50 26.04 14.01 10.60 5.40 20.32 19.63 21.65 64.50 86.25 39.54 3.50 16.25 41.08 39.69
CAKE 13.64 11.87 25.41 11.80 10.49 4.50 20.94 20.30 21.77 65.50 86.86 42.48 3.50 1575 39.80 38.98
SCORE(ours) 14.06 14.64 2787 11.71 11.14 5.16 21.98 20.68 24.06 69.65 87.96 41.82 3.60 16.50 44.96 44.82
Full KV 25.56 39.43 45.23 45.37 35.65 21.63 28.63 2335 26.81 74.00 90.48 42.52 4.80 69.25 5697 5242
z | StreamingLLM  20.58 28.66 25.17 3745 18.72 18.87 19.01 20.17 18.81 62.02 88.57 38.96 351 67.79 5542 50.86
:-.; S | H20 21.90 30.11 26.55 38.95 20.01 20.29 20.37 21.58 20.18 63.50 89.96 40.39 4.40 6925 56.83 52.30
E ':*, HeadKV 2247 30.13 40.38 44.90 31.06 21.10 20.70 2231 21.91 71.00 90.82 39.62 4.35 69.50 57.65 52.65
= »—? SnapKV 22.17 28.96 36.29 42.10 29.25 19.78 20.11 22.56 21.46 66.00 89.72 38.89 4.50 69.00 57.24 5297
= PyramidKV 22.10 26.94 36.86 40.38 29.42 16.34 20.34 22.70 21.99 67.00 89.35 39.77 4.50 69.00 56.55 51.67
CAKE 22.10 32.19 34.52 39.06 30.45 20.72 20.40 21.85 20.98 46.00 89.64 39.74 4.50 69.50 5646 52.14
SCORE(ours) 24.65 3331 40.22 45.27 34.29 2145 21.63 22.36 2293 7230 90.66 40.20 5.00 69.50 57.03 52.76
e, | FullKV 29.53 4158 5313 49.22 3951 28.58 34.68 2642 27.82 80.50 92.14 47.44 550  98.00 5845 59.54
=% | StreamingLLM 2283 2580 4154 39.11 2373 15.44 18.04 16.34 15.86 45.55 83.82 3755 3.00 7500 43.54 4046
5§ | H20 2329 2723 4208  40.68 24.86 16.48 18.75 17.65 17.07 56.50 85.03 38.88 450  80.00 4453 4244
£% | HeadKV 26.04 3025 4793 4317 32.13 22,63 20.73 18.24 18.79 6550  85.29 40.69 500 7650 4493 4495
é £ | SnapkV 2572 2856 4634 4352 29.10 20.86 19.51 18.09 18.49 64.50 84.81 40.20 550 7850 43.99 43.68
é PyramidKV 2550 2747 4623  44.02 3005 21.10 20.08 18.15 18.10 63.50 85.02 40.37 450 7850 4352 40.73
' | CAKE 2617 2726 4373 4130 25.89 17.30 20.22 18.01 17.65 57.50 8553 39.11 500  82.00 4589 43.39
SCORE(ours) 2595 32,65 5054 4444 3191 23.89 20.73 19.89 19.95 69.00 86.33 41.28 450  81.50 46.54 46.61

Tasks. We evaluate model performance under compressed KV cache settings using LongBench Bai
et al.|(2023), which covers a range of long-context tasks. For fine-grained retrieval and long-range
reasoning, we use NeedleBench [Li et al.[|(2024a)) and Reasoning-in-a-Haystack |Kuratov et al.| (2024,
respectively. We also include Longbench V2 |Bai et al.|(2024) and InfiniteBench [Zhang et al|(2024)
for extreme long-context settings.

Implementation. All experiments were conducted on an NVIDIA A100 80GB GPU with cache
budgets ranging from 64L to 2048L. To ensure fair comparison, all methods were evaluated under
identical conditions and cache capacities. Hyperparameter details are provided in Appendix [A]

4.2 MAIN RESULTS

Evaluation on Longbench. We evaluate SCORE on the LongBench benchmark, which includes
16 long-context tasks. All experiments are conducted under identical conditions for fair comparison.
As shown in Figure [ SCORE consistently outperforms baseline methods across varying KV cache
budgets, with a significant advantage in low-cache settings (B < 128L) due to its ability to
preserve contextual diversity by selectively retaining salient tokens. Table ] reports results in low-
cache scenarios, where SCORE outperforms existing methods on most tasks. On LLaMA3-8B,
it achieves an average score of 40.85—surpassing HeadKV by +0.82—while retaining 95.1% of
full-cache performance. Full results across cache sizes are available in Appendix [E]
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Figure 5: Redundancy metrics used for budget allocation. (a) Layer-wise distributions of ZR and
T'D averaged over the entire LongBench dataset; head-wise redundancy for the first 12 layers on the
NarrativeQA and corresponding head-wise budget allocation.

Evaluation on LongBench V2. We further
evaluate SCORE under realistic scenarios us-

Table 2: Performance comparison on Llama3-8B-
Instruct over LongBench V2. Results are measured

ing LongBench-v2, a long-context benchmark
designed to overcome the limitations of prior

with cache sizes of 128 and 1024.

datasets that relied heavily on synthetic data or  Method Easy Hard Short Medium Long Avg.

extraction-style tasks. It covers six categories “FuiKv 3125 2508 3444 2419 2220 2744

and twenty §ub-tasks—inc1uding QA, in-context Llama3-8B Instruct, Cache size=128

learmng, dlalggue, code, and structu.red data CAKE 2927 2113 3298 2122 2048 24.96

reasoning—with context lengths ranging from HeadKV 29.53 2274 3225 2297 20.10 25.52

8K up to 2M words. Table [J]reports the detailed ~ SCORE  29.94 23.11 3278 2373 2033 25.98

results on LLaMA3-8B-Instruct. Across both Llama3-8B-Instruct, Cache size=1024

cache sizes (128 and 1024), SCORE consistently CAKE 2950 2131 3325 2261 21.06 2555

outperforms competitive baselines, indicating ~ HeadkV 3022 2397 3324 2323  20.14 26.16
SCORE 3025 24.08 3389 24.19 2145 26.77

that the proposed method provides benefits re-
gardless of the memory budget available. In the
extreme compression setting with cache size 128, where most baselines struggle to maintain stable
accuracy, SCORE achieves an average score of 25.98, surpassing HeadKV and CAKE by +0.46 and
+1.02, respectively. Importantly, this performance gap is not limited to a particular type of task but
persists across difficulty levels and input lengths. In particular, SCORE demonstrates clear advantages
in the Hard and Medium scenarios, where long-range reasoning and multi-step comprehension are
crucial. These results highlight that the method is capable of preserving critical information under
severe compression, achieving stable performance even in extreme long-context conditions, which
suggests strong potential for deployment in practical large-scale applications.

4.3 JUSTIFYING REDUNDANCY-AWARE MODELING

Redundancy Observations. We com-
pare pairwise similarities across
all heads and layers using five
distance metrics: Cosine similarity .
(COS), Pearson correlation (COR), gng oo | £ .
Jensen—Shannon distance (JSD), Bhat- <=0 o 200 == o
tacharyya coefficient (BCD), and Eu- | I el
clidean distance (ECD). Appendix[D.1] C

presents qualitative visualizations for

each metric to illustrate how they
capture token-level relationships. Fig-
ure [6] reports their average accuracy
across all tasks under varying cache budgets. The results reveal that COS consistently achieves the
highest performance in all settings, regardless of cache size. This indicates that COS not only provides
a stable criterion for token retrieval in high-dimensional embedding spaces but also remains robust
when computational resources are constrained. Taken together, these findings highlight the reliability
of cosine similarity and motivate its use as the default metric throughout our experiments.

Llama-8B-Instruct

Mistral-8B-v0.3=Instruct

1024L 64L 128L 256L 512L
Cache Size

1024L

Figure 6: LongBench performance by cache budget for each
distance matrix.
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Redundancy-Aware Allocation SCORE adaptively allocates cache budgets across layers and heads
based on quantified redundancy levels. As illustrated in Figure [5| components exhibiting greater
information diversity tend to receive larger cache budgets, while highly redundant ones are assigned
less. For instance, in Figure [IT] lower layers tend to exhibit lower similarity to others, resulting in
high 7D in Figure[5[a), and are thus prioritized in layer-level budget assignment. Figure [5(b) further
reveals that certain heads within these layers carry unique information, leading to increased head-level
budget allocations. This analysis suggests that SCORE effectively leverages distance-based similarity
metrics to identify structural redundancy and maximize informational diversity under constrained
resources. Furthermore, Appendix [D.3] validates the robustness and generality of SCORE through
quantitative comparisons and visualizations.

4.4 EVALUATION ON LONG-CONTEXT TASKS

To further assess the generalizability of
SCORE’s long-context reasoning, we conduct
experiments on diverse benchmarks. Table [3|

Table 3: Reasoning-in-a-Haystack results on
Mistral-7B-Instruct with 128L KV cache. Scores
are averaged over QA1-QAS tasks at each context

presents results on the Reasoning in a Haystack length
task under limited cache budgets and varying
input lengths. SCORE consistently outperforms — Tuamea | ok 1k 2 4 sk 16k 3%k  Ave
baselines across all lengths, indicating its ability =~ FuKV | 6130 5530 5340 4210 4030 3400 3180 45.46
to preserve precise reasoning. While prior meth- SnapKV 5540 5020 4640 3720 3500 32.80 29.20 40.89
PyramidKV | 57.20 5080 47.60 3620 3620 3140 2820 41.09
ods often struggle as context grows, SCORE  Headkv | 5860 5380 5220 3820 37.60 3180 30.40 4323
S . CAKE 5840 5400 5130 3840 3720 3180 3020 43.04
maintains strong performance, showing that  gcope 5340 5420 5180 3830 3780 3210 3060 4331

its cache strategy—balancing importance and
diversity—is effective for long-range depen-
dency reasoning. Extended results on NeedleBench and InfiniteBench, provided in Appendix
and Appendix [C] further support its robustness under diverse long-context conditions.

4.5 EVALUATION ON MEMORY AND THROUGHPUT
To evaluate the practicality of SCORE, we com- TIFT Comparison in Mistral-78
pare it against prior methods in terms of time
to first token (TTFT) and decoding latency. As
shown in Figure[7] despite the need to compute
a distance matrix, SCORE achieves compara-
ble latency to existing approaches across all in-
put lengths. This is notable given that SCORE
estimates importance based on distance-based
similarity between representations across layers
and heads. Instead of computing full pairwise
distances across all layers, SCORE adopts a cas-
cading strategy that computes local distances
only between adjacent layers, significantly reducing computation. Furthermore, the number of sample
vectors used for similarity estimation is carefully controlled to further mitigate computational over-
head. These results demonstrate that SCORE maintains responsiveness on par with existing methods,
despite its more sophisticated scoring mechanism.

Latency Comparison in Mistral-78

FullkV
SnapKkV
PyramidkV

W CAKE

= SCORE

Fullkv

Snapkv
PyramidkV

m— CAKE

== SCORE

32k ak

[ ok 8k 16k
Input Length Input Length

Figure 7: Comparison of TTFT (left) and decod-
ing latency (right) across KV cache strategies in
Mistral-7B-Instruct-v0.3.

5 CONCLUSION

In this paper, we propose SCORE, a cache management framework that addresses structural re-
dundancy and resource inefficiency in long-context processing. SCORE employs distance-based,
multi-level similarity metrics to quantify representational redundancy across layers and attention
heads. Using these estimates, it performs hierarchical budget reallocation and redundancy-aware
token selection to preserve salient contextual information. To our knowledge, SCORE is the first
method to directly measure redundancy for cache budgeting, enabling more effective modeling
of inter-layer information flow than prior statistics-based approaches. Extensive experiments on
long-context benchmarks demonstrate that SCORE consistently outperforms existing methods under
tight cache constraints, particularly in tasks requiring complex reasoning and retrieval.
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APPENDIX

A MORE IMPLEMENTATION SETTINGS.

Details of Hyper-parameters. The algorithm
of SCORE consists of three main stages: multi-
level redundancy estimation, layer-wise budget
allocation and cache management, and salient
token selection. In the redundancy estimation
stage (Section [3.2), we sample representations
from each attention head and compute pairwise
distances to extract multi-level redundancy. This
process captures similarity patterns across lay-
ers, serving as the basis for quantifying cache
necessity. In particular, we compute the 7D be-
tween consecutive layers to assess the novelty
of information introduced at each layer. To sta-
bilize estimation, we apply EMA to 7D, search-
ing v € [0.1,0.9] and setting it to 0.5. In the
budget allocation and cache management stage
(Section [3.3), we assign layer-wise KV cache
budgets based on the estimated redundancy and
perform eviction accordingly. We perform grid
search over A1, A2 € [1.0,2.0] with 0.2 step size

;1.2, 1.8]
()

40.5
40.0
39.5
39.0
38.5

Value

\’b&

1.2
1.0

1.4 16
/ambdal'

1.8
2.0

Figure 8: Performance comparison on LongBench
for different A\; and A» combinations.

for adaptive budget scaling. See Figure [8|for performance across different combinations. In the final
stage (Section , we grid-search A1, Ao € [1.0,2.0] (step 0.2) for adaptive scaling. This process is
guided by a penalty term « that controls the preference for retaining high-redundancy tokens. The

value of « is tuned within the range [0.001, 0.01],

where larger values encourage more aggressive

eviction of less salient tokens. We select o = 0.004 based on this search.

Analysis of sample selection. To evaluate the im-
pact of sample selection on assessment reliability,
we fix a subset of 200 samples and compare three
strategies: (1) top-k scoring, (2) uniform random
sampling, and (3) mid-range random sampling,
which excludes tokens from the initial and final
context windows. As shown in Table @] the mid-
range strategy consistently yields more stable per-
formance estimates. Excluding boundary regions
mitigates evaluation artifacts caused by position-
specific attention patterns. Mid-range sampling

Table 4: Performance comparison of sample se-
lection strategies on LongBench using Llama3-
8B under 128-cache. Reported values are average
scores per task.

Method ‘ Single-Doc.  Multi-Doc.  Summ. Few-shot Synthetic ~Code
Full 3297 33.65 22.39 66.92 38.99 55.17
Random 33.01 33.25 22.17 66.50 39.70 55.06
Top-k 31.10 29.11 20.74 65.20 3274 53.39
Middle 3272 33.67 2230 67.72 39.75 54.89

reduces the influence of positional biases and better captures model behavior in regions where
memory and generalization demands are more representative of typical usage.

Ablation on Sample Size. To keep computa-
tion cost stable regardless of sequence length,
we fix the number of sampled tokens K when
estimating head-wise similarity. Nevertheless, in
extremely long-context scenarios, model perfor-
mance could in principle depend on the choice
of K. Table[5]therefore presents an ablation on
Llama3-8B-Instruct with LongBench V2 (input
sequences extended up to ~2M tokens) under
a cache size of 128, comparing SCORE with
K =200 and K = 400 against baseline methods.
The results show that the performance gap be-
tween different K values remains minimal, con-
firming that even a relatively small K is sufficient
and that SCORE is robust to the sampling.

Table 5: Ablation study on Llama3-8B-Instruct
with LongBench V2. We analyze the effect of
different sample sizes (K = 200 and K = 400)
for our method (SCORE) under cache size 128,
compared against CAKE and HeadKV.

Method Easy Hard Short Medium Long Avg.
Full KV 3125 25.08 3444 2419 2222 2744
Llama3-8B-Instruct, Cache size=128
CAKE 2927 21.13 3298 2122  20.18 2496
HeadKV 29.53 2274 3225 2297 2010 25.52
SCORE (K =200) 29.94 23.11 32.78 2373 2033 2598
SCORE (X =400) 29.85 2340 32.71 23.80  20.61 26.07
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B EXPERIMENTS ON NEEDLEBENCH DATASET

To assess the retrieval capabilities of our proposed method, SCORE, we conduct comprehensive
evaluations on the Needle-in-a-Haystack benchmark. This benchmark is specifically designed to test
a model’s ability to accurately identify and extract salient information (needle) from extensive input
sequences (haystack). We evaluate on both LLaMA-3-8B-Instruct and Mistral-7B-Instruct-v0.3, set-
ting the maximum context lengths to 8K and 32K tokens, respectively, as summarized in Figure Q][T0]
At a cache size of 128, SCORE demonstrates strong retrieval fidelity in short-context settings while
exhibiting minimal degradation in performance under long-context conditions. Notably, SCORE
achieves an accuracy of 96.7 on the Mistral-7B-Instruct-v0.3 model, outperforming the previous
state-of-the-art method, HeadKV, which attains 95.5—representing a relative improvement of 1.2
points. Similarly, on Llama3-8B-Instruct, SCORE consistently matches or exceeds the performance
of existing methods across varying context lengths. These results demonstrate that SCORE is highly
capable of retrieving and processing salient information even under ultra-long context conditions.
Importantly, SCORE maintains robust retrieval performance even when the KV cache size is sig-
nificantly reduced (e.g., 128), with only negligible accuracy degradation compared to FullK'V. This
highlights the effectiveness of SCORE in balancing memory efficiency and performance, offering a
promising solution for memory-constrained long-context language modeling.

Llama3-8B-Instruct

FullKV Average Score: 100.0 SnapKYV Average Score: 88.8

B
PyramidKV Average Score: 94.5
I'@'f’l’lfo‘&'«"Il@/f/c’e'«fff/@///'fl/ﬁ"l/fff’lfl*f!{&"lf/«'l/«”N"//«M!l
HeadKYV Average Score: 97.4

B S L L L R

Cake Average Score: 95.6
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Figure 9: Needle-in-a-Haystack test results on Llama-3-8B-Instruct with KV cache = 128. Our
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proposed SCORE method significantly outperform all strong baselines.

Mistral-7B-Instruct-v0.3
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Figure 10: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 128. Our
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proposed SCORE method significantly outperform all strong baselines.
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C EXPERIMENTS ON INFINITEBENCH DATASET

In this section, we evaluate the effectiveness of the proposed method, SCORE, on InfiniteBench—
a challenging benchmark specifically designed to assess the long-context processing capabilities
of large language models. A detailed comparison of results across models and cache budgets is
provided in Table Compared to prior benchmarks such as LongBench, InfiniteBench introduces
substantially greater difficulty by incorporating ultra-long input sequences, with an average context
length of 145K tokens and a maximum of up to 214K tokens. The benchmark spans five diverse
domains—Retrieval, Code, Math, Novels, and Dialogue—providing a comprehensive testbed for
evaluating a model’s ability to understand, reason over, and extract salient information from extremely
long contexts. We conduct experiments using both Llama3-8B-Instruct and Mistral-7B-Instruct-v0.3,
evaluating performance across 10 datasets from InfiniteBench under two KV cache budgets: 128L
and 1024L. At a cache size of 128L, SCORE achieves the highest average accuracy of 17.98 on
Mistral-7B-Instruct-v0.3, outperforming the previous best-performing method, CAKE, which attains
17.57—a margin of 0.41. When the cache size is increased to 1024L, SCORE further improves to
19.54, again surpassing CAKE (18.99), with a larger margin of 0.55. These results demonstrate the
effectiveness of SCORE in compressing and retaining salient information within memory-constrained
settings, even under extreme sequence lengths. Importantly, SCORE maintains consistent performance
improvements across both low and high cache budgets, underscoring its robustness and scalability.
This highlights SCORE as a compelling solution for long-context language modeling, effectively
balancing memory efficiency with task performance across a wide range of domains and input lengths.

Table 6: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 128L cache. The best result is highlighted in
bold, the second best in underline.

| Retrieval Code Math Novels Dialogue
RO o° oo o od L

s9) s hol A A o NS > o
Method o ®% e ot et e @S @ T @ (O
StreamingLLM 4.98 4.46 39.00 0.50 19.64 19.49 0.01 41.06 1.94 0.00
2 « | H20 5.30 557 40.19 0.50 20.32 20.01 0.01 41.16 221 0.00
« 2 | HeadKV 6.14 6.14 43.54 1.50 26.51 23.37 0.09 47.43 3.67 0.00
E £ | SnapKV 6.34 6.32 43.32 1.50 25.83 23.45 0.10 48.25 3.41 0.00
&5 | PyramidKV 6.48 6.21 43.44 1.50 26.24 23.32 0.16 48.03 3.16 0.50
= ' | CAKE 6.22 6.51 43.48 1.50 26.74 25.11 0.05 48.16 375 0.50
SCORE(ours) 6.53 593 43.61 2.00 26.86 23.78 0.03 48.24 3.98 0.50
e StreamingLLM 24.10 5.56 28.17 0.00 21.56 20.03 0.10 40.56 8.01 0.00
@ % | H20 25.02 5.63 29.28 0.25 22.74 20.12 0.10 40.98 7.89 0.00
% § | HeadkV 26.75 6.27 32.74 0.25 27.43 22.74 0.31 49.10 10.32 0.50
== | SnapKV 25.95 6.95 31.47 0.50 22.57 23.14 0.32 48.76 9.69 0.00
% = | PyramidKV 26.78 6.69 33.25 0.25 23.43 21.92 0.28 49.53 9.01 0.00
S & | CAKE 26.68 6.64 32.49 0.50 28.14 21.45 0.33 49.56 9.93 0.00
SCORE(ours) 26.89 7.01 32.89 0.50 28.57 22.29 0.39 50.16 10.16 1.00

Table 7: Performance comparison over 10 datasets of InfiniteBench on Llama3-8B-Instruct and
Mistral-7B-Instruct-v0.3. Results are measured with 1024L cache. The best result is highlighted in
bold, the second best in underline.

| Retrieval Code Math Novels Dialogue
&N ot oo® o oS .o .

S o e o A o o\ 2
Method Q&\S’"’ ‘w\ﬁ Coé@‘o CO&Y\ \4\3\\\‘? @S Q}\QP‘ o C““Q o
StreamingLLM 5.89 5.78 40.78 1.50 25.21 20.79 0.05 41.87 2.78 0.50
a - | H20 5.48 6.14 4223 1.00 25.49 21.31 0.05 42.65 3.12 0.50
s 2 | HeadKV 6.73 6.61 44.53 2.00 26.98 25.10 0.04 49.87 3.77 0.50
E £ | SnapKV 6.42 6.58 4491 2.50 27.13 24.64 0.05 48.42 334 0.50
&5 | PyramidKV 6.59 6.44 44.87 2.25 27.17 25.00 0.15 49.47 4.10 1.00
= ' | CAKE 6.71 6.76 44.79 2.50 27.43 24.28 0.10 50.12 3.68 0.50
SCORE(ours) 6.78 6.78 45.16 3.00 27.43 25.12 0.25 50.66 4.14 1.00
| StreamingLLM 26.00 8.51 30.28 0.50 25.67 21.01 0.05 47.13 8.78 0.00
o Q? H20 26.21 8.98 29.78 0.50 26.97 20.31 0.09 48.78 9.24 0.00
5 g | HeadkV 27.00 10.12 35.28 1.00 28.71 21.65 0.45 50.51 10.48 0.00
] 5 SnapKV 26.98 9.37 33.25 1.00 30.29 21.68 0.19 49.79 10.59 1.00
% = | PyramidKV 26.45 9.49 34.26 1.00 26.86 22.24 0.33 49.65 10.54 1.00
= ‘E CAKE 27.02 12.15 36.80 1.00 29.71 22.27 0.33 49.23 10.34 1.00
SCORE(ours) 27.12 12.20 39.09 1.50 30.71 22.68 0.28 50.66 10.65 1.50
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BCD COR - cos ECD ~JsD

Figure 11: Head-to-head similarity matrices across various metrics for NarrativeQA. Each value
represents the average distance between 200 sampled attention vectors per head.

D ADDITIONAL DETAILED ANALYSIS AND VISUALIZATION

D.1 EFFECT OF DISTANCE METRIC CHOICE

Figure [T T] visualizes pairwise similarities across all heads and layers using various distance metrics:
Cosine similarity (COS), Pearson correlation (COR), Jensen—Shannon distance (JSD), Bhattacharyya
coefficient (BCD), and Euclidean distance (ECD). Bright regions indicate high similarity, with
all metrics revealing consistent alignment across specific layers and heads. These metrics span a
diverse range of similarity formulations, from distribution-based measures (JSD, BCD) to correlation-
or geometry-based ones (COR, EUD), providing a comprehensive comparison. Despite differing
statistical bases, these metrics capture similar redundancy signals, suggesting pronounced structural
redundancy in model representations. This highlights the potential of redundancy-aware selection to
improve efficiency.

D.2 VISUALIZATION OF DISTANCE MATRIX

To further analyze the behavior of the cosine distance metric in our retrieval framework, we vi-
sualize the pairwise distance matrices computed using cosine similarity across different datasets
in LongBench, as shown in Figure [I2] Each matrix represents the inter-token similarity structure
within heads, with darker regions indicating lower similarity (i.e., higher cosine distance). Across
datasets, we observe consistent patterns of redundancy, where certain groups of heads exhibit strong
mutual similarity. While the specific patterns vary depending on the dataset domain and structure,
the presence of high-similarity clusters is a common characteristic. These clusters often correspond
to repeated representations. Such redundancy can degrade retrieval efficiency and content diversity
if not properly managed. SCORE addresses this by leveraging cosine distance not only to capture
salient content but also to suppress over-represented or semantically repetitive tokens. This behavior
is especially beneficial in budget-constrained settings, where the selection of maximally informative
yet diverse tokens is critical.

D.3 VISUALIZATION OF BUDGET ALLOCATION

To better understand how retrieval budgets are distributed across the model’s architecture, we visualize
intra-layer similarity patterns across different datasets in LongBench, as shown in Figure[T3] Each
heatmap captures the pairwise similarity within heads at each layer, providing insight into redundancy
and representational diversity. We observe a consistent trend across datasets: the lower layers generally
exhibit higher diversity, as indicated by lower intra-head similarity. These layers tend to capture
localized, fine-grained features, making their token representations less redundant. Consequently,
they receive a larger share of the retrieval budget, allowing more tokens to be selected from them. In
contrast, middle layers often show pronounced redundancy, with many heads producing highly similar
token embeddings. The final column in Figure[[3]further breaks down the intra-layer budget allocation
at the head level. Within a given layer, heads exhibiting high distinctiveness are allocated more budget.
This fine-grained allocation strategy ensures that the most informative and non-redundant heads are
prioritized, aligning with the principles described in Section [3.3]

Despite variations in domain and task, several datasets exhibit notably similar similarity profiles
across layers and heads, suggesting that token representation patterns are influenced not only by
data but also by the model’s inherent architecture. This structural consistency points to a promising
direction for developing more generalized, architecture-aware retrieval strategies.

15



Under review as a conference paper at ICLR 2026

810

AR

En ST )

vO uawnosoqg-918uis

811
812
813
814
815
816
817
818
819
820

821

Musique

2WikiMQA

MultiNews

HotpotQA

vO awnosoqg-mnp

822
823
824
825
826
827
828
829
830
831

832

uoneziewwns

833
834
835
836
837
838
839
840
841

842
843
844
845

GovReport '

Suluiea joys-ma4

846
847
848
849
850
851
852
853
854
855

SAMSum

TriviaQA

TREC

856
857
858
859
860
861
862
863

Figure 12: Cosine distance matrices for various datasets in LongBench.
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Figure 13: Cosine distance matrices for various datasets in LongBench.

E EXPERIMENTS ON LONGBENCH DATASET

We provide a full breakdown of the LongBench evaluation results for LlaMA-2-7B, LlaMA-2-13B,
LlaMA-3-8B-Instruct, and Mistral-7B-v0.3-Instruct. The results are presented in ascending order of
cache size: 64L (Table[8), 256L (Table[9), 512L (Table[T0), and 1024L (Table [TT).

Results on Llama3-8B-Instruct. SCORE consistently outperforms prior works across all cache
sizes on the LongBench benchmark. The advantage is especially prominent in the low-cache regime,
notably at 64L (Table[8), where SCORE demonstrates a significantly higher score compared to other
methods. A key observation is that existing works often select redundant key-value pairs under tight
cache budgets, leading to poor coverage and lower performance. In contrast, SCORE maintains
accuracy even at 64L through diversity-aware selection, yielding more informative memory allocation.

Results on Mistral-7B-Instruct-v0.3. Similar to the observations with Llama3-8B-Instruct, our
method (SCORE) shows strong and stable performance across cache sizes when evaluated on Mistral-
7B-Instruct-v0.3. Notably, even under the extreme low-cache setting of 64L, SCORE preserves 85.9%
of its performance relative to the full-cache setting, demonstrating robustness.
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Table 8: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 64. The best score is marked in bold, and the second best is marked with underline.

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Q> Qe ot o e Qb o
Method \ANQP‘ Qa%\’a‘ R go\?O‘ q}ﬂ““‘“k g\\s%‘(\“ C,o"‘?“ev o g\\s\“ﬁ ‘?\@C «((\“‘AQ gP&‘@ QC°°“\ o @b

StreamingLLM  10.70 1536 27.88 24.20 20.35 5.89 14.85 16.23 18.40 55.00 78.85 34.75 1.50 5025 44.65

- H20 11.33 1726 29.21 24.49 21.46 7.84 16.49 18.00 20.00 62.00 80.30 36.29 250 5146  46.19
E HeadKV 14.41 18.80  27.95 26.94 23.85 7.93 17.84 19.56 20.65 63.00 81.54 37.47 4.00 53.09 47.89
g SnapKV 13.67 18.05 2680  28.00 21.38 7.49 16.78 19.59 19.85 57.50 81.40 36.98 350  51.60 45.96
E PyramidKV 14.75 1825 2857  29.27 23.12 7.50 17.42 19.56 19.87 60.00 82.14 36.26 350 5213 46.23
CAKE 15.49 18.88  31.97  29.33 24.65 9.35 18.62 19.88 2221 63.00 82.82 38.62 6.00 5446 4853
SCORE(ours) 15.48 1875 3212 29.01 23.91 10.01 18.43 20.02 20.29 63.00 83.47 36.67 550 5377 47.11
StreamingLLM  10.45 7.56 21.95 9.03 7.13 1.61 17.45 16.75 17.73 60.00 82.10 37.31 0.50 12.50 3245 35.89

~ | H20 11.84 9.31 23.36 9.12 9.00 3.26 18.88 19.39 19.93 59.50 85.94 37.86 1.50 1472 37.67 36.07
2, HeadKV 11.99 1214 2353  10.65 9.03 3.70 19.28 19.86 19.85 64.00 84.74 38.48 2.50 1575 3592 36.22
E SnapKV 11.51 1087 2292 10.24 8.84 320 18.60 19.25 19.19 50.50 86.84 36.28 2.00 1675 3497 33.60
ﬁ PyramidKV 12.55 11.44 2453 10.84 10.04 4.01 18.92 19.83 20.15 57.00 86.31 38.18 200 1625 37.19 3549
CAKE 12.69 10.11 22.41 10.21 9.70 2.81 20.03 20.20 21.63 67.50 87.12 39.29 2.00 1575 4276 41.25
SCORE(ours) 12.96 1244 2420 10.56 9.73 3.70 20.37 20.27 22.18 68.00 87.50 40.13 2.00 1675 4322 40.61
StreamingLLM  20.26 1629 30.02 3438l 2573 13.70 15.26 19.30 12.94 60.50 80.77 30.62 4.63 60.50 48.87 43.84

- H20 20.76 17.78 3243 38.28 27.08 16.01 17.72 20.61 16.36 61.50 88.26 3595 4.88 68.00 50.56 48.41
: g HeadKV 23.67 17.46 3272 39.81 27.50 17.39 19.14 22.12 20.04 65.00 90.20 37.27 471 69.00 54.68 51.52
E ‘E SnapKV 21.56 17.98  32.35 38.45 26.40 17.01 18.38 21.99 18.86 51.50 89.32 36.11 500  69.50 53.13 4981
ﬁ = | PyramidKV 2176 1856  33.01 39.45 28.47 17.42 18.58 21.77 18.58 58.50 88.14 37.26 500 6950 52.05 47.27
CAKE 22.06 18.17 3298  40.53 31.56 17.98 19.94 22.30 21.27 70.50 90.40 38.85 6.00  69.50 5462 4975
SCORE(ours) 22.68 18.77 3326  41.06 31.58 17.84 20.41 22.20 21.58 72.00 91.00 38.78 5.50 70.00 56.08 50.69
StreamingLLM  19.54 2507  37.66  40.13 21.43 12.69 17.47 16.93 15.99 51.00 84.00 37.20 4.00 70.00 4144 39.34

- ;: H20 20.10 2540 3792 40.48 21.78 13.00 17.73 17.51 16.37 57.00 84.50 37.62 4.50 75.00 41.83 39.96
5 g HeadKV 23.18 26.31 38.77 40.94 21.20 13.38 18.51 17.68 16.74 62.50 85.00 38.47 4.50 69.50 4235 41.38
g § SnapKV 2221 2653 37.83 39.96 20.10 13.00 17.20 17.33 16.00 50.00 85.00 36.54 5.00 76.50 41.22  38.60
S £ | PyramidKV 21.89 2653 3790  40.52 2217 13.41 17.78 17.69 19.66 54.50 84.00 36.56 5.50 7750 40.16 37.42
= | CAKE 2389 2689 39.12 4208 25.26 13.97 19.38 18.03 18.25 64.50 85.00 40.22 500  78.00 45.02 42.94
SCORE(ours) 2377 2786 38.81 4212 25.28 13.83 19.07 18.98 18.38 67.00 85.50 40.54 5.00 78.50 4522 44.10

Table 9: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 256. The best score is marked in bold, and the second best is marked with underline.

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

> gL s
QP QT e o o O QP o .
Method @ (¥ @0 Gt T (@ (@ (et (08T o0 T ST et e o e

StreamingLLM  15.09 1887  29.73 29.60 23.70 8.72 18.69 19.32 20.98 62.50 82.69 34.00 3.00 6.00 5504 48.80

= H20 15.63 19.41 30.27 30.14 24.24 9.26 19.23 19.86 21.52 63.00 83.23 34.54 3.50 6.50  55.58 49.34
':.l HeadKV 15.66 2029 3095  30.52 24.50 9.87 19.78 20.33 21.93 64.00 83.19 35.18 5.00 550  56.01 50.13
E SnapKV 16.10 20.16  30.59 30.44 24.89 9.78 20.15 20.37 21.78 63.50 83.90 34.78 4.50 6.00 56.97 49.98
E PyramidKV 16.32 1899 3047  30.65 24.53 9.32 18.95 20.07 22.05 63.00 83.80 34.85 5.00 10.00 56.97 49.12
CAKE 1591 19.69  30.55 30.42 24.52 9.54 19.51 20.14 21.80 63.00 83.51 34.82 4.50 700 5586 49.62
SCORE(ours) 17.24 2135 3552 30.69 2543 9.76 20.52 20.46 23.83 64.00 84.30 34.98 5.00 9.50 5745 5149
StreamingLLM ~ 12.45 13.66 2571 11.03 9.27 3.81 2097 19.47 2254 68.00 85.42 4477 4.50 1200 42.88 41.58

o | H20 12.99 1420 2625 11.57 9.81 4.35 21.51 20.01 23.08 68.00 85.96 4531 4.00 1475 4342 4212
2_ HeadKV 13.77 1517 21.50 11.94 10.48 4.01 21.78 20.54 23.57 69.00 86.83 46.38 5.50 1425 4395 42.69
g SnapKV 12.56 1282 26.13 12.49 10.38 4.85 22.61 20.44 23.56 69.00 86.15 45.82 3.05 1475 4433 43.36
E PyramidKV 13.85 1582 2633 11.49 9.76 5.38 21.35 20.24 23.30 69.00 86.09 44.94 5.57 1675 43.18 4151
CAKE 13.27 1448 2653 11.85 10.09 4.63 21.79 20.29 23.36 68.50 86.24 45.59 4.50 1525 4370 42.40
SCORE(ours) 13.68 16.58 2897 1270 12.34 4.71 22.38 20.46 24.67 69.00 87.56 47.16 550 1625 4425 4338
StreamingLLM ~ 22.87 31.41 4045 43.13 31.64 19.79 20.69 21.66 21.88 70.50 89.70 39.24 4.50 68.48 5646 52.83

- H20 2341 3195 4099  43.67 32.18 20.33 21.23 22.20 2242 71.00 90.24 39.78 5.50 69.02 57.00 53.37
:.‘; g HeadKV 2408 3401 42,64 4452 33.54 21.31 21.79 22.33 23.09 72.00 90.57 40.62 575 69.50 57.68 55.29
E Z SnapKV 23.39 33.50  40.73 43.80 32.84 20.10 21.69 22.57 2279 71.50 90.86 39.85 5.51 69.50 58.14 53.82
g = | PyramidKV 23.95 2953 40.81 43.90 31.37 20.77 21.42 22.89 22.59 71.50 90.48 40.08 5.91 69.25 5637 5220
CAKE 23.71 3225  41.29 4397 3248 20.63 21.53 22.50 2272 71.50 90.54 40.08 5.50 69.32 5730 53.67

SCORE(ours) 25.09 3568 4293 4561 35.63 21.37 22.80 22.69 24.25 72.50 90.56 41.98 578 69.25 5723 53.01
StreamingLLM  26.00 30.63  49.01 43.47 31.20 2243 20.29 18.32 67.00 84.42 40.70 4.50 7939 4522 4579

- g H20 26.54 3117 49.55 44.01 31.74 2297 20.83 18.86 68.00 84.96 41.24 5.00 79.93 4576 46.33
s é HeadKV 27.66 3230 4998 4479 3235 23.32 20.99 20.16 69.50 85.30 4235 6.00 79.50  46.96 48.83
£% | SnapkV 26.55 3124  49.58 43.57 31.80 23.14 21.44 18.93 68.00 85.01 41.36 500  81.00 4645 4685
'é LE PyramidKV 26.61 31.18 5028  44.87 32.28 23.65 21.27 18.69 67.50 85.78 41.22 5.50 80.50 45.07 44.50

= | CAKE 26.34 3199 4939 4402 31.80 23.28 21.28 18.86 68.00 85.17 41.54 5.00 80.77 4621 46.26

70.50 85.91 43.23 5.50 82.00 4832 48.63

SCORE(ours) 27.05 3474 4952 4481 3253 24.26 2232 20.15
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Table 10: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 512. The best score is marked in bold, and the second best is marked with underline.

‘ Single-D« QA Multi-D QA Summarization Few-shot Learning Synthetic Code
> S

Method \*““QP‘ Qﬁsve‘ @?’z‘\ \Ao\?"‘QP e «;\N\Q g\“é‘q\w OQW*“X’« Q\j\5"‘“ §I\“\\.\V\z\“ ‘?\@C “‘\QWQI" o ‘4\5\\\“ o o RS
StreamingLLM 15.94 19.52 33.89 30.44 24.12 9.20 20.32 19.56 22.40 63.00 82.56 34.29 4.00 6.00 5685 5041

- H20 16.48 20.06 34.43 30.98 24.66 9.74 20.86 20.10 22.94 63.00 83.10 34.83 4.50 6.50  57.39  50.95
::.. HeadKV 17.02 2138  35.27 31.48 25.08 9.50 21.59 20.76 22.59 64.00 83.02 34.77 6.00 550 5798 51.65
£ | SnapKV 17.02 1996 3418 3137 2495 1051 2174 20.22 23.79 64.00 83.57 35.12 5.00 7.00 5854 5098
5 PyramidKV 16.60 20.03 35.03 31.30 25.16 10.40 20.46 20.52 23.63 64.00 83.90 35.80 5.00 8.00 56.85 5141
CAKE 16.76 20.34 34.71 31.26 24.94 10.02 21.14 20.38 23.22 63.88 83.38 35.11 4.50 7.05 5767 5123
SCORE(ours) 1829 2157 3595  30.78 24.88 10.84 22.08 20.74 24.63 64.00 8375 35.01 5.00 9.50 5872 5217
StreamingLLM 12.89 14.57 26.60 10.71 10.68 4.05 22.06 19.62 23.88 68.50 84.81 45.60 3.50 1575 44.09 43.89

o | H20 13.43 15.11 27.14 11.25 11.22 4.59 22.60 20.16 24.42 69.00 85.35 46.14 5.00 1625 44.63 44.43
ﬂ. HeadKV 14.00 1605 2753 1115 12.32 4.10 22.89 20.52 24.63 69.50 85.36 47.19 5.00 1575 45.10 44.10
'é SnapKV 13.53 1549 2677 11.74 10.86 523 23.58 2047 25.14 69.50 85.68 46.44 500  17.25 45.10 46.04
E PyramidKV 13.95 14.99 28.32 11.69 5.63 22.52 20.68 24.70 69.50 86.21 45.98 5.00 17.75 4510 44.36

CAKE 13.71 1539 2742
SCORE(ours) 13.49 1645 2791

11.50 4.87 22.88 20.44 24.70 69.38 85.63 46.42 5.50 16.80  44.91 4471
12.49 4.71 23.90 20.61 25.66 68.50 87.75 41.73 5.00 1775 45.67 4697

StreamingLLM 2454 3331  41.46 3230 1866 2220 2190 2344 7100 89.60  40.07 500 6925 5646 53.75
o |H20 2508 3385 4200 3284 1920 2274 2244 23.98 7150 90.14 4061 550  69.50 57.00 54.29
%3 | HeadkV 2577 3467  43.11 3404 2028 2295  23.02 2433 7300 9056 4163 600 6950 57.96 55.59
g § SnapKV 2561 33.63 4328 3378 2058 23.07 2262 2431 7150 9044 40.66 600 6850 5701 5530
27 | PyramidKV 2506 3444 4082 3191 1793 2341 2289 2449 7200 9061 4074 600 6950 5724 53.19

CAKE 2538 3415 4230 3314 1950 2304 2274 2428 7207 9044 4091 550  69.50 5730 54.59

SCORE(ours) 25.68 3826 4427 36.53 21.05 24.50 23.13 25.51 74.00 90.64 41.63 5.00 68.50 57.52 53.62

StreamingLLM 2672 3371  49.98 3182 2240 2210 1927 2075 68.50 8474 4175 400 80.00 4747 4857
" % H20 2726 3425 5052 3236 2294 2264 1981 21.29 69.00 8528 4229 460 8050 4801 49.11
T £ | HeadkV 2797 3521 5128 3290 2437 2294 2094 21.65 7050 8541 42.80 500 8200 4897 5049
E% | Snapkv 2811 3454 5070 3292 2270 2336 19.89 21.70 7000 8550  43.07 80.50 4858 49.62
£ & | PyramidKV 2689 3421 5078 3246 2296 2281 19.80 2173 68.50  86.3 4220 81.00 47.67 4843

= | CAKE 2687 3509 5021 3238 2309 2305 19.82 21.56 6893 8555 4239 8110 48.06 49.13

SCORE(ours) 2682 3771 5035 32.97 24.82 24.18 20.97 2245 69.50 86.21 43.09 550  83.00 49.13 50.55

Table 11: Performance comparison over 16 datasets from LongBench. Results are measured with a
cache size of 1024. The best score is marked in bold, and the second best is marked with underline.

‘ Single-D QA Multi QA Summarization Few-shot Learning Synthetic Code
> ©

Method \NQ}X (Ib*\’c‘ “\(,,e‘\ Y\o\?"@h 1\7"““‘\“\(2 “\\‘é\“\\e Qo“‘&%(\ o N\S\“‘\ \1\\1\\\ eV .(YS'C ,((\&Q}X SP‘N\S\“‘\ ¢ C“\“\‘ R ?\6’?
StreamingLLM 15.28 18.90 31.55 28.54 22.38 7.00 19.22 17.12 2231 61.00 81.52 37.84 3.00 3.00 46.66 47.94
o H20 17.01 20.74 32.04 30.37 24.64 8.90 20.59 18.88 24.43 63.00 81.95 39.98 5.50 4.00 4569 4879
o | Headkv 1899  21.04 3540 3129 25.26 10.63 21.60 20.64 26.39 64.00 83.55 40.57 6.00 7.00 5842 52.60
g SnapKV 17.79 21.91 35.68 31.96 26.21 9.61 22.1 21.08 25.01 64.00 82.95 40.84 6.00 750 57.78 48.54
E PyramidKV 17.25 21.02 3733 31.29 25.50 9.80 2245 20.61 24.97 64.00 83.81 40.09 6.00 8.00 5698 51.78
CAKE 1844 2195 3595  31.60 25.01 10.10 22.75 20.26 25.09 64.00 8599 40.59 6.00 7.00 5252 51.98
SCORE(ours) 1847 2204 3599 3164 2558 1051 2375 2058 2539 6400 8939 41.00 600 750 5858 52.87
StreamingLLM 10.40 11.80 23.70 8.93 9.34 1.31 22.54 17.51 23.36 65.00 57.55 44.99 2.00 1475 39.01 40.07
= | H20 12.15 12.12 25.10 10.66 10.33 3.34 24.39 19.35 25.61 66.50 86.95 46.88 3.50 16.75 4023 41.02
2 | HeadkV 13.80 1646 2842  12.00 13.21 4.59 23.63 20.97 25.76 69.00 86.83 41.89 4.00 1475 4583  46.47
"é SnapKV 1338 1569 2836 1068  13.33 5.05 2471 20.76 25.83 6950  85.84 4141 355 1575 4583 46.93
ﬁ PyramidKV 13.31 16.34 28.10 11.92 12.36 6.50 24.37 20.47 26.07 71.50 87.34 42.24 3.54 16.75 4556 4534
CAKE 13.55 1637 2720 1210  13.24 4.18 25.58 20.57 26.00 68.50 87.05 47.99 450 1575 4268 44.01
SCORE(ours) 14.14 16.56 27.07 12.31 12.50 5.01 25.89 20.75 26.36 68.50 87.75 42.32 4.50 16.75 4570 47.19
StreamingLLM ~ 22.84 3494 4061  43.54 33.06 19.86 24.24 20.30 21.36 69.00 80.91 40.09 355 6750 5026 4820
- H20 23.49 35.44 40.01 44.67 34.52 21.13 24.79 21.04 21.59 69.00 90.10 40.96 5.00 69.00 50.16 49.32
2 g HeadKV 2579  37.69 4356 4572 36.23 20.25 24.38 22.93 2572 74.00 90.56 41.53 539 6925 57.77 5434
E ‘é’ SnapKV 25.76 36.41 43.38 45.16 34.29 20.40 24.65 22.90 25.58 73.00 90.56 41.23 539 69.25 57.16 54.75
f = | PyramidKV 25.56 36.39 42.54 4555 34.61 22.05 21.96 22.74 25.68 72.50 90.56 41.44 5.75 69.25  57.01 54.66
CAKE 2509 3734 4411 4530 34.49 21.49 2245 24.03 7250 9061 42.11 500  69.15 5325 49.97
SCORE(ours) 25.41 39.32 45.03 45.38 37.06 22.30 26.78 23.40 26.41 74.00 90.64 42.13 5.65 69.25 5741 5473
StreamingLLM 2493 32.81 4642  43.67 28.77 22.05 21.99 19.09 18.29 67.00 83.64 40.34 350 80.00 43.15 4639
- % H20 25.68 3238 48.01 44.24 29.31 23.97 24.36 20.09 23.55 67.50 84.37 40.90 4.50 81.00 48.02 4724
5 é HeadKV 27.76 36.91 50.13 45.80 32.83 24.36 24.61 21.09 23.15 70.50 85.33 43.44 5.50 83.00 49.26 50.06
; S | SnapKV 26.56 35.87 49.52 45.03 33.06 24.05 25.60 21.08 23.65 71.00 85.21 4243 5.50 82.50 49.56 4848
'é E PyramidKV 27.11 36.18 50.96 46.16 32.95 24.55 24.57 20.65 2351 70.00 86.23 43.32 7.00 83.00 49.74 49.72
= | CAKE 27.11 3774 4873 46.16 3292 24.03 26.52 20.98 24.40 70.00 85.81 42.71 6.00 8200 49.18 4844

SCORE(ours) 28.89 3778  49.62 4529 32.99 24.88 26.89 21.10 24.50 71.00 86.33 43.53 7.00 83.00 49.78 50.51
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F LIMITATIONS

Despite its effectiveness in managing multi-level redundancy in the KV cache, SCORE has several
limitations. (1) It requires sampling representations from each attention head and computing pairwise
distances, which can be more computationally expensive than simple statistical metrics (e.g., variance
or entropy), especially as the number of samples increases. Although this trade-off does not signifi-
cantly impact overall performance, it remains a consideration for large-scale or real-time applications.
Our cascading design and sampling limits help reduce this cost, but further optimization may be
needed for broader scalability. (2) SCORE relies on fixed distance metrics that may not perfectly
align with downstream task performance. Integrating task-aware or learned similarity measures
could improve redundancy estimation. (3) This work focuses on inference-time cache management;
extending SCORE to training scenarios such as fine-tuning or continual learning remains an open
direction for future research.
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