
Published in Transactions on Machine Learning Research (03/2025)

Towards Efficient Mixture of Experts: A Holistic Study of
Compression Techniques

Shwai He∗ shwaihe@umd.edu
University of Maryland, College Park

Daize Dong∗† dzdong2019@gmail.com
Rutgers University

Liang Ding liangding.liam@gmail.com
University of Sydney

Ang Li angliece@umd.edu
University of Maryland, College Park

Reviewed on OpenReview: https: // openreview. net/ forum? id= HTpMOl6xSI

Abstract

Scaling large language models has driven remarkable advancements across various domains,
yet the continual increase in model size presents significant challenges for real-world deploy-
ment. The Mixture of Experts (MoE) architecture offers a promising solution by dynamically
selecting and activating only a subset of experts during inference, thus substantially reducing
computational costs while preserving high performance. Despite these benefits, MoE intro-
duces new inefficiencies, such as excessive parameters and communication overhead. In this
work, we present a holistic study of compression techniques for Mixture of Experts to enhance
both efficiency and scalability. While recent efforts have focused on Expert Trimming, which
reduces the number of experts, these approaches still suffer from considerable communication
and computational costs. To address this, we propose more aggressive strategies, such as
Layer Drop, which removes entire MoE layers, and Block Drop, which eliminates transformer
blocks. Surprisingly, these aggressive pruning techniques not only preserve model perfor-
mance but also substantially improve computation and memory efficiency. Furthermore,
beyond Expert Trimming, we also introduce Expert Slimming, which compresses individual
experts to further boost performance and can be seamlessly integrated with Expert Trimming.
Extensive experimental results demonstrate the effectiveness of our proposed methods —
Layer Drop and Block Drop — along with the comprehensive recipe that integrates Expert
Slimming and Expert Trimming, achieving a 6.05× speedup with 77.1% reduced memory
usage while maintaining over 92% of performance on Mixtral-8×7B. Our code is released at
https://github.com/CASE-Lab-UMD/Unified-MoE-Compression.

1 Introduction

While scaling large language models has shown exceptional performance across various domains (Ramesh
et al., 2021; OpenAI, 2024; Team, 2024a), the increasing model size poses significant challenges in real-world
deployments (Sun et al., 2023; Frantar et al., 2022) due to excessive computational demands and associated
costs. The Mixture of Experts (MoE) (Shazeer et al., 2017), which selectively activates a subset of parameters
during inference, offers a promising solution to reduce these computational burdens. Additionally, integrating

∗Equal contribution
†Work done during assistantship

1

https://openreview.net/forum?id=HTpMOl6xSI
https://github.com/CASE-Lab-UMD/Unified-MoE-Compression

Published in Transactions on Machine Learning Research (03/2025)

MoE with Large Language Models (LLMs) has been shown to further enhance performance (Jiang et al.,
2024; Dai et al., 2024).

Despite these advancements, MoE models still suffer from significant redundancies that increase deployment
costs. Standard MoE implementations replicate feed-forward layers across multiple experts, resulting in
heavily parameterized models. For instance, Mixtral-8×7B (Jiang et al., 2024) contains 47B parameters,
but only 13B parameters are activated per token, leading to substantial GPU memory consumption and
limited scalability. In addition, replicating experts often introduces redundant experts. For example, He et al.
(2023) observed that expert parameters could be compressed through parameter sharing. Similarly, Lu et al.
(2024) noted that not all experts are essential, suggesting that some can be safely removed. These findings
underscore the potential for compressing MoE models to improve efficiency without sacrificing effectiveness.

In this paper, we first investigate the Expert Trimming based compression techniques, which reduce the
number of experts to enhance the efficiency of MoE (Cheng et al., 2020; Liang et al., 2021). The most
prevalent approach for Expert Trimming is Expert Drop, which scores each expert and drops the less important
ones (Lu et al., 2024; Muzio et al., 2024). While Expert Drop reduces model size, it does not eliminate
costly computations within the MoE layer and complex communication among experts, leading to negligible
improvements in the inference speed. To this end, we propose more aggressive Expert Trimming methods
to enhance MoE efficiency. Specifically, to mitigate communication and computation costs, we present
Layer Drop that removes the entire MoE layer. Additionally, given the computation-intensive nature of the
attention mechanism within transformer blocks, we further propose Block Drop, which removes the whole
transformer blocks. We use similarity-based metrics to demonstrate the feasibility of Layer Drop and Block
Drop. Surprisingly, these two coarse-grained methods outperform fine-grained Expert Drop by a large margin
in balancing performance and efficiency. Additionally, with small-scale post-finetuning, the compressed models
can be further optimized to achieve near-original performance.

Beyond removing experts, we also explore Expert Slimming, which focuses on compressing individual experts.
Techniques such as network pruning (Han et al., 2016; Zhu & Gupta, 2017) and quantization (Jacob et al.,
2017; Nagel et al., 2021) have proven effective for the model compression, with quantization being particularly
suitable for hardware acceleration. By integrating Expert Slimming with Expert Trimming, we propose a
unified framework for compressing MoE models that further maximizes efficiency gains while maintaining
strong performance.

Our experimental results on representative MoE models, Mixtral-8×7B (Jiang et al., 2024) and DeepSeek-MoE-
16B (Dai et al., 2024), demonstrate the effectiveness of our proposed methods. For Expert Trimming, Expert
Drop significantly reduces the memory usage but it provides only marginal improvements in inference speed.
In contrast, Layer Drop and Block Drop significantly accelerate inference and reduce memory usage while
maintaining comparable performance to the original models. The combined strategy of Expert Trimming and
Expert Slimming results in a 6.05× speedup with only 22.8% memory usage (20.0GB) while maintaining
over 92% of the original performance on Mixtral-8×7B. The findings offer valuable insights for enhancing
the efficiency of MoE models. Additionally, post-finetuning allows compressed models to recover most of
their original performance, resulting in a minimal 0.6% performance gap compared to the uncompressed
DeepSeek-MoE-16B model.

In summary, by conducting a holistic study on compressing Mixture of Experts, our key contributions are:

• We extend Expert Trimming to a higher architectural with Layer Drop and Block Drop, significantly
enhancing computation and memory efficiency while preserving model performance.

• We integrate Expert Trimming with Expert Slimming to further achieve efficiency gains without
compromising performance.

• Extensive experimental results demonstrate the effectiveness of our proposed methods, achieving
a 6.05× speedup and reducing memory usage to just 20.0 GB, all while maintaining over 92% of
performance on Mixtral-8×7B.

2

Published in Transactions on Machine Learning Research (03/2025)

2 Related Work

Mixture of Experts The Mixture of Experts (MoE) is a kind of neural network architecture with an
extended set of parameters (referred to as “experts”) controlled by a router, which is first introduced in the
context of conditional computation (Jacobs et al., 1991; Jordan & Jacobs, 1994). The potential of sparse
activation in MoE is subsequently exploited by Shazeer et al. (2017) for efficient training and inference on
pretrained models with special designs, opening the door for MoE in various vision (Riquelme et al., 2021) and
language (Lepikhin et al., 2020; Du et al., 2022; Fedus et al., 2022) scenarios. Attributed to its exceptional
efficiency, MoE has been adopted as a foundational framework in the designs of large language models (LLMs)
(Jiang et al., 2024; Dai et al., 2024; Xue et al., 2024a; Zhu et al., 2024; Team, 2024b), achieving superior
scaling laws at low computational costs (Clark et al., 2022). Further investigations emerge in developing
improved expert structures (Gururangan et al., 2022; Rajbhandari et al., 2022; Dai et al., 2024), router
designs (Lewis et al., 2021; Roller et al., 2021; Zhou et al., 2022), and training strategies (Shen et al., 2023;
Chen et al., 2022), propelling the continuous evolution on the representation capability and computational
efficiency of MoE models. Despite the success, MoE also suffers from efficiency issues. For instance, MoE
replicates the experts, significantly increasing the parameter budget (He et al., 2023). On the other hand,
adopting multiple experts to process input tokens introduces communication costs and enhances latency
(Song et al., 2023; Xue et al., 2024b).

Compression Methods The increasing size of large language models presents considerable challenges
for their practical implementation. Consequently, a range of efficient methods has emerged to address the
implementation issues. Among them, model quantization (Frantar et al., 2022; Lin et al., 2024) and network
pruning (Sun et al., 2023; Frantar & Alistarh, 2023) are widely utilized. Model quantization reduces the
precision of neural network weights to lower bits (Jacob et al., 2017), while network pruning (Han et al.,
2016) removes redundant parameters or architectures. Although these methods have shown promising results
on dense models, they lack consideration for the inductive bias inherent in MoE. To bridge this gap, Expert
Drop, as proposed in studies like (Muzio et al., 2024; Lu et al., 2024), addresses the unique nature of
MoE by removing unimportant experts. By eliminating redundant experts, the MoE architecture becomes
more compact and can be deployed at a lower cost. However, while Expert Drop leads to a more compact
architecture, it may also lead to non-negligible performance drop and rely on post-training for recovery.

3 Preliminaries

3.1 Mixture of Experts

A Mixture of Experts (MoE) layer consists of a collection of n experts, {E1, E2, . . . , En}, each associated
with weights {W1, W2, . . . , Wn}, and a router G that dynamically selects the most relevant experts for a
given input x. The router computes selection scores, G(x) ∈ Rn, for all experts and selects the top k experts,
resulting in a sparse activation pattern. The input x is processed by the selected experts, and their outputs
are combined into a weighted sum based on the router’s scores. This process is mathematically expressed as:

K = TopK(Softmax(G(x)), k), (1)

y =
∑

i∈K
G(x)i ·Ei(x|Wi), (2)

where K denotes the indices of selected experts, G(x)i represents the selection score for the i-th expert,
and Ei(x) is the output from the i-th expert. In transformer models, the MoE layer usually replaces the
feed-forward network (FFN). In this context, each expert functions as an independent FFN module, enhancing
the model’s capacity without a proportional increase in the computational cost (Vaswani et al., 2017).

Challenges While MoE models have demonstrated strong performance across various tasks (Jiang et al.,
2024; Dai et al., 2024), they also encounter significant deployment challenges. On one hand, MoE models
replicate multiple expert networks, inflating the model size and memory usage. For instance, Mixtral-8×7B has
a total of 47B parameters and requires 87.7GB of memory for deployment, though only 13B parameters

3

Published in Transactions on Machine Learning Research (03/2025)

are activated for each token. On the other hand, the communication required to manage multiple expert
networks increases latency and slows down inference speed, especially in distributed environments (Song
et al., 2023; Yu et al., 2024).

3.2 Overview of Previous Compression Methods

To address the efficiency challenges, we first review several mainstream and state-of-the-art compression
techniques for MoE models.

Pruning: Pruning reduces the number of active parameters by selectively disabling parts of the model’s
weights. In an MoE layer with n experts {Ei}n

i=1 and corresponding weights {Wi}n
i=1, pruning introduces

binary masks {Mi}n
i=1 to deactivate certain weights:

Ŵi = Mi ⊙Wi. (3)

Pruning can be unstructured (Lee et al., 2021; Bai et al., 2022), semi-structured, or structured. Unstructured
sparsity tends to yield the best performance, semi-structured sparsity strikes a balance between efficiency
and performance, and structured sparsity, while hardware-friendly, often results in lower performance.

Quantization: Unlike pruning, which involves masking out unimportant parameters, quantization reduces
memory usage by converting model weights to lower-bit representations. For MoE layers, quantization is
applied in the following way:

Ŵi = Quant(Wi), (4)
where “Quant” denotes the quantization function. Quantization decreases the computation and memory
consumption without reducing FLOPs or the total number of parameters, making it particularly advantageous
for hardware acceleration.

Expert Drop: Different from fine-grained pruning and quantization, Expert Drop entails the removal of
expert networks, based on the observation that not all experts are equally important (Lu et al., 2024; Muzio
et al., 2024). Given expert-wise importance scores S (e.g., the routing scores, S(Ei) = G(x)i), Expert
Drop retains only the experts with the highest n′ scores:

T ′ = TopK(S({Ei}n
i=1), n′), (5)

E ← {Ei}i∈T ′ , G← Gi∈T ′ . (6)
Here, T ′ denotes the subset of the original expert indices T = {1, 2, . . . , n}. Expert Drop reduces FLOPs
conditionally: when T ′ contains more than or equal to k indices, MoE still utilizes the top k experts for each
input; otherwise, it uses all remaining experts. While this approach reduces communication between experts,
the resulting speedup is usually insignificant when maintaining acceptable performance.

Other Compression Techniques: Other methods, such as low-rank decomposition (Li et al., 2024b;a),
aim to compress model weights into smaller matrices, further reducing memory and computational costs. In
this work, we primarily focus on the widely-used methods (pruning, quantization, and Expert Drop), leaving
a more detailed exploration of these additional methods for future research.

4 A Holistic Study of MoE Compression Techiniques

In this section, we propose a general framework that unifies various compression methods for MoE. This
framework provides a comprehensive understanding of MoE model efficiency issues and helps identify new
design spaces for further performance improvements.

4.1 Overview

Existing MoE compression methods primarily address two types of inefficiencies: structural redundancies
in the overall architecture and internal redundancies within individual experts. To address both issues, we
categorize these methods into two complementary perspectives: Expert Trimming that focuses on removing

4

Published in Transactions on Machine Learning Research (03/2025)

MoE Normalization

MoE Normalization
Multi-Head Attention

MoE Normalization

Multi-Head Attention

Mixture of Experts

MHA Normalization

(a) Transformer Block (b) Mixture of Experts

MHA NormalizationGranularity Scales Up

QuantizationPruning

Expert Drop Layer Drop Block Drop

(d) Expert Trimming

(c) Expert Slimming

Figure 1: The Unified View of MoE Compression. The view integrates two complementary perspectives:
Expert Slimming and Expert Trimming. Expert Slimming compresses individual experts, while Expert
Trimming directly drops structured modules.

structured components (e.g., experts, layers, and blocks), and Expert Slimming that compresses individual
experts through techniques like pruning or quantization. An overview of these compression perspectives is
illustrated in Figure 1.

Expert Trimming deals with compressing structured modules by selecting and retaining only a subset of the
experts, denoted as T ′. This is represented by the transformation T ← T ′. Methods like Expert Drop, which
selectively drops unimportant experts, are examples of this approach. On the other hand, the compression of
individual experts (Expert Slimming) focuses on the transformation and reduction of expert weights, denoted
as W . We utilize a transformation function f(W) to represent this process. The transformation function
f(W) can be understood as a general mapping that applies various compression techniques to the weights of
the model. For example, in pruning, f(W) could be a function that sets a subset of the weights to zeros.
In quantization, f(W) might reduce the precision of the weights from 32-bit floats to 8-bit integers. By
integrating these two perspectives, we can derive a general form for efficient MoE models. The compression
within and across experts can be expressed as follows:

y =
∑

i∈T ′
Gi ·Ei(x|f(Wi)). (7)

In the following sections, we will elaborate on Expert Trimming and Expert Slimming, respectively.

4.2 Expert Trimming

The core operation of Expert Trimming involves updating the set of remaining experts denoted as T ← T ′,
where T ′ is a subset of the original expert indices T . Specifically, Expert Drop updates the experts and their
corresponding routing weights as follows: E ← {Ei}i∈T ′ and G← Gi∈T ′ .

However, Expert Drop carries the risk of collapsing feature transformation. The absence of certain experts
can lead to incorrect selections for given inputs, thereby degrading model performance (Chen et al., 2022).
Additionally, partially reducing experts can disrupt routing patterns, negatively impacting the model’s overall
efficiency and effectiveness. Despite its benefits, Expert Drop still retains the costly computation within each
expert and the complex communication between experts. These limitations highlight the need for further
optimization of Expert Trimming to promote the efficiency. By systematically analyzing the redundancies

5

Published in Transactions on Machine Learning Research (03/2025)

Table 1: Summary of Compression Methods. “✓” means effective, indicating that the method performs
well as intended. “✗” means ineffective, where the method fails to optimize the specified metric. “❍” represents
conditionally effective, depending on specific settings and environments.

Method Formulation Parameter Memory FLOPs Speedup
Expert Drop T ← T ′ ✓ ✓ ❍ ❍
Layer DropExpert Trimming
Block Drop T ← ∅ ✓ ✓ ✓ ✓

Pruning M ⊙W ✓ ❍ ✓ ❍Expert Slimming Quantization Quant(W) ✗ ✓ ✗ ✓

and inefficiencies inherent in MoE models, we propose extending beyond expert-level optimizations to identify
new design spaces for efficiency improvements.

MoE Normalization

Mixture of Experts

Figure 2: Illustration of Similarity Mea-
surements in Layer Drop. Features for
calculating S(M) and S(NM) are colored with
red and blue, respectively.

We propose two novel techniques: Layer Drop and Block
Drop. Layer Drop focuses on removing entire MoE layers,
which significantly reduces both computation and communica-
tion overhead. Block Drop extends this concept by eliminat-
ing entire blocks, including attention layers and MoE layers,
within transformer models. These advanced techniques aim
to streamline the model architecture, improve performance,
and enhance overall efficiency.

Layer Drop Inspired by Raposo et al. (2024); Elhoushi et al.
(2024), we consider a special scenario of Expert Drop where
all experts are dropped (T ← T ′ = ∅), effectively removing
entire MoE layers. We refer to this approach as Layer Drop.
To perform Layer Drop, we use a similarity-based metric
where high similarity indicates high redundancy in transfor-
mation. One straightforward metric is the cosine similarity
between the input x and the output y = MoE(x):

S(M) = x · y
||x||2 ||y||2

, where y = MoE(x). (8)

However, this metric alone does not adequately capture the impact of the MoE layer within the context of
a transformer block, which includes a layer normalization module ("Norm") (Ba et al., 2016) and residual
connections (He et al., 2015). To address this, we propose concurrently removing both the MoE and Norm
layers. This approach ensures that the similarity metric more accurately reflects the combined functionality
of these layers, allowing for a more precise identification of redundancy and a streamlined model architecture,
as illustrated in Figure 2. By considering the similarity between the raw residual input and the aggregated
output, we can better evaluate the necessity of the MoE layer in the overall architecture:

S(NM) = x′ · y′

||x′||2 ||y′||2
, where y′ = x′ + MoE(Norm(x′)). (9)

Block Drop Within a transformer block, Layer Drop removes the MoE layers but retains the computation-
costly attention layers (Ribar et al., 2024; Zhang et al., 2023). To address this issue, we further utilize the
same similarity-based metrics to investigate whether the attention layer can be dropped without a significant
performance drop. If feasible, this allows us to drop the entire block within MoE models, thus enhancing
efficiency. We introduce Block Drop as an extension of Layer Drop, which also removes the attention layers.
Specifically, for the i-th block, we assess its importance score by evaluating the similarity between its inputs
xl and outputs yl. Compared to Expert Drop, both Layer Drop and Block Drop focus on structures beyond
expert level, with the potential to further enhance the efficiency of MoE models.

6

Published in Transactions on Machine Learning Research (03/2025)

4.3 Expert Slimming

Given that employing multiple experts in MoE significantly escalates parameters and inference costs, Ex-
pert Slimming, stemming from single-model compression techniques, targets the compression of individual
expert weights W exclusively. We denote any efficient transformation function as f(·), which encompasses
pruning M ⊙W and quantization Quant(W). Through the application of such functions, we reduce the
redundancy within each expert and create several light-weighted slim experts, thus improving their intrinsic
efficiency. However, it is important to note that Expert Slimming primarily focuses on compressing individual
experts without addressing the redundancy across multiple experts. For maximum efficiency gains, Expert
Slimming and Expert Trimming can be integrated to compress both individual experts and structured
components. We summarize the efficiency contributions of all the discussed Expert Trimming and Expert
Slimming methods in Table 1, highlighting the unique advantages of each approach.

5 Experiments on Expert Trimming

In this section, we evaluate the effectiveness of Expert Trimming techniques, starting with Expert Drop, and
comparing it with our proposed methods, Layer Drop and Block Drop. Implementation details are provided
in Appendix A.

Expert Drop: Performance Degradation with Limited Efficiency Gains While experts are specific
structures in MoE, not all experts hold equal significance. Figure 11 visualizes the distribution of expert-wise
importance scores, highlighting this variability. To systematically drop experts at varying proportions, we
conduct experiments using both layer-wise and global dropping approaches (see Appendix A.3). Given the
importance of shared experts (Appendix E), we only dropped normal experts for DeepSeek-MoE-16B. Under
both settings, Expert Drop causes consistent performance degradation. For example, dropping 25% of experts
in Mixtral-8×7B results in a 23% performance drop on the MMLU task. The efficiency improvement from
Expert Drop is also marginal. For instance, dropping 12.5% of experts results in less than a 1% speedup,
despite significant performance losses. More experimental results are available in Appendix F.

0% 25% 50% 75% 100%
Dropped Percent

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

20

30

40

50

60

70
MMLU

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0% 25% 50% 75% 100%
Dropped Percent

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 3: Evaluation of Expert Drop. We consider two strategies: layer-wise dropping (dotted lines) and
global dropping (solid lines). “Random Guess” refers to randomly generating an output rather than using
the model’s predictions, serving as a baseline to assess the extent of performance degradation.

0 5 10 15 20 25 30
Layer Index

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Layer-wise Similarity

Mixtral-8×7B (Norm + MoE)
Mixtral-8×7B (MoE)
DeepSeek-MoE-16B (Norm + MoE)
DeepSeek-MoE-16B (MoE)

Figure 4: Layer-Wise Similarity. We
consider two scenarios, i.e., for “MoE” and
“Norm + MoE”.

Layer Drop: Comparable Performance with Greater Ef-
ficiency To verify the feasibility of Layer Drop, we visualize
feature similarity across different modules in Figure 4. This vi-
sualization shows a high level of similarity for features across
the the MoE normalization module (Norm) and the MoE layer.
In contrast, the low similarity for features across the MoE layer
indicates the infeasibility of removing only MoE layers. Results
from Figure 5 show that Layer Drop preserves performance within
a wide range of compression ratio, e.g. 1% performance drop
on MMLU when dropping 8 layers for Mixtral-8×7B, revealing
significant redundancy in the MoE layers.

7

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

WinoGrande
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 5: Evaluation of Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-16B (solid
lines), along with the baseline and random guess performances (dotted lines).

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 6: Evaluation of Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-16B (solid
lines), along with the baseline and random guess performances (dotted lines).

Table 2: Comparison of Layer Drop and Block
Drop on dense and MoE models. “-Ln/m”, “-
Bn/m” represents dropping n out of m corresponding
modules with Layer Drop and Block Drop, respec-
tively.

Mistral-7B (Dense)
Method ARC-C HellaSwag MMLU OBQA Average
Baseline 61.5 83.7 62.5 43.8 62.9
+ L4/32 53.2 77.7 61.7 40.0 58.2 (-4.7)
+ L8/32 36.7 33.6 53.3 30.6 38.6 (-24.3)
+ B4/32 53.1 77.5 61.6 40.0 58.1 (-4.8)
+ B8/32 40.0 63.9 60.0 30.6 48.6 (-14.3)

Mixtral-8×7B (MoE)
Method ARC-C HellaSwag MMLU OBQA Average
Baseline 59.4 84.0 67.9 46.8 64.6
+ L4/32 56.2 81.3 67.6 44.6 62.4 (-2.2)
+ L8/32 47.7 75.2 67.3 40.0 57.6 (-7.0)
+ B4/32 53.8 80.2 67.9 43.0 61.2 (-3.4)
+ B8/32 40.8 55.8 66.3 37.2 50.0 (-14.6)

Block Drop: Further Optimizing Efficiency
by Pruning Entire Transformer Blocks While
Layer Drop maintains the performance of the original
models, it still preserves the computation-costly atten-
tion layers. To address this, Block Drop extends Layer
Drop by removing whole transformer blocks, includ-
ing both MoE and attention layers, further reducing
computational and memory costs. Figure 7 visualizes
block-wise similarity, where both Mixtral-8×7B and
DeepSeek-MoE-16B demonstrate high similarity be-
tween specific blocks. Based on this observation, we
conduct the empirical study by varying the number
of dropped blocks.

Surprisingly, as shown in Figure 6, the Mixtral-
8×7B maintains over 90% of the original performance
even after removing 5 blocks (over 7 billion parame-
ters). Similar observations are also found in DeepSeek-
MoE-16B, where 4 blocks can be removed when main-
taining 90% performance. Since Block Drop removes
computationally expensive attention layers, it outperforms Layer Drop by a large margin in terms of both
memory and inference cost, as illustrated in Figure 8.

On the other hand, Block Drop prunes attention layers along with their corresponding KV-Cache Pope
et al. (2022). For instance, an input sequence with a batch size of 128 and a sequence length of 2048 results
in 32GB of KV-Cache, which can be reduced by 5GB using Block Drop. Overall, by targeting higher-
level structures, Layer Drop and Block Drop achieve substantial efficiency improvements while maintaining
acceptable performance levels.

8

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15 20 25 30
Block Index

0

5

10

15

20

25

30

Bl
oc

k
In

de
x

Mixtral-8×7B

0 5 10 15 20 25
Block Index

0

5

10

15

20

25

DeepSeek-MoE-16B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Normalized Block-Wise Similarity.
We measure the cosine similarity among hidden
features between blocks.

0% 10% 20% 30% 40% 50%
Compression Ratio

14

16

18

20

22

24

D
ec

od
in

g
Sp

ee
d

(T
G

S)

Mixtral-8×7B
Expert Drop
Layer Drop
Block Drop

0% 10% 20% 30% 40% 50%
Compression Ratio

20

25

30

35

40

DeepSeek-MoE-16B
Expert Drop
Layer Drop
Block Drop

Figure 8: Speedup Scaling Curves of Expert
Trimming Methods. where we measure the aver-
aged decoding speed during generation.

MoE Layers are More Redundant than Dense Counterparts Since Layer Drop and Block Drop can
also be applied to dense models, we take Mistral-7B, the corresponding dense model of Mixtral-8×7B for
comparison. Both models have the same depth and differ only in the FFN implementation, so we remove the
same number of layers or blocks from each. When dropping an equal number of blocks, both MoE and dense
models exhibit performance degradation. However, the MoE model suffers less performance drop under the
same compression setting. For example, when dropping 8 MoE layers, the Mistral-7B receives a performance
drop of 24.3, while Mixtral-8×7B only receives a drop of 7.0. This interesting finding highlights the higher
redundancy in MoE layers, and further validates the effectiveness of applying Layer Drop and Block Drop to
MoE models.

6 Visualization Examples of Layer Drop and Block Drop

In this section, we visualize the layer-wise similarity and the corresponding dropping order of MoE layers and
blocks to investigate the varying levels of redundancy across different depths.

Since our similarity-based metrics depend on the hidden states of each block, the choice of data may influence
feature similarity across layers. To investigate this, we conducted ablation studies on Mixtral-8×7B, examining
both the number of samples and the types of datasets used for feature extraction. This analysis helps us
understand how data selection affects decisions regarding the dropping of layers or blocks. The results are
presented in Figure 9.

0 5 10 15 20 25 30

Layer Index

8

16

32

64

128

S
am

pl
e

N
um

be
r

Layer Similarity

0 5 10 15 20 25 30

Block Index

8

16

32

64

512

S
am

pl
e

N
um

be
r

Block Similarity

0.7

1.0

0.4

1.0

(a) Similarities under different number of samples.

0 5 10 15 20 25 30

Layer Index

C4

Lima

Meta
Math

D
at

as
et

Layer Similarity

0 5 10 15 20 25 30

Block Index

C4

Lima

Meta
Math

D
at

as
et

Block Similarity

0.7

1.0

0.4

1.0

(b) Similarities under different datasets.

Figure 9: Influence of Data Choices on Feature Similarity. We measure the similarity among layers
and blocks on Mixtral-8×7B. (a) The similarity calculated using different number of samples from C4 Raffel
et al. (2019). (b) The normalized similarity calculated using 1, 024 samples from different datasets, i.e., C4,
Lima Zhou et al. (2023) and MetaMathQA Yu et al. (2023).

9

Published in Transactions on Machine Learning Research (03/2025)

Robustness to Calibration Datasets In Figure 9a, we note that the feature similarity remains relatively
stable across different layers as the sample size increases, indicating that Layer Drop and Block Drop maintain
consistency regardless of the sample quantity. This confirms that using 128 samples suffices for computing
similarity, which is adopted for all our experiments. Similarly, Figure 9b shows that varying the datasets,
from pretraining with C4 to instruction tuning with Lima and MetaMathQA, does not significantly alter
the feature similarity. This demonstrates the resilience of Layer Drop and Block Drop to variations in data
distribution.

0 5 10 15 20 25 30
Layer Index

30

25

20

15

10

5

0

Dr
op

pe
d

Nu
m

be
r

Mixtral-8×7B

1 6 11 16 21 26
Layer Index

25

20

15

10

5

0
DeepSeek-MoE-16B

(a) Layer Drop

0 5 10 15 20 25 30
Block Index

30

25

20

15

10

5

0

Dr
op

pe
d

Nu
m

be
r

Mixtral-8×7B

0 5 10 15 20 25
Block Index

25

20

15

10

5

0
DeepSeek-MoE-16B

(b) Block Drop

Figure 10: Dropping Patterns for Layer Drop and Block Drop. We visualize of the remaining layers
and blocks under different dropped numbers, where yellow areas represent the retained portions and red areas
indicate the dropped layers/blocks.
Redundant Deeper Layers Figure 10 visualizes the remaining and dropped layers/blocks as the number
of dropped modules increases. Both MoE architectures exhibit similar patterns in Layer Drop and Block
Drop: initially, both models tend to drop the deeper layers, followed by the shallower ones. These findings
are consistent with Xu et al. Men et al. (2024), which suggests that deeper layers tend to be more redundant.

7 Integration of Expert Trimming and Expert Slimming

Beyond Expert Trimming, another avenue for MoE compression is Expert Slimming, which targets individual
expert compression. Techniques such as quantization and network pruning are among the most commonly
employed methods. We provide a detailed comparison of network pruning and quantization in Appendix B,
where the quantization outperforms both in performance and efficiency.

Since Expert Trimming and Expert Slimming focus on different aspects of compression, we further explore
their potential integration. Given the superior average performance and practical efficiency of quantization,
we use it for Expert Slimming. For Expert Trimming, we include all three methods to provide a complete
comparison. The discussion on the order of applying these two compression techniques is provided in the
Appendix D.

Quantization Preserves the Performance of Expert Trimming As shown in Table 3, the integration
of Expert Slimming and Expert Trimming significantly enhances overall efficiency. Quantization can be
seamlessly combined with three different levels of dropping, achieving comparable performance. For instance,
after quantization, the average performance of Layer Drop and Block Drop is nearly the same, maintaining
more than 90% of the performance of the original models.

The Integration Significantly Enhances Efficiency In Table 3, the integration of Expert Trimming and
quantization promotes efficiency by a large margin. Different Expert Trimming strategies showcase different
advantages. Specifically, Expert Drop contributes to reducing memory usage, but its speedup is marginal.
Layer Drop and Block Drop excel in speedup as illustrated in Figure 8, with Block Drop demonstrating
both higher performance and greater speedup. Taking into account all settings, the combination of Block
Drop and quantization offers the best efficiency with comparable performance: a 6.05× speedup with only
20.0GB memory usage, while maintaining over 92% of the performance on Mixtral-8×7B, making it available
to be deployed on a NVIDIA RTX 3090 GPU.

10

Published in Transactions on Machine Learning Research (03/2025)

Table 3: Experimental Results of the Integration of Expert Trimming and Expert Slimming.
“-En/m” denotes dropping n out of m experts per MoE layer on average. “-Ln/m”, “-Bn/m” represents
dropping n out of m layers/blocks with Layer Drop and Block Drop, respectively. The speedup quantifies the
relative reduction in processing time achieved by the compressed models compared to the baseline. Both the
speedup and FLOPs are evaluated by running a forward pass on an input sequence of length 2, 048.

Mixtral-8×7B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline – 54.4T 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
w/AWQ 5.08× 54.4T 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8
+ E2/8 1.06× 54.4T 66.7GB 53.2 77.7 80.5 52.2 46.2 81.7 55.6 76.8 65.5
w/AWQ 5.28× 54.4T 20.1GB 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8
+ L8/32 1.19× 42.9T 66.6GB 47.7 85.3 75.2 67.3 40.0 75.8 69.7 74.6 67.0
w/AWQ 6.05× 42.9T 20.0GB 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1
+ B5/32 1.17× 46.0T 74.1GB 51.3 85.3 78.7 67.9 42.0 79.3 69.7 74.3 68.6
w/AWQ 5.94× 46.0T 21.9GB 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
w/AWQ 3.16× 11.7T 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9
+ E16/64 1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0
w/AWQ 3.34× 11.7T 7.7GB 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ L4/28 1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3
w/AWQ 3.60× 10.6T 8.5GB 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8
+ B4/28 1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3
w/AWQ 3.67× 10.1T 8.4GB 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0

8 Post-Finetuning Recovers the Performance

While the discussed compression techniques maintains most of the performance of the original models,
we further conduct post-finetuning to recover the degraded performance. Specifically, for comparison, we
full-finetune DeepSeek-MoE-16B and corresponding compressed models on the Alpaca-GPT4 dataset (Peng
et al., 2023) for 3 epochs using a learning rate of 8e-6 with 0.03 warmup ratio and cosine scheduling, where
the global batch size is set to 32. As shown in Figure 4, the post-finetuning process significantly reduces the
performance gap between the compressed models and the original models, e.g. narrowing it from 5.5% to
0.6% for the model following Block Drop.
Table 4: Performance of the DeepSeek-MoE-16B models finetuned after Expert Trimming. We
mark the relative average performance loss of the compressed models compared to baselines in brackets.

DeepSeek-MoE-16B
Method SpeedUp FLOPs Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Average
Baseline – 11.7T 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
+SFT 44.6 75.3 79.0 40.3 44.6 80.3 70.4 71.7 63.3
+ E16/64 1.06× 11.7T 23.9GB 45.0 67.1 75.6 31.8 42.2 80.2 59.9 70.0 59.0 (-2.8)
+SFT 44.4 74.0 78.6 38.5 45.8 79.6 65.7 70.1 62.1 (-1.2)
+ L4/28 1.14× 10.6T 26.6GB 39.5 70.2 67.6 35.2 40.4 75.8 48.4 65.7 55.3 (-6.5)
+SFT 42.1 78.9 75.2 40.8 43.4 77.6 71.1 69.5 62.3 (-1.0)
+ B4/28 1.16× 10.1T 26.4GB 40.3 71.3 69.0 36.2 37.8 75.8 51.6 68.0 56.3 (-5.5)
+SFT 43.2 78.2 75.0 40.4 43.8 76.8 74.0 70.2 62.7 (-0.6)

11

Published in Transactions on Machine Learning Research (03/2025)

9 Conclusion

In this paper, we conducted a holistic study of MoE compression techniques, facilitating a systematic
understanding of the efficiency issue of MoE and identifying the new design space to improve the performance
further. Based on this study, we propose a comprehensive recipe that integrates Expert Slimming and
Expert Trimming to further enhance efficiency. Our proposed methods and insights not only address current
challenges but also set the stage for future advancements in the field of MoE.

References
Winogrande: An adversarial winograd schema challenge at scale. 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Yue Bai, Huan Wang, ZHIQIANG TAO, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
fOsN52jn25l.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language, 2019.

Tianlong Chen, Zhenyu Zhang, AJAY KUMAR JAISWAL, Shiwei Liu, and Zhangyang Wang. Sparse moe as
the new dropout: Scaling dense and self-slimmable transformers. In The Eleventh International Conference
on Learning Representations, 2022.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for deep
neural networks, 2020.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan
Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for routed language
models. In International conference on machine learning, pp. 4057–4086. PMLR, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models. arXiv preprint arXiv:2401.06066, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569. PMLR, 2022.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and Carole-Jean Wu.
Layerskip: Enabling early exit inference and self-speculative decoding, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training compression
for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022.

12

https://openreview.net/forum?id=fOsN52jn25l
https://openreview.net/forum?id=fOsN52jn25l

Published in Transactions on Machine Learning Research (03/2025)

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of
diverse text for language modeling, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12
2023. URL https://zenodo.org/records/10256836.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix layers:
Disentangling domains for modular language modeling. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
5557–5576, 2022.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015.

Shwai He, Liang Ding, Daize Dong, Boan Liu, Fuqiang Yu, and Dacheng Tao. PAD-net: An efficient
framework for dynamic networks. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 14354–14366, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.803. URL https://aclanthology.org/2023.acl-long.803.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference, 2017.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local
experts. Neural computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of
experts. arXiv preprint arXiv:2401.04088, 2024.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=H6ATjJ0TKdf.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation
and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers: Simplifying
training of large, sparse models. In International Conference on Machine Learning, pp. 6265–6274. PMLR,
2021.

Guangyan Li, Yongqiang Tang, and Wensheng Zhang. Lorap: Transformer sub-layers deserve differentiated
structured compression for large language models, 2024a.

13

https://zenodo.org/records/10256836
https://aclanthology.org/2023.acl-long.803
https://openreview.net/forum?id=H6ATjJ0TKdf
https://openreview.net/forum?id=H6ATjJ0TKdf

Published in Transactions on Machine Learning Research (03/2025)

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong Chen. Merge,
then compress: Demystify efficient SMoe with hints from its routing policy. In The Twelfth International
Conference on Learning Representations, 2024b. URL https://openreview.net/forum?id=eFWG9Cy3WK.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization for deep
neural network acceleration: A survey, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for llm compression
and acceleration. In MLSys, 2024.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng Li. Not
all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large language models,
2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering, 2018.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regularization for
mixture-of-experts, 2024.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen
Blankevoort. A white paper on neural network quantization, 2021.

OpenAI. Gpt-4 technical report, 2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4.
arXiv preprint arXiv:2304.03277, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference,
2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints, 2019.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts inference and training
to power next-generation ai scale. In International conference on machine learning, pp. 18332–18346.
PMLR, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation, 2021.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam Santoro.
Mixture-of-depths: Dynamically allocating compute in transformer-based language models, 2024.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr. Sparq
attention: Bandwidth-efficient llm inference, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto,
Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. Advances in Neural
Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models. Advances in
Neural Information Processing Systems, 34:17555–17566, 2021.

14

https://openreview.net/forum?id=eFWG9Cy3WK

Published in Transactions on Machine Learning Research (03/2025)

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Moduleformer:
Learning modular large language models from uncurated data. arXiv preprint arXiv:2306.04640, 2023.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving with a
consumer-grade gpu, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024a.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters", February 2024b.
URL https://qwenlm.github.io/blog/qwen-moe/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. 2019. In the Proceedings
of ICLR.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You. Openmoe:
An early effort on open mixture-of-experts language models. arXiv preprint arXiv:2402.01739, 2024a.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware expert offloading
for efficient moe serving, 2024b.

Dianhai Yu, Liang Shen, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Lirong Dai, and Haoyi
Xiong. Moesys: A distributed and efficient mixture-of-experts training and inference system for internet
services, 2024. URL https://arxiv.org/abs/2205.10034.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large
language models. arXiv preprint arXiv:2309.12284, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence?, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-hitter oracle for
efficient generative inference of large language models, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more
for alignment, 2023.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural Information
Processing Systems, 35:7103–7114, 2022.

15

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen-moe/
https://arxiv.org/abs/2205.10034

Published in Transactions on Machine Learning Research (03/2025)

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression, 2017.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng. Llama-moe:
Building mixture-of-experts from llama with continual pre-training. arXiv preprint arXiv:2406.16554, 2024.
URL https://arxiv.org/abs/2406.16554.

16

https://arxiv.org/abs/2406.16554

Published in Transactions on Machine Learning Research (03/2025)

A Implementation Details

A.1 Models and Datasets

Models For our experiments, we employed Mixtral-8×7B (Jiang et al., 2024) and DeepSeek-MoE-16B (Dai
et al., 2024). Mixtral-8×7B utilizes 8 experts for MoE layers and activates the top two for each input token.
In contrast, DeepSeek-MoE-16B employs a dense FFN in the first block and utilizes two shared experts with
an additional 64 experts within MoE layers in other blocks.

Datasets For compression experiments, we used the C4 dataset (Raffel et al., 2019), with 128 samples
and an input sequence length of 2,048, following the setup in (Sun et al., 2023; Lu et al., 2024; Lin et al.,
2024; Frantar et al., 2022). To evaluate model performance, we report normalized zero-shot accuracy on the
LM-harness benchmark, which includes multiple tasks: ARC-C (Clark et al., 2018), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021), OBQA (Mihaylov et al., 2018), PIQA
(Bisk et al., 2019), RTE (Wang et al., 2019), and WinoGrande (ai2, 2019). The evaluation code is based on
EleutherAI LM Harness (Gao et al., 2023).

A.2 Implementation Details of Expert Slimming

Both Expert Slimming methods (i.e., pruning and quantization) require calibration data to estimate input
statistics. To control this variable, we use 128 samples from the C4 dataset (Raffel et al., 2019) as the
calibration dataset for pruning. For quantization, we follow the default settings of GPTQ 1 and AWQ 2,
using 128 random samples from Alpaca (Taori et al., 2023) and Pile (Gao et al., 2020), respectively. We use
the default group size 128 for Mixtral-8×7B and 64 for DeepSeek-MoE-16B.

A.3 Implementation Details of Expert Drop

The Expert Drop compresses MoE by preserving only important experts {Ei}i∈T ′ while removing others,
where T ′ is determined by the importance scores {S(Ei)}i∈T . Following Muzio et al. (2024), we measure the
importance scores through the averaged routing scores of a batched data X , i.e., {S(Ei)} = 1

|X |
∑

x∈X Gi(x),
and consider two dropping strategies for Expert Drop: layer-wise dropping and global dropping.

Layer-wise dropping removes the same number of experts for each layer. Given the total number of
experts n = |T | and the preserved number of experts n′ = |T ′| < n in layer l, the preserved expert set T ′(l)

is obtained by:

T ′(l) = {E(l)
t }, where S(E(l)

t) ∈ TopK({S(E(l)
i)}n

i=1, n′). (10)

Global dropping constrains the total number of preserved experts for the entire model. Given the total
number of layers L in the model, the preserved expert set T ′(l) for layer l is obtained by:

T ′(l) = {E(l)
t }, where S(E(l)

t) ∈ TopK
(m⋃

j=1
{S(E(j)

i)}n
i=1, n′L

)
. (11)

For the integration of Expert Slimming and Expert Trimming, we choose the global dropping as the strategy of
Expert Drop, which shows competitive performance compared to the layer dropping for Mixtral-8×7B under
low dropping ratios, as well as consistent better performance for DeepSeek-MoE-16B in Figure 13.

1https://github.com/AutoGPTQ/AutoGPTQ
2https://github.com/casper-hansen/AutoAWQ

17

Published in Transactions on Machine Learning Research (03/2025)

B Expert Slimming

Pruning: Comparable Performance with Deployment Challenges. In Table 5, we evaluate rep-
resentative pruning algorithms (i.e., Wanda (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023)) on
Mixtral-8×7B and DeepSeek-MoE-16B. Since DeepSeek-MoE-16B utilizes both shared experts and normal
experts, we conduct an ablation study on whether to prune shared experts, as discussed in Appendix E. We
find that unstructured pruning preserves more than 95% of performance. However, it is not compatible with
existing hardware. Conversely, the hardware-friendly semi-structured pruning (i.e., 4:8 and 2:4 patterns)
undergoes a significant performance drop. Nevertheless, according to Lu et al. (2024), semi-structured sparsity
is ineffective in speeding up MoE models.

Table 5: Performance of Pruning on MoE. We consider two mainstream pruning methods (i.e., Wanda
(Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023)) under 50% unstructured sparsity and 2:4
semi-structured sparsity.

Mixtral-8×7B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline 0% 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
Wanda 56.1 85.8 81.7 64.3 46.4 82.2 65.0 76.0 69.7
SparseGPT 50% 56.4 85.7 81.5 64.6 45.0 82.4 66.8 75.8 69.8
Wanda 51.4 79.4 77.8 60.3 44.0 80.7 65.3 74.1 66.6
SparseGPT 2:4 49.2 81.0 77.6 59.2 44.0 80.6 63.9 74.8 66.3

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

Quantization: Better Performance and Greater Efficiency In Table 6, we evaluate the impact
of 4-bit quantization on MoE. The quantization offers two major benefits: it maintains the comparable
performance of the original models and significantly reduces memory costs. Specifically, the quantized models
achieve over 98% of the original performance while using less than 30% of the memory. When quantized
with AWQ (Lin et al., 2024), Mixtral-8×7B and DeepSeek-MoE-16B achieve impressive speedups of ×5.08
and ×3.16, respectively. This demonstrates that 4-bit quantization is effective for deploying MoE models in
resource-constrained environments.

Table 6: Performance of Quantization on MoE. We utilize GPTQ (Frantar et al., 2022) and AWQ (Lin
et al., 2024) as the quantization methods for 4-bit compression.

Mixtral-8×7B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline 16 87.7GB 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5
GPTQ 59.0 84.4 83.4 67.1 45.2 83.1 70.1 75.2 70.9
AWQ 4 24.4GB 58.4 84.2 83.3 66.6 45.8 83.0 69.0 76.3 70.8

DeepSeek-MoE-16B
Method Bits Memory ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline 16 30.8GB 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8
GPTQ 46.3 71.8 76.8 36.4 43.4 80.0 63.9 70.2 61.1
AWQ 4 9.8GB 46.8 71.2 76.6 36.4 43.6 80.1 62.1 70.1 60.9

18

Published in Transactions on Machine Learning Research (03/2025)

C Analysis on the Dropping Patterns of Expert Drop

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Scores

0

1

2

3

4

De
ns

ity

Mixtral-8×7B

Drop Percent
25%
50%
75%
100%

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Scores

0

1

2

3

4

5

6

7

De
ns

ity

DeepSeek-MoE-16B

Drop Percent
25%
50%
75%
100%

Score Distribution

Figure 11: Distribution of Normalized Impor-
tance Scores S for Expert Drop. We highlight
the density of scores under different drop ratios with
different colors.

Score Distribution Directs Expert Drop The
distribution of importance scores is informative to
determine the proportion of dropped experts. In
Figure 11, we visualize the score distribution of Ex-
pert Drop for Mixtral-8×7B and DeepSeek-MoE-16B.
DeepSeek-MoE-16B, which allocates more experts,
shows a left-skewed distribution where most experts
have low scores. In contrast, Mixtral-8×7B demon-
strates a right-skewed distribution, with only a few
experts being deemed unimportant. This distribu-
tion difference results in different resistance capa-
bilities against Expert Drop, where DeepSeek-MoE-
16B can drop more experts than Mixtral-8×7B while
maintaining competitive performance, as demon-
strated in Table 3 and Figure 13.

1 2 3 4 5 6 7 8
Reserved Experts

0

5

10

15

20

25

30

La
ye

r I
nd

ex

Mixtral-8×7B

8 16 24 32 40 48 56 64
Reserved Experts

1

6

11

16

21

26

DeepSeek-MoE-16B

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100.0%

Dr
op

pe
d

Ex
pe

rt
Pe

rc
en

t (
%

)

Figure 12: Distribution of Dropped Experts for
Expert Drop. We visualize the dropped experts under
different drop ratios, where the dropped experts are
colored from yellow to blue as the drop ratio increases.

Global Expert Drop Removes Experts Fine-
Grainedly We employed two different strategies
for Expert Drop, namely layer-wise and global.
Layer-wise dropping treats each layer equally by
dropping the same number of experts, while global
dropping results in different proportions of remaining
experts across layers. We visualize the distribution
of remaining experts after global dropping in Fig-
ure 12. We find the global dropping shows a more
fine-grained pattern on dropping experts, where the
bottom layers are more vulnerable under lower drop-
ping ratios (yellow part).

19

Published in Transactions on Machine Learning Research (03/2025)

D Ablation Study on Compression Orders

In Section 7, we discussed the combination of Expert Trimming and Expert Slimming. Here we ablate on
the orders of compression when combining these two techniques. Results in Table 7 show that the order
of Expert Trimming and Expert Slimming doesn’t have a significant influence on the performance, where
applying Expert Slimming then Expert Trimming (“S+T”) performs slightly better for Mixtral-8×7B (e.g.
+0.5, +0.4 and +0.1 for Expert Drop, Layer Drop and Block Drop, respectively). To this end, we choose
“S+T” as the final implementation in our experiments.

Table 7: Ablation results on different orders of Expert Slimming and Expert Trimming. “S+T”
denotes first applying Expert Slimming then Expert Trimming, and “T+S” denotes the reversed order.

Mixtral-8×7B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 59.4 84.2 84.0 67.9 46.8 83.8 70.4 75.6 71.5

+ E2/8, AWQ (S+T) 50.7 79.1 78.9 52.4 44.2 81.2 55.6 75.9 64.8
+ E2/8, AWQ (T+S) 50.8 79.9 78.7 49.2 44.4 80.9 55.2 75.4 64.3
+ L8/32, AWQ (S+T) 46.2 84.2 74.2 66.2 39.0 75.5 69.3 74.2 66.1
+ L8/32, AWQ (T+S) 46.8 84.4 74.0 65.3 39.8 75.0 66.8 73.2 65.7
+ B5/32, AWQ (S+T) 50.6 85.1 77.5 66.9 41.4 76.1 71.8 74.5 68.0
+ B5/32, AWQ (T+S) 50.3 84.7 77.4 65.8 42.0 78.8 70.4 74.0 67.9

DeepSeek-MoE-16B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.

Baseline 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

+ E16/64, AWQ (S+T) 44.0 66.0 74.5 27.9 42.6 78.5 56.3 67.3 57.1
+ E16/64, AWQ (T+S) 44.7 64.1 74.0 29.0 42.6 79.9 54.2 68.4 57.1
+ L4/28, AWQ (S+T) 42.1 72.0 69.2 33.7 39.8 75.1 47.7 66.5 55.8
+ L4/28, AWQ (T+S) 42.4 71.7 69.1 33.4 40.1 74.8 47.6 66.2 55.7
+ B4/28, AWQ (S+T) 40.1 70.2 68.6 36.1 38.4 76.2 51.6 66.4 56.0
+ B4/28, AWQ (T+S) 41.6 69.4 69.1 35.8 38.6 76.2 50.9 67.0 56.1

20

Published in Transactions on Machine Learning Research (03/2025)

E Ablation Study on Shared Experts in DeepSeek-MoE-16B

Although most MoE models follow Equation 2 to implement the experts, models like DeepSeek-MoE-16B adopt
a residual (Rajbhandari et al., 2022) form of experts, which brings a special scenario to discuss. In the
residual MoE, an additional set of m shared experts

{
Ē1, Ē2, . . . , Ēm

}
is always selected by the router G

and activated for all inputs. Given an input x, the output can be represented as a degenerated form of
Equation 2, where the scores of shared experts are fixed to 1:

y =
∑

i∈K
G(x)i ·Ei(x) +

∑m

j=1
Ēj(x). (12)

This special form of expert routing may bring a difference in the redundancy distribution of MoE. Here we
discuss the influence of shared experts through pruning and present the results in Table 8. We find that
pruning without the shared experts will boost the performance at a considerable scale, i.e., +3.6% and +1.5%
of the averaged accuracy for unstructured pruning with Wanda and SparseGPT, respectively. This finding
reveals a different pattern of inner redundancy in which the shared experts are less compressible compared to
the others in residual MoE models, which may inform future work.

Table 8: Ablation Study of Pruning Shared Experts on DeepSeek-MoE-16B. We consider two
scenarios, i.e., pruning both shared experts and normal experts (“w/Pruning Shared Experts”) and pruning
normal experts only (“w/o Pruning Shared Experts”). We use two mainstream pruning methods (i.e., Wanda
(Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023)) under both unstructured sparsity (50%) and
semi-structured sparsity (2:4).

DeepSeek-MoE-16B
Method Sparsity ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg.
Baseline 0% 48.1 72.4 77.3 37.9 44.0 80.4 63.9 70.3 61.8

w/ Pruning Shared Experts
Wanda 43.6 74.3 72.6 31.1 43.0 79.5 58.1 69.4 59.0
SparseGPT 50% 43.9 73.5 74.0 33.8 41.4 79.0 61.0 68.3 59.4
Wanda 38.2 66.1 67.5 27.6 39.4 77.0 53.8 66.7 54.5
SparseGPT 2:4 43.1 68.9 71.6 27.6 41.6 78.3 57.4 66.6 56.9

w/o Pruning Shared Experts
Wanda 44.0 76.3 73.5 36.2 41.0 79.3 59.9 70.2 60.0
SparseGPT 50% 45.0 75.5 74.4 36.3 41.0 79.4 64.3 69.3 60.7
Wanda 40.1 75.7 69.9 33.5 40.0 77.9 58.8 68.6 58.1
SparseGPT 2:4 40.7 75.7 69.9 33.3 39.0 77.7 61.4 69.4 58.4

21

Published in Transactions on Machine Learning Research (03/2025)

F Full Experimental Results

We provide the full results of Expert Trimming, including Expert Drop, Layer Drop and Block Drop, in
Figure 13, 14, and 15, respectively.

0 2 4 6 8
Dropped Experts

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80

85

BoolQ
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

20

30

40

50

60

70

80

HellaSwag
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

20

30

40

50

60

70

MMLU
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

25

30

35

40

45

OBQA
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80

85

PIQA
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

45

50

55

60

65

70

RTE
Layer-wise
Global
Random Guess

0 2 4 6 8
Dropped Experts

50

55

60

65

70

75

80
WinoGrande

Layer-wise
Global
Random Guess

Mixtral-8×7B

0 16 32 48 64
Dropped Experts

20

25

30

35

40

45

50

Ac
cu

ra
cy

(%
)

ARC-C
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

40

45

50

55

60

65

70

75
BoolQ

Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

20

30

40

50

60

70

80

HellaSwag
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

22

24

26

28

30

32

34

36

38

MMLU
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

25

30

35

40

45

OBQA
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

45

50

55

60

65

70

75

80

PIQA
Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0
RTE

Layer-wise
Global
Random Guess

0 16 32 48 64
Dropped Experts

50

55

60

65

70

WinoGrande
Layer-wise
Global
Random Guess

DeepSeek-MoE-16B

Figure 13: Full Results for Expert Drop. We consider two strategies: layer-wise (dotted lines) and global
(solid lines).

22

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

40

50

60

70

80

90
BoolQ

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

80

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

80

85

PIQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

45

50

55

60

65

70

RTE
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Lyers

50

55

60

65

70

75

WinoGrande
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 14: Full Results for Layer Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-16B (solid
lines), along with the baseline and random guess performances (dotted lines).

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

(%
)

ARC-C
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

40

50

60

70

80

90
BoolQ

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

80

HellaSwag
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

20

30

40

50

60

70

MMLU
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

25

30

35

40

45

OBQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

50

55

60

65

70

75

80

85

PIQA
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

RTE
Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

0 5 10 15 20 25 30
Dropped Blocks

45

50

55

60

65

70

75

80
WinoGrande

Mixtral-8×7B
DeepSeek-MoE-16B
Random Guess

Figure 15: Full Results for Block Drop. We show results on Mixtral-8×7B and DeepSeek-MoE-16B (solid
lines), along with the baseline and random guess performances (dotted lines).

23

	Introduction
	Related Work
	Preliminaries
	Mixture of Experts
	Overview of Previous Compression Methods

	A Holistic Study of MoE Compression Techiniques
	Overview
	Expert Trimming
	Expert Slimming

	Experiments on Expert Trimming
	Visualization Examples of Layer Drop and Block Drop
	Integration of Expert Trimming and Expert Slimming
	Post-Finetuning Recovers the Performance
	Conclusion
	Implementation Details
	Models and Datasets
	Implementation Details of Expert Slimming
	Implementation Details of Expert Drop

	Expert Slimming
	Analysis on the Dropping Patterns of Expert Drop
	Ablation Study on Compression Orders
	Ablation Study on Shared Experts in DeepSeek-MoE-16B
	Full Experimental Results

