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Abstract

Goodhart’s law is an adage in policy-making stat-
ing that “when a measure becomes a target, it
ceases to be a good measure”. In the past few
years, efforts have been made to formalise the
law and assess its validity in the context of ma-
chine learning. Specifically, formalisms were
proposed to distinguish cases where optimising a
proxy metric is useful for an (unknown) intended
goal from those where doing so harms the true
goal. In the broader effort to formalise Good-
hart’s law, one central question is that of causal-
ity. Namely, does learning on a causal structure
without being aware of it (and taking it into ac-
count) leads to a misalignment between the true
goal and the proxy metric being optimised? This
paper provides a positive answer to this question
and proposes a causal formalism that separates
three different causal relationships: (1) the clas-
sic case of a confounding factor, (2) a new causal
structure we call the “mirror confounding”, and
(3) the cascading structure that we adapt from a
previous work. Each causal structure involves a
true goal, a proxy metric, the covariates on which
the model learns and, when applicable, hidden
variables.

1. Context and problem formulation
We follow the now common setup to formalise Goodhart’s
law (Manheim & Garrabrant, 2018; El-Mhamdi & Hoang,
2024): An unknown goal G is being optimised through a
(known) proxy measure M that has, a priori, some resem-
blance with G, e.g., M is (assumed to be) well-correlated
with G. The noise between the true goal G and the proxy
metric M is captured by a quantity ϵ; depending on the
causal structure, the influence of the noise ϵ can have dif-
ferent forms, and a hidden variable, denoted Y , can be a
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Figure 1: Confounding factor schemes
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common cause to the covariates X , the goal G and the
noise ϵ. Each of these quantities, summarised in Table 1,
are linked by a causal graph. We consider three different
settings which we formally specify in the following sub-
sections.

1.1. Confounding factor

We consider the model illustrated in Figure 1, where a hid-
den variable Y determines at the same time the covariates
used for prediction X and the noise ε. The true goal G is
a direct product of the covariates. The proxy metric M is a
sum of the true goal G and the noise term ε. In this setting,
optimising for the noisy proxy metric M can lead to issues
and misalignment with the true goal G.

Illustrative example. Confounding has already been
considered in classical statistics (Splawa-Neyman et al.,
1990; Street, 1990), in epidemiology (Greenland & Robins,
1986; Rubin, 1974) (see (Morabia, 2011) for a general
history of the notion in epidemiology) and, recently, in
the context of ML fairness (Plecko & Bareinboim, 2022;
Schröder et al., 2023; Ashurst & Weller, 2023).

An example of confounding can be found in is credit score
ratings (Dwork et al., 2011; Plecko & Bareinboim, 2022).
The goal in this example is to determine the chances for an
individual to default on their credit. The model has access

Quantity Notation
Intended goal G
Proxy metric M

Covariate X
Noise ϵ

Hidden variable Y

Goal characteristics G̃

Table 1: Summary of the notation
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Figure 2: Mirror confounding schemes
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to several covariates (X in our model) that are supposed
to be linked to credit default. The ground truth probabil-
ity of default of every borrower would be the ideal goal to
predict (G in our model, the true goal). This is, of course,
never accessible. The training of the model must be held
on a proxy metric (M in our model) only correlated to G.
For credit score, historic decisions of credit attributions by
bank agency and actual defaults for credit that are delivered
is the proxy metric. However, the noise that differentiates
the proxy metric from the true goal (ε in our model) can
be correlated to the covariates by a hidden variable (Y ).
Identifying the true relationship of the covariates with the
true goal can be difficult in such a setting. In the credit
score example, the color of the credit applicant’s skin - a
protected attribute (Andreeva et al., 2004; Mehrabi et al.,
2019) - is a hidden variable that influences the covariates
(wealth, social status ...) as well as the metric used to train
the algorithm (credit attribution).

1.2. Mirror confounding

We propose a scheme that we name "mirror confound-
ing" due to its resemblance to the confounding scheme.
The hidden variable Y determines the covariates X and
a hidden vector G̃ that determines the goal G. The true
goal is G := w∗T G̃. The metric is the sum of the true
goal G and the covariates X multiplied by a term w, i.e :
M := G+ wTX . Graph 2 summarises the model.

There is no causal link between the covariates X and the
true goal G in this setting. The hidden variable Y is the
only indirect link between the true goal G and the covari-
ates.

Illustrative example. This situation would happen in the
credit default setting if the covariates (X) on which the al-
gorithm learns are linked to the risk of default (G) only
through a third hidden variable (Y ). The historic of credit
reimbursement of a borrower would be such a covariate. It
is positively correlated with the probability of reimburse-
ment today G but only through a third hidden variable Y -
the financial situation of the client.

1.3. Cascading

The hidden variables Y determines the covariates X , the
true goal G and the noise ε. The true goal is G := w∗TY .

Figure 3: Cascading schemes
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The metric M is the sum of the covariates X multiplied by
w∗T and the noise ε multiplied by w, i.e : M := w∗TX +
wT ε. Graph 3 summarises the model.

We call this situation cascading as the hidden variable Y
directly determines the goal G and is a direct antecedent of
the covariates X and the noise term ε. However, the metric
considered here does not directly contain the true goal G
and is simply correlated to it via the effect of the hidden
variables Y on the covariates X and the noise ε.

Illustrative example. Consider we want to predict the
quality of a product from a noisy observation of its charac-
teristics. A product has intrinsic (unknown) characteristics
(the hidden variable Y ) that directly determine its (unob-
served) true quality (G). The intrinsic characteristics (Y )
can be observed only in a noisy way (that would be X in
our model). The product’s price on the market is acces-
sible and correlated to product’s true quality. It is deter-
mined by the noisy observation of the characteristics (X)
and some noise (ε). This noise (ε) is also influenced by the
true characteristics of the product (Y ). Using the price (M )
as a proxy metric for product quality (G) would fit into the
scheme we describe.

Contributions. The key question we address is the fol-
lowing. Does learning on a causal structure without taking
it into account lead to a misalignment between the true goal
and the proxy metric being optimised?

We provide a positive answer to this question as follows.
We propose a causal formalism enabling an empirical study
with 3 different causal relationships following an alignment
setting : a true goal is approximated by a correlated proxy
metric, with covariates on which the model learns and hid-
den variables. Our experiments show three consistent out-
comes.

• Different causal structures lead to different outcomes
in terms of discrepancy, showing that the underlying
causal structure might be instrumental in identifying
and alleviating a potential alignment problem.

• Increasing the sample size alleviates the discrepancy
between the true goal and the proxy metric in the con-
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founding case, but not in the case of mirror confound-
ing and cascading.

• The three causal structures we studied are all leading
to a form of Goodhart’s law, stronger in the case of
the cascading causal structure. They do not, however,
completely prevent learning.

2. Experiment
2.1. Experimental setting

We chose to simulate the situation with Gaussian random
variables to keep the experimental setting easy and inter-
pretable. It allows us to keep a tight control of every quan-
tity that might come into play in the learning setting. More-
over, we know the Gaussian setting to be an easy case
for the alignment problem (El-Mhamdi & Hoang, 2024).
In such a simple setting any complexity arising cannot be
blamed on the complexity of the underlying probability dis-
tribution. This would not be the case for more complex
situations such as power laws and other heavy-tailed distri-
butions.

Confounding factor experiment. The hidden variable Y
follows a standard Gaussian distribution with identity co-
variance matrix. The covariates X are drawn from a Gaus-
sian distribution of mean equal to Y and identity covariance
matrix, i.e X | Y ∼ N (Y, Id). The noise is drawn in a sim-
ilar fashion from a Gaussian distribution of mean equal to
Y and a covariance matrix equal to a constant times the
identity, i.e ε | Y ∼ N (Y,CId). This means marginally,
we have X ∼ N (0, 2Id) and ε ∼ N (0, (1 + C)Id). We
have the true goal G := X + wT ε. w∗T and w are drawn
from a uniform distribution over [0, 1]d and then fixed.
They do not vary across samples.

Mirror confounding experiment. The vector of char-
acteristics G̃ follows a Gaussian distribution centered in
Y with identity covariance matrix, which means that un-
conditionally on Y we have G̃ ∼ N (0, 2Id). Then we
have G := w∗T G̃, where w∗ ∼ U [0, 1]d. The covari-
ates X are drawn from a Gaussian distribution centered in
Y with identity matrix times a constant C, which implies
X ∼ N (0, 2Id). The metric is M := wTX + G, with
w ∼ U [0, 1]d. Both w∗ ∼ U [0, 1]d and w ∼ U [0, 1]d are
drawn at the beginning of the experiment and do not vary
from each sample.

Cascading experiment. The hidden variable Y is drawn
following a centered Gaussian random variable with iden-
tity covariance matrix. The true goal G is deduced from
it with the relation G := w∗TY , where w∗ ∼ U [0, 1]d is
drawn at the beginning of the experiment and does not vary
from each sample. The vector of covariates X follows a

Gaussian random variable centered in Y , which means that
unconditionally on Y we have X ∼ N (0, 2Id). The noise
ε is drawn from a Gaussian random variable centered in
Y with identity matrix times a constant C, which implies
ε ∼ N (0, (1 + C)Id). The metric M is linked to the co-
variates by the same coefficient w∗ as the hidden variable
X and the true goal M . The noise vector is multiplied by
w ∼ U [0, 1]d (which is drawn at the beginning of the ex-
periment and does not vary from each sample). This gives
M := w∗TX + wT ε

2.2. Experimental results

We trained 1440 models, spanning 4 values of noise to sig-
nal ratio in the metric (1, 0.1, 0.01, 0.001 and 0.0001), 3
sample size values with 4 data seeds and 10 model seeds.
The covariates (X) are in dimension 10 and the learning
rate is constant at 0.001. The model we train is a mul-
tilayer perceptron (MLP) with an initial linear layer from
dimension 10 to 64, followed by 3 hidden layers of width
64 with ReLU activation and a final linear layer to combine
all of it.

Figure 4 shows aggregated trajectories with the same noise
variance in the three aforementioned cases. In the con-
founding case, after a brief decrease of the true loss value at
the beginning of the optimisation, the true loss value rises
and stays at a higher value than early in the optimisation
process.

Mirror confounding and cascading follow a different path
as the true loss decreases first to then stabilise. In the con-
founding case, the true loss value is an order of magnitude
higher than the training loss. In cascading and mirror con-
founding, it is roughly a factor of twenty.

Figure 6 shows the discrepancy between the true loss and
the proxy metric as the sample size increases from 100 to
10000. In the case of mirror confounding, the discrepancy
decreases from 0.25 to 0.20 with increasing sample size.
For cascading, after the discrepancy decreased from 0.325
to 0.225 when augmenting the sample size from 100 to
1000, it decrease at 0.20 as we increase the sample size
to 10000. For confounding, the discrepancy is stable for
the 2 first sample size values around 0.20 and the decrease
to 0.125.

In the three cases, the discrepancy between the proxy met-
ric and the true goal augment with the noise to signal ratio.
In the case of confounding and mirror confounding, the dis-
crepancy is slightly negative for value of the noise to signal
ratio inferior to 10−2. For cascading, the discrepancy de-
crease when diminishing the noise to signal ratio from 1 to
10−1, and then stabilises at different level for each sample
size.
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Figure 4: Train losses and true loss (goal) for different schemes
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Figure 5: Train losses and true loss (goal) discrepancy for different schemes and varying noise to signal ratio.
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(b) Mirror confounding
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(c) Cascading
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Figure 6: Values of the discrepancy between the proxy
metric and true goal according to the sample size for a

constant noise to signal ratio (equal to 1)
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3. Discussion
In this work, we ask the question, “does learning on a
causal structure without taking it into account leads to a
misalignment between the true goal and the proxy metric
being optimised?” which we answer positively. Further
analysis should address the following two questions.

Causal Structure importance. Our experiments show
that different causal structures imply different final discrep-
ancies between the true goal and the proxy metric. For
example, cascading has a true goal roughly twenty times
higher than its proxy metric loss in Figure 4. Looking at
Figure 5, in cascading, even with decreasing noise to sig-
nal ratio, the discrepancy between the true goal and the
proxy metric is constant. Getting theoretical results link-
ing the property of the causal graph to the true goal and
proxy metric discrepancy would be a major landmark in
understanding such results.

Learning dynamic. We can observe that the algorithm
learns at least a little bit of the goal even in the most "hos-
tile" settings where the metric is not a direct product of the
goal (see Figure 4). In the cascading and mirror confound-
ing cases, the true goal loss decreases similarly to the proxy
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metric at the beginning of the training procedure. In the
confounding case, the algorithm seems to actively unlearn
the true goal after a few epochs. Experimenting in other
causal settings could allow us to have a more global im-
age of the influence of the causal structure on the alignment
problem. Also, transposing the setup to a real-world dataset
is of prime importance but also poses important challenges,
as most of the time the true goal is not accessible and hence
must be very carefully crafted.
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