Under review as a conference paper at ICLR 2025

VISION-LANGUAGE MODELS AS TRAINERS FOR
INSTRUCTION-FOLLOWING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing agents that can understand and follow language instructions is critical
for effective and reliable human-AlI collaboration. Recent approaches train these
agents using reinforcement learning with infrequent environment rewards, plac-
ing a significant burden on environment designers to create language-conditioned
reward functions. As environments and instructions grow in complexity, crafting
such reward functions becomes increasingly impractical. To address this chal-
lenge, we introduce V-TIFA, a novel method that trains instruction-following
agents by leveraging feedback from vision-language models (VLMs). The core
idea of V-TIFA is to query VLMs to rate entire trajectories based on language in-
structions, using the resulting ratings to directly train the agent. Unlike prior VLM
reward generation methods, V-TIFA does not require manually crafted task spec-
ifications, enabling agents to learn from a diverse set of natural language instruc-
tions. Extensive experiments in embodied environments demonstrate that V-TIFA
outperforms existing reward generation methods under the same conditions.

1 INTRODUCTION

A central challenge in reinforcement learning (RL) research is developing agents that can reason
abstractly, generalize across tasks, and communicate effectively. Language, whether natural or for-
mal, plays a key role in enabling these abilities (Gopnik & Meltzoff, 1987). Recognizing this,
many studies have explored incorporating language into RL to enhance communication, improve
generalization and sample efficiency (Tellex et al., 2011; Mei et al., 2016; Goyal et al., 2019). The
field can be broadly divided into language-conditioned RL (LC-RL), where language shapes the
problem formulation (Anderson et al., 2018; Wang et al., 2019), and language-assisted RL, where
language facilitates the agent’s learning (Hu et al., 2019; Zhang et al., 2023). This work focuses on
LC-RL, where the agent initially receives a language instruction and must act accordingly to fol-
low that instruction. While RL provides a promising framework for training instruction-following
agents, a major challenge is designing a reward function conditioned on language, which becomes
increasingly difficult to implement efficiently as the complexity of the environment and language
grows (Bahdanau et al., 2018). To scale instruction-following more broadly, an automated method
is needed to evaluate whether the agent successfully completes the task specified by the instruction.

Prior work has explored replacing handcrafted language-conditioned rewards with methods that
learn them indirectly from qualitative human inputs. A common approach is inverse RL (Ng et al.,
2000), where the reward function is inferred from demonstrations paired with descriptions (Bah-
danau et al., 2018; Fu et al., 2019). However, such high-quality language-annotated data can be
elusive for complex and rare tasks. Meanwhile, for tasks without explicit language conditions, RL
from human feedback (RLHF) has emerged as a powerful paradigm, allowing agents to learn from
human guidance (Knox & Stone, 2009; Yuan et al., 2024). In RLHF, the reward function is learned
by modeling human feedback, typically provided as comparative feedback (Christiano et al., 2017;
Ibarz et al., 2018) or evaluative feedback (Wilde et al., 2021; White et al., 2024). This approach has
shown promising results in enabling agents to perform low-level tasks like locomotion (Lee et al.,
2021b) and manipulation (Hiranaka et al., 2023). However, RLHF for training instruction-following
agents remains largely under-explored, likely because these tasks often involve multi-step, high-level
reasoning, requiring humans not only to assess individual actions but also to account for long, com-
positional instructions. Consequently, gathering sufficient high-quality, language-annotated feed-
back for reward modeling in such settings is highly resource-intensive.

Under review as a conference paper at ICLR 2025

Both of these prevalent approaches to replacing manually handcrafted rewards rely heavily on
human-provided data, limiting their scalability and generalizability. In response, the rise of founda-
tion models (Radford et al., 2019; OpenAl, 2023; Reid et al., 2024) has sparked numerous efforts
to reduce human supervision in designing reward functions by leveraging these models. One such
approach involves generating code-based reward functions directly (Wang et al., 2024b; Xie et al.,
2024; Ma et al., 2024). However, these methods often assume access to the environment’s underly-
ing code and low-level ground-truth states, making them difficult to scale to high-dimensional envi-
ronments. Alternatively, pretrained vision-language models (VLMs), such as CLIP (Radford et al.,
2021), have been employed to generate rewards by measuring the similarity between images and
task descriptions in a shared vector space (Cui et al., 2022; Mahmoudieh et al., 2022; Rocamonde
et al., 2024; Sontakke et al., 2024). Despite these advances, most approaches remain focused on
single-objective tasks, often requiring manually crafted task specifications, such as demonstrations
or text descriptions. In this paper, we aim to answer the question: Can large vision-language models
automatically generate rewards for training visual instruction-following agents, without relying on
human data or direct access to the environment?

To this end, we propose Vision-Language Models as Trainers for Instruction-Following Agents (V-
TIFA), a method that leverages the advanced reasoning capabilities of large VLMs, such as Gemini
(Reid et al., 2024), to automatically generate reward signals for training language-conditioned poli-
cies in the LC-RL setting. V-TIFA is inspired by the RLHF training paradigm, where the VLM acts
as an evaluator, critiquing the agent’s trajectories and delivering evaluative feedback (MacGlashan
et al., 2017) to guide its learning. However, unlike conventional RLHF methods that require human
annotators and explicit reward modeling (Christiano et al., 2017; White et al., 2024), V-TIFA di-
rectly uses feedback from the VLM to train the agent. This not only eliminates the need for costly
human labor but also bypasses the reward modeling process, which can cause to reward misspeci-
fication and misgeneralization if not handle carefully (Casper et al., 2023). We evaluate V-TIFA in
a set of challenging embodied environments from the ALFRED simulator (Shridhar et al., 2020),
which includes 80 diverse human-generated language instructions. The results demonstrate that V-
TIFA can be served as a proxy language-conditioned reward function, greatly outperforming prior
VLM-based reward generation methods. Our key contributions are as follows:

* We introduce V-TIFA, a novel method that leverages VLMs to provide feedback for training
instruction-following agents, eliminating the need for human-designed reward functions.

» With extensive experiments on a diverse set of instruction-following tasks, we show that V-TIFA
can be served as an effective proxy for language-conditioned reward functions, consistently out-
performs previous VLM-based reward methods.

* We conduct comprehensive analyses and ablation studies to explore the effectiveness of V-TIFA
in training instruction-following agents, identifying the key factors contributing to its performance
and robustness.

2 RELATED WORK

2.1 LANGUAGE-CONDITIONED RL

We position our work within the LC-RL framework (Luketina et al., 2019), where agent learns poli-
cies to complete tasks specified by instructions (MacMahon et al., 2006; Kollar et al., 2010; Wang
et al., 2016). Prior works have explored this problem in the context of instruction-following, using
RL to derive language-conditioned policies with environment rewards (Janner et al., 2018; Co-Reyes
et al., 2018; Jiang et al., 2019; Chan et al., 2019). These approaches have been largely studied in
either 2D spatial games (Bahdanau et al., 2018; Chen et al., 2019; Mirchandani et al., 2021) or 3D
navigation and manipulation environments (Misra et al., 2014; MacGlashan et al., 2015; Hermann
et al., 2017) with template instructions. By contrast, we focus on vision-language navigation (An-
derson et al., 2018) using human-generated language instructions, without relying on environment
rewards. We utilize ALFRED simulator (Shridhar et al., 2020), which offers diverse visually realis-
tic household tasks with crowd-sourced language instructions. This challenging benchmark enables
us to evaluate the recognition and reasoning capabilities of various VLMs in reward generation.

Under review as a conference paper at ICLR 2025

2.2 RL IN THE ABSENCE OF REWARD FUNCTIONS

Designing hard-coded reward functions in language-grounded environments often requires signifi-
cant human effort. In CALVIN (Mees et al., 2022), for instance, rewards are computed by checking
changes between initial and final states, relying on global state. In ALFRED (Shridhar et al., 2020),
reward computation is even more complex, not only requiring the global state but also demonstra-
tions to interpret instructions. To circumvent this, many works have focused on learning reward
functions conditioned on language from human data. A common approach utilizes inverse RL (Ng
et al., 2000; Ho & Ermon, 2016) to recover reward functions from demonstrations, which are then
used to optimize policies via RL (Bahdanau et al., 2018; Fu et al., 2019; Mirchandani et al., 2021;
Nair et al., 2022b). However, this approach relies on expert data, making it impractical for tasks
that non-experts cannot easily perform (Brown et al., 2019; Zhang et al., 2021). To address this, we
leverage VLMs as language-conditioned reward functions for training policies, eliminating the need
for demonstrations. For single-objective tasks, a more practical way for humans to provide data is
through feedback (Knox & Stone, 2009), where the agent is trained either directly from the feedback
or indirectly by learning reward models that represent it (Yuan et al., 2024; Casper et al., 2023). In
the robotics domain, the most common approaches to learning from feedback are preference-based
RL (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021a;b) and rating-based RL (RbRL)
(Knox & Stone, 2008; Wilde et al., 2021; White et al., 2024). Our training paradigm aligns with
RbRL, where each trajectory is critiqued by an evaluator. However, instead of human evaluators, we
leverage VLMs for this process. Additionally, we learn directly from feedback rather than modeling
it, as in (MacGlashan et al., 2017; Arumugam et al., 2019)

2.3 LARGE FOUNDATION MODELS AS REWARD FUNCTIONS

(Kwon et al., 2023) and (Hu & Sadigh, 2023) introduce large language models (LLMs) to design
reward functions in text-based games. Building on this, subsequent works have demonstrated that
LLMs can directly generate Pythonic code for reward functions (Yu et al., 2023; Wang et al., 2024b;
Xie et al., 2024; Ma et al., 2024). However, these methods typically assume access to the environ-
ment’s source code or global state. Additionally, many robotic tasks are visual, requiring the use
of VLMs instead. (Mahmoudieh et al., 2022) is the first to successfully use CLIP to train manipu-
lation tasks based on language descriptions, but they require fine-tuning the CLIP on task-specific
datasets. Recent works (Rocamonde et al., 2024; Sontakke et al., 2024) find that pretrained VLMs
can potentially be used as reward functions without fine-tuning, by measuring the similarity be-
tween the images and text descriptions in the embedding space. However, these reward signals
are often noisy and heavily dependent on task specifications (Rocamonde et al., 2024; Sontakke
et al., 2024). Furthermore, these similarity-based reward functions lack explicit reasoning about
tasks. (Wang et al., 2024a) is the first to use large VLMs to explicitly reason and provide preference
labels for learning reward functions, which are then used to learn low-level control tasks. Most
of these methods depend on manually crafted task descriptions and are limited to single-objective
tasks, where the descriptions are often tailored to fit VLMSs. Unlike these approaches, our method is
robust to task descriptions, enabling multi-step, high-level reasoning from human-generated, com-
positional instructions, which allows for learning of language-conditioned policies. (Du et al., 2023)
addresses a similar problem to ours, where they fine-tune a Flamingo VLM (Alayrac et al., 2022) on
a carefully crafted dataset to detect task success. However, they do not train language-conditioned
policies, leaving it unclear how robust their approach is under optimization pressure. By contrast,
we show that VLMs without fine-tuning, equipped with simple prompting techniques, are effective
for training agents directly.

3 PRELIMINARY

Language-conditioned RL. We consider an augmented Partial Markov Decision Process (MDP)
M, defined by the tuple (S,0, A, P, R, L,~), where S is the state space, O is the observation
space, A is the action space consisting of primitive actions—in ALFRED, these include naviga-
tion and interaction actions (MoveAhead, Pickup, ToggleOn, etc.), P(s'|s,a) is the transi-
tion probability, v € [0, 1] is the discount factor, £ is the space of language instructions from
which the task instruction [is drawn, and R : § x A x § x £ — R is a language-conditioned
state action reward function. The agent takes actions based on a language-conditioned policy

Under review as a conference paper at ICLR 2025

Instruction: “Pick up the mug in the coffee maker”
t=T

Rating

'
I e
T

RotateLeft Pickup

Buffer VLM

é Observation
s =,
Action
. (o o o)
RL Algorithm Agent Environment

“Pick up the mug in the coffee maker”

Repla

c

Trajectory

j— <

O

Instruction

Figure 1: V-TIFA Overview: A pretrained VLM acts as an evaluator, delivering ratings based on
the observed agent actions and state transitions. These ratings serve as reward signals for training
the language-conditioned policy using any off-policy RL algorithm.

m(als,l) : S x L — A. The goal of RL algorithms is to learn a policy that maximizes the ex-
pected return E ;.2 [ZZ:_Ol Y'R(st,at, s¢+1,1)], where T is the trajectory horizon.

Let 7 = (o, at)tTZ_O1 = (0o, ag,--.,0r—1,ar—1,0r) denote a trajectory composed of a sequence
of observations and actions. In this work, we consider sparse reward problems, where the agent
is rewarded at the end of the trajectory, indicating whether the agent successfully completes the
instruction /. In ALFRED, the ground-truth reward function returns 1 when the agent completes the
instruction and O otherwise. Additionally, the trajectory terminates either when the instruction is
completed or when a timeout occurs, resulting in varying trajectory lengths.

Rating-based RL. When the reward function R is unavailable, standard RL algorithms cannot be
used to derive policies. Instead, we assume that an annotator critiques the trajectory 7, along with
the task instruction, by assigning a rating ¢ from the set C = {0, 1,...,n — 1}, where 0 is the lowest
possible rating and n — 1 is the highest, indicating the quality of the trajectory. Descriptive labels
can also be assigned to the rating levels. For example, with n = 4 rating levels, level O could be
labeled “very bad”, level 1 “bad”, level 2 “good”, and level 3 “very good”. Unlike previous work
(Wilde et al., 2021; White et al., 2024), which focuses on learning an explicit human-aligned reward
function, we directly use feedback from the annotator (in our case, vision-language models) to train
the policy, following a similar approach to (MacGlashan et al., 2017; Arumugam et al., 2019).

Vision-language models. In this paper, we define vision-language models (VLMs; (Zhang et al.,
2024)) as models capable of processing both language inputs p = (xq, . . ., Z,,), where z,, € V), and
avisual input I € Z. Here, V represents a finite vocabulary, and Z denotes the space of RGB images.
Given these inputs, the VLM H generates language outputs as y = H (p, I), where y = (yo, . - ., Yx)
and y, € V. We focus on VLMs trained on diverse text and image datasets, which enables them to
generalize effectively across different environments and task instructions. Moreover, these models
must be capable of answering questions based on a single image (OpenAl, 2023; Anthropic, 2024;
Reid et al., 2024), a crucial ability for accurately rating trajectories.

4 METHOD

Overview. V-TIFA leverages the advanced reasoning abilities of pretrained VLMs to deliver feed-
back for training instruction-following agents through online RL. This is achieved by assigning a
rating at the end of the trajectory, reflecting how likely the agent successfully completed the given
instruction. Unlike prior rating-based RL methods that require human involvement during training,
our method fully automates the generation of evaluative feedback, allowing agents to train without

Under review as a conference paper at ICLR 2025

Algorithm 1 V-TIFA training algorithm.

1: Input: A pretrained VLM H, visual prompt constructor €2, textual prompt constructors for summarizing
W and rating ¥ r

2: Initialize: Policy 7y, replay buffer R.

3: while not converged do

4: Sample instruction I; ~ L

5: Run 7y to collect trajectories {7;} given [;

6: for each 7; do

7: Construct prompts for summarization: Is = Q({o;}{—o) and ps = Us({a:} 7", 1)
8: Query for summarization: S = H(ps, Is)

9: Construct prompt for rating: pr = Vr(S,1;)

10: Query for rating: ¢; = H(pr, ;)

11: end for

12: Store trajectories into replay buffer: R <— R U {(l;, 7i,¢i)}
13: Optimize policy 7 using data sampled from R with any off-policy RL algorithm
14: end while

human intervention. An overview of V-TIFA is shown in Figure 1, and the detailed training proce-
dure is provided in Algorithm 1. The agent first receives a language instruction /;, then interacts with
the environment to collect trajectories {7;} based on the policy 7y. Each trajectory 7;, along with
the instruction [;, is sent to the VLM to obtain a corresponding rating c;. These trajectories, along
with the corresponding instructions and ratings {(l;, 74, ¢;) }, are then stored in the replay buffer R.
Finally, the RL algorithm updates the policy 7y using data sampled from the replay buffer.

Prior work in RbRL (Yuan et al., 2024; White et al., 2024) typically requires a reward modeling
step, as directly using human feedback is prohibitively expensive for RL systems. However, learn-
ing a reward model conditioned on language introduces further complexity, as it must account for
multiple tasks. This requires a large amount of instruction-dependent trajectories to develop a re-
ward function that generalizes effectively (Nair et al., 2022a; Karamcheti et al., 2023; Ma et al.,
2023). By contrast, we incorporate VLMs directly into the training loop, eliminating the reward
modeling step—a process that, if not carefully managed, can be prone to reward misspecification
and misgeneralization (Casper et al., 2023).

VLMs for Rating. In the LC-RL problem, language instructions can be complex and highly com-
positional. For instance, an instruction like “Put the coffee cup in the sink, turn on the water, turn
off the water and pick up the coffee cup” involves multiple sub-tasks. As a result, an automatic
evaluator should be fine-grained enough to evaluate trajectories accurately based on the specific lan-
guage instruction. Moreover, multiple successful policies can produce diverse yet valid trajectories
for the same instruction. Evaluating these solely on final outcomes can be misleading, especially
with highly compositional instructions, where critical sub-tasks may be completed at different stages
within the trajectory. To ensure that VLLMs provide accurate ratings, we prompt the model with the
entire trajectory, which includes visual observations, actions, and the corresponding instruction. Fig-
ure 2 illustrates this prompting process. First, we query the VLM to generate a free-form summary
of the trajectory. This summary is then used to prompt the VLM for a final rating. Since the VLM
processes individual images, querying it for each visual observation can be inefficient and may limit
its ability to capture temporal dynamics. To address this, we use a combination of visual and textual
prompts to efficiently represent the full trajectory. Our approach to visual prompting is inspired by
recent work (Jia et al., 2022; Bar et al., 2022; Shtedritski et al., 2023), which shows that pretrained
VLMs can enhance visual reasoning capabilities.

Concretely, let €2 be the visual prompt constructor, and ¥ g and ¥ i be the textual prompt construc-
tors for summarization and rating, respectively. Given a trajectory, {2 maps the visual observations
into a new image, Is = Q({o:}), by concatenating the image observations and placing a timestep
caption under each individual image. Wg maps the actions and instruction / into a text prompt,
ps = Yg({a:},!). This prompt contains information about the trajectory’s length, executed ac-
tions, and a question to evaluate the completion of the instruction /. The summary of the trajectory
is then obtained from the VLM as S = H(pg, Is). For the rating, we construct a prompt using
the generated summary and instruction [as pgr = Wg(.S,1), and then query the VLM for the final
rating ¢ = H(pg,). In ¥ g, we specify the rating range and assign descriptive labels for the lowest
and highest ratings. Figure 2 illustrates {2g and ¥g in the yellow box, and U in the blue box.

Under review as a conference paper at ICLR 2025

1st prompt: Trajectory summarization 2nd prompt: Trajectory Rating

Difference between consecutive timesteps:
Timestep 0 Timestep 1 Timestep 2 Timestep 3

* Timestep 0 -> 1: The agent rotates right to face the
sink.

« Timestep 1 -> 2: The agent moves forward towards the
sink.

* Timestep 2 -> 3: The agent picks up the tomato from
the sink.

Analyze in terms of completing the task:
This segment successfully completes the task of picking
up the tomato from the sink. The agent correctly
identifies the tomato's location, navigates towards it,
and successfully picks it up.

The image contains a segment of the trajectory, with [4] timesteps of
visual observations, ing to [3] i iate actions. The
intermediate actions are:

[RotateLeft, MoveAhead, Pickup]

Please analyze the visual di ive timesteps,
reply the changes between consecutive time steps in each line. The
task is to [Pick up the tomato from the sink], analyze this segment
in terms of completing the task.

Based on the above analyses from timestep 0 to [3], rate
the trajectory on a scale from 0 to 3, where 0 means the
task is not completed and 3 means the task is fully
completed.

How would you rate this trajectory in terms of
.' VLM completing task [Pick up the tomato from the sink]?
0. Please reply a single line of the rating.

Difference between consecutive timesteps:
* Timestep 0 -> 1: The agent rotates right to face the sink. S
* Timestep 1 -> 2: The agent moves forward towards the sink. -
* Timestep 2 -> 3: The agent picks up the tomato from the sink.

VLM

Analyze in terms of completing the task:

This segment successfully completes the task of picking up the
tomato from the sink. The agent correctly identifies the tomato's 3
location, navigates towards it, and successfully picks it up.

Figure 2: Given an instruction and a trajectory collected by the agent, we construct visual and
textual prompts to query the VLM for a summary of the trajectory and an evaluation of how well it
completes the instruction (yellow box). The summary is then used to construct a prompt to query
for a final rating from the VLM (blue box). An example of the summary and rating is shown in the
gray box. The template shown here is applied across all instructions and environments in the paper.

While (Cabi et al., 2020) also explores per-frame annotation with human involvement, our approach
leverages VLMs to automate the annotation process, eliminating the need for human intervention.

Implementation Details. The trajectories can vary in length, reaching up to 50 steps in our envi-
ronments. Concatenating a large number of images may increases inference time and degrade the
reasoning performance of VLMs, as their limited input size necessitates downscaling when the input
exceeds the model’s capacity. In practice, we divide each trajectory into segments (e.g., 10 steps per
segment) during summarization. These segment summaries are then concatenated to form the final
summary. For trajectory rating, since the input is purely text, large language models could be used.
However, for simplicity, we use the same VLM for both summarization and rating.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate V-TIFA’s effectiveness in training instruction-following
agents in the online RL setting. We compare V-TIFA to prior VLM-based reward generation meth-
ods in visual household tasks from the ALFRED simulator (Shridhar et al., 2020). While previous
work has primarily focused on low-level control tasks, we extend these methods to this challenging
benchmark. Concretely, we aim to answer the following questions:

. How does the effectiveness of V-TIFA compare to other methods in LC-RL setting?

. What aspects of V-TIFA are crucial for its success?

. How consistent and effective is the feedback quality across pretrained VLM models?
. What advantages does evaluative feedback have over comparative feedback?

A W=

5.1 EXPERIMENTAL SETTINGS

ALFRED Environment. We evaluate methods in a set of challenging embodied environments
(Figure 3), including Kitchen, Bathroom, Living Room, and Bedroom, drawn from the valid-unseen
folds of the ALFRED simulator (Shridhar et al., 2020). Unlike other synthetic LC-RL benchmarks
that rely on template instructions (Hermann et al., 2017; Chevalier-Boisvert et al., 2019), ALFRED
offers visually realistic environments with crowd-sourced language instructions. This allows us to
evaluate the VLMs’ ability to generate effective rewards across complex, natural language directives.
We leverage a modified version of the ALFRED simulator (Zhang et al., 2023), which allows for on-

Under review as a conference paper at ICLR 2025

(a) Kitchen (b) Bathroom (c) Livingroom (d) Bedroom

Figure 3: We evaluate V-TIFA in four embodied environments from the ALFRED simulator, where
the goal is to train an agent to follow natural language instructions to complete household tasks.

line RL interaction via a gym interface. ALFRED abstracts away low-level control into 12 discrete
actions (e.g., MoveAhead, Pickup), along with 82 discrete object types. In these environments,
agents are randomly situated in rooms and perceive the environment through proprioceptive infor-
mation and 224 x 224 egocentric RGB image observations. In each environment, we define 10
evaluation tasks, each composed of 2 sub-tasks with their own instruction, resulting in a total of 80
instructions across the four environments. The agent is considered successful if both sub-tasks are
completed. Further details about the environments and instructions are provided in the Appendix.

Baselines. We compare V-TIFA to prior baselines that also leverage pretrained VLMs (without fine-
tuning) to generate rewards based on the task description and the agent’s visual observations. These
baselines involve contrasting the text embedding with either a single image embedding or multiple
image embeddings:

* GT Reward: This baseline trains the agent using ground-truth rewards from the environment and
serves as an upper bound. At the end of the trajectory, the agent receives a reward of 1 for
completing the instruction and 0 otherwise.

* CLIP Reward: The reward is generated by computing the cosine similarity between the final
observation and the language instruction in CLIP embedding space (Radford et al., 2019). This
reward computation method has also been explored in (Cui et al., 2022; Mahmoudieh et al., 2022;
Rocamonde et al., 2024).

* R3M Reward: This method was originally designed for representation learning in robotics (Nair
et al., 2022b). We leverage the pretrained predictor from R3M, which takes the initial and final
observation along with the language instruction to output a score measuring how well the instruc-
tion aligns with the temporal dynamics between the two images. This reward computation is
investigated in (Adeniji et al., 2023).

* RoboCLIP Reward: Similar to the CLIP Reward, the reward is generated by computing the simi-
larity between video observations and a demonstration video in S3D embedding space (Xie et al.,
2018). However, since our method does not assume access to task demonstrations, we instead use
the text-based version of RoboCLIP (Sontakke et al., 2024).

For all baselines, the generated rewards are obtained at the end of each trajectory, and we use default
task instructions from ALFRED as the task description for computing rewards.

Training and Evaluation Procedure. In our experiments and baselines, we use a variant of Implicit
Q-Learning (IQL) (Kostrikov et al., 2022) as the off-policy RL algorithm to train the policy, as it has
been shown to successfully train agents in the ALFRED (Zhang et al., 2023). We train agents for
800k steps in Bedroom, and 500k steps in the others. Success rates are measured every 100 epochs,
averaged over 500 episodes. Note that success is defined as 1 when the agent successfully completes
both sub-tasks. For V-TIFA, we use Gemini-1.5-Pro (Reid et al., 2024) as the pretrained VLM, with
4 levels of ratings, and divide the trajectory into segments of 10 steps. We perform experiments on
a PC with an AMD Ryzen 7906X and two RTX 4090 GPUs, with a training time for V-TIFA of
approximately 1.5 days per run. Further details are provided in the Appendix.

5.2 EFFECTIVENESS OF V-TIFA FOR TRAINING INSTRUCTION-FOLLOWING AGENTS?

We first examine whether V-TIFA can provide reward signals for learning language-conditioned
policies. Figure 4 shows the success rate over the course of training across three runs. The results
show that V-TIFA consistently outperforms other baselines across environments, coming closest to

Under review as a conference paper at ICLR 2025

Kitchen Bathroom Livingroom Bedroom

| T T R SO0

0. 0
200 400 600 800 1000 1200 500 1000 1500 200 400 600 800 1000 1200 500 1000 1500
Epoch Epoch Epoch Epoch

CLIP Reward —— R3M Reward —— RoboCLIP Reward —— V-TIFA reward —— GT Reward

o

®
o
o

o
o
o
@
o
o

Success Rate
o
=
Success Rate

o

o
14
IS

Success Rate

°
N

Success Rate

o
IS

o

~
o
N

o
o

Figure 4: Success rate over training course of all methods in four environment. V-TIFA greatly
outperforms all baselines across environments, and closest to GT Reward in Kitchen and Bathroom.
The solid line is the mean success rate, while the shaded regions is to the standard deviation, both
calculated across three different random seeds.

B simpcat use caption+no action no caption+use action = Ours

Kitchen Bathroom Livingroom Bedroom
. 1.0 . 1.0 L

1.0

0.0 0.0

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
Figure 5: Effect of different components in our trajectory summary prompt. Overall, including
actions in the summary prompt has the most significant impact.

GT Reward in the Kitchen and Bathroom environments. Among the baselines, we find that the
CLIP Reward fails to guide agent learning in solving tasks. This is likely because CLIP is pretrained
on single images, and its similarity score lacks the temporal understanding required to capture the
sequential nature of instructions. Our findings are consistent with (Sontakke et al., 2024), which
similarly highlights CLIP’s limitations in handling temporal dynamics. On the other hand, both R3M
Reward and RoboCLIP Reward provide some useful signals for policy learning, with RoboCLIP
performing better in 2 out of 4 environments. This is because RoboCLIP uses pretrained video-
language models, which capture richer temporal dynamics than R3M, which is only pretrained to
align language with the initial and future frames. In contrast, V-TIFA performs explicit reasoning
over the trajectory and accounts for action-driven changes in transitions, resulting in more accurate
reward signals grounded in the agent’s behavior, which leads to significantly improved performance.

5.3 ANALYZING V-TIFA

While V-TIFA successfully provides reward signals for policy training, a visible gap remains be-
tween V-TIFA and the GT Reward. In this section, we examine the underlying reasons for this gap
and analyze the impact of various design decisions in V-TIFA. Additionally, we evaluate the effec-
tiveness of various large pretrained VLMs. To perform these experiments, we collect trajectories
from GT Reward agents along the training course. In each environment, for each checkpoint, we
record 40 trajectories corresponding to 2 trajectories per instruction, resulting in approximately 500
trajectories per environment, with the averaged return over collected dataset about 0.6-0.7. We then
use the same prompt to query the VLM for ratings. To enable direct comparison with ground-truth
rewards, we assign a reward of 1 to ratings at the maximum value, and O otherwise. The intuition is
that when a trajectory successfully completes an instruction, the rating should be at its highest. We
then measure accuracy (Acc.), precision (Prec.), and recall (Rec.) to evaluate the performance.

Alignment of V-TIFA with Ground-Truth Rewards. As shown in Figure 5, we observe that the
accuracy of V-TIFA is highest in Kitchen and Bathroom, at roughly 80%, while it reaches 65% in
the other environments. These results are also reflected in the final performance of the trained agents
in Figure 4, where V-TIFA comes closer to the GT Reward agent’s performance in the Kitchen and
Bathroom. Interestingly, the precision of V-TIFA remains close to 1 across all environments, sug-
gesting that VLMs rarely assign the maximum rating to failed trajectories. In other words, when
VLMs give the highest rating, the trajectory has almost always successfully completed the instruc-
tion. However, the recall of V-TIFA is somewhat lower than its accuracy and precision, as the VLM
often assigns a rating of 2 rather than the maximum rating of 3 to several successful trajectories.

Under review as a conference paper at ICLR 2025

mm W=10 e W=15 s W=20 s W=30 s W=50

Kitchen Bathroom Livingroom Bedroom
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 0.0 0.0 0.0
Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

Figure 6: Effect of different segment lengths on performance. The performance varies only slightly
across different segment lengths.

mmm Gemini 1.5 Flash mms GPT-40 mini mmw Gemini 1.5 Pro s Qwen2-VL-72B mmm GPT-40

Kitchen Bathroom Livingroom Bedroom

1.0 1.0 1.0 1.0
)) Olshm“ml_lllu O.SLII“M_I““
0.0 0.0 0.0 0.0

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

Figure 7: We investigate the performance of different large pretrained VLMs. Bigger models achieve
better performance but at the cost of increased inference time.

Effectiveness of Components in Summary Prompt. We ablate several design decisions as follows:
(1) simply concatenate image observations and exclude actions from the prompt (simpcat), (2) in-
clude a timestep caption under each image but exclude actions (use caption+no action), and (3)
include actions in the prompts but exclude captions (no caption+use action). Figure 5 illustrates the
performance of different prompt configurations. The results clearly show that including actions in
the summary prompt contributes to the greatest improvement, while adding captions offers a slight
advantage over simple image concatenation.

Effectiveness of segment size. Figure 6 shows the effect of different segment lengths on perfor-
mance. The results indicate that performance varies only slightly across lengths. Although a seg-
ment length of 20 achieves the best results, it comes with increased inference time due to larger
images. To balance effectiveness and efficiency, we use a segment length of 10 in our experiments.

Effectiveness of VLMs. We further investigate the effectiveness of different large pretrained VLMs,
including Gemini 1.5 Flash, Gemini 1.5 Pro (Reid et al., 2024), GPT-40 Mini (OpenAl, 2024b),
GPT-40 (OpenAl, 2024a), and Qwen2-VL (Bai et al., 2023). For Qwen2-VL, we use the released
model from the authors and run it on a single A100 GPU. Figure 7 and Table 1 present the perfor-
mance and inference time for the querying process of the large VLMs. Lite models, such as Gemini
1.5 Flash and GPT-40 Mini, often exhibit poorer performance. Although GPT-40 achieves the best
performance among the models considered, we find that GPT-40 models are unstable during training,
occasionally returning null text. Additionally, their inference times are inconsistent (e.g., GPT-40
Mini is slower than GPT-40) and generally slower than Gemini 1.5 Pro. While Qwen2-VL shows
promising results with the second-best performance, its inference time on images is significantly
slower due to limited resources. Therefore, we select Gemini 1.5 Pro for more efficient training in
our experiments.

6 DIFFERENT FEEDBACK TYPES

In this section, we explore a different type of feedback: comparative feedback. In this setup, we
query the VLM for comparative feedback on the collected trajectories from Section 5.3, denoted
as Dygpger. Since this feedback type requires the evaluator to compare pairs of trajectories, we
additionally collect an extra dataset of the double size for comparison, denoted as D¢ ference. We
simulate the querying process as follows: for each trajectory in Dyqrget, We uniformly sample a
trajectory from D, ference With the same task instruction. We then use the same summary prompt
to summarize both trajectories and utilize the comparison prompt from (Wang et al., 2024a) to obtain
the preference. Specifically, if the VLM prefers the trajectory from Dyg,get, We assign a reward of
1 to that trajectory, and O otherwise. We use the same evaluation metric as in Section 5.3.

Under review as a conference paper at ICLR 2025

Table 1: The inference time of the querying process at each step for different VLMs

Model Summary (s) Rating (s) Total time (s)
Gemini 1.5 Flash 15.7 1.3 17
GPT-40 mini 38.8 0.8 39.6
Gemini 1.5 Pro 25 1.6 26.6
Qwen2-VL-72B 912.2 3.6 915.8
GPT-40 29.5 0.8 30.3

Comparative Feedback mmm Evaluative Feedback

Kitchen Bathroom Livingroom Bedroom
1.0 . 1.0 s 1.0 . 1.0
0.5 0.5 0.5 l 0.5
. . |
: : I I
0.0 0.0 0.0 0.0
Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

Figure 8: The comparison between comparative feedback and evaluative feedback.

The results in Figure 8§ indicate that comparative feedback leads to poorer performance. To better
understand the underlying cause, we manually inspect the summaries and responses from the VLM.
Our analysis reveals that the VLM frequently favors shorter trajectories, even when both success-
fully complete the instruction. For example, for the task “Pick up the tomato from the sink”, the
agent’s random initial position can result in varying distances from the target object, making longer
trajectories not necessarily worse than shorter ones. Because of its binary nature, this type of feed-
back does not convey the degree to which one sample is better or worse than another. This limitation
of comparative feedback has also been noted in (Casper et al., 2023; Wang et al., 2024a; White
et al., 2024). To address this issue, previous works often require the collection of a large number of
samples and the development of strategies to select informative reference samples (Biyik & Sadigh,
2018; Biyik et al., 2020; Sadigh et al., 2017), which can be even more challenging in the LC-RL.

7 CONCLUSION

We present a method that leverages large vision-language models (VLMs) as a proxy for language-
conditioned reward functions to train instruction-following agents. Our proposed prompt technique
enables VLMs to explicitly evaluate the entire agent trajectory, providing a deeper understanding
of the language instruction and generating more effective reward signals for training. Our experi-
ments demonstrate that V-TIFA is robust to language instructions and consistently outperforms prior
baselines across various embodied environments.

Limitations. While V-TIFA successfully trains instruction-following agents in a language-
conditioned reinforcement learning setting using vision-language models (VLMs) without fine-
tuning, a noticeable gap remains compared to agents trained with ground-truth rewards. This dis-
crepancy primarily arises from occasional inaccuracies in VLM feedback. Additionally, in the en-
vironments we tested, only large-scale VLMs delivered strong performance, though at the cost of
increased inference time (approximately 2.5 longer than training with environment rewards alone).
Smaller models, while faster, yielded only moderate results. Future work could explore integrating
advanced techniques such as self-correction (Miao et al., 2024) to improve the feedback consistency
and accuracy of smaller VLMs. This would pave the way for more efficient, scalable reinforcement
learning systems that maintain high performance while reducing computational overhead, making
RL more feasible for deployment in real-world environments.

REFERENCES

Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter Abbeel.
Language reward modulation for pretraining reinforcement learning. arXiv:2308.12270, 2023.

10

Under review as a conference paper at ICLR 2025

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. NeurIPS, 2022.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In CVPR, 2018.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude—-3-5-sonnet.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman. Deep reinforcement learning
from policy-dependent human feedback. arXiv:1902.04257, 2019.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Seyedarian Hosseini, Pushmeet Kohli,
and Edward Grefenstette. Learning to understand goal specifications by modelling reward. In
ICLR, 2018.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv:2308.12966, 2023.

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
via image inpainting. NeurIPS, 2022.

Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
CoRL, 2018.

Erdem Biyik, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active preference-based
gaussian process regression for reward learning. arXiv:2005.02575, 2020.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond subop-
timal demonstrations via inverse reinforcement learning from observations. In /ICML, 2019.

Serkan Cabi, Sergio Gémez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. RSS, 2020.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. TMLR, 2023.

Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce: Augmenting experience
via teacher’s advice for multi-goal reinforcement learning. arXiv:1902.04546, 2019.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In CVPR, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. /CLR, 2019.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. NeurlIPS, 2017.

John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John DeN-
ero, Pieter Abbeel, and Sergey Levine. Guiding policies with language via meta-learning.
arXiv:1811.07882, 2018.

Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind Rajeswaran. Can foun-
dation models perform zero-shot task specification for robot manipulation? In Learning for
dynamics and control conference, 2022.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. CoLLAs, 2023.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

Under review as a conference paper at ICLR 2025

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals:
Inverse reinforcement learning for vision-based instruction following. ICLR, 2019.

Alison Gopnik and Andrew Meltzoff. The development of categorization in the second year and its
relation to other cognitive and linguistic developments. Child development, 1987.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping
in reinforcement learning. arXiv:1903.02020, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, et al. Grounded lan-
guage learning in a simulated 3d world. arXiv:1706.06551, 2017.

Ayano Hiranaka, Minjune Hwang, Sharon Lee, Chen Wang, Li Fei-Fei, Jiajun Wu, and Ruohan
Zhang. Primitive skill-based robot learning from human evaluative feedback. In /ROS, 2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. NeurIPS, 2016.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordi-
nation. In ICML, 2023.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical decision
making by generating and following natural language instructions. NeurIPT, 2019.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. NeurIPS, 2018.

Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation learning for grounded
spatial reasoning. Transactions of the Association for Computational Linguistics, 2018.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction
for hierarchical deep reinforcement learning. NeurIPS, 2019.

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and
Percy Liang. Language-driven representation learning for robotics. arXiv:2302.12766, 2023.

W Bradley Knox and Peter Stone. Tamer: Training an agent manually via evaluative reinforcement.
In IEEE international conference on development and learning, 2008.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, 2009.

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understanding natural language
directions. In HRI, 2010.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. ICLR, 2022.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In ICLR, 2023.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. arXiv:2106.05091, 2021a.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. NeurlIPS, 2021b.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktéschel. A survey of reinforcement learning informed by
natural language. IJCAI, 2019.

12

Under review as a conference paper at ICLR 2025

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In ICML, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. /CLR, 2024.

James MacGlashan, Monica Babes-Vroman, Marie desJardins, Michael L. Littman, Smaranda
Muresan, S. Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding english com-
mands to reward functions. In RSS, 2015.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
ICML, 2017.

Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting language,
knowledge, and action in route instructions. Def, 2006.

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. Zero-shot reward specification via
grounded natural language. In ICML, 2022.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. RA-L, 2022.

Hongyuan Mei, Mohit Bansal, and Matthew Walter. Listen, attend, and walk: Neural mapping of
navigational instructions to action sequences. In AAAI 2016.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. ICLR, 2024.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. NeurlIPS, 2021.

Dipendra Kumar Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions. In RSS, 2014.

Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation. In CoRL, 2022a.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. CoRL, 2022b.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In /CML, 2000.

OpenAl Gpt-4v(ision) system card, 2023. URL https://openai.com/index/
gpt-4v-system-card/.

OpenAl Hello gpt-40, 2024a. URL https://openai.com/index/hello-gpt—-40/.

OpenAl. Gpt-40 mini: advancing cost-efficient intelligence, 2024b. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In /ICML, 2021.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv:2403.05530, 2024.

13

https://openai.com/index/gpt-4v-system-card/
https://openai.com/index/gpt-4v-system-card/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Under review as a conference paper at ICLR 2025

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. /CLR, 2024.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based learning of
reward functions. RSS, 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In CVPR, 2020.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a red
circle? visual prompt engineering for vims. In ICCV, 2023.

Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. NeurlPS,
2024.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Banerjee, Seth Teller,
and Nicholas Roy. Understanding natural language commands for robotic navigation and mobile
manipulation. In AAAI 2011.

Sida I Wang, Percy Liang, and Christopher D Manning. Learning language games through interac-
tion. arXiv:1606.02447,2016.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised imi-
tation learning for vision-language navigation. In CVPR, 2019.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. ICML,
2024a.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Za-
ckory Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for
automated robot learning via generative simulation. /CML, 2024b.

Devin White, Mingkang Wu, Ellen Novoseller, Vernon J Lawhern, Nicholas Waytowich, and Yong-
can Cao. Rating-based reinforcement learning. In AAAI 2024.

Nils Wilde, Erdem Biyik, Dorsa Sadigh, and Stephen L Smith. Learning reward functions from
scale feedback. CoRL, 2021.

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification. In ECCV, 2018.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
ICLR, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv:2306.08647, 2023.

Yifu Yuan, Jianye Hao, Yi Ma, Zibin Dong, Hebin Liang, Jinyi Liu, Zhixin Feng, Kai Zhao, and Yan
Zheng. Uni-rlhf: Universal platform and benchmark suite for reinforcement learning with diverse
human feedback. ICLR, 2024.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. CoRL, 2023.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. TPAMI, 2024.

Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning
from demonstrations with varying optimality. NeurIPS, 2021.

14

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RL ALGORITHM DETAILS

We utilize Implicit Q-Learning (IQL) (Kostrikov et al., 2022) with a transformer-based architecture
for both the policy and critic networks, similar to (Zhang et al., 2023). The hyperparameters are
provided in Table 2. The main difference is that we set the quantile parameter 7 = 0.5, making
IQL a standard off-policy online RL algorithm, rather than one suited for offline RL as in (Zhang
et al., 2023). During training, to reduce exploration time—which is particularly challenging in
ALFRED—we seed the buffer with 2-3 human-collected demonstrations. It is important to note
that while these demonstrations complete the task, they are not necessarily optimal. We use them to
reduce exploration time; however, our method can without them, albeit with longer training times.
This approach is applied consistently across all baselines. Additionally, we relabel the rewards in
the seed buffer to align with each baseline’s framework, ensuring compatibility during training.

Parameter Value

Batch Size 128

Training Steps 800k Bedroom, 500k otherwise
Learning Rate le—14
Optimizer AdamW
Dropout Rate 0.1

Weight Decay 0.1

Discount vy 0.97

Q Update Polyak Averaging Coefficient 0.005

Policy and Q Update Period 8 per train iter
IQL Advantage Clipping [0, 100]

IQL Advantage Inverse Temperature 5 5

IQL Qunatile 7 0.5

Maximum Context Length 8

Table 2: Hyperparameters for IQL

A.2 RL ENVIRONMENT DETAILS

The ALFRED benchmark (Shridhar et al., 2020) is originally designed for imitation learning. We
use a modified version of ALFRED from (Zhang et al., 2023), which supports policy learning using
reinforcement learning (RL). Also, we make further modifications to the environment to ensure that
when objects are picked up, they remain clearly visible within the agent’s view. In the original setup,
the agent’s view is often occluded by larger objects. This change allows VLMs to recognize objects
more effectively. We define evaluation tasks by randomly sampling 10 tasks for each of the 4 unseen
ALFRED floor plans, resulting in a total of 40 tasks. Each task is constrained to consist of 2 sub-
tasks. For tasks with more than 2 sub-tasks, we only use the first 2. This is because, with longer
tasks, the baseline RL algorithm from (Zhang et al., 2023) may fail to learn any tasks. All generated
tasks from the floor plans are shown in Tables 3, 6, 5, and 4. The agent is considered successful
if it completes both sub-tasks. Note that during training, the agent must complete the first sub-task
before switching to the next. For the ground-truth reward function, the agent receives a reward of 1
whenever it completes a sub-task, then switches to the next sub-task or stops if the second sub-task
is already completed. The observations provided to the agents are 224 x 224 RGB images. For all
baselines, we first preprocess these images by passing them through a frozen ResNet-18 encoder
(He et al., 2016) pretrained on ImageNet, resulting in 512 x 7 x 7 observations. The action space
of ALFRED consists of 5 navigation actions: MoveAhead, RotateRight, RotateLeft, LookUp, and
LookDown, and 7 interaction actions: Put, Pickup, Open, Close, ToggleOn, ToggleOff, and Slice.
For interaction actions, the policy also outputs one of 82 object types to interact with. Note that for
the VLM summary prompt, we use only actions and not object types. Due to large discrete action
space (5 + 7 * 82), we perform same masking as (Zhang et al., 2023) to prevent agents from taking
actions that are not possible (e.g., the policy cannot output Close for object Tomato).

15

Under review as a conference paper at ICLR 2025

Task No. | Sub-task Type Instruction
] PickupObject | Pick up the spoon from the counter
PutObject Put the spoon in the white cup on the shelf.
PickupObject | Pick up the egg that is beside the fork in the sink.
2 CoolObject Op@n the refrigerator3 then placcf, the egg on the glass shelf and 'close the fridge.
Wait then open the fridge and pick up the egg, then close the fridge.
PickupObject | Pick up the tomato from the sink.
3 CoolObject Open the fridge door, put the tomato inside of the fridge, close the door, open
the door, take the tomato out, close the door.
PickupObject | Pick up the mug in the coffee maker
4 CoolObject Qpen the fridge, put the cup in the fridge, close the fridge, wait, open the fridge,
pick the cup, close the fridge
PickupObject | Pick up the bread.
5 CoolObject gotgetr;1 :;ief;(ij(,igaidp;to Z};eﬂ?eref;rli(zi ;;3 .the fridge, close the fridge, open the fridge,
PickupObject | Pick up the white coffee cup to the right of the trophy.
6 CleanObject Put the coffee cup in the sink, turn on the water, turn off the water and pick up
the coffee cup.
7 PickupObject | Pick up the smaller silver knife on the counter.
PutObject Put the knife in the green cup in the sink.
3 PickupObject | Pick up a bowl from the shelf
PutObject Put the bowl on the counter
9 PickupObject | Grab the knife from the counter
PutObject Put the knife in the pan on the stove
PickupObject | Pick up the knife from the counter.
10 cl . Place the knife in the sink and turn the water on. Turn the water off and pick up
canObject | ¢ knife.
Table 3: Tasks from Kitchen environment.
Task No. | Sub-task Type Instruction
| PickupObject | Pick up the bowl from the shelf
ToggleObject | Turn on the lamp sitting on the desk while holding the bowl
2 PickupObject | Pick up the white mug from the desk.
ToggleObject | Turn the desk lamp on with the mug in hand.
3 PickupObject | Pick up the book from the bed.
ToggleObject | Turn on the lamp on the desk while carrying the book
4 PickupObject | Pick up the mug from the shelf.
ToggleObject | Turn the lamp on while holding the cup.
5 PickupObject | Pick up the bowl on the desk.
ToggleObject | Turn on the lamp on the desk while holding the bowl.
6 PickupObject | Pick up the pencil from the desk
PutObject Put the pencil in the bowl
7 PickupObject | Pick up the alarm clock from the desk
ToggleObject | Turn on the lamp on the desk while holding the alarm clock.
3 PickupObject | Pick up the clock from the back of the desk.
ToggleObject | Hold the clock and turn on the lamp on the right side of the desk.
9 PickupObject | Pick up the mug on the shelf.
PutObject Put the mug on the desk.
10 PickupObject | Pick up the pencil on the desk.
PutObject Place the pencil in the glass bowl on the desk.

Table 4: Tasks from Bedroom environment.

16

Under review as a conference paper at ICLR 2025

Task No. | Sub-task Type Instruction
| PickupObject | Pick up the cell phone from the dresser
ToggleObject | Hold the cell phone and turn the lamp on
2 PickupObject | Pick up the remote that is on the blue chair
ToggleObject | Turn on the lamp with the remote in hand.
3 PickupObject | Pick up the laptop on the right after closing it.
ToggleObject | Turn on the floor lamp while carrying the laptop.
4 PickupObject | Pick the phone up from the desk.
ToggleObject | Turn the lamp on while holding the phone.
5 PickupObject | Grab the tissue paper from the dresser.
ToggleObject | Carry the tissue as you turn on the lamp.
6 PickupObject | Pick up the remote from the middle of the dresser, directly behind the tissues.
ToggleObject | Hold the remote and turn on the lamp.
7 PickupObject | Pick up a pillow from the chair
PutObject Put the pillow on the couch
3 PickupObject | Pick up the statue on the top shelf.
ToggleObject | Turn on the lamp while holding the statue.
9 PickupObject | Pick up a statue from the dresser
ToggleObject | Turn on the floor lamp with the statue in hand
10 PickupObject | Pick up the left pillow on the chair
PutObject Put the pillow on the sofa right of the newspaper
Table 5: Tasks from Livingroom environment.
Task No. | Sub-task Type Instruction
| PickupObject | Pick up the bar of soap on the back of the toilet.
PutObject Place the soap in the trash can.
2 PickupObject | Pick up bar of soap
CleanObject Put soap in sink, turn water on, turn water off, remove soap from sink
PickupObject | Pick up the cloth from the counter.
3 cl . Put the cloth in the sink and turn the water on and then off and pick the cloth up
eanObject from the sink.
PickupObject | Pick the soap up from the back of the toilet.
4 CleanObject Put.the soap in the sink and turn the water on and then off and pick up the soap
again.
PickupObject | Pick the cloth up from the counter.
5 CleanObject Put the clot.h in the sink and turn the water on and then off and take the cloth
out of the sink.
PickupObject | Pick up the bar of soap.
6 CleanObject Put the bar of soap in the sink, turn the water on and then off and then pick up
the bar of soap.
7 PickupObject | Pick up the bar of soap on the back of the toilet.
PutObject Open the cabinet, put the bar of soap inside, and close the cabinet.
3 PickupObject | Grab a bar of soap off of the counter
PutObject Put the soap in the trash can
9 PickupObject | Pick up the soap on the counter
PutObject Open the cabinet and put in the soap then close the cabinet
10 PickupObject | Pick up toilet roll from off the toilet
PutObject Open sink cabinet and place roll inside before closing the door

Table 6: Tasks from Bathroom environment.

17

	Introduction
	Related work
	Language-conditioned RL
	RL in the Absence of Reward Functions
	Large Foundation Models as Reward Functions

	Preliminary
	Method
	Experimental Evaluation
	Experimental Settings
	Effectiveness of V-TIFA for Training Instruction-following Agents?
	Analyzing V-TIFA

	Different Feedback Types
	Conclusion
	Appendix
	RL Algorithm Details
	RL Environment Details

