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ABSTRACT

Developing agents that can understand and follow language instructions is critical
for effective and reliable human-AI collaboration. Recent approaches train these
agents using reinforcement learning with infrequent environment rewards, plac-
ing a significant burden on environment designers to create language-conditioned
reward functions. As environments and instructions grow in complexity, crafting
such reward functions becomes increasingly impractical. To address this chal-
lenge, we introduce V-TIFA, a novel method that trains instruction-following
agents by leveraging feedback from vision-language models (VLMs). The core
idea of V-TIFA is to query VLMs to rate entire trajectories based on language in-
structions, using the resulting ratings to directly train the agent. Unlike prior VLM
reward generation methods, V-TIFA does not require manually crafted task spec-
ifications, enabling agents to learn from a diverse set of natural language instruc-
tions. Extensive experiments in embodied environments demonstrate that V-TIFA
outperforms existing reward generation methods under the same conditions.

1 INTRODUCTION

A central challenge in reinforcement learning (RL) research is developing agents that can reason
abstractly, generalize across tasks, and communicate effectively. Language, whether natural or for-
mal, plays a key role in enabling these abilities (Gopnik & Meltzoff, 1987). Recognizing this,
many studies have explored incorporating language into RL to enhance communication, improve
generalization and sample efficiency (Tellex et al., 2011; Mei et al., 2016; Goyal et al., 2019). The
field can be broadly divided into language-conditioned RL (LC-RL), where language shapes the
problem formulation (Anderson et al., 2018; Wang et al., 2019), and language-assisted RL, where
language facilitates the agent’s learning (Hu et al., 2019; Zhang et al., 2023). This work focuses on
LC-RL, where the agent initially receives a language instruction and must act accordingly to fol-
low that instruction. While RL provides a promising framework for training instruction-following
agents, a major challenge is designing a reward function conditioned on language, which becomes
increasingly difficult to implement efficiently as the complexity of the environment and language
grows (Bahdanau et al., 2018). To scale instruction-following more broadly, an automated method
is needed to evaluate whether the agent successfully completes the task specified by the instruction.

Prior work has explored replacing handcrafted language-conditioned rewards with methods that
learn them indirectly from qualitative human inputs. A common approach is inverse RL (Ng et al.,
2000), where the reward function is inferred from demonstrations paired with descriptions (Bah-
danau et al., 2018; Fu et al., 2019). However, such high-quality language-annotated data can be
elusive for complex and rare tasks. Meanwhile, for tasks without explicit language conditions, RL
from human feedback (RLHF) has emerged as a powerful paradigm, allowing agents to learn from
human guidance (Knox & Stone, 2009; Yuan et al., 2024). In RLHF, the reward function is learned
by modeling human feedback, typically provided as comparative feedback (Christiano et al., 2017;
Ibarz et al., 2018) or evaluative feedback (Wilde et al., 2021; White et al., 2024). This approach has
shown promising results in enabling agents to perform low-level tasks like locomotion (Lee et al.,
2021b) and manipulation (Hiranaka et al., 2023). However, RLHF for training instruction-following
agents remains largely under-explored, likely because these tasks often involve multi-step, high-level
reasoning, requiring humans not only to assess individual actions but also to account for long, com-
positional instructions. Consequently, gathering sufficient high-quality, language-annotated feed-
back for reward modeling in such settings is highly resource-intensive.
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Both of these prevalent approaches to replacing manually handcrafted rewards rely heavily on
human-provided data, limiting their scalability and generalizability. In response, the rise of founda-
tion models (Radford et al., 2019; OpenAI, 2023; Reid et al., 2024) has sparked numerous efforts
to reduce human supervision in designing reward functions by leveraging these models. One such
approach involves generating code-based reward functions directly (Wang et al., 2024b; Xie et al.,
2024; Ma et al., 2024). However, these methods often assume access to the environment’s underly-
ing code and low-level ground-truth states, making them difficult to scale to high-dimensional envi-
ronments. Alternatively, pretrained vision-language models (VLMs), such as CLIP (Radford et al.,
2021), have been employed to generate rewards by measuring the similarity between images and
task descriptions in a shared vector space (Cui et al., 2022; Mahmoudieh et al., 2022; Rocamonde
et al., 2024; Sontakke et al., 2024). Despite these advances, most approaches remain focused on
single-objective tasks, often requiring manually crafted task specifications, such as demonstrations
or text descriptions. In this paper, we aim to answer the question: Can large vision-language models
automatically generate rewards for training visual instruction-following agents, without relying on
human data or direct access to the environment?

To this end, we propose Vision-Language Models as Trainers for Instruction-Following Agents (V-
TIFA), a method that leverages the advanced reasoning capabilities of large VLMs, such as Gemini
(Reid et al., 2024), to automatically generate reward signals for training language-conditioned poli-
cies in the LC-RL setting. V-TIFA is inspired by the RLHF training paradigm, where the VLM acts
as an evaluator, critiquing the agent’s trajectories and delivering evaluative feedback (MacGlashan
et al., 2017) to guide its learning. However, unlike conventional RLHF methods that require human
annotators and explicit reward modeling (Christiano et al., 2017; White et al., 2024), V-TIFA di-
rectly uses feedback from the VLM to train the agent. This not only eliminates the need for costly
human labor but also bypasses the reward modeling process, which can cause to reward misspeci-
fication and misgeneralization if not handle carefully (Casper et al., 2023). We evaluate V-TIFA in
a set of challenging embodied environments from the ALFRED simulator (Shridhar et al., 2020),
which includes 80 diverse human-generated language instructions. The results demonstrate that V-
TIFA can be served as a proxy language-conditioned reward function, greatly outperforming prior
VLM-based reward generation methods. Our key contributions are as follows:

• We introduce V-TIFA, a novel method that leverages VLMs to provide feedback for training
instruction-following agents, eliminating the need for human-designed reward functions.

• With extensive experiments on a diverse set of instruction-following tasks, we show that V-TIFA
can be served as an effective proxy for language-conditioned reward functions, consistently out-
performs previous VLM-based reward methods.

• We conduct comprehensive analyses and ablation studies to explore the effectiveness of V-TIFA
in training instruction-following agents, identifying the key factors contributing to its performance
and robustness.

2 RELATED WORK

2.1 LANGUAGE-CONDITIONED RL

We position our work within the LC-RL framework (Luketina et al., 2019), where agent learns poli-
cies to complete tasks specified by instructions (MacMahon et al., 2006; Kollar et al., 2010; Wang
et al., 2016). Prior works have explored this problem in the context of instruction-following, using
RL to derive language-conditioned policies with environment rewards (Janner et al., 2018; Co-Reyes
et al., 2018; Jiang et al., 2019; Chan et al., 2019). These approaches have been largely studied in
either 2D spatial games (Bahdanau et al., 2018; Chen et al., 2019; Mirchandani et al., 2021) or 3D
navigation and manipulation environments (Misra et al., 2014; MacGlashan et al., 2015; Hermann
et al., 2017) with template instructions. By contrast, we focus on vision-language navigation (An-
derson et al., 2018) using human-generated language instructions, without relying on environment
rewards. We utilize ALFRED simulator (Shridhar et al., 2020), which offers diverse visually realis-
tic household tasks with crowd-sourced language instructions. This challenging benchmark enables
us to evaluate the recognition and reasoning capabilities of various VLMs in reward generation.
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2.2 RL IN THE ABSENCE OF REWARD FUNCTIONS

Designing hard-coded reward functions in language-grounded environments often requires signifi-
cant human effort. In CALVIN (Mees et al., 2022), for instance, rewards are computed by checking
changes between initial and final states, relying on global state. In ALFRED (Shridhar et al., 2020),
reward computation is even more complex, not only requiring the global state but also demonstra-
tions to interpret instructions. To circumvent this, many works have focused on learning reward
functions conditioned on language from human data. A common approach utilizes inverse RL (Ng
et al., 2000; Ho & Ermon, 2016) to recover reward functions from demonstrations, which are then
used to optimize policies via RL (Bahdanau et al., 2018; Fu et al., 2019; Mirchandani et al., 2021;
Nair et al., 2022b). However, this approach relies on expert data, making it impractical for tasks
that non-experts cannot easily perform (Brown et al., 2019; Zhang et al., 2021). To address this, we
leverage VLMs as language-conditioned reward functions for training policies, eliminating the need
for demonstrations. For single-objective tasks, a more practical way for humans to provide data is
through feedback (Knox & Stone, 2009), where the agent is trained either directly from the feedback
or indirectly by learning reward models that represent it (Yuan et al., 2024; Casper et al., 2023). In
the robotics domain, the most common approaches to learning from feedback are preference-based
RL (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021a;b) and rating-based RL (RbRL)
(Knox & Stone, 2008; Wilde et al., 2021; White et al., 2024). Our training paradigm aligns with
RbRL, where each trajectory is critiqued by an evaluator. However, instead of human evaluators, we
leverage VLMs for this process. Additionally, we learn directly from feedback rather than modeling
it, as in (MacGlashan et al., 2017; Arumugam et al., 2019)

2.3 LARGE FOUNDATION MODELS AS REWARD FUNCTIONS

(Kwon et al., 2023) and (Hu & Sadigh, 2023) introduce large language models (LLMs) to design
reward functions in text-based games. Building on this, subsequent works have demonstrated that
LLMs can directly generate Pythonic code for reward functions (Yu et al., 2023; Wang et al., 2024b;
Xie et al., 2024; Ma et al., 2024). However, these methods typically assume access to the environ-
ment’s source code or global state. Additionally, many robotic tasks are visual, requiring the use
of VLMs instead. (Mahmoudieh et al., 2022) is the first to successfully use CLIP to train manipu-
lation tasks based on language descriptions, but they require fine-tuning the CLIP on task-specific
datasets. Recent works (Rocamonde et al., 2024; Sontakke et al., 2024) find that pretrained VLMs
can potentially be used as reward functions without fine-tuning, by measuring the similarity be-
tween the images and text descriptions in the embedding space. However, these reward signals
are often noisy and heavily dependent on task specifications (Rocamonde et al., 2024; Sontakke
et al., 2024). Furthermore, these similarity-based reward functions lack explicit reasoning about
tasks. (Wang et al., 2024a) is the first to use large VLMs to explicitly reason and provide preference
labels for learning reward functions, which are then used to learn low-level control tasks. Most
of these methods depend on manually crafted task descriptions and are limited to single-objective
tasks, where the descriptions are often tailored to fit VLMs. Unlike these approaches, our method is
robust to task descriptions, enabling multi-step, high-level reasoning from human-generated, com-
positional instructions, which allows for learning of language-conditioned policies. (Du et al., 2023)
addresses a similar problem to ours, where they fine-tune a Flamingo VLM (Alayrac et al., 2022) on
a carefully crafted dataset to detect task success. However, they do not train language-conditioned
policies, leaving it unclear how robust their approach is under optimization pressure. By contrast,
we show that VLMs without fine-tuning, equipped with simple prompting techniques, are effective
for training agents directly.

3 PRELIMINARY

Language-conditioned RL. We consider an augmented Partial Markov Decision Process (MDP)
M, defined by the tuple (S,O,A, P,R,L, γ), where S is the state space, O is the observation
space, A is the action space consisting of primitive actions—in ALFRED, these include naviga-
tion and interaction actions (MoveAhead, Pickup, ToggleOn, etc.), P (s′|s, a) is the transi-
tion probability, γ ∈ [0, 1] is the discount factor, L is the space of language instructions from
which the task instruction l is drawn, and R : S × A × S × L → R is a language-conditioned
state action reward function. The agent takes actions based on a language-conditioned policy
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Rating

Action

Observation

AgentRL Algorithm

Policy

Instruction

Trajectory

“Pick up the mug in the coffee maker”

…

MoveAhead RotateLeft Pickup

𝑡 = 0 𝑡 = 1 𝑡 = 𝑇 − 2 𝑡 = 𝑇 − 1 𝑡 = 𝑇
Instruction: “Pick up the mug in the coffee maker”

Replay Buffer VLM

Environment

Figure 1: V-TIFA Overview: A pretrained VLM acts as an evaluator, delivering ratings based on
the observed agent actions and state transitions. These ratings serve as reward signals for training
the language-conditioned policy using any off-policy RL algorithm.

π(a|s, l) : S × L → A. The goal of RL algorithms is to learn a policy that maximizes the ex-
pected return Eπ,l∼L[

∑T−1
t=0 γtR(st, at, st+1, l)], where T is the trajectory horizon.

Let τ = (ot, at)
T−1
t=0 = (o0, a0, . . . , oT−1, aT−1, oT ) denote a trajectory composed of a sequence

of observations and actions. In this work, we consider sparse reward problems, where the agent
is rewarded at the end of the trajectory, indicating whether the agent successfully completes the
instruction l. In ALFRED, the ground-truth reward function returns 1 when the agent completes the
instruction and 0 otherwise. Additionally, the trajectory terminates either when the instruction is
completed or when a timeout occurs, resulting in varying trajectory lengths.

Rating-based RL. When the reward function R is unavailable, standard RL algorithms cannot be
used to derive policies. Instead, we assume that an annotator critiques the trajectory τ , along with
the task instruction, by assigning a rating c from the set C = {0, 1, . . . , n−1}, where 0 is the lowest
possible rating and n − 1 is the highest, indicating the quality of the trajectory. Descriptive labels
can also be assigned to the rating levels. For example, with n = 4 rating levels, level 0 could be
labeled “very bad”, level 1 “bad”, level 2 “good”, and level 3 “very good”. Unlike previous work
(Wilde et al., 2021; White et al., 2024), which focuses on learning an explicit human-aligned reward
function, we directly use feedback from the annotator (in our case, vision-language models) to train
the policy, following a similar approach to (MacGlashan et al., 2017; Arumugam et al., 2019).

Vision-language models. In this paper, we define vision-language models (VLMs; (Zhang et al.,
2024)) as models capable of processing both language inputs p = (x0, . . . , xm), where xm ∈ V , and
a visual input I ∈ I. Here, V represents a finite vocabulary, and I denotes the space of RGB images.
Given these inputs, the VLM H generates language outputs as y = H(p, I), where y = (y0, . . . , yk)
and yk ∈ V . We focus on VLMs trained on diverse text and image datasets, which enables them to
generalize effectively across different environments and task instructions. Moreover, these models
must be capable of answering questions based on a single image (OpenAI, 2023; Anthropic, 2024;
Reid et al., 2024), a crucial ability for accurately rating trajectories.

4 METHOD

Overview. V-TIFA leverages the advanced reasoning abilities of pretrained VLMs to deliver feed-
back for training instruction-following agents through online RL. This is achieved by assigning a
rating at the end of the trajectory, reflecting how likely the agent successfully completed the given
instruction. Unlike prior rating-based RL methods that require human involvement during training,
our method fully automates the generation of evaluative feedback, allowing agents to train without
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Algorithm 1 V-TIFA training algorithm.
1: Input: A pretrained VLM H , visual prompt constructor Ω, textual prompt constructors for summarizing

ΨS and rating ΨR

2: Initialize: Policy πθ , replay bufferR.
3: while not converged do
4: Sample instruction li ∼ L
5: Run πθ to collect trajectories {τi} given li
6: for each τi do
7: Construct prompts for summarization: IS = Ω({ot}Tt=0) and pS = ΨS({at}T−1

t=0 , li)
8: Query for summarization: S = H(pS , IS)
9: Construct prompt for rating: pR = ΨR(S, li)

10: Query for rating: ci = H(pR, li)
11: end for
12: Store trajectories into replay buffer: R ← R∪ {(li, τi, ci)}
13: Optimize policy πθ using data sampled fromR with any off-policy RL algorithm
14: end while

human intervention. An overview of V-TIFA is shown in Figure 1, and the detailed training proce-
dure is provided in Algorithm 1. The agent first receives a language instruction li, then interacts with
the environment to collect trajectories {τi} based on the policy πθ. Each trajectory τi, along with
the instruction li, is sent to the VLM to obtain a corresponding rating ci. These trajectories, along
with the corresponding instructions and ratings {(li, τi, ci)}, are then stored in the replay buffer R.
Finally, the RL algorithm updates the policy πθ using data sampled from the replay buffer.

Prior work in RbRL (Yuan et al., 2024; White et al., 2024) typically requires a reward modeling
step, as directly using human feedback is prohibitively expensive for RL systems. However, learn-
ing a reward model conditioned on language introduces further complexity, as it must account for
multiple tasks. This requires a large amount of instruction-dependent trajectories to develop a re-
ward function that generalizes effectively (Nair et al., 2022a; Karamcheti et al., 2023; Ma et al.,
2023). By contrast, we incorporate VLMs directly into the training loop, eliminating the reward
modeling step—a process that, if not carefully managed, can be prone to reward misspecification
and misgeneralization (Casper et al., 2023).

VLMs for Rating. In the LC-RL problem, language instructions can be complex and highly com-
positional. For instance, an instruction like “Put the coffee cup in the sink, turn on the water, turn
off the water and pick up the coffee cup” involves multiple sub-tasks. As a result, an automatic
evaluator should be fine-grained enough to evaluate trajectories accurately based on the specific lan-
guage instruction. Moreover, multiple successful policies can produce diverse yet valid trajectories
for the same instruction. Evaluating these solely on final outcomes can be misleading, especially
with highly compositional instructions, where critical sub-tasks may be completed at different stages
within the trajectory. To ensure that VLMs provide accurate ratings, we prompt the model with the
entire trajectory, which includes visual observations, actions, and the corresponding instruction. Fig-
ure 2 illustrates this prompting process. First, we query the VLM to generate a free-form summary
of the trajectory. This summary is then used to prompt the VLM for a final rating. Since the VLM
processes individual images, querying it for each visual observation can be inefficient and may limit
its ability to capture temporal dynamics. To address this, we use a combination of visual and textual
prompts to efficiently represent the full trajectory. Our approach to visual prompting is inspired by
recent work (Jia et al., 2022; Bar et al., 2022; Shtedritski et al., 2023), which shows that pretrained
VLMs can enhance visual reasoning capabilities.

Concretely, let Ω be the visual prompt constructor, and ΨS and ΨR be the textual prompt construc-
tors for summarization and rating, respectively. Given a trajectory, Ω maps the visual observations
into a new image, IS = Ω({ot}), by concatenating the image observations and placing a timestep
caption under each individual image. ΨS maps the actions and instruction l into a text prompt,
pS = ΨS({at}, l). This prompt contains information about the trajectory’s length, executed ac-
tions, and a question to evaluate the completion of the instruction l. The summary of the trajectory
is then obtained from the VLM as S = H(pS , IS). For the rating, we construct a prompt using
the generated summary and instruction l as pR = ΨR(S, l), and then query the VLM for the final
rating c = H(pR, l). In ΨR, we specify the rating range and assign descriptive labels for the lowest
and highest ratings. Figure 2 illustrates ΩS and ΨS in the yellow box, and ΨR in the blue box.
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Timestep 0 Timestep 1 Timestep 2 Timestep 3

The image contains a segment of the trajectory, with [4] timesteps of 

visual observations, corresponding to [3] intermediate actions. The 

intermediate actions are:

[RotateLeft, MoveAhead, Pickup]

Please analyze the visual differences between consecutive timesteps, 

reply the changes between consecutive time steps in each line. The 

task is to [Pick up the tomato from the sink], analyze this segment 

in terms of completing the task.

Difference between consecutive timesteps:

• Timestep 0 -> 1: The agent rotates right to face the 

sink.

• Timestep 1 -> 2: The agent moves forward towards the 

sink.

• Timestep 2 -> 3: The agent picks up the tomato from 

the sink.

Analyze in terms of completing the task:

This segment successfully completes the task of picking 

up the tomato from the sink. The agent correctly 

identifies the tomato's location, navigates towards it, 

and successfully picks it up.

Based on the above analyses from timestep 0 to [3], rate 

the trajectory on a scale from 0 to 3, where 0 means the 

task is not completed and 3 means the task is fully 

completed. 

How would you rate this trajectory in terms of 

completing task [Pick up the tomato from the sink]? 

Please reply a single line of the rating.

Difference between consecutive timesteps:

• Timestep 0 -> 1: The agent rotates right to face the sink.

• Timestep 1 -> 2: The agent moves forward towards the sink.

• Timestep 2 -> 3: The agent picks up the tomato from the sink.

Analyze in terms of completing the task:

This segment successfully completes the task of picking up the 

tomato from the sink. The agent correctly identifies the tomato's 

location, navigates towards it, and successfully picks it up.

1st prompt: Trajectory summarization 2nd prompt: Trajectory Rating

3

VLM

VLM

Figure 2: Given an instruction and a trajectory collected by the agent, we construct visual and
textual prompts to query the VLM for a summary of the trajectory and an evaluation of how well it
completes the instruction (yellow box). The summary is then used to construct a prompt to query
for a final rating from the VLM (blue box). An example of the summary and rating is shown in the
gray box. The template shown here is applied across all instructions and environments in the paper.

While (Cabi et al., 2020) also explores per-frame annotation with human involvement, our approach
leverages VLMs to automate the annotation process, eliminating the need for human intervention.

Implementation Details. The trajectories can vary in length, reaching up to 50 steps in our envi-
ronments. Concatenating a large number of images may increases inference time and degrade the
reasoning performance of VLMs, as their limited input size necessitates downscaling when the input
exceeds the model’s capacity. In practice, we divide each trajectory into segments (e.g., 10 steps per
segment) during summarization. These segment summaries are then concatenated to form the final
summary. For trajectory rating, since the input is purely text, large language models could be used.
However, for simplicity, we use the same VLM for both summarization and rating.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate V-TIFA’s effectiveness in training instruction-following
agents in the online RL setting. We compare V-TIFA to prior VLM-based reward generation meth-
ods in visual household tasks from the ALFRED simulator (Shridhar et al., 2020). While previous
work has primarily focused on low-level control tasks, we extend these methods to this challenging
benchmark. Concretely, we aim to answer the following questions:

1. How does the effectiveness of V-TIFA compare to other methods in LC-RL setting?
2. What aspects of V-TIFA are crucial for its success?
3. How consistent and effective is the feedback quality across pretrained VLM models?
4. What advantages does evaluative feedback have over comparative feedback?

5.1 EXPERIMENTAL SETTINGS

ALFRED Environment. We evaluate methods in a set of challenging embodied environments
(Figure 3), including Kitchen, Bathroom, Living Room, and Bedroom, drawn from the valid-unseen
folds of the ALFRED simulator (Shridhar et al., 2020). Unlike other synthetic LC-RL benchmarks
that rely on template instructions (Hermann et al., 2017; Chevalier-Boisvert et al., 2019), ALFRED
offers visually realistic environments with crowd-sourced language instructions. This allows us to
evaluate the VLMs’ ability to generate effective rewards across complex, natural language directives.
We leverage a modified version of the ALFRED simulator (Zhang et al., 2023), which allows for on-

6
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(a) Kitchen (b) Bathroom (c) Livingroom (d) Bedroom

Figure 3: We evaluate V-TIFA in four embodied environments from the ALFRED simulator, where
the goal is to train an agent to follow natural language instructions to complete household tasks.

line RL interaction via a gym interface. ALFRED abstracts away low-level control into 12 discrete
actions (e.g., MoveAhead, Pickup), along with 82 discrete object types. In these environments,
agents are randomly situated in rooms and perceive the environment through proprioceptive infor-
mation and 224 × 224 egocentric RGB image observations. In each environment, we define 10
evaluation tasks, each composed of 2 sub-tasks with their own instruction, resulting in a total of 80
instructions across the four environments. The agent is considered successful if both sub-tasks are
completed. Further details about the environments and instructions are provided in the Appendix.

Baselines. We compare V-TIFA to prior baselines that also leverage pretrained VLMs (without fine-
tuning) to generate rewards based on the task description and the agent’s visual observations. These
baselines involve contrasting the text embedding with either a single image embedding or multiple
image embeddings:

• GT Reward: This baseline trains the agent using ground-truth rewards from the environment and
serves as an upper bound. At the end of the trajectory, the agent receives a reward of 1 for
completing the instruction and 0 otherwise.

• CLIP Reward: The reward is generated by computing the cosine similarity between the final
observation and the language instruction in CLIP embedding space (Radford et al., 2019). This
reward computation method has also been explored in (Cui et al., 2022; Mahmoudieh et al., 2022;
Rocamonde et al., 2024).

• R3M Reward: This method was originally designed for representation learning in robotics (Nair
et al., 2022b). We leverage the pretrained predictor from R3M, which takes the initial and final
observation along with the language instruction to output a score measuring how well the instruc-
tion aligns with the temporal dynamics between the two images. This reward computation is
investigated in (Adeniji et al., 2023).

• RoboCLIP Reward: Similar to the CLIP Reward, the reward is generated by computing the simi-
larity between video observations and a demonstration video in S3D embedding space (Xie et al.,
2018). However, since our method does not assume access to task demonstrations, we instead use
the text-based version of RoboCLIP (Sontakke et al., 2024).

For all baselines, the generated rewards are obtained at the end of each trajectory, and we use default
task instructions from ALFRED as the task description for computing rewards.

Training and Evaluation Procedure. In our experiments and baselines, we use a variant of Implicit
Q-Learning (IQL) (Kostrikov et al., 2022) as the off-policy RL algorithm to train the policy, as it has
been shown to successfully train agents in the ALFRED (Zhang et al., 2023). We train agents for
800k steps in Bedroom, and 500k steps in the others. Success rates are measured every 100 epochs,
averaged over 500 episodes. Note that success is defined as 1 when the agent successfully completes
both sub-tasks. For V-TIFA, we use Gemini-1.5-Pro (Reid et al., 2024) as the pretrained VLM, with
4 levels of ratings, and divide the trajectory into segments of 10 steps. We perform experiments on
a PC with an AMD Ryzen 7906X and two RTX 4090 GPUs, with a training time for V-TIFA of
approximately 1.5 days per run. Further details are provided in the Appendix.

5.2 EFFECTIVENESS OF V-TIFA FOR TRAINING INSTRUCTION-FOLLOWING AGENTS?

We first examine whether V-TIFA can provide reward signals for learning language-conditioned
policies. Figure 4 shows the success rate over the course of training across three runs. The results
show that V-TIFA consistently outperforms other baselines across environments, coming closest to
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Figure 4: Success rate over training course of all methods in four environment. V-TIFA greatly
outperforms all baselines across environments, and closest to GT Reward in Kitchen and Bathroom.
The solid line is the mean success rate, while the shaded regions is to the standard deviation, both
calculated across three different random seeds.
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Figure 5: Effect of different components in our trajectory summary prompt. Overall, including
actions in the summary prompt has the most significant impact.

GT Reward in the Kitchen and Bathroom environments. Among the baselines, we find that the
CLIP Reward fails to guide agent learning in solving tasks. This is likely because CLIP is pretrained
on single images, and its similarity score lacks the temporal understanding required to capture the
sequential nature of instructions. Our findings are consistent with (Sontakke et al., 2024), which
similarly highlights CLIP’s limitations in handling temporal dynamics. On the other hand, both R3M
Reward and RoboCLIP Reward provide some useful signals for policy learning, with RoboCLIP
performing better in 2 out of 4 environments. This is because RoboCLIP uses pretrained video-
language models, which capture richer temporal dynamics than R3M, which is only pretrained to
align language with the initial and future frames. In contrast, V-TIFA performs explicit reasoning
over the trajectory and accounts for action-driven changes in transitions, resulting in more accurate
reward signals grounded in the agent’s behavior, which leads to significantly improved performance.

5.3 ANALYZING V-TIFA

While V-TIFA successfully provides reward signals for policy training, a visible gap remains be-
tween V-TIFA and the GT Reward. In this section, we examine the underlying reasons for this gap
and analyze the impact of various design decisions in V-TIFA. Additionally, we evaluate the effec-
tiveness of various large pretrained VLMs. To perform these experiments, we collect trajectories
from GT Reward agents along the training course. In each environment, for each checkpoint, we
record 40 trajectories corresponding to 2 trajectories per instruction, resulting in approximately 500
trajectories per environment, with the averaged return over collected dataset about 0.6-0.7. We then
use the same prompt to query the VLM for ratings. To enable direct comparison with ground-truth
rewards, we assign a reward of 1 to ratings at the maximum value, and 0 otherwise. The intuition is
that when a trajectory successfully completes an instruction, the rating should be at its highest. We
then measure accuracy (Acc.), precision (Prec.), and recall (Rec.) to evaluate the performance.

Alignment of V-TIFA with Ground-Truth Rewards. As shown in Figure 5, we observe that the
accuracy of V-TIFA is highest in Kitchen and Bathroom, at roughly 80%, while it reaches 65% in
the other environments. These results are also reflected in the final performance of the trained agents
in Figure 4, where V-TIFA comes closer to the GT Reward agent’s performance in the Kitchen and
Bathroom. Interestingly, the precision of V-TIFA remains close to 1 across all environments, sug-
gesting that VLMs rarely assign the maximum rating to failed trajectories. In other words, when
VLMs give the highest rating, the trajectory has almost always successfully completed the instruc-
tion. However, the recall of V-TIFA is somewhat lower than its accuracy and precision, as the VLM
often assigns a rating of 2 rather than the maximum rating of 3 to several successful trajectories.
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Figure 6: Effect of different segment lengths on performance. The performance varies only slightly
across different segment lengths.
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Figure 7: We investigate the performance of different large pretrained VLMs. Bigger models achieve
better performance but at the cost of increased inference time.

Effectiveness of Components in Summary Prompt. We ablate several design decisions as follows:
(1) simply concatenate image observations and exclude actions from the prompt (simpcat), (2) in-
clude a timestep caption under each image but exclude actions (use caption+no action), and (3)
include actions in the prompts but exclude captions (no caption+use action). Figure 5 illustrates the
performance of different prompt configurations. The results clearly show that including actions in
the summary prompt contributes to the greatest improvement, while adding captions offers a slight
advantage over simple image concatenation.

Effectiveness of segment size. Figure 6 shows the effect of different segment lengths on perfor-
mance. The results indicate that performance varies only slightly across lengths. Although a seg-
ment length of 20 achieves the best results, it comes with increased inference time due to larger
images. To balance effectiveness and efficiency, we use a segment length of 10 in our experiments.

Effectiveness of VLMs. We further investigate the effectiveness of different large pretrained VLMs,
including Gemini 1.5 Flash, Gemini 1.5 Pro (Reid et al., 2024), GPT-4o Mini (OpenAI, 2024b),
GPT-4o (OpenAI, 2024a), and Qwen2-VL (Bai et al., 2023). For Qwen2-VL, we use the released
model from the authors and run it on a single A100 GPU. Figure 7 and Table 1 present the perfor-
mance and inference time for the querying process of the large VLMs. Lite models, such as Gemini
1.5 Flash and GPT-4o Mini, often exhibit poorer performance. Although GPT-4o achieves the best
performance among the models considered, we find that GPT-4o models are unstable during training,
occasionally returning null text. Additionally, their inference times are inconsistent (e.g., GPT-4o
Mini is slower than GPT-4o) and generally slower than Gemini 1.5 Pro. While Qwen2-VL shows
promising results with the second-best performance, its inference time on images is significantly
slower due to limited resources. Therefore, we select Gemini 1.5 Pro for more efficient training in
our experiments.

6 DIFFERENT FEEDBACK TYPES

In this section, we explore a different type of feedback: comparative feedback. In this setup, we
query the VLM for comparative feedback on the collected trajectories from Section 5.3, denoted
as Dtarget. Since this feedback type requires the evaluator to compare pairs of trajectories, we
additionally collect an extra dataset of the double size for comparison, denoted as Dreference. We
simulate the querying process as follows: for each trajectory in Dtarget, we uniformly sample a
trajectory from Dreference with the same task instruction. We then use the same summary prompt
to summarize both trajectories and utilize the comparison prompt from (Wang et al., 2024a) to obtain
the preference. Specifically, if the VLM prefers the trajectory from Dtarget, we assign a reward of
1 to that trajectory, and 0 otherwise. We use the same evaluation metric as in Section 5.3.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: The inference time of the querying process at each step for different VLMs

Model Summary (s) Rating (s) Total time (s)

Gemini 1.5 Flash 15.7 1.3 17
GPT-4o mini 38.8 0.8 39.6
Gemini 1.5 Pro 25 1.6 26.6
Qwen2-VL-72B 912.2 3.6 915.8
GPT-4o 29.5 0.8 30.3
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Figure 8: The comparison between comparative feedback and evaluative feedback.

The results in Figure 8 indicate that comparative feedback leads to poorer performance. To better
understand the underlying cause, we manually inspect the summaries and responses from the VLM.
Our analysis reveals that the VLM frequently favors shorter trajectories, even when both success-
fully complete the instruction. For example, for the task “Pick up the tomato from the sink”, the
agent’s random initial position can result in varying distances from the target object, making longer
trajectories not necessarily worse than shorter ones. Because of its binary nature, this type of feed-
back does not convey the degree to which one sample is better or worse than another. This limitation
of comparative feedback has also been noted in (Casper et al., 2023; Wang et al., 2024a; White
et al., 2024). To address this issue, previous works often require the collection of a large number of
samples and the development of strategies to select informative reference samples (Biyik & Sadigh,
2018; Bıyık et al., 2020; Sadigh et al., 2017), which can be even more challenging in the LC-RL.

7 CONCLUSION

We present a method that leverages large vision-language models (VLMs) as a proxy for language-
conditioned reward functions to train instruction-following agents. Our proposed prompt technique
enables VLMs to explicitly evaluate the entire agent trajectory, providing a deeper understanding
of the language instruction and generating more effective reward signals for training. Our experi-
ments demonstrate that V-TIFA is robust to language instructions and consistently outperforms prior
baselines across various embodied environments.

Limitations. While V-TIFA successfully trains instruction-following agents in a language-
conditioned reinforcement learning setting using vision-language models (VLMs) without fine-
tuning, a noticeable gap remains compared to agents trained with ground-truth rewards. This dis-
crepancy primarily arises from occasional inaccuracies in VLM feedback. Additionally, in the en-
vironments we tested, only large-scale VLMs delivered strong performance, though at the cost of
increased inference time (approximately 2.5× longer than training with environment rewards alone).
Smaller models, while faster, yielded only moderate results. Future work could explore integrating
advanced techniques such as self-correction (Miao et al., 2024) to improve the feedback consistency
and accuracy of smaller VLMs. This would pave the way for more efficient, scalable reinforcement
learning systems that maintain high performance while reducing computational overhead, making
RL more feasible for deployment in real-world environments.
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A APPENDIX

A.1 RL ALGORITHM DETAILS

We utilize Implicit Q-Learning (IQL) (Kostrikov et al., 2022) with a transformer-based architecture
for both the policy and critic networks, similar to (Zhang et al., 2023). The hyperparameters are
provided in Table 2. The main difference is that we set the quantile parameter τ = 0.5, making
IQL a standard off-policy online RL algorithm, rather than one suited for offline RL as in (Zhang
et al., 2023). During training, to reduce exploration time—which is particularly challenging in
ALFRED—we seed the buffer with 2-3 human-collected demonstrations. It is important to note
that while these demonstrations complete the task, they are not necessarily optimal. We use them to
reduce exploration time; however, our method can without them, albeit with longer training times.
This approach is applied consistently across all baselines. Additionally, we relabel the rewards in
the seed buffer to align with each baseline’s framework, ensuring compatibility during training.

Parameter Value
Batch Size 128
# Training Steps 800k Bedroom, 500k otherwise
Learning Rate 1e− 4
Optimizer AdamW
Dropout Rate 0.1
Weight Decay 0.1
Discount γ 0.97
Q Update Polyak Averaging Coefficient 0.005
Policy and Q Update Period 8 per train iter
IQL Advantage Clipping [0, 100]
IQL Advantage Inverse Temperature β 5
IQL Qunatile τ 0.5
Maximum Context Length 8

Table 2: Hyperparameters for IQL

A.2 RL ENVIRONMENT DETAILS

The ALFRED benchmark (Shridhar et al., 2020) is originally designed for imitation learning. We
use a modified version of ALFRED from (Zhang et al., 2023), which supports policy learning using
reinforcement learning (RL). Also, we make further modifications to the environment to ensure that
when objects are picked up, they remain clearly visible within the agent’s view. In the original setup,
the agent’s view is often occluded by larger objects. This change allows VLMs to recognize objects
more effectively. We define evaluation tasks by randomly sampling 10 tasks for each of the 4 unseen
ALFRED floor plans, resulting in a total of 40 tasks. Each task is constrained to consist of 2 sub-
tasks. For tasks with more than 2 sub-tasks, we only use the first 2. This is because, with longer
tasks, the baseline RL algorithm from (Zhang et al., 2023) may fail to learn any tasks. All generated
tasks from the floor plans are shown in Tables 3, 6, 5, and 4. The agent is considered successful
if it completes both sub-tasks. Note that during training, the agent must complete the first sub-task
before switching to the next. For the ground-truth reward function, the agent receives a reward of 1
whenever it completes a sub-task, then switches to the next sub-task or stops if the second sub-task
is already completed. The observations provided to the agents are 224 × 224 RGB images. For all
baselines, we first preprocess these images by passing them through a frozen ResNet-18 encoder
(He et al., 2016) pretrained on ImageNet, resulting in 512 × 7 × 7 observations. The action space
of ALFRED consists of 5 navigation actions: MoveAhead, RotateRight, RotateLeft, LookUp, and
LookDown, and 7 interaction actions: Put, Pickup, Open, Close, ToggleOn, ToggleOff, and Slice.
For interaction actions, the policy also outputs one of 82 object types to interact with. Note that for
the VLM summary prompt, we use only actions and not object types. Due to large discrete action
space (5 + 7 * 82), we perform same masking as (Zhang et al., 2023) to prevent agents from taking
actions that are not possible (e.g., the policy cannot output Close for object Tomato).
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Task No. Sub-task Type Instruction

1
PickupObject Pick up the spoon from the counter

PutObject Put the spoon in the white cup on the shelf.

2

PickupObject Pick up the egg that is beside the fork in the sink.

CoolObject Open the refrigerator, then place the egg on the glass shelf and close the fridge.
Wait then open the fridge and pick up the egg, then close the fridge.

3
PickupObject Pick up the tomato from the sink.

CoolObject Open the fridge door, put the tomato inside of the fridge, close the door, open
the door, take the tomato out, close the door.

4
PickupObject Pick up the mug in the coffee maker

CoolObject Open the fridge, put the cup in the fridge, close the fridge, wait, open the fridge,
pick the cup, close the fridge

5
PickupObject Pick up the bread.

CoolObject Open the fridge, put the bread in the fridge, close the fridge, open the fridge,
get the bread, and close the fridge.

6
PickupObject Pick up the white coffee cup to the right of the trophy.

CleanObject Put the coffee cup in the sink, turn on the water, turn off the water and pick up
the coffee cup.

7
PickupObject Pick up the smaller silver knife on the counter.

PutObject Put the knife in the green cup in the sink.

8
PickupObject Pick up a bowl from the shelf

PutObject Put the bowl on the counter

9
PickupObject Grab the knife from the counter

PutObject Put the knife in the pan on the stove

10
PickupObject Pick up the knife from the counter.

CleanObject Place the knife in the sink and turn the water on. Turn the water off and pick up
the knife.

Table 3: Tasks from Kitchen environment.

Task No. Sub-task Type Instruction

1
PickupObject Pick up the bowl from the shelf
ToggleObject Turn on the lamp sitting on the desk while holding the bowl

2
PickupObject Pick up the white mug from the desk.
ToggleObject Turn the desk lamp on with the mug in hand.

3
PickupObject Pick up the book from the bed.
ToggleObject Turn on the lamp on the desk while carrying the book

4
PickupObject Pick up the mug from the shelf.
ToggleObject Turn the lamp on while holding the cup.

5
PickupObject Pick up the bowl on the desk.
ToggleObject Turn on the lamp on the desk while holding the bowl.

6
PickupObject Pick up the pencil from the desk

PutObject Put the pencil in the bowl

7
PickupObject Pick up the alarm clock from the desk
ToggleObject Turn on the lamp on the desk while holding the alarm clock.

8
PickupObject Pick up the clock from the back of the desk.
ToggleObject Hold the clock and turn on the lamp on the right side of the desk.

9
PickupObject Pick up the mug on the shelf.

PutObject Put the mug on the desk.

10
PickupObject Pick up the pencil on the desk.

PutObject Place the pencil in the glass bowl on the desk.

Table 4: Tasks from Bedroom environment.
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Task No. Sub-task Type Instruction

1
PickupObject Pick up the cell phone from the dresser
ToggleObject Hold the cell phone and turn the lamp on

2
PickupObject Pick up the remote that is on the blue chair
ToggleObject Turn on the lamp with the remote in hand.

3
PickupObject Pick up the laptop on the right after closing it.
ToggleObject Turn on the floor lamp while carrying the laptop.

4
PickupObject Pick the phone up from the desk.
ToggleObject Turn the lamp on while holding the phone.

5
PickupObject Grab the tissue paper from the dresser.
ToggleObject Carry the tissue as you turn on the lamp.

6
PickupObject Pick up the remote from the middle of the dresser, directly behind the tissues.
ToggleObject Hold the remote and turn on the lamp.

7
PickupObject Pick up a pillow from the chair

PutObject Put the pillow on the couch

8
PickupObject Pick up the statue on the top shelf.
ToggleObject Turn on the lamp while holding the statue.

9
PickupObject Pick up a statue from the dresser
ToggleObject Turn on the floor lamp with the statue in hand

10
PickupObject Pick up the left pillow on the chair

PutObject Put the pillow on the sofa right of the newspaper

Table 5: Tasks from Livingroom environment.

Task No. Sub-task Type Instruction

1
PickupObject Pick up the bar of soap on the back of the toilet.

PutObject Place the soap in the trash can.

2
PickupObject Pick up bar of soap
CleanObject Put soap in sink, turn water on, turn water off, remove soap from sink

3
PickupObject Pick up the cloth from the counter.

CleanObject Put the cloth in the sink and turn the water on and then off and pick the cloth up
from the sink.

4
PickupObject Pick the soap up from the back of the toilet.

CleanObject Put the soap in the sink and turn the water on and then off and pick up the soap
again.

5
PickupObject Pick the cloth up from the counter.

CleanObject Put the cloth in the sink and turn the water on and then off and take the cloth
out of the sink.

6
PickupObject Pick up the bar of soap.

CleanObject Put the bar of soap in the sink, turn the water on and then off and then pick up
the bar of soap.

7
PickupObject Pick up the bar of soap on the back of the toilet.

PutObject Open the cabinet, put the bar of soap inside, and close the cabinet.

8
PickupObject Grab a bar of soap off of the counter

PutObject Put the soap in the trash can

9
PickupObject Pick up the soap on the counter

PutObject Open the cabinet and put in the soap then close the cabinet

10
PickupObject Pick up toilet roll from off the toilet

PutObject Open sink cabinet and place roll inside before closing the door

Table 6: Tasks from Bathroom environment.

17


	Introduction
	Related work
	Language-conditioned RL
	RL in the Absence of Reward Functions
	Large Foundation Models as Reward Functions

	Preliminary
	Method
	Experimental Evaluation
	Experimental Settings
	Effectiveness of V-TIFA for Training Instruction-following Agents?
	Analyzing V-TIFA

	Different Feedback Types
	Conclusion
	Appendix
	RL Algorithm Details
	RL Environment Details


