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ABSTRACT

We introduce Warping-Alone Field Transforms (WAFT), a simple and effective
method for optical flow. WAFT is similar to RAFT but replaces cost volume with
high-resolution warping, achieving better accuracy with lower memory cost. This
design challenges the conventional wisdom that constructing cost volumes is nec-
essary for strong performance. WAFT is a simple and flexible meta-architecture
with minimal inductive biases and reliance on custom designs. Compared with
existing methods, WAFT ranks 1st on Spring, Sintel, and KITTI benchmarks,
achieves the best zero-shot generalization on KITTI, while being 1.3 − 4.1×
faster than existing methods that have competitive accuracy (e.g., 1.3× than Flow-
former++, 4.1× than CCMR+). Code and model weights will be available upon
acceptance.

1 INTRODUCTION

Optical flow is a fundamental low-level vision task that estimates per-pixel 2D motion between
video frames. It has many downstream applications, including 3D reconstruction and synthesis (Ma
et al., 2022; Zuo & Deng, 2022), action recognition (Sun et al., 2018b; Piergiovanni & Ryoo, 2019;
Zhao et al., 2020b), frame interpolation (Xu et al., 2019; Liu et al., 2020; Huang et al., 2020), and
autonomous driving (Geiger et al., 2013; Menze & Geiger, 2015; Janai et al., 2020).

Cost volumes (Sun et al., 2018a; Ilg et al., 2017) with iterative updates (Teed & Deng, 2020; Wang
et al., 2024) has become a standard design in most state-of-the-art methods (Sun et al., 2018a;
Dosovitskiy et al., 2015; Xu et al., 2017; Teed & Deng, 2020; Huang et al., 2022; Wang et al.,
2024; Morimitsu et al., 2025), especially when both accuracy and efficiency are taken into account.
Previous work (Sun et al., 2018a; Teed & Deng, 2020) regards cost volumes as a more effective
representation than image features, as it explicitly models the visual similarity between pixels.

However, constructing cost volumes is expensive in both time and memory (Zhao et al., 2024; Xu
et al., 2023a). The cost increases quadratically with the radius of the neighborhood. As a result,
cost volumes are often constructed from low resolution features, limiting the ability of the model to
handle high-resolution input images.

In this paper, we challenge the conventional wisdom that cost volume is necessary for strong perfor-
mance with high efficiency, and introduce Warping-Alone Field Transforms (WAFT), a simplified
design that replaces cost volumes with warping and achieves state-of-the-art accuracy across various
benchmarks with high efficiency.

For each pixel in frame 1, instead of computing its similarities against many pixels in frame 2, warp-
ing simply fetches the feature vector of the corresponding pixel given by the current flow estimate;
this enables memory-efficient high-resolution processing and leads to better accuracy.

The design of WAFT is simple, with flow-specific designs kept to the minimum. WAFT consists of
an input encoder that extracts features from individual input frames and a recurrent update module
that iteratively updates flow. Compared to other RAFT-like architectures, WAFT is much simplified
because it does not use cost volumes and has removed the context encoder that provides extra fea-
tures for the update module. WAFT is designed to function as a meta-architecture for optical flow in
the sense that the individual components including input encoder and the update unit do not require
custom designs and can use existing off-the-shelf (pretrained) architectures. In our experiments, we
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Figure 1: The meta-architecture of WAFT consists of an input encoder and a recurrent update module. We first
extract image features from the input encoder, and then use these features to iteratively update the flow estimate
for T steps. At each step, we perform feature indexing through a lightweight backward warping on the feature
of frame 2, removing the dependency on expensive cost volume used by previous work.

evaluate different choices (such as ResNet (He et al., 2016) and DPT (Ranftl et al., 2021)) that have
different accuracy-efficiency trade-offs.

WAFT achieves state-of-the-art performance across various benchmarks with high efficiency and
a simple design. Using a Twins (Chu et al., 2021) backbone pre-trained only on ImageNet,
WAFT ranks first on Spring, second on KITTI, and is competitive on Sintel. It also achieves the
best zero-shot cross-dataset generalization on KITTI. Using a stronger backbone, depth-pretrained
DAv2 (Yang et al., 2024), WAFT outperforms existing methods on all public benchmarks. We
achieve this with standard network architectures for the sub-modules (Dosovitskiy et al., 2020; He
et al., 2016; Ranftl et al., 2021), removing custom designs typically needed in prior work, while
being 1.3−4.1× faster than existing methods that have competitive accuracy (e.g., 1.3× than Flow-
former++ Shi et al. (2023), 4.1× than CCMR+ Jahedi et al. (2024)).

Our main contributions are two-fold: (1) we challenge the conventional wisdom that cost volume
is a key component for achieving state-of-the-art accuracy and efficiency for optical flow; (2) we
introduce WAFT, a warping-based meta-architecture that is simpler and achieves state-of-the-art
accuracy with high efficiency.

2 RELATED WORK

Estimating Optical Flow Traditional methods treated optical flow as a global optimization prob-
lem that maximizes visual similarity between corresponding pixels (Horn & Schunck, 1981; Zach
et al., 2007; Chen & Koltun, 2016; Brox et al., 2004). These methods apply coarse-to-fine warp-
ing (Brox et al., 2004; Black & Anandan, 1996; Memin & Perez, 1998), a strategy theoretically
justified by Brox et al. (Brox et al., 2004), to solve this optimization.

Today, this field is dominated by deep learning methods (Ilg et al., 2017; Dosovitskiy et al., 2015;
Sun et al., 2018a; Zhao et al., 2020a; Hui et al., 2018; Teed & Deng, 2020; Sui et al., 2022; Sun
et al., 2022; Deng et al., 2023; Huang et al., 2022; Shi et al., 2023; Weinzaepfel et al., 2022; 2023;
Xu et al., 2022; 2023b; Leroy et al., 2023; Saxena et al., 2024; Jahedi et al., 2024; 2023; Luo
et al., 2022; Zheng et al., 2022; Zhao et al., 2022; Luo et al., 2023; Jung et al., 2023; Luo et al.,
2024; Zhou et al., 2024; Morimitsu et al., 2025), which can be categorized into two paradigms:
direct or iterative. Direct methods (Dosovitskiy et al., 2015; Weinzaepfel et al., 2022; 2023; Saxena
et al., 2024; Leroy et al., 2023; Xu et al., 2022) treat flow estimation as a standard dense prediction
task (e.g. monocular depth estimation) and directly regress the dense flow field from large-scale
pre-trained models. Iterative methods (Teed & Deng, 2020; Wang et al., 2024; Luo et al., 2024;
Morimitsu et al., 2025; Zhou et al., 2024; Sun et al., 2018a; Huang et al., 2022) align more closely
with traditional warping-based approaches, refining the flow predictions progressively. Most state-
of-the-art methods (Teed & Deng, 2020; Wang et al., 2024; Huang et al., 2022; Shi et al., 2023;
Luo et al., 2024; Morimitsu et al., 2025) follow the iterative paradigm due to its significantly higher
efficiency than the direct ones.

Cost volumes (Sun et al., 2018a; Dosovitskiy et al., 2015) have been regarded as a standard design
in iterative methods (Teed & Deng, 2020; Wang et al., 2024; Morimitsu et al., 2025; Huang et al.,
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Full Cost Volume Partial Cost Volume Warping

Figure 2: For each pixel, the full cost volume calculates its visual similarity to all pixels in the other frame
through correlation. The partial cost volume restricts the search range to the neighborhood of the corresponding
pixel, marked by a red box. Compared with them, warping only uses the information from the corresponding
pixel, offering better time and memory efficiency. This efficiency enables high-resolution processing, which
leads to improved accuracy.

2022; Shi et al., 2023; Xu et al., 2023b; Luo et al., 2024). Prior work (Teed & Deng, 2020; Sun
et al., 2018a) empirically shows the effectiveness of cost volumes in handling large displacements.
Many iterative methods (Teed & Deng, 2020; Wang et al., 2024; Morimitsu et al., 2025) adopt
partial cost volumes (Sun et al., 2018a) to avoid the quadratic computational complexity of full
4D cost volumes; they restrict the search range of each pixel in frame 1 to the neighborhood of
its corresponding pixel in frame 2. However, they still suffer from the high memory consumption
inherent in cost volumes (Xu et al., 2023a; Zhao et al., 2024).

WAFT is a warping-based iterative method. We achieve state-of-the-art performance across various
benchmarks without constructing cost volumes, challenging the conventional wisdom established
by previous work (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022). Warping no longer
suffers from high memory consumption inherent in cost volumes, which enables high-resolution
indexing and therefore improves accuracy.

Vision Transformers Vision transformers (Dosovitskiy et al., 2020) have achieved significant
progress across a wide range of visual tasks (Yang et al., 2024; Kirillov et al., 2023; Oquab et al.,
2023; He et al., 2022; Rombach et al., 2022). In the context of optical flow, most direct meth-
ods (Weinzaepfel et al., 2022; 2023; Saxena et al., 2024) regress flow from a large-scale pre-trained
vision transformer with a lightweight flow head. Many iterative methods (Huang et al., 2022; Shi
et al., 2023; Luo et al., 2024; Zhou et al., 2024) design task-specific transformer blocks to process
cost volumes.

WAFT adopts similar designs to DPT (Ranftl et al., 2021) in its recurrent update module, which
implicitly handles large displacements in optical flow through the transformer architecture. We
empirically show that this is crucial to make warping work. WAFT can also benefit from large-scale
pre-trained transformers like existing methods (Saxena et al., 2024; Weinzaepfel et al., 2022; 2023;
Zhou et al., 2024), with minimal additional flow-specific designs.

3 BACKGROUND

In this section, we first review current cost-volume-based iterative methods and discuss the draw-
backs of cost volumes. Then we introduce warping and compare it to cost volumes.

3.1 ITERATIVE METHODS WITH COST VOLUME

Given two adjacent RGB frames, optical flow predicts pixel-wise 2D motion between adjacent
frames. Current iterative methods (Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024)
consist of two parts: (1) input encoders that extract dense image features at low resolution, and (2)
a recurrent update module that iteratively refines the flow estimate.
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Figure 3: Visualizations of different methods on Spring (Mehl et al., 2023). WAFT, benefiting from high-
resolution indexing, obtains sharper boundaries and lower errors than low-resolution approaches.

Denoting the two frames as I1, I2 ∈ RH×W×3, the input encoder F maps I1, I2 to low-resolution
dense features F (I1), F (I2) ∈ Rh×w×d, respectively. A cost volume V ∈ Rh×w×h×w is built on
these features, which explicitly models the correlation between pixels (p ∈ I1, p′ ∈ I2):

Vp,p′ = F (I1)p · F (I2)p′

where · represents the dot product of two vectors. At each step, the recurrent update module indexes
into the cost volume using the current flow estimate and predicts the residual flow update. Several
methods (Huang et al., 2022; Shi et al., 2023) directly process V for better performance, but tend to
be more costly.

Partial cost volume (Sun et al., 2018a) is introduced to reduce the cost by avoiding the construction
of a full 4D cost volume. Given the current flow estimate fcur ∈ Rh×w×2 and a pre-defined look-up
radius r, partial cost volume Vpar : Rh×w×2 → Rh×w×(r2) implements an on-the-fly partial con-
struction by restricting the indexing range of a pixel p ∈ I1 to the neighborhood of its corresponding
pixel p+ (fcur)p ∈ I2, formulated as:

Vpar(fcur; r)p = concat({Vp,p′ |∀p′ ∈ I2, s.t.∥p+ (fcur)p − p′∥∞ ≤ r∥)

where the operator “concat” concatenates all values inside the set into a vector. In practice, partial
cost volumes are usually constructed at multiple scales (Teed & Deng, 2020; Wang et al., 2024) to
improve the prediction of large displacements. Current methods also introduce context encoder (Sun
et al., 2018a; Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024) to enhance the effectiveness
of iterative refinement.

3.2 DRAWBACKS OF COST VOLUMES

Method
Training Memory Cost (GiB)

1/8 Reso. 1/4 Reso. 1/2 Reso.

SEA-RAFT 14.1 25.8 OOM
Flowformer 26.1 - -
CCMR+ 36.0 - -
WAFT-Twins-a2 7.0 7.6 9.2

Table 1: We profile the training memory cost with batch
size 1 on an RTX A6000. Our warping method signifi-
cantly reduces the cost.

High Memory Cost The main drawback of
cost volume is its high memory consumption.
Full or partial cost volume at high resolution are
very expensive and often infeasible (Zhao et al.,
2024; Xu et al., 2023a). Therefore, most itera-
tive methods build the cost volume and index
into it at 1/8 resolution. To further demonstrate
the problem, we implement several variants of
SEA-RAFT (Wang et al., 2024) that build par-
tial cost volumes at different resolutions. We
set the base channel dimension as 32, 64, and
128 for the 1/2, 1/4, and 1/8 resolution variants, respectively, to make their computational cost simi-
lar (around 350GMACs). As shown in Table 1, the partial cost volume with look-up radius r = 4 in
SEA-RAFT runs out of memory at 1/2 resolution. WAFT removes the reliance on cost volume, and
therefore consumes significantly lower memory than existing methods (Wang et al., 2024; Huang
et al., 2022; Jahedi et al., 2024).

Error from Low Resolution Indexing Since cost volumes are restricted to low resolution, the
predicted flow field must be downsampled for cost volume look-up, which inevitably introduces
errors. As illustrated in Figure 3 using an example from the Spring benchmark (Mehl et al., 2023),
existing methods struggle to produce clear boundaries, particularly noticeable in the top-right corner.
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Frame1

Flow

Figure 4: Visualizations on Spring, KITTI, and Sintel public benchmarks (from left to right).

In contrast, our method benefits from high-resolution look-up of feature vectors and obtains sharper
boundary predictions in these challenging regions. We also show the quantitative performance gain
from high-resolution indexing in Table 5.

3.3 WARPING VS. COST VOLUME

Warping was widely used in both classical and early deep learning approaches (Memin & Perez,
1998; Brox et al., 2004; Ilg et al., 2017; Ranjan & Black, 2017). However, most recent iterative
methods (Wang et al., 2024; Teed & Deng, 2020; Huang et al., 2022) have either replaced warping
with cost volumes or used both in combination, since cost volumes have been shown to remarkably
improve the performance (Sun et al., 2018a). In this section, we analyze the similarities and dif-
ferences between warping and cost volume (see Figure 2), and argue that with appropriate designs,
warping-based methods can achieve performance on par with cost-volume-based methods.

The overlap of warping and cost volumes lies in their use of the current flow prediction to index
into feature maps, which is closely related to optimization (Brox et al., 2004). In cost-volume-based
iterative methods, the current flow estimate fcur is used to define partial cost volume Vpar (see
Section 3.1). It is also used to define the warped feature map Warp(fcur) ∈ Rh×w×d, where the
feature vector of pixel p ∈ I1 is indexed from the feature map of frame 2, formulated as:

Warp(fcur)p = F (I2)p+(fcur)p

Compared to cost volumes, for each pixel in frame 1, warping does not calculate its visual similarity
to multiple pixels in frame 2, making it no longer able to explicitly model large displacements.
However, we can implicitly handle this long-range dependence through the attention mechanism in
vision transformers (Dosovitskiy et al., 2020; Ranftl et al., 2021), which, as we will demonstrate, is
crucial to make warping work well (see Section 5.5). The high memory efficiency of warping also
enables high-resolution indexing, leading to improved accuracy.

4 METHOD

In this section, we describe WAFT, our warping-based iterative method, shown in Figure 1. Its
design can be understood as a simple meta-architecture that integrates an input encoder and a re-
current update module. We will also discuss the advantages of our design, especially on its strong
performance and the simplifications over past designs.

Input Encoder We develop two ways to adapt large-scale pre-trained models. Adaptation 1 (a1)
is our initial design specific to DAv2. We freeze the entire DAv2, incorporate features from its DPT
head, and further refine these features using a ResNet18. Adaptation 2 (a2) is our improved design
that works better and supports more backbones, where we only freeze the ViT/CNN backbones. We
make the DPT head trainable and side-tune the features with 3 ResNet blocks. For completeness,
we report the results of both.
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Recurrent Update Module Similar to existing iterative methods (Teed & Deng, 2020; Wang et al.,
2024; Huang et al., 2022), our recurrent update module R iteratively predicts the residual flow
updates. At step t, we concatenate F (I1) (feature of frame 1), Warp(fcur) (warped feature of frame
2, see Section 3.3), and the current hidden state Hiddent ∈ Rh×w×d as input. We use a slightly
modified DPT (Ranftl et al., 2021) as the architecture of the module.

Prediction Head & Loss We adopt the Mixture-of-Laplace (MoL) loss used in SEA-RAFT (Wang
et al., 2024). At step t, the hidden state Hiddent is used to predict the MoL parameters M ∈
Rh×w×6. They are upsampled to the original image resolution through convex upsampling (Teed &
Deng, 2020; Wang et al., 2024).

Simplifications over Existing Iterative Methods We replace cost volumes, which are standard
in existing iterative methods (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022; Wang
et al., 2024), with high-resolution warping, which is more memory-efficient. In addition, we have
removed the context encoder (Sun et al., 2018a), another flow-specific design standard in existing
iterative methods.

A direct benefit from our simplified design is that we can load pre-trained weights for standard archi-
tectures such as ViT (Dosovitskiy et al., 2020), which can improve generalization as our experiments
will show Section 5.5.

The simplicity of our meta-architecture also enables more apples-to-apples comparisons between
direct methods and iterative methods. Existing direct methods (Weinzaepfel et al., 2022; 2023;
Saxena et al., 2024) share an input format similar to that of the first iteration of WAFT, making them
more directly compatible. We will empirically show the effectiveness and necessity of iterative
indexing within our meta-architecture in Section 5.5.

5 EXPERIMENTS

We report results on Sintel (Butler et al., 2012), KITTI (Geiger et al., 2013), and Spring (Mehl et al.,
2023). Following existing work (Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024; Morim-
itsu et al., 2025), for training, we use FlythingChairs (Dosovitskiy et al., 2015), FlyingThings (Mayer
et al., 2016), HD1K (Kondermann et al., 2016), Sintel (Butler et al., 2012), KITTI (Geiger et al.,
2013), Spring (Mehl et al., 2023), and TartanAir (Wang et al., 2020). We use the widely adopted met-
rics: endpoint-error (EPE), 1-pixel outlier rate (1px), percentage of flow outliers (Fl), and weighted
area under the curve (WAUC). Definitions can be found in (Richter et al., 2017; Mehl et al., 2023;
Geiger et al., 2013; Morimitsu et al., 2025).

5.1 ARCHITECTURE DETAILS

Method 1px↓ EPE↓ Fl↓ WAUC↑
FlowNet2 (Ilg et al., 2017)∗ 6.710 1.040 2.823 90.907
SpyNet (Ranjan & Black, 2017)∗ 29.963 4.162 12.866 67.150
PWC-Net (Sun et al., 2018a)∗ 82.27 2.288 4.889 45.670
RAFT (Teed & Deng, 2020)∗ 6.790 1.476 3.198 90.920
GMA (Jiang et al., 2021)∗ 7.074 0.914 3.079 90.722
FlowFormer (Huang et al., 2022)∗ 6.510 0.723 2.384 91.679
GMFlow (Xu et al., 2022)∗ 10.355 0.945 2.952 82.337
RPKNet (Morimitsu et al., 2024) 4.809 0.657 1.756 92.638
CroCoFlow (Weinzaepfel et al., 2023) 4.565 0.498 1.508 93.660
Win-Win (Leroy et al., 2023) 5.371 0.475 1.621 92.270
SEA-RAFT(M) (Wang et al., 2024) 3.686 0.363 1.347 94.534
DPFlow (Morimitsu et al., 2025) 3.442 0.340 1.311 94.980
WAFT-DAv2-a1-540p 3.418 0.340 1.280 94.663
WAFT-DAv2-a1-1080p 3.347 0.337 1.222 95.189
WAFT-Twins-a2 3.268 0.331 1.282 94.786
WAFT-DAv2-a2 3.298 0.304 1.197 94.990
WAFT-DINOv3-a2 3.182 0.325 1.246 95.051

Table 3: WAFT ranks 1st on Spring (Mehl et al., 2023)
on all metrics. We highlight all SOTA performance. ∗

denotes the submissions from the Spring team.

Input Encoder We use frozen ImageNet-
pretrained Twins-SVT-Large (Chu et al., 2021),
depth-pretrained DAv2-S (Yang et al., 2024),
and unsupervised-pretrained DINOv3-ViT-
S (Siméoni et al., 2025) in input encoders.

Recurrent Update Module We use a modi-
fied DPT-Small (Ranftl et al., 2021) as the re-
current update module. We concatenate the im-
age features and use a 1 × 1 conv to obtain the
initial hidden state. Since the image features are
already 2× downsampled, we change the patch
size to 8. We set the resolution of the positional
embedding to 224 × 224, and interpolate it for
other resolutions. We use T = 5 iterations in
training and inference.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Type Method
Sintel KITTI Inference Cost

Clean↓ Final↓ All↓ Non-Occ↓ #MACs (G) Latency (ms)

Direct
GMFlow (Xu et al., 2022) 1.74 2.90 9.32 3.80 603 139
CroCoFlow (Weinzaepfel et al., 2023) 1.09 2.44 3.64 2.40 57343 6422
DDVM (Saxena et al., 2024) 1.75 2.48 3.26 2.24 - -

Iterative
w/ Cost Volume

PWC-Net+ (Sun et al., 2019) 3.45 4.60 7.72 4.91 101 24
RAFT (Teed & Deng, 2020) 1.61 2.86 5.10 3.07 938 141
DIP (Zheng et al., 2022) 1.44 2.83 4.21 2.43 3068 499
GMFlowNet (Zhao et al., 2022) 1.39 2.65 4.79 2.75 1094 244
CRAFT (Sui et al., 2022) 1.45 2.42 4.79 3.02 2274 483
FlowFormer (Huang et al., 2022) 1.20 2.12 4.68 2.69 1715 336
GMFlow+ (Xu et al., 2023b) 1.03 2.37 4.49 2.40 1177 250
RPKNet (Morimitsu et al., 2024) 1.31 2.65 4.64 2.71 137 183
CCMR+ (Jahedi et al., 2024) 1.07 2.10 3.86 2.07 12653 999
MatchFlow(G) (Dong et al., 2023) 1.16 2.37 4.63 2.77 1669 291
Flowformer++(Shi et al., 2023) 1.07 1.94 4.52 - 1713 374
SEA-RAFT(L) (Wang et al., 2024) 1.31 2.60 4.30 - 655 108
AnyFlow (Jung et al., 2023) 1.23 2.44 4.41 2.69 - -
FlowDiffuser (Luo et al., 2024) 1.02 2.03 4.17 2.82 2466 599
SAMFlow (Zhou et al., 2024) 1.00 2.08 4.49 - 9717 1757
DPFlow (Morimitsu et al., 2025) 1.04 1.97 3.56 2.12 414 131

Iterative
w/ Warping

SpyNet (Ranjan & Black, 2017) 6.64 8.36 35.07 26.71 167 25
FlowNet2 (Ilg et al., 2017) 4.16 5.74 10.41 6.94 230 75
WAFT-DAv2-a1 1.09 2.34 3.42 2.04 853 240
WAFT-Twins-a2 1.02 2.39 3.53 2.12 1020 290
WAFT-DAv2-a2 0.95 2.33 3.31 2.03 807 240
WAFT-DINOv3-a2 0.94 2.02 3.56 2.13 732 212

Table 2: We report endpoint-error (EPE) on Sintel (Butler et al., 2012), Fl on KITTI (Geiger et al., 2013), and
highlight all SOTA performance. On KITTI, WAFT ranks first on non-occluded pixels and second on all pixels.
It also achieves state-of-the-art performance on Sintel (clean). We measure the latency on an RTX3090 with
batch size 1 and 540p input.

5.2 TRAINING DETAILS

Benchmark Submissions Following SEA-RAFT (Wang et al., 2024), we first pre-train our model
on TartanAir (Wang et al., 2020) for 300k steps, with a batch size of 32 and learning rate 4× 10−4.
We fine-tune our model on FlyingChairs (Zhao et al., 2020a) with the same hyperparameters for 50k
steps, and then fine-tune it on FlyingThings (Mayer et al., 2016) for 200k steps. For all submissions,
we keep the batch size as 32 by default and reduce the learning rate to 10−4. For KITTI (Geiger et al.,
2013) submission, we fine-tune our model on KITTI(train) for 5k steps. For Sintel (Butler et al.,
2012) submission, we follow previous work to fine-tune our model on the mixture of FlyingThings,
HD1K (Kondermann et al., 2016), KITTI(train), and Sintel(train) for 200k steps. For Spring (Mehl
et al., 2023) submissions, we fine-tune our models on Spring(train) for 200k steps with a batch size
of 32. We train an extra 1080p WAFT-DAv2-a1 model with a batch size of 8.

Zero-Shot Evaluation We first train our model on FlyingChairs for 50k steps, and then fine-tune
it on FlyingThings for 50k steps. The batch size is set to 32, and the learning rate is set to 10−4.

5.3 BENCHMARK RESULTS

Sintel & KITTI Results are shown in Table 2. Using a Twins backbone only pre-trained on Im-
ageNet, WAFT ranks second on KITTI and is competitive on Sintel (clean). It outperforms prior
cost-volume-based SOTA Flowformer++ (Shi et al., 2023) in both accuracy and efficiency given the
same backbone, demonstrating the strength of high-resolution warping. The performance can be
further improved with stronger backbones (Yang et al., 2024; Siméoni et al., 2025). Using a depth-
pretrained DAv2 (Yang et al., 2024), on KITTI (Geiger et al., 2013), WAFT achieves the best Fl on
non-occluded pixels and the second best on all pixels. It also ranks first on Sintel (Clean) (Butler
et al., 2012) and competitive on Sintel (Final). WAFT is 1.3-4.1× faster than existing methods that
have competitive accuracy (e.g., 1.3× than Flowformer++ Shi et al. (2023), 4.1× than CCMR+ Ja-
hedi et al. (2024)), demonstrating its high efficiency.

Note that there is an outlier sequence, ‘Ambush 1’, which severely affects the average performance
on Sintel (Final) as mentioned in Saxena et al. (2024). We show that WAFT outperforms Flow-
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former++ on Sintel (Final) with the same Twins backbone when ‘Ambush 1’ is excluded. More
details can be found in Table 6.

Spring Results are shown in Table 3. Following the downsample-upsample protocol (540p) of
SEA-RAFT (Wang et al., 2024), WAFT outperforms existing methods on EPE and 1px with a Twins
backbone only pre-trained on ImageNet. We also show that WAFT achieves the best performance on
all metrics with a depth-pretrained DAv2 backbone. Benefiting from warping, WAFT can be trained
at full resolution (1080p) to improve the performance further.

Comparison with Existing Warping-based Methods It appears that warping as a network op-
eration has been largely abandoned by works in the last 8 years and the last time warping-based
methods achieved top positions on the leaderboards were around 2017 (Ranjan & Black, 2017; Ilg
et al., 2017). WAFT is significant in that it has revisited and revived an idea that has fallen out of
favor. Compared to methods that do use warping (Ranjan & Black, 2017; Ilg et al., 2017), WAFT
reduces endpoint-error (EPE) by at least 64% on Sintel and 70% on Spring (Mehl et al., 2023), while
also reducing Fl by at least 68% on KITTI (Geiger et al., 2013) and 57% on Spring (Mehl et al.,
2023). Besides, WAFT reduces 1px-outlier rate by 52% on Spring (Mehl et al., 2023).

5.4 ZERO-SHOT EVALUATION
Method

Sintel (train) KITTI (train)

Clean↓ Final↓ Fl-epe↓ Fl-all↓
PWC-Net (Sun et al., 2018a) 2.55 3.93 10.4 33.7
RAFT (Teed & Deng, 2020) 1.43 2.71 5.04 17.4
GMA (Jiang et al., 2021) 1.30 2.74 4.69 17.1
SKFlow (Sun et al., 2022) 1.22 2.46 4.27 15.5
DIP (Zheng et al., 2022) 1.30 2.82 4.29 13.7
EMD-L (Deng et al., 2023) 0.88 2.55 4.12 13.5
CRAFT (Sui et al., 2022) 1.27 2.79 4.88 17.5
RPKNet (Morimitsu et al., 2024) 1.12 2.45 - 13.0
GMFlowNet (Zhao et al., 2022) 1.14 2.71 4.24 15.4
FlowFormer (Huang et al., 2022) 1.01 2.40 4.09 14.7
Flowformer++ (Shi et al., 2023) 0.90 2.30 3.93 14.2
CCMR+ (Jahedi et al., 2024) 0.98 2.36 - 12.9
MatchFlow(G) (Dong et al., 2023) 1.03 2.45 4.08 15.6
SEA-RAFT(L) (Wang et al., 2024) 1.19 4.11 3.62 12.9
AnyFlow (Jung et al., 2023) 1.10 2.52 3.76 12.4
SAMFlow (Zhou et al., 2024) 0.87 2.11 3.44 12.3
FlowDiffuser (Luo et al., 2024) 0.86 2.19 3.61 11.8
DPFlow (Morimitsu et al., 2025) 1.02 2.26 3.37 11.1

FlowNet2 (Ilg et al., 2017) 2.02 3.14 10.1 30.4
WAFT-DAv2-a1 1.00 2.15 3.10 10.3
WAFT-Twins-a2 1.02 2.46 2.98 9.9
WAFT-DAv2-a2 1.01 2.49 3.28 10.9
WAFT-DINOv3-a2 1.28 2.56 3.49 12.9

Table 4: WAFT achieves the best cross-dataset general-
ization on KITTI(train), reducing the error by 11%. We
highlight all SOTA performance.

Following previous work (Teed & Deng, 2020;
Huang et al., 2022; Sun et al., 2018a), we train
our model on FlyingChairs (Dosovitskiy et al.,
2015) and FlyingThings (Mayer et al., 2016).
Then we evaluate the performance on the train-
ing split of Sintel (Butler et al., 2012) and
KITTI (Geiger et al., 2013).

Analysis Results are shown in Table 4.
WAFT achieves strong cross-dataset general-
ization. On KITTI (train), WAFT outper-
forms other methods by a large margin with an
ImageNet-pretrained Twins backbone: It im-
proves the endpoint-error (EPE) from 3.37 to
2.98 and Fl from 11.1 to 9.9. On Sintel (train),
WAFT achieves performance close to state-of-
the-art methods. Compared to the previous
warping-based method (Ilg et al., 2017), WAFT
improves the performance by at least 31%.

5.5 ABLATION STUDY

We conduct zero-shot ablations in Table 5 on the training split of Sintel (Butler et al., 2012) and
the sub-val split (Wang et al., 2024) of Spring (Mehl et al., 2023) based on WAFT-DAv2-a1. In all
experiments, the models are trained on FlythingThings (Mayer et al., 2016) for 50k steps, with a
batch size of 32 and learning rate 10−4. The average EPE and 1px are reported.

Different Input Encoder Both pre-trained weights and adaptations are important to the perfor-
mance. Note that the strong performance of WAFT is not merely from advanced backbones. Using
a Twins backbone only pre-trained on ImageNet as adopted in Flowformer (Huang et al., 2022),
WAFT ranks first on Spring, second on KITTI, and is competitive on Sintel. More details can be
found in Table 2, 3, and 4.

Different Recurrent Update Module The vision transformer design is crucial to iterative warp-
ing. We observe a significant performance drop when replacing the DPT-based recurrent update
module with CNNs, highlighting the importance of modeling long-range dependence. This finding
may help explain why early deep learning approaches (Ilg et al., 2017; Ranjan & Black, 2017) that
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Experiment Input Enc. Rec. Upd. #Steps Index
Reso.

Sintel(train) Spring(sub-val)
#MACs

Clean↓ Final↓ EPE↓ 1px↓
WAFT-DAv2-a1 DAv2-S+Res18 DPT-S 5 1/2 1.18 2.33 0.27 1.43 858G

Different input enc. Res18 DPT-S 5 1/2 1.27 2.81 0.27 1.59 600G
DAv2-S 1.55 2.64 0.37 2.70 670G

DAv2 w/o pre-train DAv2-S+Res18 DPT-S 5 1/2 1.42 2.74 0.28 1.77 858G

Different rec. upd. DAv2-S+Res18 Res18 5 1/2 7.23 6.84 0.45 2.93 1098G
ConvGRU 2.79 4.80 0.39 2.71 800G

1/8 reso. + warp DAv2-S+Res18 DPT-S 5 1/8 1.15 2.31 0.32 1.82 859G

1/8 reso. + corr. DAv2-S+Res18 DPT-S 5 1/8 1.10 2.45 0.33 1.74 883G

Direct variants DAv2-B+Res18 DPT-S 1 1/2 2.36 3.43 0.59 10.5 1009G
DPT-B 2.37 3.38 0.61 11.1 1277G

Image-space warp DAv2-S+Res18 DPT-S 5 1/2 1.28 2.50 0.27 1.37 1902G

Refine w/o warp DAv2-S+Res18 DPT-S 5 1/2 2.04 3.42 0.58 9.44 858G

w/ Context DAv2-S+Res18 DPT-S 5 1/2 1.22 2.32 0.29 1.70 1005G

Table 5: We report the zero-shot ablation results on Sintel(train) (Butler et al., 2012) and Spring(sub-val) (Mehl
et al., 2023; Wang et al., 2024). The effect of changes can be identified through comparisons with the first row.
See Section 5.5 for details.

implemented warping using CNNs underperformed compared to cost-volume-based methods (Sun
et al., 2018a; Teed & Deng, 2020; Huang et al., 2022).

High-Resolution Indexing High-resolution indexing into feature maps using current flow esti-
mates remarkably improves performance. We implement variants that index at 1/8 resolution by
changing the patch size of DPT to 2 × 2, and find that high-resolution indexing significantly im-
proves 1px-outlier rate on Spring(sub-val) (Mehl et al., 2023).

We also design a cost-volume-based variant following the common setup (Wang et al., 2024; Teed
& Deng, 2020; Huang et al., 2022) with look-up radius 4 at 1/8 resolution, and find that it performs
similarly to the warping counterpart (shown in Table 5) but costs 2.2× training memory (21.2 GiB
vs. 9.5 GiB).

Direct vs. Iterative Iterative updates achieve better performance than direct regression within our
meta-architecture. We implement direct regression by setting the number of iterations T = 1. For
fair comparison, we scale up the networks to match the computational cost of 5-iteration WAFT.
Our results show that WAFT significantly outperforms these direct regression variants, indicating
the effectiveness and high efficiency of the iterative paradigm. This finding aligns with the obser-
vation that existing direct methods either underperform (Xu et al., 2022; Weinzaepfel et al., 2022)
or require substantially more computational cost (Saxena et al., 2024; Weinzaepfel et al., 2022;
2023) compared to iterative approaches (Teed & Deng, 2020; Wang et al., 2024; Huang et al., 2022;
Morimitsu et al., 2025).

Warping Features vs. Pixels Feature-space warping is more effective than image-space warping,
which is commonly used in classic methods (Ma et al., 2022; Brox et al., 2004; Black & Anandan,
1996) and early deep learning methods (Ilg et al., 2017; Ranjan & Black, 2017). Feature-space
warping does not need to re-extract features for the warped image in each iteration, significantly
saving computational cost while achieving slightly better accuracy.

Effectiveness of Warping It is possible to perform iterative updates without warping the features
using the current flow estimates. We can simply use the original feature maps as input to the update
module. Compared to this baseline, warping has significantly lower error with a negligible cost. This
observation aligns with the conclusions of previous work (Brox et al., 2004), which theoretically
justifies the combination of warping and recurrent updates by framing it as a fixed-point iteration
algorithm.
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Context Encoder Prior work (Sun et al., 2018a; Teed & Deng, 2020; Wang et al., 2024; Huang
et al., 2022) has often used a context encoder that provides an extra input to the update module. Our
ablation show that the context encoder is not necessary. The context encoder introduces additional
computation overhead, but does not significantly affect performance. Previous work (Wang et al.,
2024) also points out that the context encoder can be regarded as a direct flow regressor, which
functions similarly to the first iteration of WAFT.
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Sequence WAFT-Twins-a2 DPFlow Flowformer++ FlowDiffuser DDVM SAMFlow

Perturbed Market 3 0.893 (0.460) 0.892 (0.423) 0.958 (0.511) 0.897 (0.490) 0.787 (0.372) 0.932 (0.493)
Perturbed Shaman 1 0.174 (0.163) 0.213 (0.201) 0.251 (0.236) 0.267 (0.255) 0.219 (0.196) 0.241 (0.219)
Ambush 1 20.561 (2.526) 8.366 (2.970) 6.610 (2.605) 7.224 (2.583) 29.33 (14.07) 10.586 (2.733)
Ambush 3 3.173 (2.048) 3.019 (1.729) 2.939 (1.816) 3.148 (1.828) 2.855 (3.016) 3.411 (1.779)
Bamboo 3 0.460 (0.423) 0.486 (0.438) 0.546 (0.513) 0.594 (0.508) 0.415 (0.380) 0.522 (0.473)
Cave 3 2.199 (1.567) 2.341 (1.631) 2.344 (1.477) 2.464 (1.433) 2.042 (1.658) 2.475 (1.445)
Market 1 0.851 (0.384) 0.890 (0.491) 1.073 (0.550) 1.238 (0.517) 0.719 (0.467) 1.060 (0.491)
Market 4 7.513 (3.933) 7.939 (3.834) 8.086 (4.450) 8.024 (4.027) 5.517 (3.971) 6.636 (3.680)
Mountain 2 0.366 (0.087) 0.177 (0.078) 0.288 (0.118) 0.409 (0.101) 0.176 (0.095) 0.500 (0.217)
Temple 1 0.511 (0.297) 0.511 (0.302) 0.657 (0.359) 0.789 (0.340) 0.452 (0.284) 0.853 (0.340)
Tiger 0.463 (0.333) 0.571 (0.411) 0.595 (0.430) 0.636 (0.391) 0.413 (0.344) 0.573 (0.392)
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Avg 2.393 (1.015) 1.975 (1.046) 1.943 (1.073) 2.026 (1.016) 2.475 (1.754) 0.995 (2.080)
Avg (w/o Ambush 1) 1.639 (0.952) 1.710 (0.966) 1.750 (1.010) 1.810 (0.951) 1.360 (1.242) 1.727 (0.923)

Table 6: We report the endpoint-error (EPE) on all sequences of Sintel (Butler et al., 2012), shown in the format
“final-epe (clean-epe)”. We highlight the best result on each sequence.
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A APPENDIX

Sintel Results We show the sequence-wise results of several representative methods (Morimitsu
et al., 2025; Huang et al., 2022; Luo et al., 2024; Saxena et al., 2024; Zhou et al., 2024) on Sintel in
Table 6. The sequence ‘Ambush 1’ appears to be an outlier which severely affects the average EPE
on the final split. Given the same ImageNet-pretrained Twins backbone, WAFT outperforms SOTA
Flowformer++ when ‘Ambush 1’ is excluded.
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