

WAFT: WARPING-ALONE FIELD TRANSFORMS FOR OPTICAL FLOW

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
WAFT: WARPING-ALONE FIELD TRANSFORMS FOR
OPTICAL FLOW

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
WAFT: WARPING-ALONE FIELD TRANSFORMS FOR
OPTICAL FLOW

ABSTRACT

We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring, Sintel, and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being $1.3 - 4.1 \times$ faster than existing methods that have competitive accuracy (e.g., $1.3 \times$ than FlowFormer++, $4.1 \times$ than CCMR+). Code and model weights will be available upon acceptance.

1 INTRODUCTION

Optical flow is a fundamental low-level vision task that estimates per-pixel 2D motion between video frames. It has many downstream applications, including 3D reconstruction and synthesis (Ma et al., 2022; Zuo & Deng, 2022), action recognition (Sun et al., 2018b; Piergiovanni & Ryoo, 2019; Zhao et al., 2020b), frame interpolation (Xu et al., 2019; Liu et al., 2020; Huang et al., 2020), and autonomous driving (Geiger et al., 2013; Menze & Geiger, 2015; Janai et al., 2020).

Cost volumes (Sun et al., 2018a; Ilg et al., 2017) with iterative updates (Teed & Deng, 2020; Wang et al., 2024) has become a standard design in most state-of-the-art methods (Sun et al., 2018a; Dosovitskiy et al., 2015; Xu et al., 2017; Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024; Morimitsu et al., 2025), especially when both accuracy and efficiency are taken into account. Previous work (Sun et al., 2018a; Teed & Deng, 2020) regards cost volumes as a more effective representation than image features, as it explicitly models the visual similarity between pixels.

However, constructing cost volumes is expensive in both time and memory (Zhao et al., 2024; Xu et al., 2023a). The cost increases quadratically with the radius of the neighborhood. As a result, cost volumes are often constructed from low resolution features, limiting the ability of the model to handle high-resolution input images.

In this paper, we challenge the conventional wisdom that cost volume is necessary for strong performance with high efficiency, and introduce Warping-Alone Field Transforms (WAFT), a simplified design that replaces cost volumes with warping and achieves state-of-the-art accuracy across various benchmarks with high efficiency.

For each pixel in frame 1, instead of computing its similarities against many pixels in frame 2, warping simply fetches the feature vector of the corresponding pixel given by the current flow estimate; this enables memory-efficient high-resolution processing and leads to better accuracy.

The design of WAFT is simple, with flow-specific designs kept to the minimum. WAFT consists of an input encoder that extracts features from individual input frames and a recurrent update module that iteratively updates flow. Compared to other RAFT-like architectures, WAFT is much simplified because it does not use cost volumes and has removed the context encoder that provides extra features for the update module. WAFT is designed to function as a meta-architecture for optical flow in the sense that the individual components including input encoder and the update unit do not require custom designs and can use existing off-the-shelf (pretrained) architectures. In our experiments, we

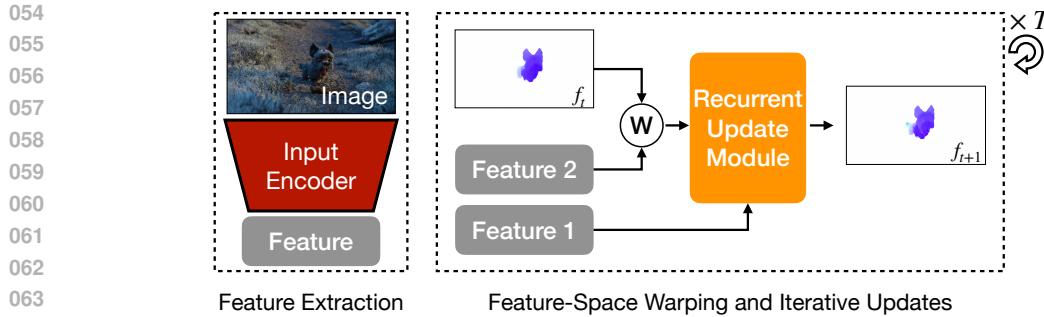


Figure 1: The meta-architecture of WAFT consists of an input encoder and a recurrent update module. We first extract image features from the input encoder, and then use these features to iteratively update the flow estimate for T steps. At each step, we perform feature indexing through a lightweight backward warping on the feature of frame 2, removing the dependency on expensive cost volume used by previous work.

evaluate different choices (such as ResNet (He et al., 2016) and DPT (Ranftl et al., 2021)) that have different accuracy-efficiency trade-offs.

WAFT achieves state-of-the-art performance across various benchmarks with high efficiency and a simple design. Using a Twins (Chu et al., 2021) backbone pre-trained only on ImageNet, WAFT ranks first on Spring, second on KITTI, and is competitive on Sintel. It also achieves the best zero-shot cross-dataset generalization on KITTI. Using a stronger backbone, depth-pretrained DAv2 (Yang et al., 2024), WAFT outperforms existing methods on all public benchmarks. We achieve this with standard network architectures for the sub-modules (Dosovitskiy et al., 2020; He et al., 2016; Ranftl et al., 2021), removing custom designs typically needed in prior work, **while being $1.3 - 4.1 \times$ faster than existing methods that have competitive accuracy (e.g., $1.3 \times$ than FlowFormer++ Shi et al. (2023), $4.1 \times$ than CCMR+ Jahedi et al. (2024)).**

Our main contributions are two-fold: (1) we challenge the conventional wisdom that cost volume is a key component for achieving state-of-the-art accuracy and efficiency for optical flow; (2) we introduce WAFT, a warping-based meta-architecture that is simpler and achieves state-of-the-art accuracy with high efficiency.

2 RELATED WORK

Estimating Optical Flow Traditional methods treated optical flow as a global optimization problem that maximizes visual similarity between corresponding pixels (Horn & Schunck, 1981; Zach et al., 2007; Chen & Koltun, 2016; Brox et al., 2004). These methods apply coarse-to-fine warping (Brox et al., 2004; Black & Anandan, 1996; Memin & Perez, 1998), a strategy theoretically justified by Brox *et al.* (Brox et al., 2004), to solve this optimization.

Today, this field is dominated by deep learning methods (Ilg et al., 2017; Dosovitskiy et al., 2015; Sun et al., 2018a; Zhao et al., 2020a; Hui et al., 2018; Teed & Deng, 2020; Sui et al., 2022; Sun et al., 2022; Deng et al., 2023; Huang et al., 2022; Shi et al., 2023; Weinzaepfel et al., 2022; 2023; Xu et al., 2022; 2023b; Leroy et al., 2023; Saxena et al., 2024; Jahedi et al., 2024; 2023; Luo et al., 2022; Zheng et al., 2022; Zhao et al., 2022; Luo et al., 2023; Jung et al., 2023; Luo et al., 2024; Zhou et al., 2024; Morimitsu et al., 2025), which can be categorized into two paradigms: direct or iterative. Direct methods (Dosovitskiy et al., 2015; Weinzaepfel et al., 2022; 2023; Saxena et al., 2024; Leroy et al., 2023; Xu et al., 2022) treat flow estimation as a standard dense prediction task (e.g. monocular depth estimation) and directly regress the dense flow field from large-scale pre-trained models. Iterative methods (Teed & Deng, 2020; Wang et al., 2024; Luo et al., 2024; Morimitsu et al., 2025; Zhou et al., 2024; Sun et al., 2018a; Huang et al., 2022) align more closely with traditional warping-based approaches, refining the flow predictions progressively. Most state-of-the-art methods (Teed & Deng, 2020; Wang et al., 2024; Huang et al., 2022; Shi et al., 2023; Luo et al., 2024; Morimitsu et al., 2025) follow the iterative paradigm due to its significantly higher efficiency than the direct ones.

Cost volumes (Sun et al., 2018a; Dosovitskiy et al., 2015) have been regarded as a standard design in iterative methods (Teed & Deng, 2020; Wang et al., 2024; Morimitsu et al., 2025; Huang et al.,

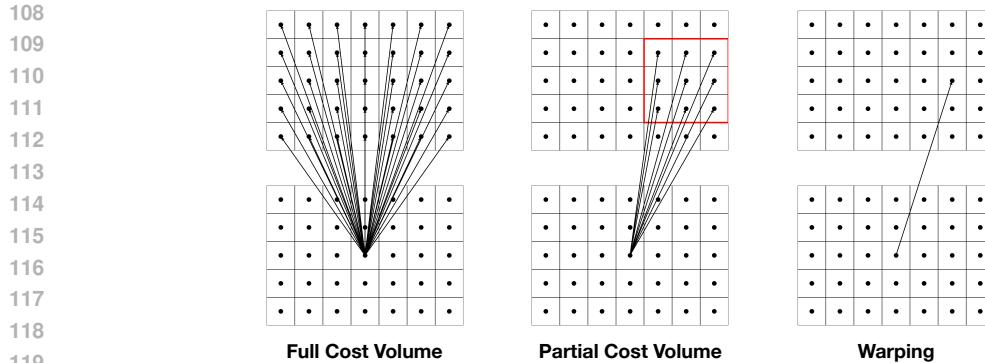


Figure 2: For each pixel, the full cost volume calculates its visual similarity to all pixels in the other frame through correlation. The partial cost volume restricts the search range to the neighborhood of the corresponding pixel, marked by a red box. Compared with them, warping only uses the information from the corresponding pixel, offering better time and memory efficiency. This efficiency enables high-resolution processing, which leads to improved accuracy.

2022; Shi et al., 2023; Xu et al., 2023b; Luo et al., 2024). Prior work (Teed & Deng, 2020; Sun et al., 2018a) empirically shows the effectiveness of cost volumes in handling large displacements. Many iterative methods (Teed & Deng, 2020; Wang et al., 2024; Morimitsu et al., 2025) adopt partial cost volumes (Sun et al., 2018a) to avoid the quadratic computational complexity of full 4D cost volumes; they restrict the search range of each pixel in frame 1 to the neighborhood of its corresponding pixel in frame 2. However, they still suffer from the high memory consumption inherent in cost volumes (Xu et al., 2023a; Zhao et al., 2024).

WAFT is a warping-based iterative method. We achieve state-of-the-art performance across various benchmarks without constructing cost volumes, challenging the conventional wisdom established by previous work (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022). Warping no longer suffers from high memory consumption inherent in cost volumes, which enables high-resolution indexing and therefore improves accuracy.

Vision Transformers Vision transformers (Dosovitskiy et al., 2020) have achieved significant progress across a wide range of visual tasks (Yang et al., 2024; Kirillov et al., 2023; Oquab et al., 2023; He et al., 2022; Rombach et al., 2022). In the context of optical flow, most direct methods (Weinzaepfel et al., 2022; 2023; Saxena et al., 2024) regress flow from a large-scale pre-trained vision transformer with a lightweight flow head. Many iterative methods (Huang et al., 2022; Shi et al., 2023; Luo et al., 2024; Zhou et al., 2024) design task-specific transformer blocks to process cost volumes.

WAFT adopts similar designs to DPT (Ranftl et al., 2021) in its recurrent update module, which implicitly handles large displacements in optical flow through the transformer architecture. We empirically show that this is crucial to make warping work. WAFT can also benefit from large-scale pre-trained transformers like existing methods (Saxena et al., 2024; Weinzaepfel et al., 2022; 2023; Zhou et al., 2024), with minimal additional flow-specific designs.

3 BACKGROUND

In this section, we first review current cost-volume-based iterative methods and discuss the drawbacks of cost volumes. Then we introduce warping and compare it to cost volumes.

3.1 ITERATIVE METHODS WITH COST VOLUME

Given two adjacent RGB frames, optical flow predicts pixel-wise 2D motion between adjacent frames. Current iterative methods (Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024) consist of two parts: (1) input encoders that extract dense image features at low resolution, and (2) a recurrent update module that iteratively refines the flow estimate.

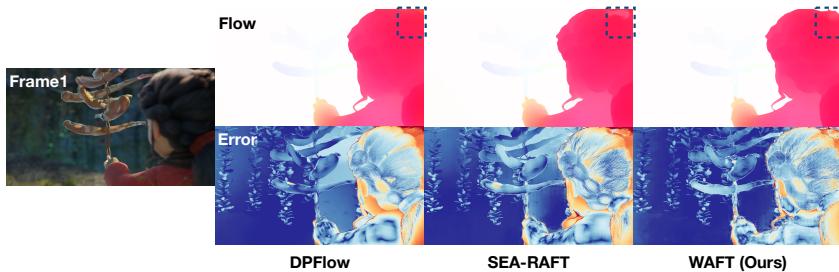


Figure 3: Visualizations of different methods on Spring (Mehl et al., 2023). WAFT, benefiting from high-resolution indexing, obtains sharper boundaries and lower errors than low-resolution approaches.

Denoting the two frames as $I_1, I_2 \in \mathbb{R}^{H \times W \times 3}$, the input encoder F maps I_1, I_2 to low-resolution dense features $F(I_1), F(I_2) \in \mathbb{R}^{h \times w \times d}$, respectively. A cost volume $V \in \mathbb{R}^{h \times w \times h \times w}$ is built on these features, which explicitly models the correlation between pixels ($p \in I_1, p' \in I_2$):

$$V_{p,p'} = F(I_1)_p \cdot F(I_2)_{p'}$$

where \cdot represents the dot product of two vectors. At each step, the recurrent update module indexes into the cost volume using the current flow estimate and predicts the residual flow update. Several methods (Huang et al., 2022; Shi et al., 2023) directly process V for better performance, but tend to be more costly.

Partial cost volume (Sun et al., 2018a) is introduced to reduce the cost by avoiding the construction of a full 4D cost volume. Given the current flow estimate $f_{cur} \in \mathbb{R}^{h \times w \times 2}$ and a pre-defined look-up radius r , partial cost volume $V_{par} : \mathbb{R}^{h \times w \times 2} \rightarrow \mathbb{R}^{h \times w \times (r^2)}$ implements an on-the-fly partial construction by restricting the indexing range of a pixel $p \in I_1$ to the neighborhood of its corresponding pixel $p + (f_{cur})_p \in I_2$, formulated as:

$$V_{par}(f_{cur}; r)_p = \text{concat}(\{V_{p,p'} | \forall p' \in I_2, \text{s.t.} \|p + (f_{cur})_p - p'\|_\infty \leq r\})$$

where the operator ‘‘concat’’ concatenates all values inside the set into a vector. In practice, partial cost volumes are usually constructed at multiple scales (Teed & Deng, 2020; Wang et al., 2024) to improve the prediction of large displacements. Current methods also introduce context encoder (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024) to enhance the effectiveness of iterative refinement.

3.2 DRAWBACKS OF COST VOLUMES

High Memory Cost The main drawback of cost volume is its high memory consumption. Full or partial cost volume at high resolution are very expensive and often infeasible (Zhao et al., 2024; Xu et al., 2023a). Therefore, most iterative methods build the cost volume and index into it at 1/8 resolution. To further demonstrate the problem, we implement several variants of SEA-RAFT (Wang et al., 2024) that build partial cost volumes at different resolutions. We set the base channel dimension as 32, 64, and 128 for the 1/2, 1/4, and 1/8 resolution variants, respectively, to make their computational cost similar (around 350GMACs). As shown in Table 1, the partial cost volume with look-up radius $r = 4$ in SEA-RAFT runs out of memory at 1/2 resolution. WAFT removes the reliance on cost volume, and therefore consumes significantly lower memory than existing methods (Wang et al., 2024; Huang et al., 2022; Jahedi et al., 2024).

Error from Low Resolution Indexing Since cost volumes are restricted to low resolution, the predicted flow field must be downsampled for cost volume look-up, which inevitably introduces errors. As illustrated in Figure 3 using an example from the Spring benchmark (Mehl et al., 2023), existing methods struggle to produce clear boundaries, particularly noticeable in the top-right corner.

Figure 4: Visualizations on Spring, KITTI, and Sintel public benchmarks (from left to right).

In contrast, our method benefits from high-resolution look-up of feature vectors and obtains sharper boundary predictions in these challenging regions. We also show the quantitative performance gain from high-resolution indexing in Table 5.

3.3 WARPING VS. COST VOLUME

Warping was widely used in both classical and early deep learning approaches (Memin & Perez, 1998; Brox et al., 2004; Ilg et al., 2017; Ranjan & Black, 2017). However, most recent iterative methods (Wang et al., 2024; Teed & Deng, 2020; Huang et al., 2022) have either replaced warping with cost volumes or used both in combination, since cost volumes have been shown to remarkably improve the performance (Sun et al., 2018a). In this section, we analyze the similarities and differences between warping and cost volume (see Figure 2), and argue that with appropriate designs, warping-based methods can achieve performance on par with cost-volume-based methods.

The overlap of warping and cost volumes lies in their use of the current flow prediction to index into feature maps, which is closely related to optimization (Brox et al., 2004). In cost-volume-based iterative methods, the current flow estimate f_{cur} is used to define partial cost volume V_{par} (see Section 3.1). It is also used to define the warped feature map $\text{Warp}(f_{cur}) \in \mathbb{R}^{h \times w \times d}$, where the feature vector of pixel $p \in I_1$ is indexed from the feature map of frame 2, formulated as:

$$\text{Warp}(f_{cur})_p = F(I_2)_{p+(f_{cur})_p}$$

Compared to cost volumes, for each pixel in frame 1, warping does not calculate its visual similarity to multiple pixels in frame 2, making it no longer able to explicitly model large displacements. However, we can implicitly handle this long-range dependence through the attention mechanism in vision transformers (Dosovitskiy et al., 2020; Ranftl et al., 2021), which, as we will demonstrate, is crucial to make warping work well (see Section 5.5). The high memory efficiency of warping also enables high-resolution indexing, leading to improved accuracy.

4 METHOD

In this section, we describe WAFT, our warping-based iterative method, shown in Figure 1. Its design can be understood as a simple meta-architecture that integrates an input encoder and a recurrent update module. We will also discuss the advantages of our design, especially on its strong performance and the simplifications over past designs.

Input Encoder We develop two ways to adapt large-scale pre-trained models. Adaptation 1 (a1) is our initial design specific to DAv2. We freeze the entire DAv2, incorporate features from its DPT head, and further refine these features using a ResNet18. Adaptation 2 (a2) is our improved design that works better and supports more backbones, where we only freeze the ViT/CNN backbones. We make the DPT head trainable and side-tune the features with 3 ResNet blocks. For completeness, we report the results of both.

270 **Recurrent Update Module** Similar to existing iterative methods (Teed & Deng, 2020; Wang et al.,
 271 2024; Huang et al., 2022), our recurrent update module R iteratively predicts the residual flow
 272 updates. At step t , we concatenate $F(I_1)$ (feature of frame 1), $\text{Warp}(f_{\text{cur}})$ (warped feature of frame
 273 2, see Section 3.3), and the current hidden state $\text{Hidden}_t \in \mathbb{R}^{h \times w \times d}$ as input. We use a slightly
 274 modified DPT (Ranftl et al., 2021) as the architecture of the module.
 275

276 **Prediction Head & Loss** We adopt the Mixture-of-Laplace (MoL) loss used in SEA-RAFT (Wang
 277 et al., 2024). At step t , the hidden state Hidden_t is used to predict the MoL parameters $M \in$
 278 $\mathbb{R}^{h \times w \times 6}$. They are upsampled to the original image resolution through convex upsampling (Teed &
 279 Deng, 2020; Wang et al., 2024).
 280

281 **Simplifications over Existing Iterative Methods** We replace cost volumes, which are standard
 282 in existing iterative methods (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022; Wang
 283 et al., 2024), with high-resolution warping, which is more memory-efficient. In addition, we have
 284 removed the context encoder (Sun et al., 2018a), another flow-specific design standard in existing
 285 iterative methods.
 286

287 A direct benefit from our simplified design is that we can load pre-trained weights for standard archi-
 288 tectures such as ViT (Dosovitskiy et al., 2020), which can improve generalization as our experiments
 289 will show Section 5.5.

290 The simplicity of our meta-architecture also enables more apples-to-apples comparisons between
 291 direct methods and iterative methods. Existing direct methods (Weinzaepfel et al., 2022; 2023;
 292 Saxena et al., 2024) share an input format similar to that of the first iteration of WAFT, making them
 293 more directly compatible. We will empirically show the effectiveness and necessity of iterative
 294 indexing within our meta-architecture in Section 5.5.
 295

296 5 EXPERIMENTS

297 We report results on Sintel (Butler et al., 2012), KITTI (Geiger et al., 2013), and Spring (Mehl et al.,
 298 2023). Following existing work (Teed & Deng, 2020; Huang et al., 2022; Wang et al., 2024; Morim-
 299 itsu et al., 2025), for training, we use FlythingChairs (Dosovitskiy et al., 2015), FlyingThings (Mayer
 300 et al., 2016), HD1K (Kondermann et al., 2016), Sintel (Butler et al., 2012), KITTI (Geiger et al.,
 301 2013), Spring (Mehl et al., 2023), and TartanAir (Wang et al., 2020). We use the widely adopted met-
 302 rics: endpoint-error (EPE), 1-pixel outlier rate (1px), percentage of flow outliers (Fl), and weighted
 303 area under the curve (WAUC). Definitions can be found in (Richter et al., 2017; Mehl et al., 2023;
 304 Geiger et al., 2013; Morimitsu et al., 2025).
 305

307 5.1 ARCHITECTURE DETAILS

309 **Input Encoder** We use frozen ImageNet-
 310 pretrained Twins-SVT-Large (Chu et al., 2021),
 311 depth-pretrained DAv2-S (Yang et al., 2024),
 312 and unsupervised-pretrained DINOV3-ViT-
 313 S (Siméoni et al., 2025) in input encoders.
 314

315 **Recurrent Update Module** We use a modi-
 316 fied DPT-Small (Ranftl et al., 2021) as the re-
 317 current update module. We concatenate the im-
 318 age features and use a 1×1 conv to obtain the
 319 initial hidden state. Since the image features are
 320 already $2 \times$ downsampled, we change the patch
 321 size to 8. We set the resolution of the positional
 322 embedding to 224×224 , and interpolate it for
 323 other resolutions. We use $T = 5$ iterations in
 training and inference.

Method	1px \downarrow	EPE \downarrow	Fl \downarrow	WAUC \uparrow
FlowNet2 (Ilg et al., 2017)*	6.710	1.040	2.823	90.907
SpyNet (Ranjan & Black, 2017)*	29.963	4.162	12.866	67.150
PWC-Net (Sun et al., 2018a)*	82.27	2.288	4.889	45.670
RAFT (Teed & Deng, 2020)*	6.790	1.476	3.198	90.920
GMA (Jiang et al., 2021)*	7.074	0.914	3.079	90.722
FlowFormer (Huang et al., 2022)*	6.510	0.723	2.384	91.679
GMFlow (Xu et al., 2022)*	10.355	0.945	2.952	82.337
RPKNet (Morimitsu et al., 2024)	4.809	0.657	1.756	92.638
CroCoFlow (Weinzaepfel et al., 2023)	4.565	0.498	1.508	93.660
Win-Win (Leroy et al., 2023)	5.371	0.475	1.621	92.270
SEA-RAFT(M) (Wang et al., 2024)	3.686	0.363	1.347	94.534
DPFlow (Morimitsu et al., 2025)	3.442	0.340	1.311	94.980
WAFT-DAV2-a1-540p	3.418	0.340	1.280	94.663
WAFT-DAV2-a1-1080p	3.347	0.337	1.222	95.189
WAFT-Twins-a2	3.268	0.331	1.282	94.786
WAFT-DAV2-a2	3.298	0.304	1.197	94.990
WAFT-DINOV3-a2	3.182	0.325	1.246	95.051

Table 3: WAFT ranks 1st on Spring (Mehl et al., 2023) on all metrics. We highlight all SOTA performance. * denotes the submissions from the Spring team.

324 325 326 327 328	329 330 331 332 333 334 335 336 337 338 339 340	341 342 343 344 345	346 347 348 349	Type	Method	Sintel		KITTI		Inference Cost			
				Clean↓	Final↓	All↓	Non-Occ↓	#MACs (G)	Latency (ms)				
346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349			
					GMFlow (Xu et al., 2022)	1.74	2.90	9.32	3.80	603	139		
					CroCoFlow (Weinzaepfel et al., 2023)	1.09	2.44	3.64	2.40	57343	6422		
346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	DDVM (Saxena et al., 2024)	1.75	2.48	3.26	2.24	-	-		
					PWC-Net+ (Sun et al., 2019)	3.45	4.60	7.72	4.91	101	24		
					RAFT (Teed & Deng, 2020)	1.61	2.86	5.10	3.07	938	141		
					DIP (Zheng et al., 2022)	1.44	2.83	4.21	2.43	3068	499		
					GMFlowNet (Zhao et al., 2022)	1.39	2.65	4.79	2.75	1094	244		
					CRAFT (Sui et al., 2022)	1.45	2.42	4.79	3.02	2274	483		
					FlowFormer (Huang et al., 2022)	1.20	2.12	4.68	2.69	1715	336		
					GMFlow+ (Xu et al., 2023b)	1.03	2.37	4.49	2.40	1177	250		
					RPKNet (Morimitsu et al., 2024)	1.31	2.65	4.64	2.71	137	183		
		346 347 348 349			CCMR+ (Jahedi et al., 2024)	1.07	2.10	3.86	2.07	12653	999		
					MatchFlow(G) (Dong et al., 2023)	1.16	2.37	4.63	2.77	1669	291		
					Flowformer++(Shi et al., 2023)	1.07	1.94	4.52	-	1713	374		
					SEA-RAFT(L) (Wang et al., 2024)	1.31	2.60	4.30	-	655	108		
					AnyFlow (Jung et al., 2023)	1.23	2.44	4.41	2.69	-	-		
					FlowDiffuser (Luo et al., 2024)	1.02	2.03	4.17	2.82	2466	599		
					SAMFlow (Zhou et al., 2024)	1.00	2.08	4.49	-	9717	1757		
346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	346 347 348 349	DPFlow (Morimitsu et al., 2025)	1.04	1.97	3.56	2.12	414	131		
					SpyNet (Ranjan & Black, 2017)	6.64	8.36	35.07	26.71	167	25		
					FlowNet2 (Ilg et al., 2017)	4.16	5.74	10.41	6.94	230	75		
					WAFT-DAv2-a1	1.09	2.34	3.42	2.04	853	240		
					WAFT-Twins-a2	1.02	2.39	3.53	2.12	1020	290		
					WAFT-DAv2-a2	0.95	2.33	3.31	2.03	807	240		
					WAFT-DINOv3-a2	0.94	2.02	3.56	2.13	732	212		

Table 2: We report endpoint-error (EPE) on Sintel (Butler et al., 2012), Fl on KITTI (Geiger et al., 2013), and highlight all SOTA performance. On KITTI, WAFT ranks first on non-occluded pixels and second on all pixels. It also achieves state-of-the-art performance on Sintel (clean). We measure the latency on an RTX3090 with batch size 1 and 540p input.

5.2 TRAINING DETAILS

Benchmark Submissions Following SEA-RAFT (Wang et al., 2024), we first pre-train our model on TartanAir (Wang et al., 2020) for 300k steps, with a batch size of 32 and learning rate 4×10^{-4} . We fine-tune our model on FlyingChairs (Zhao et al., 2020a) with the same hyperparameters for 50k steps, and then fine-tune it on FlyingThings (Mayer et al., 2016) for 200k steps. For all submissions, we keep the batch size as 32 by default and reduce the learning rate to 10^{-4} . For KITTI (Geiger et al., 2013) submission, we fine-tune our model on KITTI(train) for 5k steps. For Sintel (Butler et al., 2012) submission, we follow previous work to fine-tune our model on the mixture of FlyingThings, HD1K (Kondermann et al., 2016), KITTI(train), and Sintel(train) for 200k steps. For Spring (Mehl et al., 2023) submissions, we fine-tune our models on Spring(train) for 200k steps with a batch size of 32. We train an extra 1080p WAFT-DAv2-a1 model with a batch size of 8.

Zero-Shot Evaluation We first train our model on FlyingChairs for 50k steps, and then fine-tune it on FlyingThings for 50k steps. The batch size is set to 32, and the learning rate is set to 10^{-4} .

5.3 BENCHMARK RESULTS

Sintel & KITTI Results are shown in Table 2. Using a Twins backbone only pre-trained on ImageNet, WAFT ranks second on KITTI and is competitive on Sintel (clean). It outperforms prior cost-volume-based SOTA Flowformer++ (Shi et al., 2023) in both accuracy and efficiency given the same backbone, demonstrating the strength of high-resolution warping. The performance can be further improved with stronger backbones (Yang et al., 2024; Siméoni et al., 2025). Using a depth-pretrained DAv2 (Yang et al., 2024), on KITTI (Geiger et al., 2013), WAFT achieves the best Fl on non-occluded pixels and the second best on all pixels. It also ranks first on Sintel (Clean) (Butler et al., 2012) and competitive on Sintel (Final). **WAFT is 1.3-4.1× faster than existing methods that have competitive accuracy (e.g., 1.3× than Flowformer++ Shi et al. (2023), 4.1× than CCMR+ Jahedi et al. (2024))**, demonstrating its high efficiency.

Note that there is an outlier sequence, ‘Ambush 1’, which severely affects the average performance on Sintel (Final) as mentioned in Saxena et al. (2024). We show that WAFT outperforms Flow-

378 former++ on Sintel (Final) with the same Twins backbone when ‘Ambush 1’ is excluded. More
 379 details can be found in Table 6.
 380

381 **Spring** Results are shown in Table 3. Following the downsample-upsample protocol (540p) of
 382 SEA-RAFT (Wang et al., 2024), WAFT outperforms existing methods on EPE and 1px with a Twins
 383 backbone only pre-trained on ImageNet. We also show that WAFT achieves the best performance on
 384 all metrics with a depth-pretrained DAv2 backbone. Benefiting from warping, WAFT can be trained
 385 at full resolution (1080p) to improve the performance further.
 386

387 **Comparison with Existing Warping-based Methods** It appears that warping as a network op-
 388 eration has been largely abandoned by works in the last 8 years and the last time warping-based
 389 methods achieved top positions on the leaderboards were around 2017 (Ranjan & Black, 2017; Ilg
 390 et al., 2017). WAFT is significant in that it has revisited and revived an idea that has fallen out of
 391 favor. Compared to methods that do use warping (Ranjan & Black, 2017; Ilg et al., 2017), WAFT
 392 reduces endpoint-error (EPE) by at least 64% on Sintel and 70% on Spring (Mehl et al., 2023), while
 393 also reducing Fl by at least 68% on KITTI (Geiger et al., 2013) and 57% on Spring (Mehl et al.,
 394 2023). Besides, WAFT reduces 1px-outlier rate by 52% on Spring (Mehl et al., 2023).
 395

396 5.4 ZERO-SHOT EVALUATION

397 Following previous work (Teed & Deng, 2020;
 398 Huang et al., 2022; Sun et al., 2018a), we train
 399 our model on FlyingChairs (Dosovitskiy et al.,
 400 2015) and FlyingThings (Mayer et al., 2016).
 401 Then we evaluate the performance on the train-
 402 ing split of Sintel (Butler et al., 2012) and
 403 KITTI (Geiger et al., 2013).
 404

405 **Analysis** Results are shown in Table 4.
 406 WAFT achieves strong cross-dataset general-
 407 ization. On KITTI (train), WAFT outper-
 408 forms other methods by a large margin with an
 409 ImageNet-pretrained Twins backbone: It im-
 410 proves the endpoint-error (EPE) from 3.37 to
 411 2.98 and Fl from 11.1 to 9.9. On Sintel (train),
 412 WAFT achieves performance close to state-of-
 413 the-art methods. Compared to the previous
 414 warping-based method (Ilg et al., 2017), WAFT
 415 improves the performance by at least 31%.
 416

417 5.5 ABLATION STUDY

418 We conduct zero-shot ablations in Table 5 on the training split of Sintel (Butler et al., 2012) and
 419 the sub-val split (Wang et al., 2024) of Spring (Mehl et al., 2023) based on WAFT-DAv2-a1. In all
 420 experiments, the models are trained on FlyingThings (Mayer et al., 2016) for 50k steps, with a
 421 batch size of 32 and learning rate 10^{-4} . The average EPE and 1px are reported.
 422

423 **Different Input Encoder** Both pre-trained weights and adaptations are important to the perfor-
 424 mance. Note that the strong performance of WAFT is not merely from advanced backbones. Using
 425 a Twins backbone only pre-trained on ImageNet as adopted in Flowformer (Huang et al., 2022),
 426 WAFT ranks first on Spring, second on KITTI, and is competitive on Sintel. More details can be
 427 found in Table 2, 3, and 4.
 428

429 **Different Recurrent Update Module** The vision transformer design is crucial to iterative warp-
 430 ing. We observe a significant performance drop when replacing the DPT-based recurrent update
 431 module with CNNs, highlighting the importance of modeling long-range dependence. This finding
 432 may help explain why early deep learning approaches (Ilg et al., 2017; Ranjan & Black, 2017) that

Method	Sintel (train)		KITTI (train)	
	Clean↓	Final↓	Fl-epe↓	Fl-all↓
PWC-Net (Sun et al., 2018a)	2.55	3.93	10.4	33.7
RAFT (Teed & Deng, 2020)	1.43	2.71	5.04	17.4
GMA (Jiang et al., 2021)	1.30	2.74	4.69	17.1
SKFlow (Sun et al., 2022)	1.22	2.46	4.27	15.5
DIP (Zheng et al., 2022)	1.30	2.82	4.29	13.7
EMD-L (Deng et al., 2023)	0.88	2.55	4.12	13.5
CRAFT (Sui et al., 2022)	1.27	2.79	4.88	17.5
RPKNet (Morimitsu et al., 2024)	1.12	2.45	-	13.0
GMFlowNet (Zhas et al., 2022)	1.14	2.71	4.24	15.4
FlowFormer (Huang et al., 2022)	1.01	2.40	4.09	14.7
Flowformer++ (Shi et al., 2023)	0.90	2.30	3.93	14.2
CCMR+ (Jahedi et al., 2024)	0.98	2.36	-	12.9
MatchFlow(G) (Dong et al., 2023)	1.03	2.45	4.08	15.6
SEA-RAFT(L) (Wang et al., 2024)	1.19	4.11	3.62	12.9
AnyFlow (Jung et al., 2023)	1.10	2.52	3.76	12.4
SAMFlow (Zhou et al., 2024)	0.87	2.11	3.44	12.3
FlowDiffuser (Luo et al., 2024)	0.86	2.19	3.61	11.8
DPFlow (Morimitsu et al., 2025)	1.02	2.26	3.37	11.1
FlowNet2 (Ilg et al., 2017)	2.02	3.14	10.1	30.4
WAFT-DAv2-a1	1.00	2.15	3.10	10.3
WAFT-Twins-a2	1.02	2.46	2.98	9.9
WAFT-DAv2-a2	1.01	2.49	3.28	10.9
WAFT-DINOv3-a2	1.28	2.56	3.49	12.9

Table 4: WAFT achieves the best cross-dataset generalization on KITTI(train), reducing the error by 11%. We highlight all SOTA performance.

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447	Experiment	Input Enc.	Rec. Upd.	#Steps	Index Reso.	Sintel(train)		Spring(sub-val)		#MACs
						Clean \downarrow	Final \downarrow	EPE \downarrow	1px \downarrow	
WAFT-DAv2-a1	DAv2-S+Res18	DPT-S	5	1/2	1.18	2.33	0.27	1.43	858G	
Different input enc.	Res18 DAv2-S	DPT-S	5	1/2	1.27 1.55	2.81 2.64	0.27 0.37	1.59 2.70	600G 670G	
DAv2 w/o pre-train	DAv2-S+Res18	DPT-S	5	1/2	1.42	2.74	0.28	1.77	858G	
Different rec. upd.	DAv2-S+Res18 ConvGRU	Res18 ConvGRU	5	1/2	7.23 2.79	6.84 4.80	0.45 0.39	2.93 2.71	1098G 800G	
1/8 reso. + warp	DAv2-S+Res18	DPT-S	5	1/8	1.15	2.31	0.32	1.82	859G	
1/8 reso. + corr.	DAv2-S+Res18	DPT-S	5	1/8	1.10	2.45	0.33	1.74	883G	
Direct variants	DAv2-B+Res18 DPT-B	DPT-S DPT-B	1	1/2	2.36 2.37	3.43 3.38	0.59 0.61	10.5 11.1	1009G 1277G	
Image-space warp	DAv2-S+Res18	DPT-S	5	1/2	1.28	2.50	0.27	1.37	1902G	
Refine w/o warp	DAv2-S+Res18	DPT-S	5	1/2	2.04	3.42	0.58	9.44	858G	
w/ Context	DAv2-S+Res18	DPT-S	5	1/2	1.22	2.32	0.29	1.70	1005G	

Table 5: We report the zero-shot ablation results on Sintel(train) (Butler et al., 2012) and Spring(sub-val) (Mehl et al., 2023; Wang et al., 2024). The effect of changes can be identified through comparisons with the first row. See Section 5.5 for details.

implemented warping using CNNs underperformed compared to cost-volume-based methods (Sun et al., 2018a; Teed & Deng, 2020; Huang et al., 2022).

High-Resolution Indexing High-resolution indexing into feature maps using current flow estimates remarkably improves performance. We implement variants that index at 1/8 resolution by changing the patch size of DPT to 2×2 , and find that high-resolution indexing significantly improves 1px-outlier rate on Spring(sub-val) (Mehl et al., 2023).

We also design a cost-volume-based variant following the common setup (Wang et al., 2024; Teed & Deng, 2020; Huang et al., 2022) with look-up radius 4 at 1/8 resolution, and find that it performs similarly to the warping counterpart (shown in Table 5) but costs $2.2 \times$ training memory (21.2 GiB vs. 9.5 GiB).

Direct vs. Iterative Iterative updates achieve better performance than direct regression within our meta-architecture. We implement direct regression by setting the number of iterations $T = 1$. For fair comparison, we scale up the networks to match the computational cost of 5-iteration WAFT. Our results show that WAFT significantly outperforms these direct regression variants, indicating the effectiveness and high efficiency of the iterative paradigm. This finding aligns with the observation that existing direct methods either underperform (Xu et al., 2022; Weinzaepfel et al., 2022) or require substantially more computational cost (Saxena et al., 2024; Weinzaepfel et al., 2022; 2023) compared to iterative approaches (Teed & Deng, 2020; Wang et al., 2024; Huang et al., 2022; Morimitsu et al., 2025).

Warping Features vs. Pixels Feature-space warping is more effective than image-space warping, which is commonly used in classic methods (Ma et al., 2022; Brox et al., 2004; Black & Anandan, 1996) and early deep learning methods (Ilg et al., 2017; Ranjan & Black, 2017). Feature-space warping does not need to re-extract features for the warped image in each iteration, significantly saving computational cost while achieving slightly better accuracy.

Effectiveness of Warping It is possible to perform iterative updates without warping the features using the current flow estimates. We can simply use the original feature maps as input to the update module. Compared to this baseline, warping has significantly lower error with a negligible cost. This observation aligns with the conclusions of previous work (Brox et al., 2004), which theoretically justifies the combination of warping and recurrent updates by framing it as a fixed-point iteration algorithm.

486 **Context Encoder** Prior work (Sun et al., 2018a; Teed & Deng, 2020; Wang et al., 2024; Huang
 487 et al., 2022) has often used a context encoder that provides an extra input to the update module. Our
 488 ablation show that the context encoder is not necessary. The context encoder introduces additional
 489 computation overhead, but does not significantly affect performance. Previous work (Wang et al.,
 490 2024) also points out that the context encoder can be regarded as a direct flow regressor, which
 491 functions similarly to the first iteration of WAFT.

492 **ACKNOWLEDGMENTS**

493 This work was partially supported by the National Science Foundation.

494 **REFERENCES**

495 Michael J Black and Paul Anandan. The robust estimation of multiple motions: Parametric and
 496 piecewise-smooth flow fields. *Computer vision and image understanding*, 63(1):75–104, 1996.

500 Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow
 501 estimation based on a theory for warping. In *Computer Vision-ECCV 2004: 8th European Conference
 502 on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV 8*, pp. 25–36. Springer, 2004.

503 Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
 504 movie for optical flow evaluation. In *European conference on computer vision*, pp. 611–625.
 505 Springer, 2012.

506 Qifeng Chen and Vladlen Koltun. Full flow: Optical flow estimation by global optimization over
 507 regular grids. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 508 pp. 4706–4714, 2016.

509 Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
 510 Chunhua Shen. Twins: Revisiting spatial attention design in vision transformers. *arXiv preprint
 511 arXiv:2104.13840*, 2021.

512 Changxing Deng, Ao Luo, Haibin Huang, Shaodan Ma, Jiangyu Liu, and Shuaicheng Liu. Ex-
 513 plicit motion disentangling for efficient optical flow estimation. In *Proceedings of the IEEE/CVF
 514 International Conference on Computer Vision*, pp. 9521–9530, 2023.

515 Qiaole Dong, Chenjie Cao, and Yanwei Fu. Rethinking optical flow from geometric matching
 516 consistent perspective. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 517 Pattern Recognition*, pp. 1337–1347, 2023.

518 Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
 519 Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
 520 convolutional networks. In *Proceedings of the IEEE international conference on computer vision*,
 521 pp. 2758–2766, 2015.

522 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 523 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 524 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 525 arXiv:2010.11929*, 2020.

526 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
 527 kitti dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013.

528 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 529 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 530 770–778, 2016.

531 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 532 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 533 vision and pattern recognition*, pp. 16000–16009, 2022.

- 540 Berthold KP Horn and Brian G Schunck. Determining optical flow. *Artificial intelligence*, 17(1-3):
 541 185–203, 1981.
 542
- 543 Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang, Ka Chun Cheung, Hongwei Qin, Jifeng
 544 Dai, and Hongsheng Li. Flowformer: A transformer architecture for optical flow. In *European
 545 Conference on Computer Vision*, pp. 668–685. Springer, 2022.
- 546 Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Rife: Real-time
 547 intermediate flow estimation for video frame interpolation. *arXiv preprint arXiv:2011.06294*,
 548 2020.
 549
- 550 Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight convolutional neural
 551 network for optical flow estimation. In *Proceedings of the IEEE conference on computer vision
 552 and pattern recognition*, pp. 8981–8989, 2018.
- 553 Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
 554 Flownet 2.0: Evolution of optical flow estimation with deep networks. In *Proceedings of the IEEE
 555 conference on computer vision and pattern recognition*, pp. 2462–2470, 2017.
 556
- 557 Azin Jahedi, Maximilian Luz, Marc Rivinius, Lukas Mehl, and Andrés Bruhn. Ms-raft+: High
 558 resolution multi-scale raft. *International Journal of Computer Vision*, pp. 1–22, 2023.
 559
- 560 Azin Jahedi, Maximilian Luz, Marc Rivinius, and Andrés Bruhn. Ccmr: High resolution optical flow
 561 estimation via coarse-to-fine context-guided motion reasoning. In *Proceedings of the IEEE/CVF
 562 Winter Conference on Applications of Computer Vision*, pp. 6899–6908, 2024.
- 563 Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. Computer vision for autonomous
 564 vehicles: Problems, datasets and state of the art. *Foundations and trends® in computer graphics
 565 and vision*, 12(1–3):1–308, 2020.
 566
- 567 Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and Richard Hartley. Learning to estimate
 568 hidden motions with global motion aggregation. *arXiv preprint arXiv:2104.02409*, 2021.
- 569 Hyunyoung Jung, Zhuo Hui, Lei Luo, Haitao Yang, Feng Liu, Sungjoo Yoo, Rakesh Ranjan, and
 570 Denis Demanrolx. Anyflow: Arbitrary scale optical flow with implicit neural representation.
 571 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 572 5455–5465, 2023.
 573
- 574 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 575 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 576 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
- 577 Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten Krispin, Jonas Andrulis, Alexander
 578 Brock, Burkhard Gussfeld, Mohsen Rahimimoghaddam, Sabine Hofmann, Claus Brenner, et al.
 579 The hci benchmark suite: Stereo and flow ground truth with uncertainties for urban autonomous
 580 driving. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 581 Workshops*, pp. 19–28, 2016.
 582
- 583 Vincent Leroy, Jerome Revaud, Thomas Lucas, and Philippe Weinzaepfel. Win-win: Training high-
 584 resolution vision transformers from two windows. *arXiv preprint arXiv:2310.00632*, 2023.
 585
- 586 Xiaozhang Liu, Hui Liu, and Yuxiu Lin. Video frame interpolation via optical flow estimation with
 587 image inpainting. *International Journal of Intelligent Systems*, 35(12):2087–2102, 2020.
 588
- 589 Ao Luo, Fan Yang, Xin Li, and Shuaicheng Liu. Learning optical flow with kernel patch attention.
 590 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 590 8906–8915, 2022.
 591
- 592 Ao Luo, Fan Yang, Xin Li, Lang Nie, Chunyu Lin, Haoqiang Fan, and Shuaicheng Liu. Gaflow:
 593 Incorporating gaussian attention into optical flow. In *Proceedings of the IEEE/CVF International
 Conference on Computer Vision*, pp. 9642–9651, 2023.

- 594 Ao Luo, Xin Li, Fan Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng Liu. Flowdiffuser: Advanc-
 595 ing optical flow estimation with diffusion models. In *Proceedings of the IEEE/CVF Conference*
 596 *on Computer Vision and Pattern Recognition*, pp. 19167–19176, 2024.
- 597
- 598 Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with cascaded epipolar raft. In *European*
 599 *Conference on Computer Vision*, pp. 734–750. Springer, 2022.
- 600 Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
 601 and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
 602 scene flow estimation. In *Proceedings of the IEEE conference on computer vision and pattern*
 603 *recognition*, pp. 4040–4048, 2016.
- 604
- 605 Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring: A
 606 high-resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In *Pro-*
 607 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4981–
 608 4991, 2023.
- 609
- 610 Etienne Memin and Patrick Perez. A multigrid approach for hierarchical motion estimation. In *Sixth*
 611 *International Conference on Computer Vision (IEEE Cat. No. 98CH36271)*, pp. 933–938. IEEE,
 612 1998.
- 613
- 614 Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In *Proceedings of*
 615 *the IEEE conference on computer vision and pattern recognition*, pp. 3061–3070, 2015.
- 616
- 617 Henrique Morimitsu, Xiaobin Zhu, Xiangyang Ji, and Xu-Cheng Yin. Recurrent partial kernel
 618 network for efficient optical flow estimation. 2024.
- 619
- 620 Henrique Morimitsu, Xiaobin Zhu, Roberto M Cesar Jr, Xiangyang Ji, and Xu-Cheng Yin.
 621 Dpfow: Adaptive optical flow estimation with a dual-pyramid framework. *arXiv preprint*
 622 *arXiv:2503.14880*, 2025.
- 623
- 624 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 625 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 626 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- 627
- 628 AJ Piergiovanni and Michael S Ryoo. Representation flow for action recognition. In *Proceedings of*
 629 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9945–9953, 2019.
- 630
- 631 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 632 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 633 2021.
- 634
- 635 Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In *Proceedings*
 636 *of the IEEE conference on computer vision and pattern recognition*, pp. 4161–4170,
 637 2017.
- 638
- 639 Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for benchmarks. In *Proceedings*
 640 *of the IEEE International Conference on Computer Vision*, pp. 2213–2222, 2017.
- 641
- 642 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 643 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 644 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 645
- 646 Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi, Deqing Sun,
 647 and David J Fleet. The surprising effectiveness of diffusion models for optical flow and monocular
 648 depth estimation. *Advances in Neural Information Processing Systems*, 36, 2024.
- 649
- 650 Xiaoyu Shi, Zhaoyang Huang, Dasong Li, Manyuan Zhang, Ka Chun Cheung, Simon See, Hong-
 651 wei Qin, Jifeng Dai, and Hongsheng Li. Flowformer++: Masked cost volume autoencoding for
 652 pretraining optical flow estimation. In *Proceedings of the IEEE/CVF Conference on Computer*
 653 *Vision and Pattern Recognition*, pp. 1599–1610, 2023.

- 648 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 649 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 650 *preprint arXiv:2508.10104*, 2025.
- 651
- 652 Xiuchao Sui, Shaohua Li, Xue Geng, Yan Wu, Xinxing Xu, Yong Liu, Rick Goh, and Hongyuan
 653 Zhu. Craft: Cross-attentional flow transformer for robust optical flow. In *Proceedings of the*
 654 *IEEE/CVF conference on Computer Vision and Pattern Recognition*, pp. 17602–17611, 2022.
- 655
- 656 Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
 657 pyramid, warping, and cost volume. In *Proceedings of the IEEE conference on computer vision*
 658 *and pattern recognition*, pp. 8934–8943, 2018a.
- 659
- 660 Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Models matter, so does training: An
 661 empirical study of cnns for optical flow estimation. *IEEE transactions on pattern analysis and*
 662 *machine intelligence*, 42(6):1408–1423, 2019.
- 663
- 664 Shangkun Sun, Yuanqi Chen, Yu Zhu, Guodong Guo, and Ge Li. Skflow: Learning optical flow
 665 with super kernels. *Advances in Neural Information Processing Systems*, 35:11313–11326, 2022.
- 666
- 667 Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang, and Wei Zhang. Optical flow guided
 668 feature: A fast and robust motion representation for video action recognition. In *Proceedings of*
 669 *the IEEE conference on computer vision and pattern recognition*, pp. 1390–1399, 2018b.
- 670
- 671 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *European*
 672 *conference on computer vision*, pp. 402–419. Springer, 2020.
- 673
- 674 Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu,
 675 Ashish Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In
 676 *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 4909–
 677 4916. IEEE, 2020.
- 678
- 679 Yihan Wang, Lahav Lipson, and Jia Deng. Sea-raft: Simple, efficient, accurate raft for optical flow.
 680 In *European Conference on Computer Vision*, pp. 36–54. Springer, 2024.
- 681
- 682 Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav
 683 Arora, Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco: Self-
 684 supervised pre-training for 3d vision tasks by cross-view completion. *Advances in Neural Infor-*
 685 *mation Processing Systems*, 35:3502–3516, 2022.
- 686
- 687 Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain
 688 Brégier, Gabriela Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérôme Revaud. Croco v2:
 689 Improved cross-view completion pre-training for stereo matching and optical flow. In *Proceed-*
 690 *ings of the IEEE/CVF International Conference on Computer Vision*, pp. 17969–17980, 2023.
- 691
- 692 Gangwei Xu, Shujun Chen, Hao Jia, Miaojie Feng, and Xin Yang. Memory-efficient optical flow
 693 via radius-distribution orthogonal cost volume. *arXiv preprint arXiv:2312.03790*, 2023a.
- 694
- 695 Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
 696 optical flow via global matching. In *Proceedings of the IEEE/CVF conference on computer vision*
 697 *and pattern recognition*, pp. 8121–8130, 2022.
- 698
- 699 Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas
 700 Geiger. Unifying flow, stereo and depth estimation. *IEEE Transactions on Pattern Analysis and*
 701 *Machine Intelligence*, 2023b.
- 702
- 703 Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical flow via direct cost volume processing.
 704 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1289–
 705 1297, 2017.
- 706
- 707 Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. Quadratic video interpola-
 708 tion. *Advances in Neural Information Processing Systems*, 32, 2019.

Sequence	WAFT-Twins-a2	DPFlow	Flowformer++	FlowDiffuser	DDVM	SAMFlow
Perturbed Market 3	0.893 (0.460)	0.892 (0.423)	0.958 (0.511)	0.897 (0.490)	0.787 (0.372)	0.932 (0.493)
Perturbed Shaman 1	0.174 (0.163)	0.213 (0.201)	0.251 (0.236)	0.267 (0.255)	0.219 (0.196)	0.241 (0.219)
Ambush 1	20.561 (2.526)	8.366 (2.970)	6.610 (2.605)	7.224 (2.583)	29.33 (14.07)	10.586 (2.733)
Ambush 3	3.173 (2.048)	3.019 (1.729)	2.939 (1.816)	3.148 (1.828)	2.855 (3.016)	3.411 (1.779)
Bamboo 3	0.460 (0.423)	0.486 (0.438)	0.546 (0.513)	0.594 (0.508)	0.415 (0.380)	0.522 (0.473)
Cave 3	2.199 (1.567)	2.341 (1.631)	2.344 (1.477)	2.464 (1.433)	2.042 (1.658)	2.475 (1.445)
Market 1	0.851 (0.384)	0.890 (0.491)	1.073 (0.550)	1.238 (0.517)	0.719 (0.467)	1.060 (0.491)
Market 4	7.513 (3.933)	7.939 (3.834)	8.086 (4.450)	8.024 (4.027)	5.517 (3.971)	6.636 (3.680)
Mountain 2	0.366 (0.087)	0.177 (0.078)	0.288 (0.118)	0.409 (0.101)	0.176 (0.095)	0.500 (0.217)
Temple 1	0.511 (0.297)	0.511 (0.302)	0.657 (0.359)	0.789 (0.340)	0.452 (0.284)	0.853 (0.340)
Tiger	0.463 (0.333)	0.571 (0.411)	0.595 (0.430)	0.636 (0.391)	0.413 (0.344)	0.573 (0.392)
Wall	1.708 (0.979)	2.011 (1.231)	1.727 (0.793)	1.692 (0.734)	1.639 (3.210)	2.105 (0.780)
Avg	2.393 (1.015)	1.975 (1.046)	1.943 (1.073)	2.026 (1.016)	2.475 (1.754)	0.995 (2.080)
Avg (w/o Ambush 1)	1.639 (0.952)	1.710 (0.966)	1.750 (1.010)	1.810 (0.951)	1.360 (1.242)	1.727 (0.923)

Table 6: We report the endpoint-error (EPE) on all sequences of Sintel (Butler et al., 2012), shown in the format “final-epc (clean-epc)”. We highlight the best result on each sequence.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything v2. *Advances in Neural Information Processing Systems*, 37:21875–21911, 2024.

Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime tv-l 1 optical flow. In *Pattern Recognition: 29th DAGM Symposium, Heidelberg, Germany, September 12-14, 2007. Proceedings 29*, pp. 214–223. Springer, 2007.

Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I Chang, Yan Xu, et al. Maskflownet: Asymmetric feature matching with learnable occlusion mask. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6278–6287, 2020a.

Shiyu Zhao, Long Zhao, Zhixing Zhang, Enyu Zhou, and Dimitris Metaxas. Global matching with overlapping attention for optical flow estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17592–17601, 2022.

Yang Zhao, Gangwei Xu, and Gang Wu. Hybrid cost volume for memory-efficient optical flow. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 8740–8749, 2024.

Yuxuan Zhao, Ka Lok Man, Jeremy Smith, Kamran Siddique, and Sheng-Uei Guan. Improved two-stream model for human action recognition. *EURASIP Journal on Image and Video Processing*, 2020(1):1–9, 2020b.

Zihua Zheng, Ni Nie, Zhi Ling, Pengfei Xiong, Jiangyu Liu, Hao Wang, and Jiankun Li. Dip: Deep inverse patchmatch for high-resolution optical flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8925–8934, 2022.

Shili Zhou, Ruiyan He, Weimin Tan, and Bo Yan. Samflow: Eliminating any fragmentation in optical flow with segment anything model. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 7695–7703, 2024.

Yiming Zuo and Jia Deng. View synthesis with sculpted neural points. *arXiv preprint arXiv:2205.05869*, 2022.

A APPENDIX

Sintel Results We show the sequence-wise results of several representative methods (Morimitsu et al., 2025; Huang et al., 2022; Luo et al., 2024; Saxena et al., 2024; Zhou et al., 2024) on Sintel in Table 6. The sequence ‘Ambush 1’ appears to be an outlier which severely affects the average EPE on the final split. Given the same ImageNet-pretrained Twins backbone, WAFT outperforms SOTA Flowformer++ when ‘Ambush 1’ is excluded.