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ABSTRACT

Neglecting the effect that decisions have on individuals (and thus, on the un-
derlying data distribution) when designing algorithmic decision-making policies
may increase inequalities and unfairness in the long term—even if fairness con-
siderations were taken in the policy design process. In this paper, we propose a
novel framework for achieving long-term group fairness in dynamical systems, in
which current decisions may affect an individual’s features in the next step, and
thus, future decisions. Specifically, our framework allows us to identify a time-
independent policy that converges, if deployed, to the targeted fair stationary state
of the system in the long-term, independently of the initial data distribution. We
model the system dynamics with a time-homogeneous Markov chain and optimize
the policy leveraging the Markov chain convergence theorem to ensure unique
convergence. We provide examples of different targeted fair states of the system,
encompassing a range of long-term goals for society and policy makers. Further-
more, we show how our approach facilitates the evaluation of different long-term
targets by examining their impact on the group-conditional population distribu-
tion in the long term and how it evolves until convergence.

1 INTRODUCTION

The majority of fairness notions that have been developed for trustworthy machine learning (Hardt
et al., 2016b; Dwork et al., 2012), assume an unchanging data generation process, i.e., a static sys-
tem. Consequently, existing work has explored techniques to integrate these fairness considerations
into the design of algorithms in static systems (Hardt et al., 2016b; Dwork et al., 2012; Agarwal
et al., 2018; Zafar et al., 2017; 2019). However, these approaches neglect the dynamic interplay be-
tween algorithmic decisions and the individuals they impact, which have shown to be prevalent in
practical settings (Chaney et al., 2018; Fuster et al., 2022). For instance, a decision to deny credit
can lead to behavioral changes in individuals as they strive to improve their credit scores for future
credit applications. This establishes a feedback loop from decisions to the data generation process,
resulting in a shift in the data distribution over time, creating a dynamic system.

Prior research has identified several scenarios where such dynamics can occur, including bureau-
cratic processes (Liu et al., 2018), social learning (Heidari et al., 2019), recourse (Karimi et al.,
2020), and strategic behavior (Hardt et al., 2016a; Perdomo et al., 2020). Existing work on fair de-
cision policies in dynamical systems has examined the effects of policies that aim to maintain ex-
isting static group fairness criteria in the short-term, i.e., in two-step scenarios (Liu et al., 2018;
Heidari et al., 2019) or over larger amount of time steps (Zhang et al., 2020; Creager et al., 2020;
D’Amour et al., 2020). These studies have demonstrated that enforcing static group fairness con-
straints in dynamical systems can lead to unfair data distributions and may perpetuate or even am-
plify biases (Zhang et al., 2020; Creager et al., 2020; D’Amour et al., 2020).

Few previous work has attempted to meaningfully extend static fairness notions to dynamic contexts
by focusing on the long-term behavior of the system. Existing approaches to learning long-term fair
policies (Perdomo et al., 2020; Jabbari et al., 2017; Williams & Kolter, 2019) assume unknown dy-
namics and learn policies through iterative training within the reinforcement learning framework.
While reinforcement learning offers flexibility and is, to some extent, model-agnostic, one of its ma-
jor drawbacks lies in the requirement for large amounts of training data Henderson et al. (2018);
Dulac-Arnold et al. (2021); Wang et al. (2016), alongside the necessity for recurrent policy deploy-
ments over time. Successful applications of reinforcement learning typically occur in settings where
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a simulator or game is accessible Cutler et al. (2015); Osiński et al. (2020). However, in the real
world, we can often not afford to satisfy such requirements.

To address these shortcomings, we propose to separate learning and estimation from decision-
making and optimization. We start with a modeling approach of the main relevant (causal) mech-
anisms of the real world first and require access to a sufficient amount of data to reliably estimate
these. The main contribution of this paper then lies in proposing a method of how to use this infor-
mation to find a policy that leads to a stable long-term fair outcome as an equilibrium state.

We introduce a principle that can be applied to various (causal) models to learn policies aimed at
achieving long-term group fairness, along with a computational optimization approach to solve it.
Our framework can be thought of as a three-step process: Given sufficient data to estimate (causal)
mechanisms, we i) define the characteristics of a long-term fair distribution in the decision-making
context; ii) transform this definition into a constrained optimization problem; iii) which we then
solve. Importantly, existing long-term group fairness targets (Chi et al., 2022; Wen et al., 2021; Yin
et al., 2023; Yu et al., 2022) can be formulated as such long-term fair distribution.

Inspired by previous work (Zhang et al., 2020), we adopt Markov chains as a framework to model
system dynamics. We propose an optimization problem to find a policy that, if found, guarantees
that the system converges, irrespective of the initial state, to the pre-defined targeted fair, stationary
data distribution. Such policy offers consistency in decision-making, enhancing stakeholder trust
and predictability of decision processes. Furthermore, the policy is guaranteed to converge from any
starting distribution, which makes it robust to covariate shift.

Our work differs from research on fair sequential decision learning under feedback loops, where
decisions made at one time step influence the training data observed at the subsequent step (Kilbertus
et al., 2020b; Rateike et al., 2022a; Bechavod et al., 2019; Joseph et al., 2016). In this scenario,
decisions introduce a sampling bias, but do not affect the underlying generative process, as in our
case. In our case, decisions influence the underlying data-generating process and consequently shift
the data distribution. Our work also diverges from research focused on developing robust machine
learning models that can perform well under distribution shifts, where deployment environments
may differ from the training data environment (Quinonero-Candela et al., 2008). Unlike the line
of research that considers various sources of shift (Makar & D’Amour, 2022; Adragna et al., 2020;
Schrouff et al., 2022), our approach leverages policy-induced data shifts to guide the system towards
a state that aligns with our defined long-term fairness objectives. Rather than viewing data shifts as
obstacles to overcome, we utilize them as a means to achieve fairness goals in the long term.

While our framework can be applied to various dynamical systems, we first provide a guiding ex-
ample (§ 2). We then provide a framework for policy makers to design fair policies that strategically
use system dynamics to achieve effective fair algorithmic decision-making in the long term (§ 3) to-
gether with a general optimization problem that allows solving it computationally (§ 5). We then
exemplify targeted fair states for the system, leveraging existing fairness criteria (§ 6). Following
previous work (Creager et al., 2020; D’Amour et al., 2020), we use simulations to systematically
explore the convergence and behavior of different long-term policies found by our framework (§ 7).
We conclude with a discussion (§ 8), followed by a summary and outlook (§ 9).

2 GUIDING EXAMPLE

We present a guiding example. Note, however, that our framework can also be applied framework to
other generative processes (see Appendix F). We assume a data generative model for a credit lending
scenario (Liu et al., 2018; Creager et al., 2020; D’Amour et al., 2020) (see Figure 1).

Data generative model. Let an individual with protected attribute S (e.g. gender) at time t
be described by a non-sensitive feature Xt (e.g. credit score as a summary of monetary assets
and credit history) and an outcome of interest Yt (e.g. repayment ability). We assume the sen-
sitive attribute to remain immutable over time and drop the attribute’s time subscript. For sim-
plicity, we assume binary sensitive attribute and outcome of interest S, Y 2 {0, 1} and a one-
dimensional discrete non-sensitive feature X 2 Z. Let the population’s sensitive attribute be dis-
tributed as �(s) := P(S=s) and remain constant over time. We assume X to depend on S,
such that the group-conditional feature distribution at time t is µt(x | s) := P(Xt=x | S=s).
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Figure 1: Data generative
model. Time steps (subscript)
t = {0, 1, 2}.

For example, different demographic groups may have differ-
ent credit score distributions due to structural discrimination in
society. The outcome of interest is assumed to depend on
X and (potentially) on S resulting in the label distribution
`(y | x, s) := P(Yt=y | Xt=x, S=s). For example, payback
probability may be tied to factors like income, which can be as-
sumed to be encompassed within a credit score. We assume that
there exists a policy that takes binary loan decisions based on X and
(potentially) S and decides with probability ⇡(d | x, s) := P(Dt=
d | Xt = x, S = s). Consider dynamics where a decision Dt at
time step t directly influences an individual’s features Xt+1 at the
next step. We assume the transition from the current feature state
Xt to the next state Xt+1 depends additionally on the current fea-
tures, outcome Yt, and (possibly) the sensitive attribute S. For ex-
ample, after a positive lending decision, an individual’s credit score
may rise due to successful loan repayment, with the extent of in-
crease (potentially) influenced by their sensitive attribute. Let the probability of an individual with
S = s transitioning from a credit score of Xt = x to Xt+1 = k in the next step, denoted as the dy-
namics g(k | x, d, y, s) := P(Xt+1 = k|Xt = x,Dt = d, Yt = y, S = s) Importantly, the next step
feature state depends only on the present feature state, and not on any past states.

Dynamical System. We can now describe the evolution of the group-conditional feature distribu-
tion µt(x | s) over time t. The probability of a feature change from Xt = x to Xt+1 = k in the next
step given S = s is obtained by marginalizing out Dt and Yt, resulting in

P(Xt+1=k | Xt=x, S=s) =
X

d,y

g(k | x, d, y, s)⇡(d | x, s)`(y | x, s). (1)

These transition probabilities together with the initial distribution over states µ0(x | s) define the
behavior of the dynamical system. In our model, we assume time-independent dynamics g(k |

x, d, y, s), where feature changes in response to decisions and individual attributes remain constant
over time (e.g., through a fixed bureaucratic policy determining credit score changes based on re-
payment behavior). We also assume that the distribution of the outcome of interest conditioned on
an individual’s features `(y | x, s) remains constant over time (e.g., individuals need certain assets,
summarized in a credit score, to repay). Additionally, we assume that the policy ⇡(d | x, s) can be
chosen by a policy maker and may depend on time. Under these assumptions, the probability of a
feature change depends solely on policy ⇡ and sensitive feature S.

Targeted Fair Distribution. Consider a bank using policy ⇡ for loan approvals. While maximiz-
ing total profit, the bank also strives for fairness by achieving equal credit score distribution across
groups (D’Amour et al., 2020). This means, at time t the probability of having a credit score x should
be equal for both sensitive groups: µt(x | S = 0) = µt(x | S = 1) for all x 2 X . If credit scores are
equally distributed, the policy maker aims to preserve this equal distribution in the next time step:

µt+1(k | s) =
X

x

µt(x | s)P(Xt+1 = k | Xt = x, S = s) (2)

for all k 2 X , s 2 {0, 1}. This means, the credit score distribution remains unchanged (stationary)
when multiplied by the transition probabilities defined above. The policy maker’s task is then to find
a policy ⇡ that guarantees the credit score distribution to converge to the targeted fair distribution.

3 DESIGNING LONG-TERM FAIR POLICIES

After having introduced the guiding example, we now move to a more general setting of time-
homogeneous Markov chains that depend on a policy and sensitive features.

3.1 BACKGROUND: TIME-HOMOGENEOUS MARKOV CHAINS

We remind the reader of the formal definition of time-homogeneous Markov chains with discrete
states space and draw on the following literature for definitions (Freedman, 2017). For a formulation
for general state spaces refer to the Appendix A or (Meyn & Tweedie, 2012b).
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Definition 3.1 (Time-homogeneous Markov Chain). A time-homogeneous Markov chain on a dis-
crete space Z with transition probability P is a sequence of random variables (Zt)t2T with joint
distribution P, such that for every t 2 T and z, w 2 Z we have P(Zt+1=w | Zt=z) = P (z, w).

In a Markov chain, each event’s probability depends solely on the previous state. Recall that the
transition probabilities must satisfy P (z, w) � 0 for all z, w, and

P
w P (z, w) = 1 for all z. The

guiding example can be seen as a Markov chain with state space X and transition probabilities (1).
We have stated that the policy maker aims to achieve a fair stationary distribution (2). To formally
define this, we introduce the following concept:
Definition 3.2 (Stationary Distribution). A stationary distribution of a time-homogeneous Markov
chain (Z, P ) is a probability distribution µ, such that µ = µP . More explicitly, for every w 2 Z

the following needs to hold: µ(w) =
P

z µ(z) · P (z, w).

In words, the distribution µ remains unchanged when multiplied by the transition kernel P .

3.2 THE OBJECTIVE FOR LONG-TERM FAIR POLICIES

We generalize the provided example to time-homogeneous Markov chains that depend on a policy
⇡ and a sensitive attribute S. The population’s feature distribution over time is represented by a
time-homogeneous Markov chain (Zt)t2T with a general state space Z . The transition probabilities
that depend on the sensitive attribute S and policy ⇡ are captured by the transition probabilities P s

⇡ .
Suppose a policy maker aims to achieve a fair distribution (µs)s2S . The goal for the policy maker
is then to find a distribution (µs)s2S and policy ⇡ such that the induced kernel P s

⇡ converges to the
distribution (µs)s2S , and the distribution (µs)s2S satisfies the defined fairness constraints.

Now, consider a scenario where our society is already in a fair state (µs)s2S . In this case, the policy
maker would aim to find policy ⇡ that defines a transition probability P s

⇡ such that the next state
remains fair. More formally, we would seek to satisfy the following equation:

µs = µsP s
⇡ (3)

for all s 2 S . This can be seen as a generalization of (2). Therefore, the fair distribution (µs)s2S
should be the stationary distribution of the Markov chain defined by (Z, P s

⇡). Any policy that aims
for the fair stationary state (µs)s2S will eventually need to find a policy that satisfies (3) to at least
transition from a fair state to a fair state in the long term. In this sense (3) defines the fundamental
problem of finding long-term fair policies in these settings. To find a policy that ensures convergence
to the desired fair distribution, we present a general optimization problem in § 5. This utilizes the
Markov Convergence Theorem, which we discuss next.

4 BACKGROUND ON MARKOV CHAIN CONVERGENCE THEOREM

The Markov Convergence Theorem establishes conditions for a time-homogeneous Markov chain to
converge to a unique stationary distribution, regardless of the initial distribution. In our model, the
transition probabilities depend on the sensitive attribute, and we will apply in (4) the Markov Con-
vergence theorem separately to each group’s transition probabilities. We thus drop the superscript s.
Theorem 4.1 (Markov Convergence Theorem). Let (Zt)t2T be an irreducible and aperiodic time-
homogeneous Markov chain with discrete state space Z and transition matrix P . Then the marginal
distribution P(Zt) converges to the unique stationary distribution µ as t approaches infinity (in total
variation norm), regardless of the initial distribution P(Z0).

In words, the Markov Convergence Theorem states that, regardless of the initial distribution, the
state distribution of an irreducible and aperiodic Markov chain eventually converges to the unique
stationary distribution. We now provide definitions for irreducibility and aperiodicity.
Definition 4.2 (Irreducibility). A time-homogeneous Markov chain is considered irreducible if, for
any two states z, w 2 Z , there exists a t > 0 such that P t(z, w) > 0, where P t(z, w) =
P(Zt = w | Z0 = z) represents the probability of going from z to w in t steps.

In other words, irreducibility ensures that there is a positive probability of reaching any state w from
any state z after some finite number of steps. Note, for discrete state space Z , every irreducible
time-homogeneous Markov chain has a unique stationary distribution (Thm. 3.3 (Freedman, 2017)).
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Definition 4.3 (Aperiodicity). Consider an irreducible time-homogeneous Markov chain (Z, P ).
Let R(z) = {t � 1 : P t(z, z) > 0} be the set of return times from z 2 Z , where P t(z, z) represents
the probability of returning to state z after t steps. The Markov chain is aperiodic if and only if the
greatest common divisor (gcd) of R(z) is equal to 1: gcd(R(z)) = 1 for all z in Z.

In words, aperiodicity refers to the absence of regular patterns in the sequence of return times to
state z, i.e., the chain does not exhibit predictable cycles or periodic behavior.

For general state spaces the Markov Convergence Theorem can be proven under Harris recurrence,
aperiodicity and the existence of a stationary distribution (Meyn & Tweedie, 2012b) (see Apx. A).

5 THE OPTIMIZATION PROBLEM

We now reformulate objective (3) into a computationally solvable optimization problem for finding
a time-independent policy. This policy, if deployed, leads the system to convergence to a fair sta-
tionary state in the long term, regardless of the initial data distribution.
Definition 5.1 (General Optimization Problem). Assume a time-homogeneous Markov chain
(Z, P⇡) defined by a state space Z and a kernel P s

⇡ . To find policy ⇡ that ensures the Markov
Chain’s convergence to a unique stationary distribution (µs)s2S , while minimizing a fair long-term
objective JLT and adhering to a set of fair long-term constraints CLT, we propose the following op-
timization problem:

min
⇡

JLT((µ
s)s2S ,⇡) subj. to CLT((µ

s)s2S ,⇡) � 0; Cconv(P
s
⇡) � 0 8s (4)

where Cconv are convergence criteria according to the Markov Convergence Theorem.

In words, we aim to find a policy ⇡ that minimizes a long-term objective JLT subject to long-term
constraints CLT and convergence constraints Cconv. The objective JLT and constraints CLT are depen-
dent on the policy-induced stationary distribution (µs)s2S , which represents the long-term equilib-
rium state of the data distribution and may also depend directly on the policy ⇡. In § 6, we provide
various instantiations of long-term objectives and constraints to illustrate different ways of param-
eterizing them. Convergence constraints Cconv are placed on the kernel P s

⇡ and guarantee conver-
gence of the chain to a unique stationary distribution for any starting distribution according to the
Markov Convergence Theorem (Def.4.1). The specific form of Cconv depends on the properties of
the Markov chain, such as whether the state space is finite or continuous. In the following, we refer
to the notation µ⇡(x | s) when we are interested in (µs)s2S at certain values x and s.

Solving the Optimization Problem. In our example, the Markov chain is defined over a categor-
ical feature X (credit score), resulting in a finite state space. In this case, the optimization prob-
lem becomes a linear constrained optimization problem and we can employ any efficient black-box
optimization methods for this class of problems (e.g., Kraft (1988)). We detail this for our exam-
ple: The convergence constraints Cconv are determined by the aperiodicity and irreducibility prop-
erties of the corresponding Markov kernel (see § 4). A sufficient condition for irreducibility is
Irred(⇡) :=

Pn
i=1 (T

s
⇡)

n
� 0 8s, where n is the number of states (n = |X|), and 0 denotes the

matrix with all entries equal to zero. A sufficient condition for aperiodicity requires that the diag-
onal elements of the Markov kernel are greater than zero: Aperiod(⇡) := T s

⇡(x, x) > 0 8x, s.
The group-dependent stationary distribution µs

⇡ based on T s
⇡ can be computed via eigendecomposi-

tion (Weber, 2017). In the next section we introduce various objective functions JLT and constraints
CLT that capture notions of profit, distributional, and predictive fairness. Importantly, for finite state
spaces, these objectives and constraints are linear. While our general optimization problem remains
applicable in the context of an infinite state space, solving it becomes more challenging due to the
potential introduction of non-linearities and non-convexities.

6 TARGETED FAIR STATES

Our framework enables users to define their preferred long-term group fairness criteria. Here, we
present examples of how long-term fair targets can be quantified by defining a long-term objective
JLT and long-term constraints CLT in (4). We provide these examples assuming discrete X and
binary D,Y, S as in our guiding example (§ 2). Note, our framework allows enforcing common
long-term fairness and reward notions (see Appendix B.1).
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6.1 PROFIT

Assume that when a granted loan is repaid, the bank gains a profit of (1� c); when a granted
loan is not repaid, the bank faces a loss of c; and when no credit is granted, neither profit nor
loss occurs. We quantify this profit as utility (Kilbertus et al., 2020c; Corbett-Davies et al., 2017),
considering a cost associated with positive decisions denoted by c 2 [0, 1], in the following manner:
U(⇡; c) =

P
x,s ⇡(D = 1 | x, s) (`(Y = 1 | x, s)� c)µ⇡(x | s)�(s), where ⇡(D = 1 | x, s) is the

probability of a positive policy decision, `(y | x, s) the positive ground truth distribution, µ⇡(x | s)
the stationary group-dependent feature distribution, and �(s) the distribution of the sensitive feature.

A bank’s objective may be to maximize utility (minimize financial loss, i.e., JLT := �U(⇡, c)). In
contrast, a non-profit organization may aim to constrain its policy by maintaining a minimum profit
level ✏ � 0 over the long term to ensure program sustainability (CLT := U(⇡; c)� ✏).

6.2 DISTRIBUTIONAL FAIRNESS

Policy makers may also be interested in specific characteristics of a population’s features X or
qualifications Y (ground truth) on a group level. We measure group qualification Q as the group-
conditioned proportion of positive labels assigned to individuals (Zhang et al., 2020) as Qs(⇡ | s) =P

x `(Y = 1 | x, s)µ⇡(x | s), where `(Y = 1 | x, s) is the positive ground truth distribution, and
µ⇡(x | s) describes the stationary group-dependent feature distribution. We measure inequity (of
qualifications) as I :=| Q(⇡ | S = 0)�Q(⇡ | S = 1) |.

To promote financial stability, a policy maker like the government may pursue two different objec-
tives. Firstly, they may aim to minimize default rates using the objective JLT := �

P
s Q(⇡ | s)�(s).

Alternatively, if the policy maker intends to increase credit opportunities, they may seek to maximize
the population’s average credit score with the objective JLT := �

P
s

1
|X|

P
x µ⇡(x | s)�(s), where

|X| represents the state space size. To achieve more equitable credit score distributions, the policy
maker could impose the constraint CLT := ✏� | µ⇡(x | S = 0)� µ⇡(x | S = 1) | 8x. However, de-
pending on the generative model, this approach might not eliminate inequality in repayment proba-
bilities. In such cases, the policy maker may aim to ensure that individuals have the same payback
ability using the constraint CLT := ✏ � I. Note that measuring differences in continuous or high-
dimensional distributions requires advanced distance measures. Additionally, prioritizing egalitar-
ian distributions may not always align with societal preferences (Barsotti & Koçer, 2022; Martinez
et al., 2020) (see Appendix C). Finally, equal credit score distributions or repayment probabilities
may not guarantee equal access to credit, we thus next introduce predictive group fairness measures.

6.3 PREDICTIVE FAIRNESS

Ensuring long-term predictive fairness can help a policy maker meet regulatory requirements and
maintain public trust. One example of a predictive group unfairness measure is equal opportu-
nity (Hardt et al., 2016b): EOPUnf(⇡)=|P⇡(D=1 |Y =1, S=0)�P⇡(D=1 |Y =1, S=1) |. This
measures the disparity in the chance of loan approval for eligible loan applicants based on their de-
mographic characteristics. Note: P⇡(D=1 |Y =1, S=s) =

P
x ⇡(D=1|x,s)`(Y=1|x,s)µ⇡(x|s)P

x `(Y=1|x,s)µ⇡(x|s) .

In the fairness literature, it is common for a policy maker to define a maximum tolerable unfairness
threshold as ✏ � 0, expressed as CLT := ✏ � EOPUnf. Alternatively, they may aim to minimize
predictive unfairness EOPUnf over the long term by imposing JLT := EOPUnf(⇡). Note, our
framework also allows for other group fairness criteria, such as demographic parity (Dwork et al.,
2012) or sufficiency (Chouldechova, 2017).

In this section, we presented various long-term goals as illustrative examples for lending policies.
For methods to impose constraints on the types of policies under consideration, please refer to Ap-
pendix C. This section serves as a starting point for discussions on these objectives and we encour-
age the exploration of a wider range of long-term targets by drawing inspiration from existing re-
search in social sciences and economics, while also involving affected communities in defining these
objectives. In the following section, we demonstrate how our approach enhances the understanding
of the interplay between diverse long-term goals and constraints.
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(a) Convergence: ⇡?
EOP to unique stationary distribu-

tion ?. 200 time steps. Colors: 10 random initial fea-
ture distributions. Feature X = 1 left, outcome Y
right. Equal distribution dashed.

(b) Utility (solid, "), EOP-Unfairness (dashed, #) for
short-term-UTILMAX (unfair), short-term-EOP poli-
cies (10 seeds), our long-term-EOP policy. Loan
(solid) and payback probab. (dashed) per sensitive S.

Figure 2: (a) Convergence independent of initial distribution. (b) Comparison to short-term policies.

7 SIMULATIONS

We validate our proposed optimization problem formulation in semi-synthetic simulations. Using
our guiding example with real-world data and assumed dynamics, we first demonstrate that the
policy solution, if found, converges to the targeted stationary state (§ 7.1). Then, we demonstrate
how our approach helps to analyze the interplay between long-term targets and dynamics (§ 7.2).
For additional results see Appendix E. Our code is available at github.com/XXXX.

Data and General Procedure. We use the real-world FICO loan repayment dataset (Reserve, U.
F., 2007), with data pre-processing from (Barocas et al., 2019). It includes a one-dimensional credit
score X , which we discretize into four bins for simplicity, and a sensitive attribute S that we binarize:
Caucasian (S = 1) and African American (S = 0). From this dataset, we estimate the initial feature
distribution µ0(x | s), label distributions `(y | x, s), and sensitive group ratios �(s). Note, the FICO
dataset provides probability estimates. For results under estimated probabilities and dynamics when
labels are partially observed, refer to the Appendix E.6. Since FICO is a static dataset, we assume
dynamics g(k | x, d, y, s). We first apply the general principle (4) to formulate an optimization
problem via long-term objectives JLT and long-term constraints CLT and convergence constraints
Cconv. Next, we solve the optimization problem. Using the found policy ⇡? and the resulting Markov
kernel T⇡? , we generate the feature distribution across 200 steps. See Appendix D for details.

We solve the problem using the Sequential Least Squares Programming method from scikit-
learn (Pedregosa et al., 2011), initializing it (warm start) with a uniform policy where all decisions
are random (⇡(D = 1 | x, s) = 0.5 8s, x). See Appendix D for details.

7.1 CONVERGENCE TO TARGETED DISTRIBUTION AND TEMPORAL STABILITY

We demonstrate that a policy derived from an optimization problem based on the general principle
converges to a stable steady-state distribution. For setup details see Appendix D.

One-sided Dynamics. One-sided dynamics are characterized by a particular (usually positive)
decision leading to changes in a feature distribution, while other decisions do not incur any feature
changes. Following prior work (Liu et al., 2018; D’Amour et al., 2020), we assume in our scenario,
that if an applicant defaults on their loan, their credit score remains the same; if the applicant repays
the loan, their credit score is likely to increase. We refer to these dynamics as one-sided.

Maximum Utility under EOP-Fairness. We now exemplify a long-term target. Consider a bank
that aims to maximize its profit (U ) while guaranteeing equal opportunity (EOPUnf) for loan ap-
proval. Given cost of a positive decision c and a small unfairness level ✏, we seek for a policy:

⇡?
EOP

:= arg⇡ maxU(⇡; c) subj. to EOPUnf(⇡)  ✏; Cconv(T⇡), (5)

This target has been proposed for fair algorithmic decision-making in static systems (Hardt et al.,
2016b), short-term policies aiming to fulfill this target at each time step have examined in dynamical
systems (Zhang et al., 2020; Creager et al., 2020; D’Amour et al., 2020) and has been imposed as
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long-term target Wen et al. (2021). We redefine this concept as a long-term goal for the stationary
distribution to satisfy.

Results. We run simulations on 10 randomly sampled initial feature distributions µ0(x | s), setting
✏ = 0.01, c = 0.8. Figure 2a displays the resulting trajectories of the feature distribution for X1

converging to a stationary distribution. For other features see Appendix E.1). We observe that while
the initial distribution impacts convergence process and time, the policy consistently converges to a
single stationary distribution regardless of starting point. The policy found for one population can
thus be effectively applied to other populations with different feature distributions, if dynamics and
labeling distributions remain unchanged. As the outcome of interest Y depends on the features, its
distribution converges also to a stationary point.

We now compare our found long-term fair policy to both fair and unfair short-term policies. Fig-
ure 2b displays U and EOPUnf. Using the initial distribution µ0(x | s) from FICO, we solve the op-
timization problem (5) for tolerated unfairness ✏ = 0.026. The short-term policies consist of Logistic
Regression models for 10 random seeds, which are retrained at each time step; fairness is enforced
using a Lagrangian approach (� = 2). Our policy demonstrates high stability in both utility and fair-
ness compared to short-term policies, which exhibit high variance across time. Note since our pol-
icy does not require training, we do not report standard deviation over different seeds. Furthermore,
while our policy converges to the same fairness level as the short-term fair policy, it experiences only
a marginal reduction in utility compared to the (unfair) utility-maximizing short-term policy. Thus,
it does not suffer from a fairness-utility trade-off to the extent observed in the short-term policies.

Figure 2b (middle, right) displays loan P(D=1 |S= s) and payback probabilities P(Y =1 |S= s)
for non-privileged (S = 0) and privileged (S = 1) groups. The short-term fair policy achieves
fairness by granting loans to everyone. For the utility-maximizing short-term policy, unfairness
arises as gap between ability to pay back and loan provision is much smaller for the privileged
group, resulting in significantly different loan probabilities between the two groups. For our long-
term policy, we observe that loan provision probabilities converge closely for both groups over time,
while the gap between payback probability and loan granting probability remains similar between
groups. Similar to prior research (Wen et al., 2021; Yu et al., 2022), we observe that our policy
achieves long-term objectives, but the convergence phase may pose short-term fairness challenges.
In practice, it is essential to assess the potential impact of this on public trust.

7.2 LONG-TERM EFFECTS OF TARGETED STATES

This section examines the long-term effects of policies and their targeted stationary distributions.
The observations are specific to the assumed dynamics and distributions and serve as a starting point
for a thoughtful reflection on the formulation and evaluation of long-term targets.

Maximum Qualifications. Inspired by (Zhang et al., 2020), assume a non-profit organization of-
fering loans. Their goal is to optimize the overall payback ability (Q) of the population to promote
societal well-being. Additionally, they aim to sustain their lending program by prevent non-negative
profits (U ) in the long-term. We thus seek for:

⇡?
QUAL

:= arg⇡ maxQ(⇡) subj. to U(⇡) � 0; Cconv(T⇡) (6)

Two-sided Dynamics. In addition to one-sided dynamics, where only positive decisions impact
the future, we also consider two-sided dynamics (Zhang et al., 2020), where both positive and neg-
ative decisions lead to feature changes. We investigate two types of two-sided dynamics. Under
recourse dynamics, individuals receiving unfavorable lending decisions take actions to improve
their credit scores, facilitated through recourse (Karimi et al., 2021b) or social learning (Heidari
et al., 2019). In discouraged dynamics, unfavorable lending decisions demotivate individuals,
causing a decline in their credit scores. This may happen when individuals cannot access loans for
necessary education, limiting their financial opportunities.

Results. We solve both introduced optimization for policies ⇡?
EOP

(5) and ⇡?
QUAL

(6) with
c = 0.8 and ✏ = 0.01, both subject to convergence constraints Cconv (irreducibility, ape-
riodicity), for one-sided, recourse and discouraged dynamics. Utilizing the
found policies we simulate the feature distribution over 200 time steps, starting from

8
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the initial FICO feature distribution. For more details, refer to Appendix D. Figure 3
shows accumulated (effective) measures of utility, inequity and EOP-Unfairness over time.

Figure 3: Effective utility U , inequity I

and EOPUnf for policies ⇡?
EOP

(solid), ⇡?
QUAL

(dashed) and different dynamics: one-sided,
and two-sided: recourse, discouraged.

Across different dynamics, the policies conform
with their targets. ⇡?

EOP
accumulates across dy-

namics most utility, while ⇡?
QUAL

has a small neg-
ative cumulative utility due to the imposed zero-
utility constraint. In the one-sided scenario,
we observe for unfairness different short-term
and long-term effects. Up to approx. 40 time
steps, ⇡?

QUAL
yields lower unfairness than ⇡?

EOP
, af-

ter this point ⇡?
QUAL

becomes highly unfair. These
observations highlight that: dynamics may signif-
icantly impact the final outcome of decision poli-
cies; when deploying a policy in the long-term
small differences in policies can lead to large ac-
cumulated effects; and short term effects may dif-
fer from long-term goals.

8 DISCUSSION

In this section, we discuss key assumptions and limitations. Additional discussion in Appendix B.

Limitations of Assumptions. The proposed general optimization problem (4) assumes a time-
homogeneous kernel and access to the dynamics defining it. Although real-world data often change
over time, we treat the dynamics as static for a shorter duration, which is plausible, if they rely on bu-
reaucratic (Liu et al., 2018) or algorithmic recourse policies (Karimi et al., 2022), and if convergence
time remains relatively short, as seen in our simulations. However, convergence time depends on
the dynamics and initial distribution. If the transition probabilities become time-dependent, updat-
ing the policy would be necessary. Transition probabilities for discrete state spaces can be estimated
from temporal data (Sherlaw-Johnson et al., 1995; Craig & Sendi, 2002), but remains a challenge
for continuous state spaces in practice (Duffie & Glynn, 2004). Furthermore, few temporal datasets
for fair machine learning exist (Mehrabi et al., 2019). Assuming dynamics with expert knowledge
is an alternative, but caution is needed as it may lead to confirmation bias (Nickerson, 1998).

The Case of Non-existence of a Long-Term Fair Policy. Consider the case that no solution exists
for our problem (3). Then, as argued in § 3, no policy maker with different strategies of finding
policies over time would find a solution to the same problem, with the same assumed distributions,
dynamics, and constraints. If a solution to our optimization problem does not exist, this insight
may prompt practitioners to explore alternative approaches for long-term fairness, such as non-
stationary objectives (Zhang et al., 2020) or redefining the fair state. Thus, our approach enhances
the understanding of system dynamics and long-term fairness.

9 SUMMARY AND OUTLOOK

We have introduced a general problem for achieving long-term fairness in dynamical systems, where
algorithmic decisions in one time step impact individuals’ features in the next time step, which are
consequently used to make decisions. We proposed an optimization problem for identifying a time-
independent policy that is guaranteed to converge to a targeted fair stationary state, regardless of the
initial data distribution. We model the system dynamics with a time-homogeneous Markov chain and
enforce the conditions of the Markov chain convergence theorem to the Markov kernel through pol-
icy optimization. Our framework can be applied to different dynamics and long-term fair goals as we
have shown in a guiding example on credit lending. In semi-synthetic simulations, we have shown
the effectiveness of policy solutions to converge to targeted stationary population states in a stable
manner. Future work lies in applying our framework to a wider range of problems with more com-
plex dynamics, and larger (potentially continuous) feature spaces. Future work may also explore the
application of our framework to designing social interventions on the transition probabilities (Hei-
dari et al., 2019; von Kügelgen et al., 2022; Mhasawade & Chunara, 2021) providing additional in-
sights and solutions for long-term fairness in algorithmic decision-making in dynamical systems.

9
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