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ABSTRACT

Adversarial training (AT) is a well-known defensive framework that trains a
model with generated adversarial examples (AEs). AEs are crafted by intention-
ally adding perturbations to the natural images, aiming to mislead the model into
making erroneous outputs. In existing AT methods, the magnitude of perturba-
tions is usually constrained by a predefined perturbation budget, denoted as ϵ, and
keeps the same on each dimension of the image (i.e., each pixel within an image).
However, in this paper, we discover that not all pixels contribute equally to the ac-
curacy on AEs (i.e., robustness) and accuracy on natural images (i.e., accuracy).
Motivated by this finding, we propose a new framework called Pixel-reweighted
AdveRsarial Training (PART), to partially lower ϵ for pixels that rarely influence
the model’s outputs, which guides the model to focus more on regions where pix-
els are important for model’s outputs. Specifically, we first use class activation
mapping (CAM) methods to identify important pixel regions, then we keep the
perturbation budget for these regions while lowering it for the remaining regions
when generating AEs. In the end, we use these reweighted AEs to train a model.
PART achieves a notable improvement in accuracy without compromising robust-
ness on CIFAR-10, SVHN and Tiny-ImageNet and serves as a general framework,
seamlessly integrating with a variety of AT, CAM and AE generation methods.
More importantly, our work revisits the conventional AT framework and justifies
the necessity to allocate distinct weights to different pixel regions during AT.

1 INTRODUCTION

Since the discovery of adversarial examples (AEs) by Szegedy et al. (2014), the security of deep
learning models has become an area of growing concern, especially in critical applications such as
autonomous driving. For instance, Kumar et al. (2020) show that by adding imperceptible adversar-
ial noise, a well-trained model misclassifies a ’Stop’ traffic sign as a ’Yield’ traffic sign. To make
sure the trained model is robust to AEs, adversarial training (AT) stands out as a representative
defensive framework (Goodfellow et al., 2015; Madry et al., 2018), which trains a model with gen-
erated AEs. Normally, AEs are crafted by intentionally adding perturbations to the natural images,
aiming to mislead the model into making erroneous outputs.

In existing AT methods, e.g., AT (Madry et al., 2018), TRADES (Zhang et al., 2019) and MART
(Wang et al., 2020), the magnitude of perturbations (for generating AEs) is usually constrained by
a predefined perturbation budget, denoted as ϵ, and keeps the same on each dimension of the image
(i.e., each pixel within an image) by assuming a ℓ∞-norm constraint. We also analyze perturbations
with ℓ2-norm constraint in Appendix A. Based on a ℓ∞-norm constraint, one AE can be generated
by solving the following constraint optimization problem:

max
∆

ℓ(f(x+∆), y), subject to ∥∆∥∞ ≤ ϵ, (1)

where ℓ is a loss function, f is a model, x ∈ Rd is a natural image, y is the true label of x,
∆ ∈ [−ϵ, ϵ]d is the adversarial perturbation added to x, ∥ · ∥∞ is the ℓ∞-norm, d is the data
dimension, and ϵ is the maximum allowed perturbation budget. Let ∆∗ be the solution of the above
optimization problem, then x̃ = x + ∆∗ is the generated AE. Given that ∥∆∥∞ ≤ ϵ, there is
an implicit assumption in this AE generation process: all pixels have the same perturbation budget
ϵ. We argue that this assumption may overlook the fact that different pixel regions (e.g., textures,
shapes, backgrounds, etc.) influence the model’s outputs differently (Zhou et al., 2016; Selvaraju
et al., 2017). For example, recent studies show that convolutional neural networks (CNNs) trained
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Figure 1: Fundamental discrepancies exist among different pixel regions. We segment each image
into four equal-sized regions (i.e., ul, short for upper left; ur, short for upper right; br, short for
bottom right; bl, short for bottom left) and adversarially train two ResNet-18 (He et al., 2016) on
CIFAR-10 (Krizhevsky et al., 2009) using AT (Madry et al., 2018) with the same experiment settings
except for the allocation of ϵ. The robustness is evaluated by ℓ∞-norm PGD-20 (Madry et al., 2018).
With the same overall perturbation budgets (i.e., allocate one of the regions to 6/255 and others to
12/255), we find that both natural accuracy and adversarial robustness change significantly if the
regional allocation on ϵ is different (e.g., by changing ϵbr = 6/255 to ϵul = 6/255, accuracy gains
a 1.23% improvement and robustness gains a 0.94% improvement).

with ImageNet (Deng et al., 2009) are biased towards recognizing textures rather than shape in
standard classification (Geirhos et al., 2019; Brendel & Bethge, 2019; Hermann & Lampinen, 2020).

Despite the insightful discussions made by the above studies, to the best of our knowledge, how the
discrepancies of pixels would affect image classification in AT (i.e., robust classification) has not
been well-investigated. Therefore, it is natural to raise the following question:

Are all pixels equally important in robust classification?

In this paper, we find that not all pixels contribute equally to the accuracy on AEs (i.e., robustness)
and accuracy on natural images (i.e., accuracy). In Figure 1, we segment each image into four equal-
sized regions and adversarially train two models with the same experiment settings except for the
allocation of ϵ. To clearly show the difference, we set ϵ = {6/255, 12/255}. We keep the overall
perturbation budget the same but allocate it differently among regions. From experimental results,
we observe a significant improvement in both natural accuracy and adversarial robustness from the
first setup to the second: natural accuracy increases from 76.77% to 78% and adversarial robustness
increases from 46.75% to 47.69%. This means changing the perturbation budgets for different parts
of an image has the potential to boost robustness and accuracy at the same time.

Motivated by this finding, we propose a new framework called Pixel-reweighted AdveRsarial
Training (PART), to partially lower ϵ for pixels that rarely influence the model’s outputs, which
guides the model to focus more on regions where pixels are important for model’s outputs.

To implement PART, we need to understand how pixels influence the model’s output first. There
are several well-known techniques to achieve this purpose, such as classifier-agnostic methods (e.g.,
LIME (Ribeiro et al., 2016)) and classifier-dependent methods (e.g., CAM, short for class activation
mapping (Selvaraju et al., 2017; Fu et al., 2020; Jiang et al., 2021)). Given that classic AE generation
processes are fundamentally classifier-dependent (Goodfellow et al., 2015; Madry et al., 2018), we
choose to use CAM methods to identify the importance of pixels in terms of the influence on the
model’s outputs in PART. Then, we propose a Pixel-Reweighted AE Generation (PRAG) method.
PRAG can keep the perturbation budget ϵ for important pixel regions while lowering the perturbation
budget from ϵ to ϵlow for the remaining regions when generating AEs. In the end, we can train a
model with PRAG-generated AEs by using existing AT methods (e.g., AT (Madry et al., 2018),
TRADES (Zhang et al., 2019), and MART (Wang et al., 2020)). We also analyze how perturbation
budgets affect the generation of AEs given that features have unequal importance (see Theorem 1).
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Through extensive evaluations on classic image datasets such as CIFAR-10 (Krizhevsky et al., 2009),
SVHN Netzer et al. (2011) and Tiny-ImageNet (Wu, 2017), we demonstrate the effectiveness of
PART (see Section 4). Despite a reduced overall perturbation budget, our approach not only sig-
nificantly improves natural accuracy but also retains, and even marginally improves, robustness
compared to existing defense methods. Moreover, PART is designed as a general framework that
can be effortlessly incorporated with a variety of AT strategies (Madry et al., 2018; Zhang et al.,
2019; Wang et al., 2020), CAM methods (Selvaraju et al., 2017; Fu et al., 2020; Jiang et al., 2021),
and AE generation approaches (Madry et al., 2018; Gao et al., 2022).
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Figure 2: Vanilla AT vs. PART. The heatmaps are
visualized by GradCAM (Selvaraju et al., 2017).
The redder the color, the higher the contribution
to classification result. PART aligns better with
semantic information compared to vanilla AT. See
Appendix B for more details.

In terms of PART’s performance, the improve-
ment in natural accuracy can be attributed to
the sacrifice of the perturbation intensity for
certain pixel regions, while the improvement
in robustness seems counter-intuitive given the
overall perturbation budget has been reduced.
To deeply understand why PART can main-
tain or even improve the robustness, we take
a close look at the robust feature representa-
tions. Previous studies (Tsipras et al., 2019;
Ilyas et al., 2019) point out that the robust
feature representations learnt by adversarially
trained models align better with semantic in-
formation compared to standardly trained mod-
els. This means semantic information gains
more robustness compared to non-semantic in-
formation, e.g., background information during
the optimization procedure of AT. However, we
find that without explicit guidance, it is hard for
AT methods to fully align with semantic infor-
mation. Based on this finding, we analyze the
vulnerability of neural networks in Appendix B. Our proposed method mitigates the problem by
emphasizing the important pixel regions during training and thus provides external guidance to help
models better extract features that are beneficial to robust classification (See Figure 2). We summa-
rize the main contributions of our work as follows:

• We find that different pixel regions contribute differently to robustness and accuracy in
robust classification. With the same total perturbation budget, allocating varying budgets
to different pixel regions can improve robustness and accuracy simultaneously.

• We propose a new framework of AT, namely Pixel-reweighted AdveRsarial Training
(PART) to guide the model focusing more on regions where pixels are important for model’s
output, leading to a better alignment with semantic information.

• We empirically show that, compared to the existing defenses, PART achieves a notable
improvement in natural accuracy without compromising robustness on CIFAR-10, SVHN
and Tiny-ImageNet against multiple attacks, including adaptive attacks.

1.1 RELATED WORK

Reweighted adversarial training. CAT (Cai et al., 2018) reweights adversarial data with dif-
ferent PGD iterations K. DAT (Wang et al., 2019) reweights the adversarial data with different
convergence qualities. More recently, Ding et al. (2020) proposes to reweight adversarial data
with instance-dependent perturbation bounds ϵ and Zhang et al. (2021) proposes a geometry-aware
instance-reweighted AT framework (GAIRAT) that assigns different weights to adversarial loss
based on the distance of data points from the class boundary. Our proposed method is fundamentally
different from the existing methods. Existing reweighted AT methods primarily focus on instance-
based reweighting, wherein each data instance is treated distinctly. PART, on the other hand, pio-
neers a pixel-based reweighting strategy, which allows for distinct treatment of pixel regions within
each instance. Moreover, the design of PART is orthogonal to the state-of-the-art optimized AT
methods (e.g., TRADES (Zhang et al., 2019) and MART (Wang et al., 2020)). This compatibility
ensures that PART can be integrated into these established frameworks, thereby extending its utility.
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Class activation mapping. CAM is a method for generating visual explanations of the decision
made by a CNN for a given image. Given a class, CAM highlights the regions of the image that are
most relevant to that class. Many CAM methods have been proposed to achieve the above purpose.
For example, GradCAM (Selvaraju et al., 2017) improves upon vanilla CAM (Zhou et al., 2016)
by using the gradient information flowing into the last convolutional layer of the CNN to assign
importance values to each neuron, enabling the production of class-discriminative visualizations
without the need for architectural changes or re-training. XGradCAM (Fu et al., 2020) introduces
two axioms to improve the sensitivity and conservation of GradCAM. Specifically, it uses a modified
gradient to better capture the importance of each feature map and a normalization term to preserve
the spatial information of the feature maps. LayerCAM (Jiang et al., 2021) generates class activation
maps not only from the final convolutional layer but also from shallow layers. This allows for both
coarse spatial locations and fine-grained object details to be captured. We provide a more detailed
related work in Appendix C.

2 PRELIMINARIES

Adversarial training. The basic idea behind AT (Madry et al., 2018) is to train a model f with AEs
generated from the original training data. The objective function of AT is defined as follows:

min
f∈F

1

n

n∑
i=1

ℓ(f(xi +∆∗
i ), yi), (2)

where x̃i = xi + ∆∗
i is the most adversarial variant of xi within the ϵ-ball centered at xi, ∆∗

i ∈
[−ϵ, ϵ]d is the optimized adversarial perturbation added to xi, yi is the true label of xi, ℓ is a loss
function, and F is the set of all possible neural network models.

The ϵ-ball is defined as Bϵ[x] = {x′|∥x−x′∥∞ ≤ ϵ}, where ∥·∥∞ is the ℓ∞ norm. The most adver-
sarial variant of xi within the ϵ-ball is commonly obtained by solving the constrained optimization
problem in Eq. (1) using PGD (Madry et al., 2018):

x̃
(t+1)
i = x̃

(t)
i + clip(x̃(t)

i + αsign(∇
x̃
(t)
i
ℓ(f(x̃

(t)
i ), yi))− xi,−ϵ, ϵ), (3)

where x̃
(t)
i is the AE at iteration t, α is the step size, sign(·) is the sign function, and clip(·,−ϵ, ϵ) is

the clip function that projects the adversarial perturbation back into the ϵ-ball, i.e., ∆∗
i ∈ [−ϵ, ϵ]d.

Class activation mapping. In this paper, we mainly use GradCAM to identify the importance of
the pixel regions because we find that the performance of PART with different CAM methods barely
changes (see Section 4). Specifically, let Ak ∈ Ru×v of width u and height v for any class c be the
feature map obtained from the last convolutional layer of the CNN, and let Yc be the score for class
c. GradCAM computes the gradient of Yc with respect to the feature map Ak:

αc,k =
1

Z

∑
i

∑
j

∂Yc

∂Ak,ij
, (4)

where Z is a normalization constant. GradCAM then produces the class activation map Lc for class
c by computing the weighted combination of feature maps:

Lc = ReLU(
∑
k

αc,kAk). (5)

3 PIXEL-REWEIGHTED ADVERSARIAL TRAINING

According the Figure 1, given the same overall perturbation budgets (i.e., allocate one of the regions
to 6/255 and others to 12/255), we find that both natural accuracy and adversarial robustness change
significantly if the regional allocation on ϵ is different. For example, by changing ϵbr = 6/255 to
ϵul = 6/255, accuracy gains a 1.23% improvement and robustness gains a 0.94% improvement. This
means changing the perturbation budgets for different parts of an image has the potential to boost
robustness and accuracy at the same time. Thus, we consider a new framework, Pixel-reweighted
AdveRsarial Training (PART), to train an adversarially robust model. In this section, we will intro-
duce the learning objective, realization, and understanding of PART.
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Figure 3: An overview of the training procedure for PART. Compared to AT, PART leverages the
power of CAM methods to identify important pixel regions. Based on the class activation map, we
element-wisely multiply a mask to the perturbation to keep the perturbation budget ϵ for important
pixel regions while shrinking it to ϵlow for their counterparts during the generation process of AEs.

3.1 LEARNING OBJECTIVE OF PART

Compared to the existing AT framework, PART will focus on generating AEs whose perturbation
budget of each pixel may be different. Thus, we will first introduce the generation process of AEs
within PART, and then conclude the learning objective of PART.

AE generation process. Compared to Eq. (1), the constraint optimization problem (for generating
AEs in PART) will be:

max
∆

ℓ(f(x+∆), y), subject to ∥v(∆, Ihigh)∥∞ ≤ ϵ, ∥v(∆, I low)∥∞ ≤ ϵlow, (6)

where ϵlow < ϵ, ∆ = [δ1, . . . , δd], Ihigh collect indexes of important pixels, I low = [d]/Ihigh, and
v is a function to transform a set (e.g., a set consisting of important pixels in ∆: {δi}i∈Ihigh ) to a
vector. Then, ∆high consists of {δi}i∈Ihigh , and ∆low consists of {δi}i∈Ilow . ∆high ∈ [−ϵ, ϵ]dhigh

is the adversarial perturbation added to important pixel regions with dimension dhigh, ∆low ∈
[−ϵlow, ϵlow]dlow

is the adversarial perturbation added to the remaining regions with dimension dlow,
where dhigh = |Ihigh| and dlow = |I low|. A higher value of dhigh means that more pixels are
regarded as important ones. A detailed description of notations can be found in Appendix D.

Learning objective. Given a training set {xi, yi}ni=1, a loss function ℓ, a function space F , and the
largest perturbation budget ϵ, the PART-based algorithms should have the same learning objective:

min
f∈F

1

n

n∑
i=1

ℓ(f(xi +∆∗
i ), yi), (7)

∆∗
i = argmax

∆
ℓ(f(xi +∆), yi), subject to ∥v(∆, Ihigh)∥∞ ≤ ϵ, ∥v(∆, I low)∥∞ ≤ ϵlow. (8)

Compared to other frameworks, the learning objective of PART is clearly different from theirs in
terms of the AE generation process. In the following subsection, we will introduce how to achieve
the above learning objective via an empirical method.

3.2 REALIZATION OF PART

Pixel-reweighted AE generation (PRAG). The constraint optimization problem Eq. (6) implies
that the overall perturbation ∆ consists of two parts: perturbation added to important pixel regions,
i.e., ∆high and perturbation added to their counterparts, i.e., ∆low.

To generate AEs with appropriate ∆high and ∆low, we propose a method called Pixel-Reweighted
AE Generation (PRAG). PRAG employs CAM methods to differentiate between important pixel
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regions and their counterparts. Take GradCAM as an example: once we compute the class activation
map Lc from Eq. (5), PRAG first resizes Lc to L′

c to match the dimensions d of a natural image
x = [x1, ..., xd], i.e., L′

c ∈ Rd. Then it scales L′
c to L̃c to make sure the pixel regions highlighted by

GradCAM have a weight value ω > 1. Let L̃c = [ω1, ..., ωd] and ∆ = [δ1, ..., δd] consists of ∆high

and ∆low. Then, for any i ∈ [d], we define δi ∈ ∆high if ωi > 1 and δi ∈ ∆low otherwise, subject
to ∥v(∆, Ihigh)∥∞ ≤ ϵ and ∥v(∆, I low)∥∞ ≤ ϵlow. Technically, this is equivalent to element-
wisely multiply a mask m = [m1, ...,md] to a ∆ constraint by ∥∆∥∞ ≤ ϵ, where each element of
m is defined as:

mi =

{
1 if ωi > 1

ϵlow/ϵ otherwise
. (9)

Let ∆∗ be the optimal solution of ∆, then x̃ = x +∆∗ is the AE generated by PRAG, which can
be obtained by solving Eq. (8) using an adapted version of Eq. (3):

x̃
(t+1)
i = x̃

(t)
i +m⊙ clip(x̃(t)

i + αsign(∇
x̃
(t)
i
ℓ(f(x̃

(t)
i ), yi))− xi,−ϵ, ϵ), (10)

where ⊙ is the Hadamard product. By doing so, we element-wisely multiply a mask m to the
perturbation to keep the perturbation budget ϵ for important pixel regions while shrinking it to ϵlow

for their counterparts. We provide a visual illustration of the training procedure for PART in Figure
3 and a detailed algorithmic description in Appendix E.

How to select ϵlow. Given that the value of ϵlow is designed to be a small number (e.g., 6/255)
and the computational cost of AT is expensive, we do not apply any algorithms to search for an
optimal ϵlow to avoid introducing extra training time to our framework. Instead, we directly set
ϵlow = ϵ − 1/255 by default. Without losing generality, we thoroughly investigate the impact of
different values of ϵlow on the robustness and accuracy of our method (see Section 4). Designing an
efficient searching algorithm for ϵ remains an open question, and we leave it as our future work.

Burn-in period. To improve the effectiveness of PART, we integrate a burn-in period into our
training process. Specifically, we use AT as a warm-up at the early stage of training. Then, we
incorporate PRAG into PART for further training. This is because the classifier is not properly
learned initially, and thus may badly identify pixel regions that are important to the model’s output.

Integration with other methods. The innovation on the AE generation allows PART to be or-
thogonal to the commonly used AT methods (e.g., AT (Madry et al., 2018), TRADES (Zhang et al.,
2019) and MART (Wang et al., 2020)), and thus PART can be easily integrated into these established
methods. Moreover, the constraint optimization problem in Eq. (8) is general and can be addressed
using various existing algorithms, such as PGD (Madry et al., 2018) and MMA (Gao et al., 2022).
Besides, many CAM methods can be used as alternatives to GradCAM, such as XGradCAM (Fu
et al., 2020) and LayerCAM (Jiang et al., 2021). Therefore, the compatibility of PART allows itself
to serve as a general framework.

3.3 HOW PERTURBATION BUDGETS AFFECT THE GENERATION OF AES

We study a toy setting to shed some light on how pixels with different levels of importance would
affect the generated AEs. Consider a 2D data point x = [x1, x2]

T with label y and an adversarial
perturbation ∆ = [δ1, δ2]

T that is added to x with δ1 ∈ [−ϵ1, ϵ1] and δ2 ∈ [−ϵ2, ϵ2], where ϵ1 and
ϵ2 are maximum allowed perturbation budgets for δ1 and δ2, respectively. Let ℓ be a differentiable
loss function and f be the model, The constraint optimization problem (used to generate AEs) can
be formulated as follows:

max
∆=[δ1,δ2]T

ℓ(f(x+∆), y), subject to − ϵ1 ≤ δ1 ≤ ϵ1, − ϵ2 ≤ δ2 ≤ ϵ2. (11)

Then, based on the Karush–Kuhn–Tucker (KKT) conditions (Avriel, 2003) for constraint optimiza-
tion problems, we can analyze the solutions to the above problem as follows.
Lemma 1. Let δ∗1 and δ∗2 be the optimal solutions of Eq. (11). The generated AEs can be categorized
into three cases: (i) The expressions of δ∗1 and δ∗2 do not contain ϵ1 and ϵ2. (ii) δ∗1 = ±ϵ1 and
δ∗2 = ±ϵ2. (iii) δ∗1 = ±ϵ1 and δ∗2 is influenced by ϵ1, or vise versa.

From Lemma 1, we know that the generated AEs must be within these cases, as KKT provides
necessary conditions that δ∗1 and δ∗2 must satisfy. Nevertheless, for different models, the solutions
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are different. Here we focus on the impact on linear models. Specifically, we consider a linear model
f(x) = ω1x1 + ω2x2 + b for this problem, where ω1 and ω2 are the weights for pixels x1 and x2

respectively. It is clear that x1 will significantly influence f(x) more compared to x2 if w1 is larger
than w2. For simplicity, we use a square loss, which can be expressed as ℓ(f(x), y) = (y − f(x))2.
Then, we solve Eq. (11) by the Lagrange multiplier method and show the results in Theorem 1.

Theorem 1. Consider a linear model f(x) = ω1x1 + ω2x2 + b and a square loss ℓ(f(x), y) =
(y− f(x))2. Let δ∗1 and δ∗2 be the optimal solutions of Eq. (11). For case (iii) in Lemma 1, we have:

δ∗2 =
y − f(x)− ω1ϵ1

ω2
, subject to δ∗1 = ϵ1, (12)

δ∗2 =
y − f(x) + ω1ϵ1

ω2
, subject to δ∗1 = −ϵ1, (13)

δ∗1 =
y − f(x)− ω2ϵ2

ω1
, subject to δ∗2 = ϵ2, (14)

δ∗1 =
y − f(x) + ω2ϵ2

ω1
, subject to δ∗2 = −ϵ2. (15)

We provide a more detailed analysis and the proof of Lemma 1 and Theorem 1 in Appendix F. From
Theorem 1, the main takeaway is straightforward: If two pixels have different influences on the
model’s predictions, it will affect the generation process of AEs, leading to different solutions of the
optimal δ∗. Thus, it probably influences the performance of AT.

Remark. Note that, we do not cover how different levels of pixel importance would affect the
performance of AT. This is because, during AT, the generated AEs are highly correlated, making the
training process quite complicated to analyze in theory. According to recent developments regarding
learning with dependent data (Dagan et al., 2019), we can only expect generalization when weak
dependence exists in training data. However, after the first training epoch in AT, the model already
depends on all training data, meaning that the generated AEs in the following epochs are probably
highly dependent on each other. Thus, we leave this as our future work.

4 EXPERIMENTS

Dataset. We evaluate the effectiveness of PART on three benchmark datasets, i.e., CIFAR-10
(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and Tiny-ImageNet (Wu, 2017). CIFAR-
10 comprises 50,000 training and 10,000 test images, distributed across 10 classes, with a resolution
of 32×32. SVHN has 10 classes but consists of 73,257 training and 26,032 test images, maintaining
the same 32× 32 resolution. Tiny-ImageNet extends the complexity by offering 200 classes with a
higher resolution of 64×64, containing 100,000 training, 10,000 validation, and 10,000 test images.
For the target model, following the idea in Zhou et al. (2023), we use ResNet (He et al., 2016) for
CIFAR-10 and SVHN, and WideResNet (Zagoruyko & Komodakis, 2016) for Tiny-ImageNet.

Attack settings. We mainly use three types of adversarial attacks to evaluate the performances of
defenses. They are ℓ∞-norm PGD (Madry et al., 2018), ℓ∞-norm MMA (Gao et al., 2022) and ℓ∞-
norm AA (Croce & Hein, 2020a). Among them, AA is a combination of three non-target white-box
attacks (Croce & Hein, 2020b) and one targeted black-box attack (Andriushchenko et al., 2020),
which makes AA a gold standard for evaluating adversarial robustness up to this point. Recently
proposed MMA (Gao et al., 2022) can achieve comparable performance compared to AA but is
much more time efficient. The iteration number for PGD is set to 20 (Zhou et al., 2023), and the
target selection number for MMA is set to 3 (Gao et al., 2022), respectively. For all attacks, we set
the maximuim allowed perturbation budget ϵ to 8/255.

Defense settings. We use three representative AT methods as the baselines: AT (Madry et al., 2018)
and two optimized AT methods TRADES (Zhang et al., 2019) and MART (Wang et al., 2020). We
set λ = 6 for both TRADES and MART. For all baseline methods, we use the ℓ∞-norm non-targeted
PGD-10 with random start to craft AEs in the training stage. We set ϵ = 8/255 for all methods, and
ϵlow = 7/255 for PART. More details can be found in Appendix G.
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Table 1: Robustness (%) and accuracy (%) of defense methods on CIFAR-10, SVHN and Tiny-
ImageNet. We report the averaged results and standard deviations of three runs. We show the most
successful defense in bold.

ResNet-18
Dataset Method Natural PGD-20 MMA AA

CIFAR-10

AT 82.58 ± 0.14 43.69 ± 0.28 41.80 ± 0.10 41.63 ± 0.22
PART 83.42 ± 0.26 43.65 ± 0.16 41.98 ± 0.03 41.74 ± 0.04
TRADES 78.16 ± 0.15 48.28 ± 0.05 45.00 ± 0.08 45.05 ± 0.12
PART-T 79.36 ± 0.31 48.90 ± 0.14 45.90 ± 0.07 45.97 ± 0.06
MART 76.82 ± 0.28 49.86 ± 0.32 45.42 ± 0.04 45.10 ± 0.06
PART-M 78.67 ± 0.10 50.26 ± 0.17 45.53 ± 0.05 45.19 ± 0.04

SVHN

AT 91.06 ± 0.24 49.83 ± 0.13 47.68 ± 0.06 45.48 ± 0.05
PART 93.14 ± 0.05 50.34 ± 0.14 48.08 ± 0.09 45.67 ± 0.13
TRADES 88.91 ± 0.28 58.74 ± 0.53 53.29 ± 0.56 52.21 ± 0.47
PART-T 91.55 ± 0.21 58.64 ± 0.26 53.84 ± 0.16 52.31 ± 0.67
MART 89.76 ± 0.08 58.52 ± 0.53 52.42 ± 0.34 49.10 ± 0.23
PART-M 91.42 ± 0.36 58.85 ± 0.29 52.45 ± 0.03 49.92 ± 0.10

WideResNet-34-10
Dataset Method Natural PGD-20 MMA AA

Tiny-ImageNet

AT 43.51 ± 0.13 11.70 ± 0.08 10.66 ± 0.11 10.53 ± 0.14
PART 44.87 ± 0.21 11.93 ± 0.16 10.96 ± 0.12 10.76 ± 0.06
TRADES 43.05 ± 0.15 13.86 ± 0.10 12.62 ± 0.16 12.55 ± 0.09
PART-T 44.31 ± 0.12 14.08 ± 0.22 13.01 ± 0.09 12.84 ± 0.14
MART 42.68 ± 0.22 14.77 ± 0.18 13.58 ± 0.13 13.42 ± 0.16
PART-M 43.75 ± 0.24 14.93 ± 0.15 13.76 ± 0.06 13.68 ± 0.13

Table 2: Robustness (%) of defense methods against adaptive PGD on CIFAR-10. We report the
averaged results and standard deviations of three runs. We show the most successful defense in
bold.

ResNet-18
Dataset Method PGD-20 PGD-40 PGD-60 PGD-80 PGD-100

CIFAR-10

AT 37.67 ± 0.05 36.98 ± 0.03 36.86 ± 0.07 36.81 ± 0.04 36.72 ± 0.04
PART 37.73 ± 0.11 37.07 ± 0.08 36.89 ± 0.12 36.84 ± 0.10 36.84 ± 0.07
TRADES 43.42 ± 0.13 43.22 ± 0.11 43.19 ± 0.12 43.10 ± 0.08 43.08 ± 0.06
PART-T 43.98 ± 0.15 43.75 ± 0.09 43.73 ± 0.06 43.68 ± 0.10 43.61 ± 0.03
MART 44.60 ± 0.09 44.19 ± 0.14 44.05 ± 0.13 43.98 ± 0.05 43.96 ± 0.08
PART-M 44.96 ± 0.21 44.51 ± 0.17 44.41 ± 0.12 44.37 ± 0.06 44.35 ± 0.09

Defending against general attacks. From Table 1, the results show that our method can notably
improve the natural accuracy with little to no degradation in adversarial robustness compared to
AT. Despite a marginal reduction in robustness by 0.04% on PGD-20, PART gains more on natural
accuracy (e.g., 2.08% on SVHN and 1.36% on Tiny-ImageNet). In most cases, PART can improve
natural accuracy and robustness simultaneously. To avoid the bias caused by different AT methods,
we apply the optimized AT methods TRADES and MART to our method (i.e., PART-T and PART-
M). Compared to TRADES and MART, our method can still boost natural accuracy (e.g., 1.20%
on CIFAR-10, 2.64% on SVHN and 1.26% on Tiny-ImageNet for PART-T, and 1.85% on CIFAR-
10, 1.66% on SVHN and 1.07% on Tiny-ImageNet) with at most a 0.10% drop in robustness, and
thus our method can achieve a better robustness-accuracy trade-off. Besides, we consider the five
behaviours listed in Athalye et al. (2018) to identify the obfuscated gradients and show that our
method does not cause obfuscated gradients (see Appendix H).

Defending against adaptive attacks. Beyond general adversarial attacks, a more destructive adap-
tive attack strategy has been proposed to evaluate the robustness of the defense methods. This
strategy assumes attacks have all the knowledge about the proposed method, e.g., model architec-
tures, model parameters, and how AEs are generated in PART. As a result, attackers can design a
specific attack to break PART. Given the details of PRAG, we design an adaptive attack that aims to
misguide the model to focus on pixel regions that have little contribution to the correct classification
results, and thus break the defense. We provide relevant explanations in Appendix B. Technically,
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Figure 4: Impact of ϵlow on robustness and accuracy of PART. Left: ϵ = 12/255 and ϵlow ∈
{11/255, 10/255, 9/255, 8/255}. Right: ϵ = 8/255, and ϵlow ∈ {7/255, 6/255, 5/255, 4/255}.
Solid lines represent the performance of PART, and dashed lines represent the performance of AT.
We report the averaged results and standard deviations (i.e., shaded areas) of three runs.

this is equivalent to breaking what a robust model currently focuses on. Specifically, we use PRAG
with PGD to craft AEs, with an increased ϵlow of 8/255 and ϵ of 12/255. As shown in Table 2,
despite an overall decrease in robustness, our defense presents a better resilience against adaptive
attacks compared to other baseline methods. More experiments can be found in Appendix I and J.

Hyperparameter analysis. We thoroughly investigated the impact of the hyperparameter ϵlow on
the effectiveness of our method. We consider two sets of experiments. In the first set, we set
ϵ = 12/255 and ϵlow ∈ {11/255, 10/255, 9/255, 8/255}. In the second set, we set ϵ = 8/255,
and ϵlow ∈ {7/255, 6/255, 5/255, 4/255}. As shown in Figure 4, with the decrease of ϵlow, the
robustness of the model drops correspondingly. However, PART gains more natural accuracy at
the same time, and thus achieves a better robustness-accuracy trade-off. In addition, we find that
with a relatively large ϵ, moderately decrease ϵlow barely changes the robustness. For example, our
method achieves a notable improvement in natural accuracy without compromising robustness when
ϵ = 12/255 and ϵlow ∈ {11/255, 10/255} compared to AT.

Integration with other CAM methods. To avoid potential bias caused by different CAM methods,
we conduct experiments to compare the performance of PART with different CAM methods such
as GradCAM (Selvaraju et al., 2017), XGradCAM (Fu et al., 2020) and LayerCAM (Jiang et al.,
2021). We find that these state-of-the-art CAM methods have approximately identical performance
(see Appendix K). Thus, we argue that the performance of PART is barely affected by the choice of
benchmark CAM methods.

Integration with other AE generation methods. In addition, we evaluate the effectiveness of our
method by incorporating PRAG into a more destructive attack, i.e., MMA (Gao et al., 2022) to
generate AEs. With MMA, the performance of PART can be further boosted. (see Appendix L).

Training speed and memory consumption of PART. To avoid introducing unaffordable extra cost
by CAM methods, we update the mask m for every 10 epochs. We compare the computational time
and the memory consumption of our method to different baseline methods (see Appendix M).

5 CONCLUSION

We find that different pixel regions contribute unequally to robustness and accuracy. Motivated by
this finding, we propose a new framework called Pixel-reweighted AdveRsarial Training (PART).
PART partially reduces the perturbation budget for pixel regions that rarely influence the classifica-
tion results, which guides the classifier to focus more on the essential part of images, leading to a
better alignment with semantic information. In general, we hope this simple yet effective framework
could open up a new perspective in AT and lay the groundwork for advanced defenses that account
for the discrepancies across pixel regions.
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A PERTURBATIONS WITH ℓ2-NORM CONSTRAINT

When discussing perturbations with ℓ2-norm constraint, it’s not accurate to assume each pixel has
the same perturbation budget ϵ. This is because compared to a ℓ∞-norm constraint, the entire pertur-
bation ∆ is subject to a global bound, rather than each dimension having an identical perturbation
budget. Let the dimension of a natural image x be d. For a perturbation ∆ = [δ1, ..., δd], we have:

∥∆∥2 =
√
δ21 + δ22 + ...+ δ2d ≤ ϵ, (16)

where ϵ is the maximum allowed perturbation budget. By Eq. (16), δi is not necessarily less than or
equal to ϵ, e.g., certain elements might undergo minimal perturbations approaching 0, while others
might be more significantly perturbed, as long as the entire vector’s ℓ2-norm remains under ϵ.

Thus, in this paper, the assumption that all pixels have the same perturbation budget ϵ is discussed
by assuming the perturbations are bounded by ℓ∞-norm constraint, i.e., ∥∆∥∞ ≤ ϵ.

B ANALYSIS OF VULNERABILITY OF NEURAL NETWORKS AND BEYOND

Ship Ship Frog Frog

Ship Ship Ship Ship

AT

PART

PGD-20 AANatural

Ship Ship Truck Frog

ST

Figure 5: Standardly trained (ST) model vs. adversarially trained model by AT (Madry et al., 2018)
vs. adversarially trained model by PART. The heatmaps are visualized by GradCAM (Selvaraju
et al., 2017).The redder the color, the higher the contribution to classification result. PART aligns
better with semantic infomration compared to AT and ST. The target model is ResNet-18 and the
dataset is CIFAR-10.

We want to provide intuitions on the vulnerabilities of deep neural networks through the lens of
how adversarial attacks will affect the weights of pixels. To achieve this, we compare the stan-
dardly trained (ST) model and adversarially trained models by visualizing the weight values of the
corresponding feature maps, i.e., the class activation map via GradCAM against PGD-20 and AA.

In Figure 5, we define the highlighted pixel regions in the second column, i.e., labelled as ’Natural’,
as the important pixel regions to the correct prediction of each model, and its counterpart of the
image as the unimportant pixel regions to the correct prediction. To produce correct prediction
results, the model relies heavily on the important pixel regions as the weights of these regions are
much larger than unimportant pixel regions. A successful attack, however, will misguide the model
to pay more attention to unimportant pixel regions (e.g., PGD-20 misguides the ST model to focus
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on the bottom part of the ship, which is far from its important pixel regions), and thus produces
erroneous results because these pixels are hardly contributing to the correct prediction.

Besides, we find that the ST model and AT model have completely different focus. For example, a ST
model focuses more on the background of the image while an AT model focuses more on the object
of the image. This finding matches the statement of Tsipras et al. (2019). It is a benefit of AT as we
hope deep neural networks can mimic the way humans recognize objects (e.g., recognize an object
by its semantic meaning). During the optimization procedure of AT, the model is forced to learn
the underlying distributions of AEs and extract robust features to defend against adversarial attacks.
Thus, semantic information gains more robustness compared to the background information, as they
are naturally highlighted during the optimization procedure of AT.

However, without explicit guidance, we find that it is hard for the AT model to fully align with se-
mantic information. Although the AT model is much more aligned with the semantic features of the
ship compared to the ST model, adversarial attacks can still misguide the AT model to pay more at-
tention to other unimportant pixel regions (see Figure 5). This property provides intuition on how to
better defend against these attacks. That is, if we can provide external guidance to train a model that
can stably align with semantic information when facing adversarial attacks, the robustness should be
further improved. PART can be regarded as one approach to help models align better with semantic
information. We provide more evidence in Appendix N. We believe there exist some other methods
to achieve the same purpose and we hope our work can promote the development of object-aligned
frameworks.

C DETAILED RELATED WORK

Adversarial training. To combat the threat of adversarial attacks, a myriad of defense mechanisms
have emerged, such as perturbation detection (Ma et al., 2018; Xu et al., 2018; Gao et al., 2021),
adversarial purification (Shi et al., 2021; Yoon et al., 2021; Nie et al., 2022) and adversarial training
(AT) (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020). Among these, AT stands out as a
representative strategy (Goodfellow et al., 2015; Madry et al., 2018), which directly generates and
incorporates AEs during the training process, forcing the model to learn the underlying distributions
of AEs. Besides vanilla AT (Madry et al., 2018), many alternatives have been proposed. For exam-
ple, from the perspective of improving objective functions, Zhang et al. (2019) proposes to optimize
a surrogate loss function, which is derived based on a theoretical upper bound and a lower bound.
Wang et al. (2020) investigates the unique impact of misclassified examples on the eventual ro-
bustness. They discover that misclassified examples significantly influence the final robustness and
restructure the adversarial risk to include a distinct differentiation of misclassified examples through
regularization. From the perspective of reweighting, CAT (Cai et al., 2018) reweights adversarial
data with different PGD iterations K. DAT (Wang et al., 2019) reweights the adversarial data with
different convergence qualities. More recently, Ding et al. (2020) proposes to reweight adversarial
data with instance-dependent perturbation bounds ϵ and Zhang et al. (2021) proposes a geometry-
aware instance-reweighted AT framework (GAIRAT) that assigns different weights to adversarial
loss based on the distance of data points from the class boundary.

Our proposed method is fundamentally different from the existing methods. Existing reweighted
AT methods primarily focus on instance-based reweighting, wherein each data instance is treated
distinctly. Our proposed method, on the other hand, pioneers a pixel-based reweighting strategy,
which allows for distinct treatment of pixel regions within each instance. Moreover, the design of
PART is orthogonal to the state-of-the-art optimized AT methods such as TRADES (Zhang et al.,
2019) and MART (Wang et al., 2020). This compatibility ensures that PART can be seamlessly
integrated into these established frameworks, thereby extending its utility.

Class activation mapping. Vanilla CAM (Zhou et al., 2016) is designed for producing visual expla-
nations of decisions made by CNN-based models by computing a coarse localization map highlight-
ing important regions in an image for predicting a concept. Besides vanilla CAM, many improved
CAM methods have been proposed. For example, GradCAM (Selvaraju et al., 2017) improves
upon CAM by using the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each neuron, enabling the production of class-discriminative visu-
alizations without the need for architectural changes or re-training. XGradCAM (Fu et al., 2020)
introduces two axioms to improve the sensitivity and conservation of GradCAM. Specifically, it uses
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a modified gradient to better capture the importance of each feature map and a normalization term
to preserve the spatial information of the feature maps. LayerCAM (Jiang et al., 2021) generates
class activation maps not only from the final convolutional layer but also from shallow layers. This
allows for both coarse spatial locations and fine-grained object details to be captured.

We want to make sure the chosen CAM method can truly reflect the importance of the pixel re-
gions to avoid additional bias from the methods themselves. Therefore, we conduct experiments to
compare the performance of PART with different CAM methods. We find that these state-of-the-art
CAM methods have approximately identical performance (see Appendix K).

Adversarial defenses with class activation mapping. Zhou et al. (2021) proposes to use class
activation features to remove adversarial noise. Specifically, it crafts AEs by maximally disrupting
the class activation features of natural examples and then trains a denoising model to minimize the
discrepancies between the class activation features of natural and AEs. Wu et al. (2023) proposes
an Attention-based Adversarial Defense (AAD) framework that uses GradCAM to rectify and pre-
serve the visual attention area, which aims to improve the robustness against adversarial attacks by
aligning the visual attention area between adversarial and original images.

Adversarial attacks with class activation mapping. Dong et al. (2020) proposes an attack method
that leverages superpixel segmentation and class activation mapping to focus on regions of an im-
age that are most influential in classification decisions. It highlights the importance of considering
perceptual features and classification-relevant regions in crafting effective AEs.

Our method differs from the above methods technically, which allocates varying perturbation bud-
gets to different pixel regions. We want to emphasize that PART is a general idea rather than a
specific method and CAM is one of the tools to realize our idea. The main goal of our work is to
provide insights on how to design an effective AT method by counting the fundamental discrepancies
of pixel regions across images.

D NOTATIONS IN SECTION 3.1

ℓ A loss function

f A model

x A natural image

y The true label of x

d The data dimension

∆ The adversarial perturbation added to x

∆∗ The optimal solution of ∆

|| · ||∞ The ℓ∞-norm

ϵ The maximum allowed perturbation budget for important
pixels

ϵlow The maximum allowed perturbation budget for unimpor-
tant pixels

Ihigh Indexes of important pixels

I low Indexes of unimportant pixels

v A function to transform a set to a vector

{δi}i∈Ihigh A set consisting of important pixels in ∆, i.e., ∆high

{δi}i∈Ilow A set consisting of unimportant pixels in ∆, i.e., ∆low

|Ihigh| The dimension of important pixel regions, i.e., dhigh

|I low| The dimension of unimportant pixel regions, i.e., dlow
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E ALGORITHMS

Algorithm 1 Mask Generation

Input: data dimension d, normalized class activation map L̃ = [ω1, ..., ωd], maximum allowed
perturbation budgets ϵ, ϵlow

Output: mask m
1: Initialize mask m = {m1, ...,md} = 1d

2: for i = 1, ..., d do
3: if ωi > 1 then
4: mi = ϵlow/ϵ
5: end if
6: end for

Algorithm 2 Pixel-reweighted AE Generation (PRAG)
Input: data x ∈ X , label y ∈ Y , model f , loss function ℓ, step size α, number of iterations K for

inner optimization, maximum allowed perturbation budget ϵ
Output: adversarial example x̃

1: Obtain mask m by Algorithm 1
2: x̃← x
3: for k = 1, ...,K do
4: x̃← x̃+m⊙ clip(x̃+ αsign(∇x̃ℓ(f(x̃), y))− x,−ϵ, ϵ)
5: end for

Algorithm 3 Pixel-reweighted Adversarial Training (PART)
Input: network f with parameters θ, training dataset S = {(xi, yi)}ni=1, learning rate η, number

of epochs T , batch size n, numebr of batches N
Output: Robust network f

1: for epoch = 1, ..., T do
2: for mini-batch = 1, ..., N do
3: Read mini-batch B = {x1, ...,xn} from S
4: for i = 1, ..., n (in parallel) do
5: Obtain adversarial data x̃i of xi by Algorithm 2
6: end for
7: θ ← θ − η

∑m
i=1∇θℓ(f(x̃i), yi)

8: end for
9: end for

F PROOF OF THEOREM 1

Problem settings. Consider a 2D data point x = [x1, x2]
T with label y and an adversarial per-

turbation ∆ = [δ1, δ2]
T that is added to x, with δ1 ∈ [−ϵ1, ϵ1] and δ2 ∈ [−ϵ2, ϵ2]. We consider

a linear model f(x) = ω1x1 + ω2x2 + b for this problem, where ω1 and ω2 are the weights for
pixels x1 and x2 respectively. We use the square loss here as it is differentiable, which can be ex-
pressed as ℓ(f(x), y) = (y − f(x))2. The objective of our problem is to find ∆ that can maximize
ℓ(f(x + ∆), y), which is equivalent to minimizing its negative counterpart. Thus, the constraint
optimization problem can be formulated as follows:

minimize − (y − f(x+∆))2,

subject to δ1 ≤ ϵ1,−δ1 ≤ ϵ1, δ2 ≤ ϵ2,−δ2 ≤ ϵ2.
(17)

By using Lagrange multiplier method, we can construct the following Lagrange function L:

L = −(y − f(x+∆))2 + λ1(δ1 − ϵ1) + λ2(−δ1 − ϵ1) + λ3(δ2 − ϵ2) + λ4(−δ2 − ϵ2). (18)
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Expanding L, we get:

L =− y2 + 2yω1x1 + 2yω1δ1 + 2yω2x2 + 2yω2δ2 + 2yb− ω2
1x

2
1 − 2ω2

1x1δ1

− 2ω1ω2x1x2 − 2ω1ω2x1δ2 − 2ω1x1b− ω2
1δ

2
1 − 2ω1ω2x2δ1 − 2ω1ω2δ1δ2

− 2ω1δ1b− ω2
2x

2
2 − 2ω2

2x2δ2 − 2ω2x2b− ω2
2δ

2
2 − 2ω2δ2b− b2

+ λ1δ1 − λ1ϵ1 − λ2δ1 − λ2ϵ1 + λ3δ2 − λ3ϵ2 − λ4δ2 − λ4ϵ2.

(19)

Taking the derivatives with respect to δ1 and δ2 and setting them to zero, we have:

∂L
∂δ1

= 2yω1 − 2ω2
1x1 − 2ω2

1δ1 − 2ω1ω2x2 − 2ω1ω2δ2 − 2ω1b+ λ1 − λ2 = 0. (20)

∂L
∂δ2

= 2yω2 − 2ω2
2x2 − 2ω2

2δ2 − 2ω1ω2x1 − 2ω1ω2δ1 − 2ω2b+ λ3 − λ4 = 0. (21)

Solving Eq. (20) and Eq. (21), we can get the expressions for λ∗
1, λ∗

2, λ∗
3 and λ∗

4:

λ∗
1 = 2ω2

1x1 + 2ω2
1δ

∗
1 + 2ω1ω2x2 + 2ω1ω2δ

∗
2 + 2ω1b− 2yω1 + λ∗

2. (22)

λ∗
2 = 2yω1 − 2ω2

1x1 − 2ω2
1δ

∗
1 − 2ω1ω2x2 − 2ω1ω2δ

∗
2 − 2ω1b+ λ∗

1. (23)

λ∗
3 = 2ω2

2x2 + 2ω2
2δ

∗
2 + 2ω1ω2x1 + 2ω1ω2δ

∗
1 + 2ω2b− 2yω2 + λ∗

4. (24)

λ∗
4 = 2yω2 − 2ω2

2x2 − 2ω2
2δ

∗
2 − 2ω1ω2x1 − 2ω1ω2δ

∗
1 − 2ω2b+ λ∗

3. (25)
This is based on the Karush–Kuhn–Tucker (KKT) conditions (Avriel, 2003):

δ∗1 ≤ ϵ1,−δ∗1 ≤ ϵ1, δ
∗
2 ≤ ϵ2,−δ∗2 ≤ ϵ2. (26)

λ∗
1 ≥ 0, λ∗

2 ≥ 0, λ∗
3 ≥ 0, λ∗

4 ≥ 0. (27)
λ∗
1(δ

∗
1 − ϵ1) = 0, λ∗

2(−δ∗1 − ϵ1) = 0, λ∗
3(δ

∗
2 − ϵ2) = 0, λ∗

4(−δ∗2 − ϵ2) = 0. (28)
Consider Eq. (28), we can further see two conditions:

1. λ∗
1 and λ∗

2 cannot be greater than 0 simultaneously. Otherwise δ∗1 equals to ϵ1 and −ϵ1
simultaneously. This only holds when ϵ1 = −ϵ1 = 0 which means there is no perturbation
added to x1, and thus breaks away from adversarial settings.

2. Similarly, λ∗
3 and λ∗

4 cannot be greater than 0 simultaneously.

Considering all the conditions, we can summarize the generated AEs into three cases:

1. When λ∗
1 = λ∗

2 = λ∗
3 = λ∗

4 = 0. If we substitute the values of λ∗s into Eq. (19), we can see
all the terms related to ϵ1 and ϵ2 are eliminated. This means if we take the derivatives of
Eq. (19) with respect to δ1 and δ2, the optimal δ∗1 and δ∗2 will be some expressions without
ϵ1 and ϵ2. This means the optimized solutions are inside (−ϵ1, ϵ1). If δ∗1 and δ∗2 are far
from the boundary, moderately change ϵ would hardly affect the results.

2. When one of λ∗
1, λ∗

2 is greater than 0, and one of λ∗
3, λ∗

4 is greater than 0. Take (λ∗
1 >

0, λ∗
2 = 0, λ∗

3 > 0, λ∗
4 = 0) as an example, both δ∗1 and δ∗2 reach the boundary condition

Eq. (28), i.e., δ∗1 = ϵ1 and δ∗2 = ϵ2. If we substitute δ∗1 = ϵ1 and δ∗2 = ϵ2 and λ∗s into
Eq. (18), we have:

L = −(y − f(x)− ω1ϵ1 − ω2ϵ2)
2. (29)

We can see the significance of ϵ1 and ϵ2 is different if ω1 ̸= ω2.
3. When only one of λ∗s is greater than 0, while others are 0. Take (λ∗

1 > 0, λ∗
2 = λ∗

3 =
λ∗
4 = 0) as an example, then δ∗1 = ϵ1 according to Eq. (28). If we substitute δ∗1 = ϵ1 into

Eq. (21), we can get:

δ∗2 =
y − f(x)− ω1ϵ1

ω2
, subject to δ∗1 = ϵ1. (30)

Main takeaway. If two pixels have different influences on the model’s predictions, it will affect
the generation process of AEs, leading to different solutions of the optimal δ∗. Thus, it probably
influences the performance of AT.

For completeness, we list the remaining cases as follows:
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1. (λ∗
1 = 0, λ∗

2 > 0, λ∗
3 = 0, λ∗

4 > 0). In this case, δ∗1 = −ϵ1 and δ∗2 = −ϵ2.
2. (λ∗

1 = 0, λ∗
2 > 0, λ∗

3 > 0, λ∗
4 = 0). In this case, δ∗1 = −ϵ1 and δ∗2 = ϵ2.

3. (λ∗
1 > 0, λ∗

2 = 0, λ∗
3 = 0, λ∗

4 > 0). In this case, δ∗1 = ϵ1 and δ∗2 = −ϵ2.
4. (λ∗

2 > 0, λ∗
1 = λ∗

3 = λ∗
4 = 0), then δ∗1 = −ϵ1 according to Eq. (28). If we substitute

δ∗1 = −ϵ1 into Eq. (21), we can get:

δ∗2 =
y − f(x) + ω1ϵ1

ω2
, subject to δ∗1 = −ϵ1.

5. (λ∗
3 > 0, λ∗

1 = λ∗
2 = λ∗

4 = 0), then δ∗2 = ϵ2 according to Eq. (28). If we substitute δ∗2 = ϵ2
into Eq. (20), we can get:

δ∗1 =
y − f(x)− ω2ϵ2

ω1
, subject to δ∗1 = ϵ2.

6. (λ∗
4 > 0, λ∗

1 = λ∗
2 = λ∗

3 = 0), then δ∗2 = −ϵ2 according to Eq. (28). If we substitute
δ∗2 = −ϵ into Eq. (20), we can get:

δ∗1 =
y − f(x) + ω2ϵ2

ω1
, subject to δ∗1 = −ϵ2.

Remark. Note that, we do not cover how different levels of pixel importance would affect the
performance of AT. This is because, during AT, the generated AEs are highly correlated, making the
training process quite complicated to analyze in theory. According to recent developments regarding
learning with dependent data (Dagan et al., 2019), we can only expect generalization when weak
dependence exists in training data. However, after the first training epoch in AT, the model already
depends on all training data, meaning that the generated AEs in the following epochs are probably
highly dependent on each other. Thus, we leave this as our future work.

G DETAILED EXPERIMENT SETTINGS

Dataset. We evaluate the effectiveness of PART on three benchmark datasets, i.e., CIFAR-10
(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and Tiny-ImageNet (Wu, 2017). CIFAR-
10 comprises 50,000 training and 10,000 test images, distributed across 10 classes, with a resolution
of 32×32. SVHN has 10 classes but consists of 73,257 training and 26,032 test images, maintaining
the same 32× 32 resolution. Tiny-ImageNet extends the complexity by offering 200 classes with a
higher resolution of 64×64, containing 100,000 training, 10,000 validation, and 10,000 test images.
For the target model, following the idea in Zhou et al. (2023), we use ResNet (He et al., 2016) for
CIFAR-10 and SVHN, and WideResNet (Zagoruyko & Komodakis, 2016) for Tiny-ImageNet.

Attack settings. We mainly use three types of adversarial attacks to evaluate the performances of
defenses. They are ℓ∞-norm PGD (Madry et al., 2018), ℓ∞-norm MMA (Gao et al., 2022) and ℓ∞-
norm AA (Croce & Hein, 2020a). Among them, AA is a combination of three non-target white-box
attacks (Croce & Hein, 2020b) and one targeted black-box attack (Andriushchenko et al., 2020),
which makes AA a gold standard for evaluating adversarial robustness up to this point. Recently
proposed MMA (Gao et al., 2022) can achieve comparable performance compared to AA but is
much more time efficient. The iteration number for PGD is set to 20 (Zhou et al., 2023), and the
target selection number for MMA is set to 3 (Gao et al., 2022), respectively. For all attacks, we set
ϵ to 8/255.

Defense settings. We use three representative AT methods as the baselines: AT (Madry et al., 2018)
and two optimized AT methods TRADES (Zhang et al., 2019) and MART (Wang et al., 2020). We
set λ = 6 for both TRADES and MART. For all baseline methods, we use the ℓ∞-norm non-targeted
PGD-10 with random start to craft AEs in the training stage. We set ϵ = 8/255 for all datasets, and
ϵlow = 7/255 for our method. All the defense models are trained using SGD with a momentum of
0.9. Following Zhou et al. (2023) and Gao et al. (2022), we set the initial learning rate to 0.01 with
batch size 128 for CIFAR-10 and SVHN. To save time, we set the initial learning rate to 0.02 with
batch size 512 for Tiny-ImageNet. The step size α is 2/255 for CIFAR-10 and Tiny-ImageNet, and
is 1/255 for SVHN. The weight decay is 0.0002 for CIFAR-10, 0.0035 for SVHN and 0.0005 for
Tiny-ImageNet. We run all the methods for 80 epochs and divide the learning rate by 10 at epoch 60
to avoid robust overfitting (Rice et al., 2020). In PART, the initial 20 epochs is the burn-in period.
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H POSSIBILITY OF OBFUSCATED GRADIENTS

We consider the five behaviours listed in Athalye et al. (2018) to identify the obfuscated gradients:

1. We find that one-step attacks do not perform better than iterative attacks. The accuracy of
our method against PGD-1 is 76.31% (vs 43.65% against PGD-20).

2. We find that black-box attacks have lower attack success rates than white-box attacks.
We use ResNet-18 with AT as the surrogate model to generate AEs. The accuracy of our
method against PGD-20 is 59.17% (vs 43.65% in the white-box setting).

3. We find that unbounded attacks reach 100% success. The accuracy of our method against
PGD-20 with ϵ = 255/255 is 0%.

4. We find that random sampling does not find AEs. For samples that are not successfully
attacked by PGD, we randomly sample 100 points within the ϵ-ball and do not find adver-
sarial data.

5. We find that increasing distortion bound increases success. The accuracy of our method
against PGD-20 with increasing ϵ (8/255, 16/255, 32/255 and 64/255) is 43.65%,
10.70%, 0.49% and 0%.

These results show that our method does not cause obfuscated gradients.

I ADDITIONAL EXPERIMENTS ON THE IMPACT OF ATTACK ITERATIONS

Table 3: Robustness (%) of defense methods against PGD with different iterations on CIFAR-10.
We report the averaged results and standard deviations of three runs. We show the most successful
defense in bold.

ResNet-18
Dataset Method PGD-10 PGD-40 PGD-60 PGD-80 PGD-100

CIFAR-10

AT 44.83 ± 0.13 43.00 ± 0.10 42.83 ± 0.07 42.81 ± 0.03 42.81 ± 0.03
PART 45.20 ± 0.17 43.20 ± 0.14 43.09 ± 0.09 43.08 ± 0.10 42.93 ± 0.07
TRADES 48.81 ± 0.21 48.19 ± 0.13 48.16 ± 0.15 48.14 ± 0.08 48.08 ± 0.04
PART-T 49.41 ± 0.11 48.65 ± 0.10 48.64 ± 0.13 48.64 ± 0.04 48.62 ± 0.03
MART 49.98 ± 0.08 49.66 ± 0.16 49.66 ± 0.06 49.54 ± 0.03 49.47 ± 0.05
PART-M 50.50 ± 0.19 50.19 ± 0.15 50.09 ± 0.04 50.06 ± 0.05 50.05 ± 0.02

Table 4: Robustness (%) and Accuracy (%) of PART against PGD with different iterations during
training on CIFAR-10. The target model is ResNet-18. We report the averaged results and standard
deviations of three runs.

ResNet-18
Dataset Method Natural PGD-20 MMA AA

CIFAR-10

PART (PGD-10) 83.42 ± 0.26 43.65 ± 0.16 41.98 ± 0.03 41.74 ± 0.04
PART (PGD-20) 83.44 ± 0.19 43.64 ± 0.13 42.02 ± 0.13 41.82 ± 0.08
PART (PGD-40) 83.36 ± 0.21 43.82 ± 0.08 42.09 ± 0.07 41.86 ± 0.11
PART (PGD-60) 83.30 ± 0.15 44.02 ± 0.12 42.18 ± 0.05 41.91 ± 0.09

We conduct extra experiments to analyze the impact of attack iterations on the performance of CAM
methods. Specifically, we test the robustness of defense methods against PGD with different itera-
tions on CIFAR-10 (see Table 3). With the increase of attack iterations, the robustness of defense
methods will decrease. This is because the possibility of finding worst-case examples will increase
with more attack iterations. The effectiveness of CAM technology itself, however, is rarely influ-
enced by attack iterations, as our method can consistently outperform baseline methods.

Furthermore, we take a close look at how the number of attack iterations during training would affect
the final performance of CAM methods (see Table 4). Similarly, if we increase the attack iterations
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during training, the model will become more robust as the model learns more worst-case examples
during training. At the same time, the natural accuracy has a marginal decrease. Overall, we can
obtain same conclusions that the performance of our method is stable and CAM methods are rarely
affected by the attack iterations.

J ADDITIONAL EXPERIMENT ON ADAPTIVE MMA ATTACK

Table 5: Robustness (%) of defense methods against adaptive MMA on CIFAR-10. We report the
averaged results and standard deviations of three runs. We show the most successful defense in bold.

ResNet-18
Dataset Method MMA-20 MMA-40 MMA-60 MMA-80 MMA-100

CIFAR-10

AT 35.36 ± 0.10 35.02 ± 0.05 34.93 ± 0.09 34.86 ± 0.06 34.85 ± 0.07
PART 35.67 ± 0.07 35.35 ± 0.11 35.29 ± 0.13 35.29 ± 0.09 35.17 ± 0.05
TRADES 40.14 ± 0.08 39.89 ± 0.12 39.93 ± 0.05 39.87 ± 0.08 39.82 ± 0.03
PART-T 40.78 ± 0.13 40.57 ± 0.11 40.51 ± 0.08 40.49 ± 0.05 40.48 ± 0.02
MART 39.14 ± 0.06 38.79 ± 0.13 38.80 ± 0.10 38.79 ± 0.05 38.74 ± 0.08
PART-M 40.56 ± 0.11 40.26 ± 0.07 40.23 ± 0.12 40.21 ± 0.08 40.20 ± 0.07

For adaptive attacks, we conduct an additional experiment to test the robustness of defense methods
against adaptive MMA (see Table 5 above). The choice of MMA over AA for adaptive attacks is
due to AA’s time-consuming nature as an ensemble of multiple attacks. Incorporating the CAM
method into AA would further slow the process. MMA, in contrast, offers greater time efficiency
and comparable performance to AA.

K ADDITIONAL EXPERIMENT ON DIFFERENT CAM METHODS

Table 6: Comparison of PART’s performance with different CAM methods on CIFAR-10. We report
the averaged results and standard deviations of three runs.

ResNet-18 (CIFAR-10)
Method CAM Natural PGD-20 MMA AA

PART
GradCAM 83.42 ± 0.26 43.65 ± 0.06 41.98 ± 0.03 41.74 ± 0.04
XGradCAM 83.34 ± 0.18 43.53 ± 0.08 41.97 ± 0.05 41.74 ± 0.02
LayerCAM 83.38 ± 0.21 43.67 ± 0.11 42.07 ± 0.09 42.03 ± 0.16

L ADDITIONAL EXPERIMENT ON DIFFERENT AE GENERATION METHODS

Table 7: Comparison of PART’s performance with different CAM methods on CIFAR-10. We report
the averaged results and standard deviations of three runs.

ResNet-18 (CIFAR-10)
AE Generation Method Natural PGD-20 MMA AA

PGD-10 AT 82.58 ± 0.05 43.69 ± 0.28 41.80 ± 0.10 41.63 ± 0.22
PART 83.42 ± 0.26 43.65 ± 0.06 41.98 ± 0.03 41.74 ± 0.04

MMA AT 81.76 ± 0.11 44.76 ± 0.14 42.31 ± 0.13 42.04 ± 0.15
PART 83.55 ± 0.28 44.99 ± 0.14 42.50 ± 0.22 42.09 ± 0.24
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M EXTRA COST INTRODUCED BY CAM METHODS

To avoid introducing unaffordable computational time by CAM methods, we update the mask m
for every 10 epochs. We show that the performance of our method remains competitive (see Table
8) given the mask is updated for every 10 epochs. Regarding memory consumption, the majority
of the memory is allocated for storing checkpoints, with only a small portion attributed to CAM
technology. We compare the computational time (hours : minutes : seconds) and the memory
consumption (MB) of our method to different AT methods. See Table 9 and 10 for more details.

Table 8: Robustness (%) of defense methods on CIFAR-10. The target model is ResNet-18. We
report the averaged results and standard deviations of three runs. We show the most successful
defense in bold.

ResNet-18 (CIFAR-10)
Method Natural PGD-20 MMA AA
AT 82.58 ± 0.14 43.69 ± 0.28 41.80 ± 0.10 41.63 ± 0.22
PART (update m every epoch) 83.42 ± 0.26 43.65 ± 0.16 41.98 ± 0.03 41.74 ± 0.04
PART (update m every 10 epochs) 83.77 ± 0.15 43.36 ± 0.21 41.83 ± 0.07 41.41 ± 0.14
TRADES 78.16 ± 0.15 48.28 ± 0.05 45.00 ± 0.08 45.05 ± 0.12
PART-T (update m every epoch) 79.36 ± 0.31 48.90 ± 0.14 45.90 ± 0.07 45.97 ± 0.06
PART-T (update m every 10 epochs) 80.13 ± 0.16 48.72 ± 0.11 45.59 ± 0.09 45.60 ± 0.04
MART 76.82 ± 0.28 49.86 ± 0.32 45.42 ± 0.04 45.10 ± 0.06
PART-M (update m every epoch) 78.67 ± 0.10 50.26 ± 0.17 45.53 ± 0.05 45.19 ± 0.04
PART-M (update m every 10 epochs) 80.00 ± 0.15 49.71 ± 0.12 45.14 ± 0.10 44.61 ± 0.24

Table 9: Computational time (hours : minutes : seconds) of defense methods on CIFAR-10.

ResNet-18 (CIFAR-10)
GPU Method Training Speed Difference

1*NVIDIA A100

SAT 02:14:37 00:29:08PART 02:43:45
TRADES 02:44:19 00:30:47PART-T 03:15:06

MART 02:09:23 00:30:14PART-M 02:39:37

Table 10: Memory consumption (MB) of defense methods on CIFAR-10.

ResNet-18 (CIFAR-10)
Method Memory Consumption Difference

SAT 5530MB 347MBPART 5877MB
TRADES 5369MB 319MBPART-T 5688MB

MART 5553MB 341MBPART-M 5894MB
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N ADDITIONAL EVIDENCE

Figure 6: The examples of the high-contribution pixel regions learnt by ST, AT and PART. The
first column contains original images. The second-to-last columns show the important pixel regions
learnt by ST, AT and PART respectively on CIFAR-10.

22



Under review as a conference paper at ICLR 2024

   AT                TRADES            MART    AT                TRADES            MART

   AT                TRADES            MART   AT                TRADES            MART

  PART              PART_T          PART_M   PART              PART_T          PART_M

  PART              PART_T          PART_M  PART              PART_T          PART_M

Epoch: 30

Epoch: 30

Epoch: 50

Epoch: 50 Epoch: 60

Epoch: 60

Epoch: 40

Epoch: 40

   AT                TRADES            MARTEpoch: 30

   AT                TRADES            MART    AT                TRADES            MART

Epoch: 30

   AT                TRADES            MART

Epoch: 50

Epoch: 50

  PART              PART_T          PART_M

  PART              PART_T          PART_M

  PART              PART_T          PART_M

Epoch: 40

Epoch: 40

Epoch: 60

Epoch: 60   PART              PART_T          PART_M

Figure 7: The additional examples of how the high-contribution pixel regions change with epoch
number ∈ {30, 40, 50, 60} on CIFAR-10.

23



Under review as a conference paper at ICLR 2024

   AT                TRADES            MART

   AT                TRADES            MART    AT                TRADES            MART

   AT                TRADES            MART

  PART              PART_T          PART_M  PART              PART_T          PART_M

Epoch: 30

Epoch: 30   PART              PART_T          PART_M

Epoch: 50

Epoch: 50

Epoch: 40

Epoch: 40   PART              PART_T          PART_M

Epoch: 60

Epoch: 60

   AT                TRADES            MART    AT                TRADES            MART

   AT                TRADES            MART   AT                TRADES            MART

  PART              PART_T          PART_M

  PART              PART_T          PART_M   PART              PART_T          PART_M

  PART              PART_T          PART_MEpoch: 60

Epoch: 60

Epoch: 40

Epoch: 40Epoch: 30

Epoch: 30

Epoch: 50

Epoch: 50

Figure 8: The additional examples of how the high-contribution pixel regions change with epoch
number ∈ {30, 40, 50, 60} on CIFAR-10.
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