
AgentHPO: Large Language Model Agent for
Hyper-Parameter Optimization

Siyi Liu1, Chen Gao2∗, Yong Li2∗
1Hong Kong University of Science and Technology (Guangzhou)

2Tsinghua University
ssui.liu1022@gmail.com, chgao96@gmail.com, liyong07@tsinghua.edu.cn

Hyperparameter optimization is critical in modern machine learning, requiring
expert knowledge, numerous trials, and high computational and human resources.
Despite the advancements in Automated Machine Learning (AutoML), challenges
in terms of trial efficiency, setup complexity, and interoperability still persist. To
address these issues, we introduce a novel paradigm leveraging Large Language
Models (LLMs) to automate hyperparameter optimization across diverse machine
learning tasks, which is named AgentHPO (short for LLM Agent-based Hyper-
parameter Optimization). Specifically, AgentHPO processes the task information
autonomously, conducts experiments with specific hyperparameters (HPs), and
iteratively optimizes them based on historical trials. This human-like optimization
process largely reduces the number of required trials, simplifies the setup pro-
cess, and enhances interpretability and user trust, compared to traditional AutoML
methods. Extensive empirical experiments conducted on 12 representative machine-
learning tasks indicate that AgentHPO not only matches but also often surpasses
the best human trials in terms of performance while simultaneously providing
explainable results. Further analysis sheds light on the strategies employed by the
LLM in optimizing these tasks, highlighting its effectiveness and adaptability in
various scenarios.

1. Introduction

Experiment

Obsearvation

Experiment

Obsearvation

LLM Brain

Tools

Planning

Human Expert Traditional AutoML LLM-Based Agent

Figure 1: Comparative Frameworks in Hyperparameter Optimization: Human Expertise, Traditional
AutoML, and LLM-Based Agents

InMachine Learning (ML), Hyperparameter Optimization (HPO) is indispensable for fitting models
to diverse problems. This process involves adjusting hyperparameters (HPs) that shape the model’s
structure and learning method, which are set before training and greatly affect performance [1, 2].
Traditionally, human experts with algorithmic knowledge play an essential role in HPO, leveraging
their theoretical and practical ML expertise to refine models for improved performance. However,
the complexity of HPO, due to the extensive range of configurations and task-specific demands,
makes it a time-intensive process heavily reliant on an expert’s ability to adapt their knowledge to
new scenarios [3–5].

∗Corresponding Authors.

Second Conference on Parsimony and Learning (CPAL 2025).

To alleviate the intensive labor of manual HPO, the ML community has turned towards Automated
Machine Learning (AutoML) [6]. AutoML frameworks employ methods like Bayesian optimization
[7] to explore the HP space, reducing the need for extensive human intervention. Despite showing
promise, AutoML-based HPO still faces the following drawbacks: Time-Intensive Trials: AutoML’s
reliance on numerous trials for black-box optimization is effective but burdensome, particularly with
complex tasks and large datasets. The balance between the number of trials and computational
demand creates a trade-off between efficiency and the quality of results [3, 4, 8]. Complex Setup:
Despite AutoML’s versatility across domains and hardware, its setup is intricate. That is, it involves
choosing suitable tools and defining optimal HP spaces, where misconfigurations can lead to ineffi-
ciency or poor performance without experts’ supervision [9]. Lack of Interpretability: The lack of
transparency in many AutoML methods leads to concerns about their dependability. It is crucial,
particularly for less experienced users, to have a clear understanding of how different HPs impact
the model and the reasoning behind specific configuration choices. This interpretability gap often
makes manual tuning a more trusted choice over AutoML [10–12].
In this work, we propose AgentHPO, which utilizes the advancements in Large Language Models
(LLMs)-powered autonomous agents, to overcome the complexities faced by traditional AutoML
methods. As illustrated in Figure 1, AgentHPO draws on the extensive domain knowledge, advanced
tool utilization, and sophisticated reasoning of LLMs to ease the dependence on human experts.
To be specific, AgentHPO is innovatively designed with two specialized agents: Creator and Executor.
The Creator agent acts as the starting point of optimization, enabling users to input task-specific
details, such as dataset characteristics, model structure, and optimization goals, in a natural language
format. This agent adeptly interprets the input and generates initial HPs, emulating the expertise of
a human specialist. Subsequently, based on the HPs provided by the Creator, the Executor agent takes
on the responsibilities of training models, recording experimental data, and conducting outcome
analyses. The Creator uses insights from the Executor’s training history to iteratively refine the HPs,
thereby streamlining the optimization process and making it more intuitive and efficient. With the
above designs, AgentHPO effectively addresses several known challenges in traditional AutoML
methods, as follows:
High Trial Efficiency: By leveraging the specialized capabilities of the Creator and Executor, Agen-
tHPO significantly reduces the time and resources required for conducting multiple trials.
Simplified Setup and Configuration: AgentHPO’s natural language input feature makes it easier to
input task-specific details and effectively define optimal HP search spaces. This significantly reduces
the complexity and likelihood of misconfiguration.
Improved Interpretability and Trust: AgentHPO’s clear, textual explanations of HP choices fos-
ter greater user trust and understanding, making this approach more accessible and preferable,
particularly for those without expert-level knowledge of HPO.
The key contributions of our work can be summarized as follows:

• To the best of our knowledge, we take the first step to introduce LLM-based autonomous agents
in HPO problems. Our investigation sheds light on the extensive capabilities and adaptability of
LLMs in automating and optimizing ML processes.

• We propose an LLM agent-based general framework comprised of distinct and specialized agents:
Creator and Executor. The two agents work collaboratively to assist a wide range of users, especially
those without extensive expertise, efficiently tuning ML models.

• We carried out extensive experiments on 12 representative ML HPO tasks across various domains
and the results showcase the method’s practicality and superior performance.

2

2. Related Works

2.1. LLM-based Autonomous Agents
Large language models (LLMs) have emerged as a pivotal element in AI agent development, prized
for their extensive knowledge bases, reasoning and planning capabilities, generalization potential,
and adeptness at tool use [13, 14]. The integration of LLMs as the core cognitive component in these
agents has paved the way for their versatile application across various real-world domains. For
instance, MetaGPT [15] has leveraged LLM-based multi-agent systems for collaborative software
development tasks. Park et al. [16] explored the use of agents for simulating intricate human
interactions. Voyager [17] crafted an agent capable of navigating the complex environment of
the Minecraft game. Further pushing the boundaries, Boiko et al. [18] introduced Coscientist, an
initiative harnessing the power of LLM-based agents for pioneering autonomous chemical research.
In this paper, we delve deeper into the capabilities of LLM-based autonomous agents in the AutoML
field, focusing on addressing HPO.

2.2. LLMs for AutoML
Large Language Models (LLMs) have the potential to significantly enhance ML tasks by au-
tonomously decomposing and executing complex ML operations. These models are being increas-
ingly recognized for their ability to deliver convenient, comprehensive, and reliable decision-making
across a variety of applications and tasks. For instance, AutoML-GPT [19] leverages LLMs to conduct
HPO by iteratively prompting with data and model cards, along with mimicking model training via
LLMs. Similarly, MLcopilot [20] utilizes LLMs, informed by past experiences and knowledge, to
predict optimal HP settings in a categorized manner. CAAFE [21] employs LLMs for automated
feature engineering in tabular data to generate semantically meaningful features. EvoPrompting [22]
integrates LLMs as adaptive operators in an evolutionary neural architecture search (NAS) algorithm.
Auto2Graph [23] deploys LLM-based agents to devise tailored solutions for diverse graph-structured
data and learning tasks. Moreover, MLAgentBench [24] introduced a suite of ML tasks specifically
for benchmarking AI research agents, with an emphasis on advancing research in the ML domain.
However, these methods are either not specifically designed to address HPO or lack a mechanism
to iteratively refine HPs based on direct, empirical evidence from historical training performance.
Distinct from previous research, our AgentHPO introduces the first agent-based task-agnostic HPO
framework, uniquely designed to iteratively optimize HPs across various real-world ML tasks.

2.3. LLMs-enhanced Model Optimization
Recent studies reveal the potential of LLMs in optimization tasks involving trajectory input. Opt-
Former [25] trains a transformer model on extensive collections of HPO data to predict new HP
configurations. OPRO [26] performs optimization by prompting LLMswith solution-score pairs, and
Zhang et al. [27] extended this strategy to HPO settings. However, these works overlook the impact
of training logs and necessitate manual code configuration adjustments and executions. That is, these
works only partly use LLMs as an assistant tool, which still highly relies on huge human efforts. In
contrast, our research focuses on LLM-based autonomous agents that incorporate detailed training
logs into experimental documentation. This approach leads to a more efficient HPO framework,
significantly reducing human involvement.

3. Methodology
Figure 2 and Algorithm 1 illustrate our AgentHPO framework, which streamlines the HPO process.
Initially, users provide their dataset characteristics and learning goals in natural language, offering a
more user-friendly alternative to traditional, code-intensive configurations. The process commences
with an LLM-empowered Creator agent C that interprets the user-provided task-specific background
information. This agent then generates an initial HP configuration. Subsequently, Executor agent E

3

Background Information Tools SetupHyperparameter Optimization

Creator Executor

Exp Logs

New HPHP Information
learning_rate: [1e-6, 1e-1]
batch size: [16, 256]
optimizer: [sgd, rmsprop, adam]

Dataset Information
Dataset name: Cifar-10
Number of classes: 10
Dataset size: 50,000

Optimization Goal
Tuning the hyperparameters of
a image classification model to
maximize the accuracy.

Model Information
ResNet18 series including
ResNet18, ResNet18d,
SeResNet18, SKResNet18

Change HP
Configs

Training
Models

Record
Results

Analyze
Results

Figure 2: Overview of our AgentHPO. The AgentHPO processes textual background information,
autonomously conducts experiments with specific HPs, and iteratively optimizes them. This human-
like optimization process enables AgentHPO to achieve high performance with minimal trials and
provides users with an interpretable optimization solution.

employs this configuration to train models, analyze the training outputs, and log the experimental
data. Leveraging the accumulated training history, the Creator agent iteratively refines and proposes
new HPs. This approach streamlines the execution of various ML HPO tasks, significantly reducing
the necessity for deep AutoML expertise or high-level coding skills. Subsequent sections delve
into the mechanisms by which LLM agents execute HPO, utilizing the provided information and
historical training logs.

3.1. Creator Agent

This section describes our methodology for prompting the Creator agent for initial HP generation and
subsequent optimization. The designed prompts enable the LLM to not only generate appropriate
HPs for a specific ML task but also to iteratively refine them. The prompt structure comprises several
critical elements, each contributing to the informed decision-making process of the Creator agent:

• HP Information: This supplies the agent with a foundational understanding of the HPs that
require optimization, encompassing a list of HP names and their descriptions. Additionally, value
ranges are specified to constrain the LLM’s search space.

• Dataset Information: This includes essential statistical details of the dataset such as the number
of samples, feature dimensions, and number of target classes.

• Optimization Goal: This defines the objective that the Creator agent aims to achieve, which may
involve maximizing or minimizing specific metrics. These metrics pertain to model efficacy as
well as operational constraints like memory usage or training duration.

• Model Information: This pertains to fundamental details about the training model, including its
architecture and the number of parameters it contains.

The composite of these components constitutes the background information B, equipping the Creator
agent with the insights needed for strategic and informed HP generation. With this setup, the
Creator agent, denoted as C = init(LLM,B), is well-equipped to commence the HP generation and
optimization tasks. The complete prompts utilized by the Creator agent are provided in Appendix
A.5

4

3.2. Executor Agent
The role of the Executor agent commences upon receipt of the generated HP configurations from the
Creator agent. Tasked with the crucial responsibility of conducting experiments, the Executor assesses
the effectiveness of these HP settings. Each training session under the Executor is conceptualized as
an interactive environment, allowing the agent to execute specific actions and observe their outcomes.
The Executor agent utilizes a comprehensive suite of tools T to facilitate these actions:

• Change HP Configs: The agent is equipped to modify the HPs in response to newly updated
configurations.

• Training Models: The agent possesses the capability to execute model training scripts, allowing
for evaluation of the outcomes of the altered configurations.

• Analyze Results: Upon the completion of model training, the agent scrutinizes the training logs,
which include the trajectory of training and validationmetrics, to conduct a comprehensive analysis
of the training outputs and synthesize a summary of the experiment.

• Record Results: Finally, the agent documents the outcomes of the training and the corresponding
analyses in the experimental logs for future reference.

Equippedwith these tools, the Executor agent is empowered to not only implement and adjust HPs but
also to critically evaluate model performance and systematically record the findings. This capability
ensures a structured and methodical approach to experimental ML workflows. The Executor is
instantiated as E = init(LLM, T), ready to undertake its designated tasks. Detailed prompts for the
Executor agent are available in Appendix A.6.

3.3. Iterative Hyperparameter Optimization
To enhance model performance through HPO, expert practitioners typically consult historical exper-
imental records to deduce potential avenues for improvement. This iterative process, which tests
new HP configurations Ht and validates them through experimentation, aims to converge on an
optimized model performance H∗. Emulating this expert approach, the Creator (C) and Executor
(E) agents operate within a similar paradigm for HP optimization in our AgentHPO framework.
Within each iteration t of the optimization process, the Creator agent C generates a set of HPs Ht,
along with the rationales Rt for their selection, by analyzing the accumulated experimental logs L
(step 8 inAlgorithm 1). The Executor agentE then takes theseHPsHt and carries out the experiments,
with the outcomes of these experiments being captured in Lt (step 9 in Algorithm 1). The results
Lt encompass the performance metrics and a comprehensive analysis post-experimentation. These
findings are appended to the experimental logs L, creating a historical record that includes the
HPs Ht, their explanations Rt, and the experimental results Lt (step 10 in Algorithm 1). Thus,
the experimental logs L (depicted in Figure 6) serve as a dynamic repository, documenting the
iterative progress and informing the Creator agent’s subsequent decisions. In this context, L can
also be viewed as a memory block, archiving sequences of the agents’ past observations, reflections,
and actions. This repository harnesses prior experiences to inform future strategy formulation and
decision-making processes within the AgentHPO framework.
This cyclical refinement, driven by the Creator agent’s analysis and the Executor agent’s experimental
results, ensures a progressively optimized set of HPsHt and systematically steers the process towards
the ideal HP H∗.

3.4. Explainable Hyperparameter Optimization
As we discussed in Section 3.3, experimental logs L encompass not only the HPO trials but also
provide comprehensive explanations for each trial. Therefore, our AgentHPO addresses the prevalent
issue of interpretability in HPO processes by providing optimal HP H∗ and its corresponding
reasoning R∗. Furthermore, the Creator agent offers an in-depth final analysis upon the conclusion

5

of each experiment (step 12 in Algorithm 1). These analyses are pivotal as they furnish users with
a summary of the HPO process, enhancing their understanding of the impact of various HPs on
the model’s performance. Finally, the Creator agent can also propose potential avenues for future
optimization, thereby guiding users toward more effective and efficient HPO strategies. For more
details, please refer to Appendix 5.4.

4. Benchmark Setting

Table 1: Comprehensive overview of tasks, datasets, and models, datasets marked with † indicate
their release occurred post the knowledge cutoff dates of GPT-3.5 and GPT-4. For all metrics, higher
is preferable.

Task Sub-Task Dataset Model Metrics

CV Image classification Cifar-10 [28] ResNet-18 [29] AccuracyButterfly Image† [30]
Segmentation CityScapes [31] ENet [32] IOU

NLP Text classification Ecommerce Text† [33] DistilBERT [34] AccuracySST2 [35]
Machine Translation Opus Books [36] T5-Small [37] BLEU

RecSys Matrix Factorization MovieLens 1M [38] LightGCN [39] NDCG@10
CTR DeepFM [40] AUC

Tabular Classification Water Portability† [41] XGBoost [42] F1 Score
Regression House Price† [43] R2 Score

GNN Node classification Cora [44] GCN [45] Accuracy
Link prediction Pubmed [44] VGAE [46] AUC

4.1. Task descriptions
In this paper, our methodology is applied across a diverse array of 12 tasks, covering disciplines such
as Computer Vision (CV), Natural Language Processing (NLP), Recommender Systems (RecSys),
Tabular Data, and Graph Neural Networks (GNN). The specifics of these tasks are presented in Table
1. Our task selection includes both classic datasets and recent challenges from Kaggle, ensuring
that the study is representative of both traditional benchmarks and current, real-world problems,
which lie outside the scope of the language models’ pre-training data2. This range was meticulously
selected to span a broad spectrum of complexities and contemporary relevance. A comprehensive
discussion on each task and the corresponding HP search spaces can be found in Appendix A.3 and
Table 2.

4.2. Experimental Setup
Evaluation of AgentHPO. Our experimental procedure entails conducting 10 trials per run (T = 10).
At each trial milestone t (specifically at the {1, 3, 5, 10} trial marks), we record the best metric
performance achieved among the first t trial results. This tiered evaluation process allows us to
assess performance improvements throughout the trials.
Baseline Settings. In our experiments, we implementedRandomSearch andBayesianOptimization
[7] as baseline methods, with each executing 10 runs per experiment, totaling 100 iterations. The
same process of recording the best metric performance at each trial milestone is applied to baselines,
ensuring a consistent and fair comparison. Given that a random search with 100 trials exhibits a 99%
probability of locating a near-optimal HP region, constituting merely 5% of the search grid [47], the
peak performance across these trials suggests the optimal outcome achievable via human-directed

2Based on the information provided by OpenAI’s official documentation, the GPT-3.5 model encompasses
knowledge up to September 2021, while the GPT-4 model includes updates up to April 2023.

6

https://platform.openai.com/docs/models/continuous-model-upgrades

1 3 5 10
Trial

50

60

70

80

A
cc

ur
ac

y
Image Classification Cifar-10

1 3 5 10
Trial

40

60

80

A
cc

ur
ac

y

Image Classification Butterfly

1 3 5 10
Trial

30

40

50

60

70

IO
U

Image Segmentation

1 3 5 10
Trial

80

85

90

A
cc

ur
ac

y

Text Classification SST2

1 3 5 10
Trial

75

80

85

90

95

A
cc

ur
ac

y

Text Classification Ecommerce

1 3 5 10
Trial

17.5

20.0

22.5

25.0

27.5

B
LE

U
Machine Translation

1 3 5 10
Trial

10

15

20

25

N
D

C
G

@
10

MF

1 3 5 10
Trial

72.5

75.0

77.5

80.0

82.5

A
U

C

CTR

1 3 5 10
Trial

68

69

70

71

72

F1

Tabular Classification

1 3 5 10
Trial

47.5

50.0

52.5

55.0

57.5

R
^2

Tabular Regression

1 3 5 10
Trial

65

70

75

80
A

cc
ur

ac
y

Node Classification

1 3 5 10
Trial

90

92

94

96

A
U

C

Link Prediction

Random Search Bayesian Human Best over 100 Trial GPT-3.5 GPT-4

Figure 3: Performance trajectory of various baselines across trials, with the X-axis indicating the trial
count and the Y-axis showing the associated task metrics. To benchmark performance, we showcase
the optimal outcome within 100 trials as a representation of the highest achievement attainable by
human effort.

efforts (denoted asHuman Best). For the LLM-based optimization baseline, we adoptedOPRO [26]
by only recording the HP-score pairs in experimental logs, while keeping other settings consistent
with AgentHPO.
AgentHPO Settings. In our study, the AgentHPO framework incorporates OpenAI’s GPT-4
and GPT-3.5 as LLMs. The APIs for GPT-4 and GPT-3.5 are set as gpt-4-1106-preview and
gpt-3.5-turbo-1106 respectively. Due to the higher operational costs associated with GPT-4,
we strategically conduct 5 runs using GPT-4, compared to 10 runs for GPT-3.5. For the Creator
agent within AgentHPO, the temperature parameter is set to 1 to enhance exploration, while
other HPs remain at default settings. The AgentHPO is implemented based on LangChain’s API
zero-shot-react-description for both agents.

5. Results and Analysis

5.1. Trajectory over Trails

Figure 3 delineates the performance trajectories for a suite of tasks over a series of trials, with detailed
numerical results presented in Table 3. The key observations from this study are summarized as
follows:

7

1 3 5 10
Trial

89

90

91

92

93

94

95

AU
C

GPT-3.5

Human Best
AgentHPO
OPRO

(a) GPT-3.5

1 3 5 10
Trial

90

91

92

93

94

95

96

AU
C

GPT-4

Human Best
AgentHPO
OPRO

(b) GPT-4
Figure 4: Link Prediction performance trajectory comparison between OPRO and AgentHPO

• Superior Performance: AgentHPO consistently outperforms random search baselines and, in
some instances, surpasses human best results. Specifically, in the 10th trial (T = 10), AgentHPO’s
GPT-3.5 model exhibits a 3.83% average improvement over random search results, though it is
slightly lower than the best human results by 1.18%. Meanwhile, GPT-4 showcases a remarkable
6.66% average enhancement over random search and a 1.52% average improvement over the best
human performances. These results confirm the AgentHPO’s proficiency in leveraging intrinsic
knowledge for HPO.

• Initial Trial Efficiency: Both GPT-3.5 and GPT-4 exhibit impressive performance in the initial
trials (T = 1). For example, GPT-3.5 demonstrates a notable 56.81% average improvement over
random search in the first trial, while GPT-4 achieves an even more impressive 61.29%. These
figures highlight the models’ ability to effectively utilize pre-learned knowledge for swift and
effective optimization right from the start, underscoring their initial trial proficiency.

• Robustness on New Datasets: AgentHPO shows remarkable effectiveness on newer datasets that
were released after their training cut-off. For example, on the Butterfly dataset, GPT-4 achieves
85.92± 0.57%, surpassing the human benchmark of 78.27%. Similarly, GPT-3.5 also demonstrates
strong performance on the Butterfly dataset, achieving 84.79 ± 1.01% in its 10th trial. These
results highlight the models’ ability to employ broad optimization strategies, showcasing their
adaptability and a comprehensive understanding of optimization principles, enabling them to
perform effectively on both familiar and new datasets.

• GPT-4’s Superiority Over GPT-3.5: A notable finding in our analysis is the consistent outperfor-
mance of GPT-4 over GPT-3.5. On average, in initial trials across all tasks, GPT-4 surpasses GPT-3.5
by 4.65%, demonstrating its enhanced efficiency in initial stages of optimization. This trend contin-
ues into later stages, with GPT-4 maintaining a 3.08% higher performance than GPT-3.5 by the 10th
trial. Additionally, GPT-4 exhibits more robust results, evidenced by its lower average standard
deviation of 0.358 compared to GPT-3.5’s 0.994. These statistics underscore GPT-4’s superior
optimization capability and its consistency in delivering more reliable and effective results.

Collectively, these findings elucidate the advanced capabilities of AgentHPO in the realm of HPO,
showcasing the potential of LLMs in the field of AutoML.

5.2. Influence of Experimental Logs
Experimental logs play a crucial role in AgentHPO, recording historical HP training outcomes,
such as training/validation losses and evaluation metrics that evolve over epochs (see Figure 6 and
Appendix A.7 for examples). To verify how training logs assist the Creator agent in generating better
HPs, we compared our AgentHPO with OPRO, which only records solution-score pairs (in the
HPO setting, HP-score pairs) in logs. We conducted experiments on link prediction tasks as the
performance improvement over trials is more significant than with other tasks.

8

5 4 3 2 1 0 1 2 3 4 5
X

5
4
3
2
1
0
1
2
3
4
5

Y 0
1

2

3

4

5

6 7

8

0

1

2
34

5

67

8

f(x, y) = (x 2)2 + (y 3)2

Traj 1
Traj 2

0

15

30

45

60

75

90

105

120

135

(a) GPT-3.5

1 0 1 2 3 4 5 6 7 8
X

1

0

1

2

3

4

5

6

7

8

Y

0

1

2

3
45

6

789

0 1 2 3 45

6

7

8

9

f(x, y) = (x 3)2 + (y 5)2

Traj 1
Traj 2

0.0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

60.0

(b) GPT-4
Figure 5: Comparison of optimization trajectories between GPT-3.5 and GPT-4

As illustrated in Figures 4a and 4b, our AgentHPO achieves better optimization over trials compared
to OPRO. These results further demonstrate the importance of experimental logs in helping the
Creator agent detect training patterns more effectively (e.g., over- or under-fitting and converge
speeds), thus generating more suitable subsequent HPs.

5.3. Optimization Strategy Analysis

To elucidate the underlying optimization strategy employed by AgentHPO, we embarked on a task
to optimize a convex function to identify its minimum value over two variables. Specifically, we
tasked GPT-3.5 with minimizing the function f(x, y) = (x− 2)2 + (y − 3)2, with x, y ∈ [−5, 5], and
assigned GPT-4 a similar function f(x, y) = (x− 3)2+(y− 5)2, with x, y ∈ [−10, 10]. These functions
were chosen to test the agents’ ability to search for the optimal x and y values within a given range,
a non-trivial challenge for the LLMs due to the absence of explicit boundary values and function
information3.
The optimization trajectories, visualized in Figures 5a and 5b, reveal distinct behaviors for eachmodel.
Notably, both LLMs initiated their search from the central region of the defined space, aligning with
the heuristic that the middle is a logical starting point without prior data. Subsequently, GPT-3.5
exhibited a search pattern akin to a “random search" strategy, later refining its search to progressively
converge on the function’sminimum. This suggests that GPT-3.5’s strategymay involve an “educated"
random search, leveraging accumulated information to hone in on the target. The strategic search
patterns of GPT-4, shown in Figure 5b, highlight a strong link between model performance and
optimization path. Trajectory 1 demonstrates a systematic approach akin to heuristic or gradient-
descent methods, quickly identifying and following a promising direction toward the function’s
minimum. This suggests GPT-4’s rapid recognition and focused pursuit of an optimal path, reflecting
a deep understanding of optimization landscapes. Conversely, Trajectory 2 exhibits an initial broad
exploration, resembling a global search strategy, before zeroing in on the minimum through a refined
local search, similar to simulated annealing or Bayesian optimization techniques.
In conclusion, the behavior of AgentHPO affirms the viability of LLMs as powerful tools in the HPO.
AgentHPO can substantially reduce the time and computational resources typically required for
HPO while simultaneously increasing the probability of achieving near-optimal solutions.

3The range of values for x and y has been deliberately narrowed to more clearly illustrate the trajectories
generated by GPT-3.5. This adjustment helps mitigate potential confusion in the plot that could arise from the
inherent randomness of the model’s search strategy.

9

5.4. Explainable Hyperparameter Optimization
In the domain of HPO, the interpretability of model decision-making processes is of paramount
importance. For this reason, we have showcased a segment of the experimental logs from AgentHPO
in Figure 6, with a more detailed example available in Appendix A.7. These logs offer not only
historical performance data but also enhance the process’s interpretability. They allow users to
monitor the progression of model training, thereby promoting transparency in HPO and providing
an explainable HPO solution.

Experimental 1

Based on the given details, an initial set of hyperparameter
to maximize the accuracy could be as follows:
• learning_rate: 1e-3
• weight_decay: 1e-5
• epoch: 20

These initial hyperparameter settings are a balanced
combination of values that cover a range of possibilities
within the specified ranges.

Epoch:
Train Acc:
Val Acc:
Total Training Time: 1442.33s | Final Valid Acc: 82.43%

The model showed signs of overfitting, as indicated by the
perfect training accuracy and the plateauing validation
accuracy.

[0, 5, 10, 15, 20]
[39.54, 82.49, 96.30, 97.73, 98.30]
[50.3, 77.76, 82.73, 81.34, 82.69]

Executor Agent

Creator Agent

Experimental 2
Creator Agent

Based on the observation of overfitting, the new sub-task for
the task execution agent should include the following
hyperparameter adjustments:
• learning_rate: 1e-4 (to potentially improve generalization

with a smaller learning rate)
• Weight decay: 1e-3 (to increase regularization and combat

overfitting)
• epochs: 50 (to allow more time for the model to converge

with a smaller learning rate)

…

Updating

Figure 6: Example of experimental logs.

Despite this commonality, the two models exhibit
notable differences in their approach to generating
HP configs. GPT-4 distinguishes itself by providing
more detailed explanations for each HP’s reasoning.
It goes beyond mere logging of training progress. As
seen in Experimental 4 in GPT-4’s logs, it delves into
the rationale behind each parameter choice, draw-
ing on the results from previous experiments to in-
form its decisions. This capability suggests a more
advanced understanding of the optimization land-
scape, allowing GPT-4 to strategically deduce HP val-
ues that are likely to yield improvements in model
performance. Conversely, GPT-3.5’s approach within
AgentHPO resembles that of an educated guesswork
system. While it can effectively generate new HP sets
and provide a degree of rationale for its choices, its
ability to reason and iterate based on historical per-
formance data is less sophisticated compared to GPT-
4. The GPT-3.5-based agent relies more heavily on
established heuristics and incremental adjustments,
which, although effective, may not capture the full
complexity of the optimization process as adeptly as
GPT-4.
The nuanced distinction between the two models’
strategies underscores the evolution of LLMs and
their potential to enhance HPO. GPT-4’s nuanced
reasoning and learning from past results represent
a significant step forward, offering a more strategic
and potentially more effective pathway to optimal
HP configurations.

6. Conclusion
In this work, we take the pioneering step in exploring and replacing human efforts in tuning machine-
learning models with large language model-based agents. We propose a creator-executor framework
that shows superior performance compared with human trials and baseline methods, demonstrat-
ing a promising research direction that eases human labor in machine learning tasks. For future
work, we aim to enhance the benchmark by incorporating more sophisticated AutoML baselines for
comparison.

Acknowledgements
This work was supported by the National Key Research and Development Program of China under
Grant No. 2022YFB3104702, and by the National Natural Science Foundation of China under Grant
Nos. 72442026, 62272262, and 72342032.

10

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.
[2] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural

language models. In International Conference on Learning Representations, 2018.
[3] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applica-

tions. arXiv preprint arXiv:2003.05689, 2020.
[4] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning algorithms:

Theory and practice. Neurocomputing, 415:295–316, 2020.
[5] N. Mallik, E. Bergman, C. Hvarfner, D. Stoll, M. Janowski, M. Lindauer, L. Nardi, and F. Hutter.

Priorband: Practical hyperparameter optimization in the age of deep learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=uoiwugtpCH.

[6] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods,
systems, challenges. Springer Nature, 2019.

[7] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

[8] Alexander Tornede, DifanDeng, Theresa Eimer, JosephGiovanelli, AdityaMohan, TimRuhkopf,
Sarah Segel, Daphne Theodorakopoulos, Tanja Tornede, Henning Wachsmuth, et al. Automl in
the age of large language models: Current challenges, future opportunities and risks. arXiv
preprint arXiv:2306.08107, 2023.

[9] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Hyperparameter search space
pruning–a new component for sequential model-based hyperparameter optimization. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015, Proceedings, Part II 15, pages 104–119. Springer, 2015.

[10] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[11] Julia Moosbauer, Giuseppe Casalicchio, Marius Lindauer, and Bernd Bischl. Enhancing ex-
plainability of hyperparameter optimization via bayesian algorithm execution. arXiv preprint
arXiv:2206.05447, 2022.

[12] Niklas Hasebrook, Felix Morsbach, Niclas Kannengießer, Jörg Franke, Frank Hutter, and Ali
Sunyaev. Why do machine learning practitioners still use manual tuning? a qualitative study.
arXiv preprint arXiv:2203.01717, 2022.

[13] OpenAI. Gpt-4 technical report, 2023.
[14] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece

Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[15] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

[16] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1–22, 2023.

11

https://openreview.net/forum?id=uoiwugtpCH
https://openreview.net/forum?id=uoiwugtpCH

[17] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models. arXiv preprint arXiv:2305.16291, 2023.

[18] Daniil A Boiko, RobertMacKnight, Ben Kline, andGabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

[19] Shujian Zhang, Chengyue Gong, LemengWu, Xingchao Liu, andMingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023.

[20] Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleash-
ing the power of large language models in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023.

[21] Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[22] Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level
neural architecture search. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ifbF4WdT8f.

[23] Lanning Wei, Zhiqiang He, Huan Zhao, and Quanming Yao. Unleashing the power of graph
learning through llm-based autonomous agents. arXiv preprint arXiv:2309.04565, 2023.

[24] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models
as ai research agents. arXiv preprint arXiv:2310.03302, 2023.

[25] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning uni-
versal hyperparameter optimizers with transformers. Advances in Neural Information Processing
Systems, 35:32053–32068, 2022.

[26] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[27] Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large
language models for hyperparameter optimization. In NeurIPS 2023 Foundation Models for
Decision Making Workshop, 2023.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[30] DePie. Butterfly image classification, Jun 2023. URL https://www.kaggle.com/datasets/
phucthaiv02/butterfly-image-classification.

[31] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[32] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A deep neural
network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

[33] Saurabh Shahane. Ecommerce text classification, Oct 2023. URL https://www.kaggle.com/
datasets/saurabhshahane/ecommerce-text-classification/data.

12

https://openreview.net/forum?id=ifbF4WdT8f
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/phucthaiv02/butterfly-image-classification
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification/data

[34] Victor Sanh, Lysandre Debut, Julien Chaumond, and ThomasWolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

[35] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

[36] Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively multilingual
neural machine translation and zero-shot translation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 1628–1639, 2020.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

[38] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

[39] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information Retrieval,
pages 639–648, 2020.

[40] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a
factorization-machine based neural network for ctr prediction. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, pages 1725–1731, 2017.

[41] Laksika Tharmalingam. Water quality and potability, Sep 2023. URL https://www.kaggle.
com/datasets/uom190346a/water-quality-and-potability.

[42] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794,
2016.

[43] Muhammad Bin Imran. Housing price prediction data, Nov 2023. URL https://www.kaggle.
com/datasets/muhammadbinimran/housing-price-prediction-data.

[44] Prithviraj Sen, GalileoNamata,Mustafa Bilgic, LiseGetoor, BrianGalligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[45] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

[46] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning, 2016.

[47] Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. An empirical study of the impact of hyperparam-
eter tuning and model optimization on the performance properties of deep neural networks.
ACM Transactions on Software Engineering and Methodology (TOSEM), 31(3):1–40, 2022.

[48] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

13

https://www.aclweb.org/anthology/D13-1170
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/2827872
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data
https://www.kaggle.com/datasets/muhammadbinimran/housing-price-prediction-data

A. Appendix

A.1. Algorithm of AgentHPO

We present the Algorithm of our proposed AgentHPO in Algorithm 1

Algorithm 1 The optimization algorithm of AgentHPO
1: Input: Background Information B in natural language. Tools T
2: Output: Optimized hyperparameters H∗, Experimental logs L
3: Initialize Creator C = init(LLM,B).
4: Initialize Executor E = init(LLM, T).
5: Initialize Experimental Logs L = [].
6: Set number of trials T
7: for t = 1 to T do
8: Ht, Rt ← C.create(L)
9: Lt ← E.execute(Ht)
10: L.append([Ht, Rt, Lt])
11: end for
12: H∗,L ← C.analyze(L)
13: return H∗,L

A.2. Evaluating AgentHPO’s Optimization Capabilities on Novel Models

To further assess the effectiveness of AgentHPO on novel models, we examine its capability to opti-
mize emerging architectures developed after the LLM knowledge cutoff. We conducted experiments
on the KAN model [48], introduced in April 2024, which differs significantly from traditional MLPs
and requires specialized hyperparameters and optimization strategies. In the binary classification
setting of KAN, we used a synthetic dataset generated by scikit-learn for our experiments. The
results are shown in Figure 7:
As shown, AgentHPO produces strong initial trial results, outperforming both random search and
Bayesian optimization by 18.8%. Specifically, at T=10, AgentHPO (GPT-3.5) outperforms random
search and Bayesian optimization by 2.65% and 1.39%, respectively. Moreover, AgentHPO (GPT-3.5)
achieves a 1.81% improvement over OPRO (GPT-3.5), with similar trends observed for GPT-4. These
results demonstrate that AgentHPO effectively optimizes hyperparameters for novel models.

2 4 6 8 10
Trial

40

50

60

70

80

90

AU
C

GPT-3.5

Human Best
Random
Bayes
AgentHPO (3.5)
OPRO (3.5)

2 4 6 8 10
Trial

40

50

60

70

80

90

AU
C

GPT-4

Human Best
Random
Bayes
AgentHPO (4)
OPRO (4)

Figure 7: KAN model performance trajectory comparison

14

A.3. Detailed Task Description
For organizational clarity and ease of analysis, these tasks have been categorized into distinct groups
as follows:
Computer Vision: In this domain, we concentrate on two primary sub-tasks: Image Classification
and Image Segmentation. For Image Classification, we use ResNet-18 [29] with accuracy as the
performance metric. We conduct HPO on two datasets, the first is the well-known Cifar-10 [28], and
the second is the newer Butterfly Image dataset [30] from Kaggle, which was released after the LLM
release date. For Image Segmentation, our experiments utilize the CityScapes dataset [31] with ENet
[32] as the model. We measure performance using the Intersection over Union (IOU) metric.
Natural Language Processing: Our research encompasses two crucial sub-fields within NLP: Text
Classification and Machine Translation. For Text Classification, we focus on the SST2 [35] and the
recent Ecommerce datasets [33]. We use the DistilBERT [34] model, fine-tuned for these tasks, with
accuracy as our metric. Regarding Machine Translation, we utilize the Opus Books [36] dataset,
specifically targeting English-French translation. For this task, the T5-Small [37] model is fine-tuned
to assess its efficacy in translation and use the BLEU-Score to evaluate the model.
Recommender Systems: In Recommender Systems, our work spans Matrix Factorization (MF) and
Click-Through Rate (CTR) prediction. We apply LightGCN [39] for MF, measuring performance
with NDCG@10. For CTR prediction, we deploy DeepFM [40] and use AUC as the metric. Both
tasks are executed on the MovieLens 1M [38] dataset.
Tabular: In the realm of tabular data, our research encompasses both regression and classification
tasks. Specifically, we focus on a classification task involving water portability [41] and a regression
task concerning house price [43] predictions. These tasks utilize datasets sourced from Kaggle, with
careful consideration to avoid data leakage after the incorporation of GPT-based knowledge. For
both tasks, we implement models based on the XGBoost [42] framework, known for its efficacy in
handling structured data. For classification and regression tasks, we use the F1 Score and R2 Score
as the metrics, respectively.
Graph Neural Networks: In our Graph Neural Networks (GNN) research, we focus on two main
objectives: node classification and link prediction. For node classification, we use the Cora dataset
[44] and apply a Graph Convolutional Network (GCN) [45] as our model, evaluating performance
based on accuracy. Additionally, for link prediction, we conduct experiments using the Pubmed
dataset [44], employing a Variational Graph Autoencoder (VGAE) [46], with the AUC serving as
the performance metric.

Table 2: Hyperparameter spaces of optimization tasks. We report the names, types, whether they
are on a log scale, and the corresponding ranges of the hyperparameters for every task.

Exp ID Hyperparameter Type Log Range

Image
Classification

global_pool cat ✗ [avg, max, avgmax, catavgmax]
learning_rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [25, 200]
weight_decay float ✓ [10−6, 10−1]
dropout_rate float ✗ [0, 0.5]
momentum float ✗ [0.5, 1]
batch_size ord ✗ [32, 64, 128, 256, 512]

Image
Segmentation

learning_rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [10, 50]
weight_decay float ✓ [10−6, 10−1]
activation cat ✗ [relu, prelu]

Continued on next page

15

Table 2 – Continued from previous page
Exp ID Hyperparameter Type Log Range

momentum float ✗ [0.5, 1]
batch_size ord ✗ [4, 8, 16, 32, 64]

Text
Classification

learning rate float ✓ [10−6, 10−2]
epochs int ✗ [1, 4]
dropout_rate float ✗ [0, 0.5]
attention_dropout float ✗ [0, 0.5]
seq_classif_dropout float ✗ [0, 0.5]
batch_size ord ✗ [8, 16, 32, 64, 128]
activation cat ✗ [gelu, relu, silu]
weight_decay float ✓ [10−6, 0.1]

Translation

learning_rate float ✓ [10−6, 10−2]
dropout float ✗ [0, 0.5]
epochs int ✗ [1, 4]
batch_size ord ✗ [16, 32, 64, 128]
weight_decay float ✓ [10−6, 0.1]

CTR

embedding_size ord ✗ [8, 16, 32, 64]
learning_rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
reg_weight float ✓ [10−6, 10−1]
dropout_prob float ✗ [0, 0.5]
batch_size ord ✗ [256, 512, 1024, 2048, 4096]
mlp_hidden_size ord ✗ [32, 64, 128, 256, 512]
num_mlp_layers int ✗ [1, 4]

MF

embedding_size int ✗ [16, 256]
learning_rate float ✓ [10−5, 10−1]
optimizer cat ✗ [adam, sgd]
reg_weight float ✓ [10−6, 10−1]
batch_size ord ✗ [512, 1024, 2048, 4096]
epochs int ✗ [100, 400]
num_layers int ✗ [1, 5]

Tabular

max_depth int ✗ [3, 11]
learning_rate float ✓ [10−3, 1]
min_child_weight int ✗ [1, 10]
subsample float ✗ [0.5, 1]
colsample_bytree float ✗ [0.5, 1]
n_estimators int ✗ [100, 500]
gamma float ✗ [0, 0.5]
reg_alpha float ✗ [0, 1]
reg_lambda float ✗ [0, 1]
scale_pos_weight float ✗ [1, 10]

Node
Classification

num_layers int ✗ [1, 5]
learning_rate float ✓ [10−6, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [1, 200]
hidden_size ord ✗ [8, 16, 32, 64]
activation cat ✗ [relu, elu, silu]
weight_decay float ✓ [10−6, 10−1]
dropout float ✗ [0, 0.5]

Link Prediction

num_layers int ✗ [2, 5]
learning_rate float ✓ [10−6, 10−1]
optimizer cat ✗ [adam, sgd]
epochs int ✗ [1, 200]

Continued on next page

16

Table 2 – Continued from previous page
Exp ID Hyperparameter Type Log Range

hidden_channels ord ✗ [16, 32, 64, 128, 256]
out_channels ord ✗ [16, 32, 64, 128, 256]
activation cat ✗ [relu, elu, silu]
weight_decay float ✓ [10−6, 10−1]
dropout float ✗ [0, 0.5]

Table 3: Performance comparison across 12ML tasks amongAgentHPO, RandomSearch, Bayesian op-
timization and Best Human Performance, with the highest boldfaced and second-highest underlined

Exp ID Trial Random Bayesian GPT-3.5 GPT-4 Human

Image
Classification
Cifar-10

1 52.45±23.64% 48.36±25.58% 81.57±1.22% 82.59±1.09% 85.05
3 75.94±4.38% 74.17±5.71% 82.84±0.34% 81.74±0.72% 85.05
5 76.78±4.85% 77.57±8.17% 82.84±0.34% 85.08±0.42% 85.05
10 81.63±3.88% 79.87±4.19% 83.87±1.18% 85.18±0.52% 85.05

Image
Classification
Butterfly

1 35.65±29.86% 20.32±25.06% 81.51±3.78% 78.22±0.56% 82.74
3 60.83±21.73% 25.55±27.62% 83.97±2.12% 83.67±0.58% 82.74
5 73.47±6.74% 40.55±25.51% 84.79±1.01% 85.20±0.62% 82.74
10 78.99±3.22% 63.57±8.67% 84.79±1.01% 85.92±0.57% 82.74

Image
Segmentation

1 33.73±24.89% 31.87±19.57% 65.66±4.33% 69.30±0.83% 70.83
3 51.72±18.60% 49.82±10.42% 67.39±3.88% 69.42±0.69% 70.83
5 63.76±5.61% 56.23±10.29% 67.39±3.88% 70.04±0.57% 70.83
10 66.39±4.58% 63.06±6.76% 67.64±4.00% 70.04±0.57% 70.83

Text
Classification
SST2

1 75.90±17.04% 75.91±16.18% 89.79±0.64% 90.41±0.30% 90.71
3 83.88±13.06% 85.86±5.09% 90.02±0.42% 90.83±0.47% 90.71
5 89.45±1.81% 89.91±1.00% 90.02±0.42% 91.09±0.43% 90.71
10 90.28±0.76% 90.28±0.45% 90.34±0.79% 91.32±0.11% 90.71

Text
Classification
Ecommerce

1 73.46±26.12% 79.44±24.82% 95.96±0.72% 97.44±0.18% 97.53
3 91.40±14.26% 96.05±1.15% 97.18±0.53% 97.70±0.07% 97.53
5 96.04±1.84% 96.68±0.73% 97.55±0.36% 97.77±0.11% 97.53
10 97.47±0.18% 97.21±0.50% 97.55±0.36% 97.81±0.13% 97.53

Machine
Translation

1 18.26±6.06% 17.39±6.85% 17.41±1.61% 25.11±0.28% 27.47
3 20.58±3.29% 20.06±3.57% 21.32±1.35% 26.40±0.29% 27.47
5 23.68±0.99% 24.16±2.98% 21.53±1.35% 27.70±0.45% 27.47
10 25.72±0.92% 26.70±0.59% 22.43±2.04% 28.02±0.61% 27.47

MF
1 13.16±10.20% 10.74±10.06% 26.21±0.57% 26.92±0.07% 27.05
3 17.33±9.80% 21.57±3.03% 26.57±0.65% 27.14±0.04% 27.05
5 23.81±2.65% 22.71±2.99% 27.05±0.17% 27.23±0.05% 27.05
10 26.02±0.81% 24.94±1.57% 27.13±0.13% 27.24±0.07% 27.05

CTR
1 71.26±11.34% 71.03±10.32% 81.68±0.44% 81.92±0.05% 82.19
3 76.98±7.43% 75.92±6.79% 82.05±0.14% 82.01±0.06% 82.19
5 78.85±7.21% 79.95±3.80% 82.14±0.06% 82.06±0.05% 82.19
10 81.94±0.24% 81.67±0.92% 82.14±0.06% 82.09±0.05% 82.19

Tabular
Classification

1 68.77±2.27% 68.71±2.18% 68.06±0.11% 69.33±0.12% 72.3
3 70.15±1.29% 70.58±1.04% 71.37±0.32% 71.57±0.17% 72.3
5 70.82±1.25% 70.95±0.95% 71.76±0.41% 71.65±0.19% 72.3
10 71.62±0.55% 71.58±0.72% 71.81±0.37% 72.01±0.35% 72.3

Continued on next page

17

Table 3 – Continued from previous page
Exp ID Trial Random Bayesian GPT-3.5 GPT-4 Human

Tabular
Regression

1 46.00±12.55% 50.75±10.18% 56.27±0.35% 56.57±0.40% 56.9
3 54.90±4.21% 55.68±2.23% 56.55±0.39% 57.71±0.05% 56.9
5 56.12±0.67% 56.69±0.23% 56.76±0.33% 57.73±0.07% 56.9
10 56.49±0.40% 56.85±0.05% 56.78±0.36% 58.01±0.11% 56.9

Node
Classification

1 64.50±19.18% 55.57±18.37% 79.77±0.71% 80.06±0.66% 81.5
3 76.85±2.11% 64.28±14.52% 80.60±0.33% 80.72±0.27% 81.5
5 77.64±1.89% 70.57±11.43% 80.93±0.33% 81.18±0.45% 81.5
10 78.80±0.81% 74.96±2.70% 81.13±0.22% 81.38±0.22% 81.5

Link
Prediction

1 90.21±2.90% 90.53±2.40% 90.02±1.02% 90.76±0.47% 95.12
3 92.54±2.07% 92.36±1.83% 92.24±1.43% 92.51±0.30% 95.12
5 93.69±1.65% 93.33±1.81% 94.21±0.55% 94.87±0.46% 95.12
10 94.98±0.73% 94.84±0.34% 94.34±0.65% 95.39±0.66% 95.12

A.4. Prompts for AgentHPO

We here present the prompt template used to initialize the Creator and Executor agents.

A.5. Creator Agent

Creator Agent Prompts

You are a task creation AI expert in machine learning that required to optimize the model’s
hyperparameter settings to accomplish the final objective. To achieve this, you need to
check the previous hyperparameter tuning plan and completed tasks results. Based on this
information, generate a new sub-task for the task execution agent that can solve the sub-task.
Below is the basic information about the experimental settings:

{model_info}

{dataset_info}

Below are the hyper-parameters and corresponding candidates or values range that can be
tuned for the task:

{hyperparameter_info}

To accomplish the task, you have access to the following tools:

Name: "LoadHistoricalTrainingLogs"
Description: "This tool is designed for easily loading and reviewing model training logs. It
automatically accesses records of loss and accuracy metrics from different hyper-parameter
settings."
Format your response as follows:
Objective: Define the final goal
Thought: Describe your reasoning process
Action: Specify the action to take; valid actions are ’Final Answer’ or {tool_names}
Action Input: Input for the action
Observation: Outcome of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: The proposed hyper-parameters for the task

18

Analyze the completed tasks and their outcomes. Propose a new task focused on unexplored
hyperparameter spaces or optimization techniques to methodically reach the final objective.
The task executor will adjust hyperparameters and run the training script. Ensure your
proposed hyperparameters are distinct from those previously tested, and state your
recommendation as the ’Final Answer’.

Objective: {optim_goal}
Thought: {agent_scratchpad}

A.6. Executor Agent

Executor Agent Prompts

You are the machine learning experimenter and asked to finish the given objective below. To
accomplish the task, you have access to the following tools:

Name: "LoadConfigs"
Description: "Useful for when you need to loading the model training configs and read the
content. The file contains the hyper-parameters that used to define the training details of the
model."

Name: "WriteConfigs"
Description: "Useful for when you need to writing the changed configs into file. Input should
be the hyper-parameters that you want to write into the file IN JSON FORMAT. And you
should also keep the unchanged Hyperparameter into the file."

Name: "ExecutePythonFile"
Description: "Useful for when you need to execute the python file to training the model"

Name: "LoadTrainingLogs"
Description: "Useful for when you need to loading the model training logs and read the
content. The file contains the training logs (loss, accuracy) generated by training."

Use the following format:
Task: the input task you must solve
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

After finish the task, analyze the training logs to make a summary about this experiment,
including the analysis of the training trajectory and final training results. Then provide your
answer with Final Answer.
Task: {task_name}
Thought:{agent_scratchpad}

A.7. Example of Experimental Logs

In this section, we present selected experimental logs produced by AgentHPO for the image classifica-
tion task using the Cifar dataset. Owing to space constraints, we illustrate only the initial experiment
and the experiment that yielded the optimal results.

19

A.7.1. GPT-3.5 Experimental Logs

GPT-3.5 Experimental Logs

Experiment 1:
Based on the given information, I would recommend the following initial set of hyper-
parameter settings to maximize accuracy:
global_pool: ’avgmax’
learning_rate: 1e-3
optimizer: ’adam’
epochs: 100
model_name: ’resnet18’
weight_decay: 1e-4
drop_rate: 0.3
momentum: 0.9
batch_size: 256

These settings aim to strike a balance between model complexity, regularization, and training
efficiency, considering the dataset and the available models. Adjustments can be made based
on the performance of the initial training runs.
Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70]
Train Loss: [1.993, 0.9729, 0.5704, 0.2754, 0.0984, 0.0466, 0.0383, 0.0374, 0.0148, 0.0205, 0.0247,
0.0161, 0.0187, 0.018, 0.0113]
Train Acc: [27.47, 65.47, 80.205, 90.9475, 97.0475, 98.7675, 98.82, 98.7775, 99.615, 99.3625, 99.18,
99.5225, 99.3925, 99.4, 99.6625]
Val Loss: [1.6491, 0.9406, 0.6651, 0.6689, 0.7548, 0.962, 0.8462, 1.0437, 0.9182, 0.8397, 0.8824,
0.9271, 0.9714, 0.9869, 1.6386]
Val Acc: [42.57, 66.96, 77.0, 77.23, 78.53, 77.01, 79.4, 77.06, 80.11, 81.84, 80.69, 81.21, 80.82,
80.93, 75.28]
Total Training Time: 3096.64s
Final Validation Accuracy: 81.4500%
The final validation accuracy of the model trained with the given hyper-parameters is 81.45%.

Experiment 7:
The final answer of proposed new hyper-parameters is as follows:
global_pool: ’catavgmax’
learning_rate: 1e-4
optimizer: ’adam’
epochs: 150
model_name: ’resnet18d’
weight_decay: 1e-5
drop_rate: 0.4
momentum: 0.95
batch_size: 128

Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75]
Train Loss: [1.7289, 0.6375, 0.2236, 0.1073, 0.0614, 0.065, 0.0423, 0.0404, 0.036, 0.0518, 0.0569,
0.027, 0.0289, 0.0312, 0.0216, 0.0282]
Train Acc: [36.6725, 77.785, 92.315, 96.3375, 98.105, 97.865, 98.6375, 98.655, 98.74, 98.2775,
98.1325, 99.1125, 99.0875, 98.98, 99.3175, 99.1]
Val Loss: [1.5076, 0.7051, 0.6053, 0.9768, 0.8362, 0.7814, 0.8403, 0.7787, 0.805, 0.8523, 0.7458,
0.827, 0.945, 0.9369, 0.8229, 0.889]
Val Acc: [45.51, 75.41, 80.48, 76.1, 79.73, 80.63, 80.99, 82.31, 81.09, 81.14, 83.16, 82.28, 80.71,
80.78, 82.81, 81.17]
Total Training Time: 2816.78s
Final Validation Accuracy: 82.82%

20

Themodel trainedwith the recommended hyper-parameter settings achieved a final validation
accuracy of 82.82%. The training trajectory indicates that the model may be overfitting as
the training accuracy continues to increase while the validation accuracy fluctuates. Further
adjustments to the hyper-parameters andpotential regularization techniquesmay be necessary
to improve the model’s generalization performance.
Final analyse result:
1. Best Hyper-Parameter Found in Experiment:
The best hyper-parameter configuration was found in Experiment 7, which achieved a final
test accuracy of 82.82%.
The hyper-parameter configuration is as follows:
- Global Pooling: ’catavgmax’
- Learning Rate: 1e-4
- Optimizer: ’adam’
- Epochs: 150
- Model Name: ’resnet18d’
- Weight Decay: 1e-5
- Drop Rate: 0.4
- Momentum: 0.95
- Batch Size: 128

2. Influence of Each Hyper-Parameter:
- Learning Rate: Lower learning rates (e.g., 1e-4) seem to perform better than higher rates.
They help stabilize training and improve generalization.
- Optimizer: ’adam’ consistently outperformed ’sgd’ in terms of final test accuracy, indicating
that it is a better choice for this task.
- Epochs: Longer training (e.g., 150 epochs) generally led to better performance, but potential
overfitting after a certain point was observed.
- Model Name: ’resnet18d’ was the model that consistently performed well across experi-
ments.
- Weight Decay: Small weight decay values (e.g., 1e-5) performed better, suggesting the
importance of regularization.
- Drop Rate: A drop rate of 0.4 seemed to be effective in preventing overfitting in several
experiments.
- Momentum: Higher momentum values (e.g., 0.95) helped improve the model’s training
speed and performance in some cases.
- Batch Size: Larger batch sizes (e.g., 128) performed better, likely due to improved gradient
estimates.

3. Potential Future Exploration Direction:
- Further exploration of learning rates: Experiment with a wider range of learning rates to
find the optimal value for this specific task.
- Model architecture exploration: Consider exploring other architectures or variations of
’resnet18d’ to see if any provide better results.
- Data augmentation: Investigate the impact of different data augmentation techniques on
model performance to potentially improve generalization.
- Regularization methods: Experiment with different regularization techniques (e.g., dropout
rates, weight decay) to find the right balance between overfitting and underfitting.
- Learning rate schedules: Implement learning rate schedules (e.g., learning rate annealing)
to potentially enhance training stability.
- Hyperparameter tuning: Utilize automated hyperparameter optimization techniques (e.g.,
Bayesian optimization) to search for optimal hyperparameters efficiently.

21

A.7.2. GPT-4 Experimental Logs

GPT-4 Experimental Logs

Experiment 1:
To tune the hyperparameters for the ResNet models on the CIFAR-10 dataset, it’s important to
select a range that has been generally found to work well for image classification tasks. Here
is an initial suggestion for setting each hyperparameter, along with the reasoning behind each
choice:
1. global_pool: Start with ’avg’ as it’s a common approach that helps to reduce overfitting
compared to ’max’ pooling.
2. learning_rate: Initialize in the middle of the log-scale range, around 1e-3. This is often a
good starting point for learning rate. Be prepared to adjust this based on whether the loss is
changing too slowly or too quickly.
3. optimizer: Use ’adam’ to start with since it generally converges faster and with less tuning
than ’sgd’, though ’sgd’ often yields better generalization with well-tuned learning rate and
momentum.
4. epochs: Begin with a moderate number of epochs, such as 100. This represents a balance
between underfitting (25 epochs might be too few) and overfitting or unnecessary computa-
tion (200 epochs could be too many if early stopping criteria or learning rate schedules are
used).
5. model_name: Start with ’resnet18’ as it is the most standard of the models and thus the
most likely to have established baselines. After establishing a baseline with ’resnet18’, you
can experiment with the other variants.
6. weight_decay: Opt for a moderate value, like 1e-4. It helps regularize the learning process
but setting it too high might lead to underfitting.
7. drop_rate: Begin with a small dropout rate, such as 0.1, to prevent overfitting, especially
since CIFAR-10 is a relatively small dataset. Adjust as necessary based on validation set
performance.
8. momentum: If you opt for ’sgd’, set momentum around 0.9 as it is a typical value that helps
accelerate the gradient vectors in the right directions, thus leading to faster converging.
9. batch_size: Start around 128 which is a balanced trade-off between the benefits of larger
batch size (stability and performance) and smaller batch size (memory constraints and
potential for better generalization).
Based on these considerations, here’s a proposed initial configuration:
global_pool: avg,
learning_rate: 1e-3,
optimizer: adam,
epochs: 100,
model_name: resnet18,
weight_decay: 1e-4,
drop_rate: 0.1,
momentum: 0.9, # Only applicable for sgd optimizer
batch_size: 128

Please consider this as a starting point. It is crucial to use a systematic approach such as grid
search, random search, or Bayesian optimization to find the best hyperparameters. Further-
more, proper techniques for avoiding overfitting, such as early stopping, data augmentation,
or regularization, should complement this process. Monitoring both the training and valida-
tion loss will inform whether further adjustments are needed and help in the detection of
overfitting or underfitting.
Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
Train Loss: [1.5783, 0.5534, 0.2122, 0.1135, 0.0776, 0.0759, 0.054, 0.0521, 0.0536, 0.0508]
Train Acc: [42.0275, 80.615, 92.675, 96.1475, 97.3, 97.44, 98.1325, 98.2725, 98.1925, 98.2525]
Val Loss: [1.7791, 0.7139, 0.7447, 0.8525, 0.7293, 0.9376, 0.8194, 0.8674, 0.8768, 0.9351]
Val Acc: [39.43, 75.77, 78.15, 78.3, 81.33, 78.63, 80.68, 80.24, 80.23, 78.59] Total Training Time:
1438.35s

22

Final Validation Accuracy: 80.4100%
The initial hyperparameter configuration led to a final validation accuracy of 80.41% on the
CIFAR-10 dataset with the ResNet18 model. However, the model shows signs of overfitting
as evidenced by the high training accuracy and the increase in validation loss over epochs.
Further hyperparameter tuning and regularization techniques are necessary to improve the
model’s generalization to new data.
Experiment 4:
The proposed new hyperparameters for the next experiment are:
global_pool: catavgmax, # A combination of ’avg’ and ’max’ pooling not yet tested learn-
ing_rate: 1e-4, # A value that has shown promise in Experiment 3
optimizer: adam, # ’adam’ is chosen for fast convergence
epochs: 150, # An increased number of epochs to allow learning rate scheduler to work
effectively
model_name: resnet18d, # A variant of ResNet18 that hasn’t been tested yet
weight_decay: 2e-4, # A moderate value for weight decay, higher than in Experiment 1 but
lower than in Experiment 2
drop_rate: 0.25, # A value between the drop rates tested in Experiments 2 and 3
momentum: 0.9, # Momentum is not applicable for ’adam’ optimizer
batch_size: 96, # A batch size between those tested in Experiments 1 and 2

This configuration is chosen to explore different areas of the hyperparameter space that
have not been fully tested in the previous experiments, with a focus on improving model
generalization and reducing overfitting.
Training Trajectory:
Epoch: [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
Train Loss: [1.865, 0.7766, 0.3374, 0.1026, 0.0508, 0.043, 0.0444, 0.0298, 0.0285, 0.028, 0.0266]
Train Acc: [31.9975, 72.8975, 88.9175, 97.035, 98.56, 98.755, 98.6025, 99.0475, 99.0875, 99.1025,
99.1675]
Val Loss: [1.5616, 0.7803, 0.6193, 0.7015, 0.7287, 0.6634, 0.7635, 0.9808, 0.7534, 0.8566, 0.8475]
Val Acc: [45.55, 72.9, 78.83, 78.98, 79.6, 82.44, 80.86, 77.17, 82.24, 79.39, 80.99]
Total Training Time: 2585.06s
Final Validation Accuracy: 82.4500%
The experiment with the specified configuration achieved a high training accuracy of 99.1675%
but a moderate validation accuracy of 82.45%, indicating potential overfitting. Future work
should focus on improving generalization to avoid overfitting and enhance performance on
unseen data.
Final analyse result:
1. Best Hyperparameter Configuration Found in Experiments:
- Experiment 4 yielded the highest final validation accuracy (82.45%). The key hyperparame-
ters in this experiment were:
- Global Pool: catavgmax
- Learning Rate: 1e-4
- Optimizer: adam
- Epochs: 150
- Model Name: resnet18d
- Weight Decay: 2e-4
- Drop Rate: 0.25
- Batch Size: 96

2. Influence of Each Hyperparameter:
- Global Pool: Switching between ’avg’, ’max’, and combined strategies showed varying
impacts on overfitting and model performance.
- Learning Rate: Lower learning rates (1e-4 to 5e-5) generally improved generalization but
required more epochs for convergence.
- Optimizer: ’adam’ provided fast convergence but sometimes led to overfitting; ’sgd’
improved generalization but required careful tuning of learning rate and momentum.
- Epochs: Higher epoch counts (150-200) were beneficial for models with lower learning
rates, allowing for more gradual learning and convergence.

23

- Model Variants: Different ResNet variants (e.g., ‘seresnet18‘, ‘skresnet18‘) influenced
the model’s ability to learn and generalize, with each showing unique performance
characteristics.
- Weight Decay: Higher values (up to 5e-4) helped in regularizing the model and reducing
overfitting.
- Drop Rate: Varied impacts were observed; higher drop rates (0.3-0.4) seemed beneficial in
some cases for preventing overfitting.
- Momentum: Used with ’sgd’, values around 0.85 to 0.95 helped in smoothing out updates
and improving convergence.
- Batch Size: Middle-range sizes (64-128) provided a balance between performance and
generalization.

3. Potential Future Exploration Directions:
- Hyperparameter Ranges: Further fine-tuning within the established ranges could yield
improvements, especially balancing learning rate and epochs for different optimizers.
- Regularization Techniques: Exploring additional regularization methods (e.g., more
advanced dropout strategies, data augmentation) could help in reducing overfitting.
- Model Variants: Testing other ResNet variants or even different architectures might reveal
models better suited to the CIFAR-10 dataset.
- Pooling Strategies: Continued exploration of different global pooling methods (like
combinations of ’avg’ and ’max’) may uncover optimal feature extraction techniques.
- Learning Rate Schedulers: Experimenting with different schedulers could lead to better
training dynamics.
- Batch Size Optimization: Investigating the impact of batch size on model performance and
generalization in more detail could be valuable, as different sizes may affect the noise in
gradient estimates.
- Ensemble Techniques: Combining predictions from models trained with different hyperpa-
rameters might enhance overall performance.

In summary, while Experiment 4 provided the best results, there is room for improvement
in generalization and performance. Further experiments should focus on fine-tuning hyper-
parameters, exploring new regularization techniques, and possibly trying different model
architectures or ensemble methods.

24

	. Introduction
	. Related Works
	. LLM-based Autonomous Agents
	. LLMs for AutoML
	. LLMs-enhanced Model Optimization

	. Methodology
	. Creator Agent
	. Executor Agent
	. Iterative Hyperparameter Optimization
	. Explainable Hyperparameter Optimization

	. Benchmark Setting
	. Task descriptions
	. Experimental Setup

	. Results and Analysis
	. Trajectory over Trails
	. Influence of Experimental Logs
	. Optimization Strategy Analysis
	. Explainable Hyperparameter Optimization

	. Conclusion
	. Appendix
	. Algorithm of AgentHPO
	. Evaluating AgentHPO's Optimization Capabilities on Novel Models
	. Detailed Task Description
	. Prompts for AgentHPO
	. Creator Agent
	. Executor Agent
	. Example of Experimental Logs
	. GPT-3.5 Experimental Logs
	. GPT-4 Experimental Logs

