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Abstract

Fundus photography has been routinely used to document the presence and severity of
various retinal degenerative diseases such as age-related macula degeneration, glaucoma,
and diabetic retinopathy, for which the fovea, optic disc (OD), and optic cup (OC) are
important anatomical landmarks. Identification of those anatomical landmarks is of great
clinical importance. However, the presence of lesions, drusen, and other abnormalities
during retinal degeneration severely complicates automatic landmark detection and seg-
mentation. Most existing works treat the identification of each landmark as a single task
and typically do not make use of any clinical prior information. In this paper, we present
a novel method, named JOINED, for prior guided multi-task learning for joint OD/OC
segmentation and fovea detection. An auxiliary branch for distance prediction, in addi-
tion to a segmentation branch and a detection branch, is constructed to effectively utilize
the distance information from each image pixel to landmarks of interest. Our proposed
JOINED pipeline consists of a coarse stage and a fine stage. At the coarse stage, we obtain
the OD/OC coarse segmentation and the heatmap localization of fovea through a joint seg-
mentation and detection module. Afterwards, we crop the regions of interest for subsequent
fine processing and use predictions obtained at the coarse stage as additional information
for better performance and faster convergence. Experimental results reveal that our pro-
posed JOINED outperforms existing state-of-the-art approaches on the publicly-available
GAMMA, PALM, and REFUGE datasets of fundus images. Furthermore, JOINED ranked
the 5th on the OD/OC segmentation and fovea detection tasks in the GAMMA challenge
hosted by the MICCAI2021 workshop OMIA8.
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1. Introduction

In clinical practice, retinal fundus images have been widely used to diagnose various eye
diseases such as glaucoma (Almazroa et al., 2015). In retinal images, the optic disc (OD),
optic cup (OC), and fovea are key anatomical landmarks providing important biomarkers
for the diagnosis of various eye diseases (Cheng et al., 2021). For example, the vertical
Cup-to-Disc Ratio (vCDR) is a measure that is commonly employed to identify glaucoma
(Vismay et al., 2018). The macula lies in the central part of the retina, and fovea is identified
as the center of the macula (Veena et al., 2020). Fovea is the most sensitive area of vision,
which is responsible for sharp central vision. Any lesions occurring near fovea may result
in vision damages or even blindness. Therefore, accurate OD/OC segmentation and fovea
detection are of great significance for disease evaluation and diagnosis (Li et al., 2021; Peng
et al., 2021; Lin et al., 2021).

A plentiful of works have been proposed to segment OD and/or OC in fundus images,
which can be mainly divided into traditional image processing based methods (Elbalaoui
et al., 2018; Sarathi et al., 2016; Park et al., 2006) and recent deep learning based meth-
ods (Gao et al., 2020; Manjunath et al., 2020; Vismay et al., 2018). However, according
to a recent study, deep learning techniques have dominating superiority on this OD/OC
segmentation task (Veena et al., 2020). During the past several years, a variety of deep
learning based OD/OC segmentation methods have been proposed. For example, Manju-
nath et al. designs a residual encoder-decoder network instead of the typically-employed
fully convolutional network to boost the OD/OC segmentation performance (Manjunath
et al., 2020). In addition to exploring the network structure, Xie et al. also employs a
coarse-to-fine strategy to continuously adjust the segmentation region of interest (ROI) to
achieve better performance (Xie et al., 2021). Other methods also make use of additional
information to assist the OD/OC segmentation task. For example, Vismay et al. feeds
coordinate information of OD/OC into a neural network as additional inputs to effectively
learn the OD/OC structure (Vismay et al., 2018). Fu et al. makes use of the prior informa-
tion that OD spatially contains OC to turn the segmentation task into a layered problem
(Fu et al., 2018). However, these methods typically miss important prior information from
other anatomical landmarks such as the blood vessels and the fovea.

The fovea location is very useful prior knowledge for OD/OC segmentation. Some
previous works have already used fovea localization as an auxiliary task to improve the
performance of OD/OC segmentation (Huang et al., 2020; Kamble et al., 2020; Meyer
et al., 2018). Kamble et al. proposes a two-stage approach combining OD/OC and fovea
segmentation (Kamble et al., 2020). Meyer et al. proposes a new strategy for jointly
detecting OD and fovea based on distance information (Meyer et al., 2018). Some methods
make use of the relative position between OD/OC and fovea to improve the segmentation
and localization performance (Huang et al., 2020; Bhatkalkar et al., 2021). A representative
work is that Bhatkallar et al. uses heatmap regression to localize OD/OC and fovea, and
the performance is competitive with state-of-the-art (SOTA) methods (Bhatkalkar et al.,
2021).

Inspired by these aforementioned works, we propose a multi-task learning framework for
OD/OC segmentation and fovea detection, named JOINED. The proposed JOINED consists
of a coarse stage and a fine stage. At the coarse stage, we design a joint segmentation
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and detection module (JSDM) to obtain coarse OD/OC segmentation and fovea location.
At the fine stage, we propose two guiding modules for OD/OC segmentation and fovea
localization, namely the fine segmentation module (FSM) and the fine localization module
(FLM). Different from some coarse-to-fine methods (Kamble et al., 2020; Vismay et al.,
2018), we concatenate the output obtained at the coarse stage with the original fundus
image as the input of the fine stage, leading to faster convergence and better accuracy.

The main contributions of this work are three-fold: (1) To yield robust outputs at the
coarse stage, we propose a multi-task learning model for joint OD/OC segmentation and
fovea detection, and design a distance prediction branch to make better use of clinical prior
knowledge. (2) At the fine stage, on the basis of the outputs from the coarse stage, we de-
sign a multi-branch fovea localization module employing coordinate regression and heatmap
detection. To refine the OD/OC segmentation, we use the coarse segmentation output as
an additional input, boosting the efficiency and accuracy of the two tasks of interest. (3)
We evaluate our proposed JOINED on three publicly-available fundus datasets, and experi-
mental outputs show our approach achieves SOTA performance in both tasks. We rank the
5th in the GAMMA1,2 (Wu et al., 2022) challenge hosted by the MICCAI2021 workshop
OMIA8. We make our code available at https://github.com/HuaqingHe/JOINED.

2. Method

2.1. Problem setting and model overview

Given an input retinal fundus image I ∈ RH×W×C , where H and W are the height and
width of the image, and C is the number of input channels, our goal is to incorporate prior
knowledge for better OD/OC segmentation and fovea detection. To this end, we design a
novel framework, namely JOINED, that consists of three modules: JSDM, FLM for fovea
detection, and FSM for OD/OC segmentation. There are two stages in JOINED, namely
a coarse stage and a fine stage. An overview of our proposed JOINED pipeline is shown in
Figure 1.

The goal of a segmentation task is to estimate the corresponding segmentation mask M .
Assume we are given a training set T = {Ii,Di,M i, H i}Ni=1, where D represents distance
map from the center of OD and fovea to other positions, H is the heatmap constructed
with the coordinates of fovea and the center of OD through a Gaussian kernel matrix G(·),
and M is the ground truth segmentation of I. For fovea detection, our goal is to get a
coordinate C = [X,Y ].

2.2. JOINED

We now describe the three network modules of our JOINED framework in detail as below.

Joint Segmentation and Detection Module JSDM contains three decoder branches
that share a common encoder, [DP , HD, PS ] = FJSDM (I; θJSDM ), where θJSDM denotes
the parameters of FJSDM , DP is the predicted distance map, HD is the output of the
detection branch and PS is a probability map generated by the segmentation branch.

1. https://gamma.grand-challenge.org/
2. https://aistudio.baidu.com/aistudio/competition/detail/90/0/submit-result
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Figure 1: Overview of the proposed JOINED framework.

The distance prediction branch produces a distance matrix DP characterizing a global
distribution of distances across the entire image. With this auxiliary branch, the coarse
detection and segmentation process will be more stable. The distance prediction branch is
trained using the Mean Squared Error (MSE) loss,

LP = MSE(D,DP ). (1)

In the detection branch, the outputted heatmap HD has two layers, one of which rep-
resents the heat area for OD/OC and the other for fovea (Thewlis et al., 2019). If the
localization task does not proceed very well, we will approximate C through a pre-specified
relationship between fovea and the center of OD following a previously-published work
(Huang et al., 2020). We accumulate each layer according to the coordinate axis and iden-
tify indices corresponding to the maximum value as the coordinates of fovea and the center
of OD (Li et al., 2020). We compare the coordinates cD obtained by the detection branch
with the coordinates cP obtained by the prediction branch, as an additional mutually con-
sistent constraint for the detection task. The objective function LD of the detection branch
is defined in Equation (2), where MH are the integers of H through thresholding at 0.5;
MH is the mask of OD and macula regions. We employ Dice loss to be the segmentation
branch’s loss, as defined in Equation (3),

LD = MSE(H,HD) +MSE(cP , cD) +Dice(MH , HD). (2)
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Figure 2: Visualization of the the JSDM outputs obtained on representative images from the
three datasets. (a) Retinal fundus images; (b) distance maps obtained from the
prediction branch; (c) heatmaps obtained from the detection branch; (d) coarse
segmentation results obtained from the segmentation branch; (e) cropped coarse
segmentation results; (f) cropped fundus images; (g) fine segmentation results;
(h) ground truth segmentation results. From top to bottom are representative
cases from the GAMMA, PALM and REFUGE datasets.

LS = Dice(M,PS) = 1− 2
∑

MPS∑
(M + PS) + ε

. (3)

In the training phase, the distance prediction branch is first utilized to extract global
semantics of the fundus images. We set a starting flag τ0 when the branch P almost
converges to start the training of the detection branch. Then the heatmap detection branch
is utilized to detect the approximate locations of the OD and fovea areas to help more stable
OD/OC segmentation. Similarly, we set another starting flag τ1 when the branch D is close
to convergence, to start the training of the segmentation branch. Therefore, the final loss of
JSDM is progressively defined as (with coefficients λ0, λ1 used to balance the three terms)

LJSDM =


LP , epoch ≤ τ0

LP + λ0LD, τ0 < epoch ≤ τ1

LP + λ0LD + λ1LS , epoch > τ1

. (4)

Detailed network configurations are presented in Appendix A.

Fine Segmentation Module FSM utilizes an adapted UNet (Ronneberger et al., 2015)
structure with EfficientNet-B4 (Tan and Le, 2020) pretrained on ImageNet (Hagos and
Kant, 2019) as the encoder, which produces the final segmentation result MFSM . Inspired
by previous works (Kamble et al., 2020; Xie et al., 2021), we not only input the OD/OC
ROI that is initially segmented and positioned by the JSDM segmentation branch into FSM,
but also concatenate the segmentation output MS obtained in the coarse stage with the
original fundus image. Note that MS is the integer version of PS through thresholding at
0.5. We feed the concatenated data to FSM for faster convergence and better accuracy.
The loss function of FSM is the same as that in the segmentation branch. Figure 2 shows
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Figure 3: Representative segmentation results from different automated methods and the
ground truth. From top to bottom are representative cases from the GAMMA,
PALM and REFUGE datasets. For the GAMMA and REFUGE data, the gray
area represents OD and the gray number represents the corresponding Dice score
of OD; the black area represents OC and the black number represents the corre-
sponding Dice scores of OC; the blue number represents the corresponding vCDR
score. For the PALM data, the black area represents OD and the black number
represents the corresponding Dice score of OD.

representative visualization results obtained from each branch and the fine-tuned results
from FSM.

Fine Localization Module A multi-task learning strategy is adopted in FLM. Specif-
ically [c, HFLM ] = FFLM (Icrop, Dcrop, Hcrop; θFLM ), where c is the predicted coordinates
of fovea and HFLM is the predicted heatmap of the cropped fovea area. We concatenate
HD and DP from the coarse stage with the original fundus image as the input. We employ
FLM to produce predicted fovea coordinates as well as accurate estimates of HFLM (x, y)
simultaneously for all pixels and ensembling is adopted to get the final coordinate ĉ. The
loss function is defined as in Equation (5) and cfovea is the ground truth of ĉ. The finally
predicted coordinates of fovea are an ensemble of c and the coordinates obtained from
HFLM .

LFLM = Lregression + Lheatmap

= MSE(cfovea, ĉ) +MSE(Hcrop, HFLM ).
(5)

3. Experiments and Results

We evaluate our proposed JOINED on three retinal fundus image datasets for OD/OC seg-
mentation and fovea detection: GAMMA, PALM, REFUGE. On each dataset, we compare
our method with representative SOTA methods. Due to page limit, we present results on
GAMMA in Table 1 and results on PALM and REFUGE in Appendix B.
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3.1. Implementation details

The proposed JOINED pipeline is implemented with Pytorch, using NVIDIA GeForce RTX
2080Ti GPUs. We use ResNeSt50 (Zhang et al., 2020) as the encoder for JSDM and
EfficientNet-B4 (Tan and Le, 2020) for both FSM and FLM. We use the Adam optimizer
with a learning rate of 2 × 10−4. In our experiments, we set the starting points of joint
learning τ1 as 50, τ2 as 100. The trade-off coefficients λ0, λ1, and σ are set to be 1, 1, and
H/100. The estimated total size of our model is 4343.25 MB with 101.9M parameters. The
training time is about 48 hours for 300 epochs on GAMMA and 72 hours for 300 epochs on
both PALM and REFUGE. The test time is about 0.5 seconds for 2992 × 2000 image.

3.2. Comparison to SOTA

All methods are assessed with five metrics, i.e., Average Euclidean Distance (AED, pixel)
in terms of both OD center and fovea, Dice (%) of both OD and OC, Mean Absolute Error
(MAE) in vCDR (%). In Table 1, we compare JOINED against several baseline segmenta-
tion models, including UNet (Ronneberger et al., 2015), UNet++ (Zhou et al., 2018) and
Deeplabv3+ (Chen et al., 2018) as well as six top-ranking deliveries (other than ours) in
the GAMMA challenge. We further replace the encoders of the three baseline methods
with ResNet50 and add a branch that outputs coordinates. We provide the implementation
details of the three improved baseline methods in Appendix B.1.

Table 1: Performance comparisons between our proposed JOINED and other SOTA meth-
ods including three baseline segmentation models (UNet, UNet++, DeepLabv3+)
and six top-ranking deliveries in the GAMMA challenge, as evaluated on the
GAMMA dataset.

Method
GAMMA

Detection Segmentation
Fovea AED ↓ OD AED ↓ OD Dice (%) ↑ OC Dice (%) ↑ vCDR (%) ↓

Rank #1 13.20 - 95.77 88.06 3.803
Rank #2 13.08 - 95.85 87.68 3.700
Rank #3 15.75 - 95.48 87.58 3.954
Rank #4 13.32 - 95.6 87.98 4.129
Proposed 15.15±30.56 22.93±28.84 95.53±5.60 86.89±9.10 3.938±2.24
Rank #6 15.75 - 95.83 87.76 4.174
Rank #7 15.84 - 95.15 87.22 4.012

UNet (ResNet50) 39.27±84.14 35.14±48.52 91.28±7.38 79.46±9.87 12.75±9.47
UNet++ (ResNet50) 43.15±162.56 32.93±178.84 89.94±6.58 73.24±21.43 14.43±10.24

DeepLabv3+ (ResNet101) 46.67±146.28 31.93±171.59 88.45±9.38 75.46±14.69 15.45±11.39
UNet (Ronneberger et al., 2015) - - 87.15±10.87 76.54±23.90 14.21±11.24
UNet++ (Zhou et al., 2018) - - 85.41±15.27 75.09±24.25 16.93±15.22

DeepLabv3+ (Chen et al., 2018) - - 86.22±12.25 72.80±26.15 15.24±10.81

Apparently, our proposed JOINED outperforms all the three baseline segmentation mod-
els (UNet, UNet++, DeepLabv3+) by very large margins. Compared to the top-ranking
deliveries on the GAMMA challenge, JOINED is comparable. The ranking was established
based on a combined score of all evaluation metrics. Overall, JOINED ranks the 5th. Since
the top four methods in the leaderboard were not published yet, JOINED holds SOTA
among all published methods. Furthermore, it is worth pointing out that JOINED ranks
the 3rd when assessed by the vCDR metric which is a very critical index for clinical diag-
noses of glaucoma (Jonas et al., 2000). Representative visualization results from JOINED
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on GAMMA, PALM and REFUGE are shown in Figure 3. Clearly, the segmentation results
of both OD and OC produced by JOINED are more precise and more accurate than those
produced by other compared methods. Representative segmentation results for low-quality
images from GAMMA and PALM (row 1 and row 2) as well as high-quality images from
REFUGE (row 3) are presented in that figure. Our proposed JOINED yields the highest
Dice and vCDR scores in all cases.

3.3. Ablation study

The proposed multi-task learning framework is composed of three branches, including a
distance prediction branch P , a detection branch D and a segmentation branch S. To
verify the contribution of each of them, we construct five variants of JOINED and conduct
ablation studies on the aforementioned three datasets. The ablation analysis results on
the GAMMA dataset are tabulated in Table 2. Model I and model II are respectively the
baseline segmentation network and the baseline detection network. Model III consists of
both the detection branch and the segmentation branch. It shows that when these two tasks
are performed together, the performance of fovea localization gets improved. Although the
segmentation accuracy slightly decreases, the stability of the segmentation is enhanced (as
evaluated by the standard deviation). Model IV and model V respectively show the benefits
of the distance prediction branch exerted to the segmentation task and the detection task.
Finally, the best results are obtained when all three branches are included (our proposed
JOINED). Although there is slight drop in the segmentation accuracy, the stability and
other indicators are improved.

Table 2: Ablation analysis results on the GAMMA dataset.

Model
Component GAMMA

Predictor Detector Segmentor
Detection Segmentation

Fovea AED ↓ OD AED ↓ OD Dice (%) ↑ OC Dice (%) ↑ vCDR (%) ↓
I ✓ - - 95.31±6.57 86.16±13.68 4.94±3.81
II ✓ 20.75±33.13 26.34±35.12 - - -
III ✓ ✓ 16.28±33.21 24.00±30.91 94.98±6.17 85.48±10.51 5.33±3.12
IV ✓ ✓ - - 95.80±5.93 87.17±12.10 4.09±2.53
V ✓ ✓ 18.22±32.11 22.83±29.57 - - -

Proposed ✓ ✓ ✓ 15.15±30.56 22.93±28.84 95.53±5.60 86.89±9.10 3.938±2.24

4. Conclusion

In this paper, we proposed and validated JOINED, a novel prior guided multi-task and
distance aware joint learning framework for OD/OC segmentation and fovea localization.
Specifically, by constructing a heatmap detection branch and a distance prediction branch,
we incorporated the distance information from all pixels of the fundus image to the two
key landmarks (OD/OC and fovea) in the network. We also designed a strategy to obtain
more stable outputs by ensembling outputs from coordinate regression and heatmap detec-
tion. Extensive experiments on three publicly accessible retinal fundus datasets show that
JOINED significantly outperformed SOTA methods on both segmentation and detection
tasks, exhibiting the effectiveness of the distance prior knowledge and the joint learning
strategy.

8



JOINED

Acknowledgments

This study was supported by the National Natural Science Foundation of China (62071210),
the Shenzhen Basic Research Program (JCYJ20190809120205578), the National Key R&D
Program of China (2017YFC0112404), and the High-level University Fund (G02236002).

References

Refuge challenge: A unified framework for evaluating automated methods for glaucoma
assessment from fundus photographs. Medical Image Analysis, 59:101570, 2020.

Ahmed Almazroa, Ritambhar Burman, Kaamran Raahemifar, Vasudevan Lakshmi-
narayanan, and Ciro Costagliola. Optic disc and optic cup segmentation methodologies
for glaucoma image detection: A survey. Journal of Ophthalmology, 2015:180972, 2015.

Bhargav Bhatkalkar, Vighnesh Nayak, Sathvik Shenoy, and R. Arjunan. Fundusposnet: A
deep learning driven heatmap regression model for the joint localization of optic disc and
fovea centers in color fundus images. IEEE Access, PP:1–1, 11 2021.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation.
arXiv preprint arXiv: 1802.02611, 2018.

Pujin Cheng, Li Lin, Yijin Huang, Junyan Lyu, and Xiaoying Tang. Prior guided fundus
image quality enhancement via contrastive learning. In 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pages 521–525, 2021.

Abderrahmane Elbalaoui, Youssef Ouadid, and Mohamed Fakir. Segmentation of optic
disc from fundus images. In 2018 International Conference on Computing Sciences and
Engineering (ICCSE), pages 1–7, 2018.

Huazhu Fu, Jun Cheng, Yanwu Xu, Damon Wing Kee Wong, Jiang Liu, and Xiaochun
Cao. Joint optic disc and cup segmentation based on multi-label deep network and polar
transformation. IEEE transactions on medical imaging, 37(7):1597–1605, 2018.

Jing Gao, Yun Jiang, Hai Zhang, and Falin Wang. Joint disc and cup segmentation based
on recurrent fully convolutional network. PLOS ONE, 15(9):1–23, 09 2020.

Misgina Tsighe Hagos and Shri Kant. Transfer learning based detection of diabetic retinopa-
thy from small dataset. arXiv preprint arXiv:1905.07203, 2019.

Yijin Huang, Zhiquan Zhong, Jin Yuan, and Xiaoying Tang. Efficient and robust optic disc
detection and fovea localization using region proposal network and cascaded network.
Biomedical Signal Processing and Control, 60:101939, 2020.

Jost B. Jonas, Antonio Bergua, Paul Schmitz–Valckenberg, Konstantinos I. Papastathopou-
los, and Wido M. Budde. Ranking of Optic Disc Variables for Detection of Glaucomatous
Optic Nerve Damage. Investigative Ophthalmology Visual Science, 41(7):1764–1773, 06
2000.

9



He Lin Cai Tang

Ravi Kamble, Pranab Samanta, and Nitin Singhal. Optic disc, cup and fovea detection
from retinal images using u-net++ with efficientnet encoder. In Huazhu Fu, Mona K.
Garvin, Tom MacGillivray, Yanwu Xu, and Yalin Zheng, editors, Ophthalmic Medical
Image Analysis, pages 93–103, Cham, 2020. Springer International Publishing.

Shaohua Li, Xiuchao Sui, Xiangde Luo, Xinxing Xu, Liu Yong, and Rick Siow Mong Goh.
Medical image segmentation using squeeze-and-expansion transformers. In The 30th In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 2021.

Weijian Li, Haofu Liao, Shun Miao, Le Lu, and Jiebo Luo. Unsupervised learning of
landmarks based on inter-intra subject consistencies. arXiv preprint arXiv:2004.07936,
2020.

Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. H-
denseunet: Hybrid densely connected unet for liver and tumor segmentation from ct
volumes. IEEE transactions on medical imaging, 37(12):2663–2674, 2018.

Li Lin, Zhonghua Wang, Jiewei Wu, Yijin Huang, Junyan Lyu, Pujin Cheng, Jiong Wu,
and Xiaoying Tang. Bsda-net: A boundary shape and distance aware joint learning
framework for segmenting and classifying octa images. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pages 65–75, 2021.

Aniketh Manjunath, Subramanya Jois, and Chandra Sekhar Seelamantula. Robust seg-
mentation of optic disc and cup from fundus images using deep neural networks. arXiv
preprint arXiv: 2012.07128, 2020.

Maria Inês Meyer, Adrian Galdran, Ana Maria Mendonça, and Aurélio J. C. Campilho. A
pixel-wise distance regression approach for joint retinal optical disc and fovea detection.
In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2018.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari
Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, Ben
Glocker, and Daniel Rueckert. Attention u-net: Learning where to look for the pancreas.
arXiv preprint arXiv: 1804.03999, 2018.

M. Park, J.S. Jin, and Suhuai Luo. Locating the optic disc in retinal images. In International
Conference on Computer Graphics, Imaging and Visualisation (CGIV’06), pages 141–
145, 2006.

Linkai Peng, Li Lin, Zhonghua Wang, Pujin Cheng, and Xiaoying Tang. Fargo: A joint
framework for faz and rv segmentation from octa images. pages 42–51, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted In-
tervention (MICCAI), pages 234–241. Springer International Publishing, 2015.

M. Partha Sarathi, Malay Kishore Dutta, Anushikha Singh, and Carlos M. Travieso. Blood
vessel inpainting based technique for efficient localization and segmentation of optic disc
in digital fundus images. Biomedical Signal Processing and Control, 25:108–117, 2016.

10



JOINED

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946, 2020.

James Thewlis, Samuel Albanie, Hakan Bilen, and Andrea Vedaldi. Unsupervised learning
of landmarks by descriptor vector exchange. arXiv preprint arXiv: 1908.06427, 2019.

H. N. Veena, A. Muruganandham, and T. Senthil Kumaran. A review on the optic disc
and optic cup segmentation and classification approaches over retinal fundus images for
detection of glaucoma, 2020.

Agrawal Vismay, Kori Avinash, Alex Varghese, and Krishnamurthi Ganapathy. Enhanced
optic disk and cup segmentation with glaucoma screening from fundus images using
position encoded cnns. arXiv preprint arXiv: 1809.05216, 2018.

Junde Wu, Huihui Fang, Fei Li, Huazhu Fu, Fengbin Lin, Jiongcheng Li, Lexing Huang,
Qinji Yu, Sifan Song, Xingxing Xu, Yanyu Xu, Wensai Wang, Lingxiao Wang, Shuai Lu,
Huiqi Li, Shihua Huang, Zhichao Lu, Chubin Ou, Xifei Wei, Bingyuan Liu, Riadh Kobbi,
Xiaoying Tang, Li Lin, Qiang Zhou, Qiang Hu, Hrvoje Bogunovic, José Ignacio Orlando,
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Appendix A. The Joint Segmentation and Detection Module

We incorporate prior information of explicit and implicit topology into the encoder by
creating an auxiliary task to help identify the OD/OC center and the fovea. We use
EfficientNet-B4 (Tan and Le, 2020) as the encoder for both FSM and FLM. The Adam
optimizer with a learning rate of 2×10−4 is employed. The encoder consists of five encoder
blocks, and the outputs of each encoder block are passed through a maxpooling layer, with
a kernel size of 2, before being forwarded to the next encoder block. Moreover, we use
long skip connections to connect the feature maps of the first four blocks of the encoder
to the corresponding features of each decoder. It not only recovers the spatial information
lost during downsampling, but also enables feature’s reusability and stabilizes training and
convergence. Three small decoders, namely Predictor, Detector and Segmentor, are used
in our setting, with the number of feature maps starting at 256 and getting halved after
each layer of upsampling. The features obtained from the penultimate layer of the Predic-
tor are connected to those obtained from the corresponding layer of the Detector to better
perceive the position information of the macula and OD. Each decoder module comprises
nearest upsampling with a scale factor of 2, followed by two layers of 3×3 filters, batch
normalization (BN), and ReLU.

A.1. The distance map prediction branch - Predictor

In this branch, we perform a distance map prediction task. The map D is generated from
the coordinates of OD center cOD and fovea cfovea. The coordinate of the OD center cOD

is defined as

cOD =
[
xod, yod

]
=

max
[
XOD, YOD

]
+min

[
XOD, YOD

]
2

, (6)

whereXOD, YOD are the set of coordinates of all OD pixels in the ground truth segmentation
mask M . The coordinate of fovea cfovea is manually identified. Each value in D is defined
as the shorter distance from the corresponding pixel’s location to cOD or cfovea (Meyer
et al., 2018). We thus obtain the ground truth distance map D as

D(x, y) = min
{√

(x− xod)2 + (y − yod)2,
√

(x− xfovea)2 + (y − yfovea)2
}
. (7)

Afterwards, we normalize D to yield DN to serve as the ground truth distance map.

DN (x, y) = 1− D(x, y)

maxD(x, y)
. (8)

A.2. The heatmap detection branch - Detector

In the detection branch, we generate two heatmaps G(cOD) and G(cfovea), through two
Gaussian kernel matrices, to represent cOD and cfovea. After getting G(cOD) and G(cfovea),
we normalize them to [0,1] and concatenate them together to form the detection branch’s
ground truth H. Specifically,

G(ck) =
1

2πσ2
e−

||x−ck||22
2σ2 , k ∈ {OD center, fovea}, (9)

HD = concatenate
(
G(cOD),G(cfovea)

)
, (10)
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where σ is set to be H/100. If there exists no OD or fovea due to poor image quality, we
set the value of the corresponding cOD or cfovea to zero to ensure the robustness of the
detector. To improve the perception of each ROI, features from the penultimate layer of the
predictor are concatenated with those from the equivalent layer of the detector. Noticeably,
in Equation (2) we employ both the MSE loss and the Dice loss to improve the performance
of the regression task during training.

A.3. The Segmentation Branch - Segmentor

The segmentor outputs a probability map PS ∈ [0, 1]H×W×3, wherein the three layers re-
spectively represent the probabilities of OC, OD, and the background. We set the threshold
in all layers of PS as 0.5. Since it is a multi-classification problem, some pixels may fall into
the situation of being classified as OD and OC at the same time. Under such circumstances,
we set the priority of category classification as OC > OD, since OD always spatially contains
OC.

Appendix B. Datasets and More Experimental Results

B.1. Implementation details of the three baseline methods

For a detection purpose, we obtain feature maps from the encoder of each CNN (e.g., UNet,
UNet++, and DeepLabv3+) and then input them to two fully connected layers to output
the coordinates of OD and fovea. We use ResNet50 as the encoder for UNet and UNet++,
ResNet101 as the encoder for DeepLabv3+, and initialize with Imagenet’s pretrained pa-
rameters for better performance. Compared with the original UNet and UNet++, we
incorporate a BN layer after each convolution layer in the decoder. In UNet, the batch-size
is set to 16, the learning rate is 1e-5, and Dice loss is used as the loss function. In UNet++,
the batch-size is set to 16, the initial value of the learning rate is 1e-3. We combine Dice
loss with the standard binary cross-entroy (BCE) loss as its loss function. In DeepLabv3+,
the batch-size is set to 16, the learning rate is 0.01, and the BCE loss is used as the loss
function.

B.2. GAMMA

The GAMMA dataset were provided by the GAMMA challenge organizers in MICCAI2021
workshop OMIA8. This dataset include 200 fundus image data, each of which contains
a 2D retinal fundus image and a 3D Optical Coherence Tomography (OCT) image. The
GAMMA challenge includes three tasks: glaucoma classification, OD/OC segmentation,
and fovea localization. The images were collected at multiple equipments, inducing diverse
image resolutions, ranging from 1956×1934 to 2992×2000. We train our model on the 100
training data and evaluate on the 100 testing data. Five-fold cross-validation is used for
fair comparisons.
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B.3. PALM

The pathologic myopia (PALM)3 dataset were provided by the ISBI 2019 Pathologic Myopia
Ophthalmology Competition organizers. It contains 800 training fundus images and 400
testing images. The image resolution is either 1444×1444 or 2124×2056. Noticeably, for
some images in this dataset, there exists no OD/OC or no fovea or neither of them. Besides,
there is no ground truth segmentation for OC, and thus there is no evaluation of OC on
this dataset. Comparisons between our proposed JOINED and other SOTA methods on
the PALM dataset are presented in Table 3.

Table 3: Detection and segmentation performance comparisons on PALM.

Method
PALM

Detection Segmentation
Fovea AED ↓ OD AED ↓ OD Dice (%) ↑

DeepLabv3+ (Chen et al., 2018) - - 65.53±35.18
UNet++ (Zhou et al., 2018) - - 76.82±22.66

UNet (Ronneberger et al., 2015) - - 80.59±20.99
DeepLabv3+ (ResNet101) 156.13±243.52 156.37±399.47 69.75±32.67

UNet++ (ResNet50) 140.52±271.15 114.08±307.40 82.64±23.12
UNet (ResNet50) 108.35±125.35 92.58±182.67 92.79±7.76

Pixel-Wise Regression (Meyer et al., 2018) 51.59±75.98 53.72±68.28 -
H-DenseUNet (Li et al., 2018) - - 69.59±35.92

Attention UNet (Oktay et al., 2018) - - 87.76±9.51
Segtran (Li et al., 2021) - - 94.34±4.98

Proposed 40.15±33.75 38.28±46.25 94.53±6.51

B.4. REFUGE

This dataset were provided by REFUGE4 (ORL, 2020), as part of MICCAI 2019. There are
a total of 400 images for training, 400 for validation and 400 for testing. The resolution for
the training data is 2124×2056 and that for the validation and testing data is 1634×1634.
Comparisons between our proposed JOINED and other SOTA methods on the REFUGE
dataset are listed in Table 4.

Table 4: Detection and segmentation performance comparisons on REFUGE.

Method
REFUGE

Detection Segmentation
Fovea AED ↓ OD AED ↓ OD Dice (%) ↑ OC Dice (%) ↑ vCDR (%) ↓

DeepLabv3+ (Chen et al., 2018) - - 85.66±14.27 71.71±28.07 16.27±12.37
UNet++ (Zhou et al., 2018) - - 86.15±13.81 72.79±26.57 14.55±11.87

UNet (Ronneberger et al., 2015) - - 90.22±10.14 73.46±27.35 14.00±10.71
DeepLabv3+ (ResNet101) 105.10±127.57 132.45±141.24 90.03±6.91 78.05±22.91 15.45±11.39

UNet++ (ResNet50) 98.15±112.56 82.57±128.84 92.52±6.18 83.71±18.23 14.43±10.24
UNet (ResNet50) 79.27±84.57 81.54±98.15 94.97±5.38 83.91±10.15 12.75±9.47

Pixel-Wise Regression (Meyer et al., 2018) 42.18±57.27 34.75±52.10 - - -
H-DenseUNet (Li et al., 2018) - - 91.02±7.21 80.16±19.12 15.99±11.26

Attention UNet (Oktay et al., 2018) - - 94.35±7.35 82.84±13.27 12.58±9.33
Segtran (Li et al., 2021) - - 96.08±4.25 87.22±8.11 4.129±3.14

Proposed 30.40±36.71 29.53±35.19 95.35±6.12 86.94±8.84 3.831±2.05

3. https://aistudio.baidu.com/aistudio/competition/detail/86/0/introduction
4. https://refuge.grand-challenge.org/Home2020/
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Appendix C. Data Augmentation Details

We identify the smallest rectangle that contains the entire field of view and use the identified
rectangle to crop each fundus image. We then resize all cropped images to 256×256 before
being inputted to the network. The augmentation strategy we employ in training JOINED
is as follows. The color distortion operation adjusts the brightness, contrast, and saturation
of the images with a random factor in [-0.1, 0.1]. Horizontal and vertical flipping as well as
rotation operations are applied with a probability of 0.5 and Gamma noise is applied with a
random factor in [-0.2, 0.2]. For the resizing operation, we randomly sample in [1/1.1, 1.1]
and then times the original size. For cropping outputs from the coarse stage, we empirically
identify 448×448 to be an optimal size for OD/OC segmentation and 128×128 for fovea
localization, to be used at the fine stage.

Appendix D. Additional Experimental Results

D.1. Structure and encoder for the fine stage

In our next experiment, UNet and UNet++ are selected as the baseline structure, and
ResNeSt50 and EfficientNet-B4 are employed as the encoder to identify the best combina-
tion. The results are shown in Table 5. As suggested by the results, UNet is better than
UNet++ and EfficientNet-B4 is better then ResNeSt50 for our OD/OC segmentation and
fovea detection tasks. So we choose the combination of UNet and EfficientNet-B4 for our
fine stage.

D.2. Input resolution

The resolution of the input image largely affects the performance of both segmentation
and localization. For the GAMMA dataset, Table 6 shows that the OD/OC segmentation
performance becomes worse when the resolution reduces from 448× 448 to 384×384. A
potential reason is that for some images the 384×384 resolution cannot cover OD, which
highlights the importance of maintaining the structural integrity of OD/OC.

Table 5: Detection and segmentation performance with different structure and encoder com-
binations.

Method
GAMMA

Detection Segmentation

Structure Encoder Fovea AED ↓ OD Dice (%) ↑ OC Dice (%) ↑ vCDR (%) ↓
UNet++ ResNeSt50 23.81±38.71 93.53±7.45 85.15±11.92 5.29±4.14
UNet ResNeSt50 18.47±33.71 94.80±5.79 85.72±11.03 4.043±3.21

UNet++ EfficientNet-B4 20.27±34.70 94.67±6.05 85.46±10.58 4.215±3.47
UNet EfficientNet-B4 15.15±30.56 95.53±5.60 86.89±9.10 3.938±2.24

Table 6 also demonstrates that the OD/OC segmentation performance becomes worse when
the resolution increases from 448×448 to 512×512. This emphasizes that it is better to use a
relatively smaller resolution while ensuring the integrity of OD/OC in FSM. Similar results
are also observed on the other two datasets.
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Table 6: OD/OC segmentation performance with different input resolutions.
Resolution 384×384 448×448 512×512

GAMMA
OD Dice (%) ↑ 94.22±6.52 95.53±5.60 95.19±5.35
OC Dice (%) ↑ 87.15±8.47 86.89±9.10 85.58±9.67
vCDR (%) ↓ 4.53±3.53 3.938±2.24 4.357±3.34

PALM OD Dice (%) ↑ 93.87±7.41 94.21±6.48 94.53±6.51

REFUGE
OD Dice (%) ↑ 93.84±7.62 95.35±6.12 94.17±6.78
OC Dice (%) ↑ 88.53±7.51 86.94±8.84 85.71±9.42
vCDR (%) ↓ 4.189±3.58 3.831±2.05 4.407±3.19

As illustrated in Table 7, in FLM, when the input resolution becomes smaller, the regression
outputs become better but the heatmap outputs become worse. Considering the balance
between the two performances, we choose 128×128 as the input resolution for FLM.

Table 7: Fovea localization performance with different input resolutions.
Resolution 64×64 128×128 256×256

GAMMA
Regression AED ↓ 15.13±23.52 16.52±25.14 23.35±35.35
Heatmap AED ↓ 25.37±35.47 17.08±31.40 16.58±29.67

PALM
Regression AED ↓ 40.83±27.53 41.52±31.14 50.37±55.35
Heatmap AED ↓ 48.37±39.41 45.21±42.48 42.58±52.67

REFUGE
Regression AED ↓ 33.13±29.52 33.52±35.15 38.35±42.81
Heatmap AED ↓ 35.00±30.47 31.08±42.10 30.59±43.28
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