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Abstract

The ranking of experiments by expected informa-
tion gain (EIG) in Bayesian experimental design
is sensitive to changes in the model’s prior distri-
bution, and the approximation of EIG yielded by
sampling will have errors similar to the use of a
perturbed prior. We define and analyze robust ex-
pected information gain (REIG), a modification
of the objective in EIG maximization by minimiz-
ing an affine relaxation of EIG over an ambigu-
ity set of distributions that are close to the origi-
nal prior in KL-divergence. We show that, when
combined with a sampling-based approach to esti-
mating EIG, REIG corresponds to a ‘log-sum-exp’
stabilization of the samples used to estimate EIG,
meaning that it can be efficiently implemented in
practice. Numerical tests combining REIG with
variational nested Monte Carlo (VNMC), adaptive
contrastive estimation (ACE) and mutual informa-
tion neural estimation (MINE) suggest that in prac-
tice REIG also compensates for the variability of
under-sampled estimators.

1 INTRODUCTION

Bayesian Experimental Design (BED) is a probabilistic
framework for selecting experiments to learn about one
or more uncertain variables. Within BED, the most popular
criterion for ranking experiments is by Expected Informa-
tion Gain (EIG), which estimates from current knowledge,
encoded in a prior distribution, how informative a particular
experiment is likely to be. This framework is used in diverse
applications across many disciplines [Ryan et al., 2016a], in
natural sciences [Huan, 2010], social sciences [Embretson
and Reise, 2013], and in machine learning and data analysis
[Foster et al., 2020].

The sensitivity of experimental design to misspecification of

the prior distribution has been described in [DasGupta and
Studden, 1991, Ryan et al., 2016b], even in settings where
the information gain is computable in closed form. For more
complex models, EIG can only be estimated numerically,
which may further affect the reliability of the computed
rankings of experiments (or, in the case of continuously
parameterized experiments, the gradient of EIG). EIG is
by definition an expectation of an expectation, so general
purpose estimates, such as Nested Monte Carlo (NMC)
estimation [Ryan, 2003], can be expensive, slow to converge,
and sensitive to underconverged sample estimates.

To address the issues above that affect the reliability of
EIG estimates in BED, we introduce a quantity we call
robust expected information gain (REIG) as a probability-
theoretic way of ranking experiments by their expected
information gain for some worst-case small perturbation
of the prior. We also show through convex analysis that
the estimation of REIG is a simple post-processing of the
samples generated by an NMC-like estimator. As a result,
our methodology is applicable with many existing methods,
which we demonstrate in section 7 by applying REIG to
samples generated by three recent popular EIG estimators
[Foster et al., 2020, 2019, Kleinegesse and Gutmann, 2020].

2 BACKGROUND AND NOTATION

We use θ ∈ Θ to indicate a choice of parameters for a
model from a set of possible parameters, and we assume
a reference prior probability distribution of θ which has
a measurable density function p(θ), so that we can write
Ep(θ)[f ] =

∫
Θ
f(θ)p(θ) dθ. We let ξ ∈ Ξ be a potential

experiment from a class of experiments, which has an out-
come variable y(ξ). The experiment ξ is modeled by the
likelihood function p(y|θ, ξ), which for each choice of θ
defines a measurable probability density function of y. Our
interest is in models where the densities p(θ) and p(y|θ, ξ)
can be efficiently computed, and where samples can be
drawn from p(θ) and from p(y|θ, ξ) for each (θ, ξ), so that
the joint prior distribution p(θ, y|ξ) = p(θ)p(y|θ, ξ) also
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has a computable density function and can be sampled. We
use the notation p(y|ξ) = Ep(θ)[p(y|θ, ξ)] for the marginal
distribution of the outcome y.

2.1 PRIOR UNCERTAINTY

While it seems recursive to consider uncertainty in the prior
distribution used in Bayesian inference, the prior distribu-
tion is in many settings not determined from first principles
or an existing population of data. In these cases the choice
of prior is often dictated by what is required to make a
computation tractable or simple, by invariance principles,
or by an attempt to be noninformative [Stark, 2015]. But
notions of noninformative priors do not scale to high di-
mensions [Yang and Berger], and even in low dimensions
priors that are close under a weak topology like total varia-
tion can have diverging posteriors for the same observations
[Owhadi et al., 2015].

So in this work we will consider sets of prior distributions
q(θ) other than the reference p(θ), but we only consider
q(θ) that are absolutely continuous with respect to p(θ). Al-
though methods similar to ours are used to handle model un-
certainty [Shapiro et al., 2021], we treat p(y|θ, ξ) as certain:
the only uncertainty we consider is in the prior distribution
of θ. When we extend the notation of derived distributions
from p(θ) to another q(θ), then, it is always with the same
likelihood: the joint prior q(θ, y|ξ) = q(θ)p(y|θ, ξ), the
marginal q(y|ξ) = Eq(θ)[p(y|θ, ξ)], etc.

2.2 EXPECTED INFORMATION GAIN

We use DKL(p(θ)∥q(θ)) to denote the Kullback-Leibler di-
vergence, DKL(p(θ)∥q(θ)) =

∫
Θ
p(θ) log(p(θ)/q(θ)) dθ.

The expected information gain of experiment ξ is defined
to be the expectation over the marginal distribution of out-
comes p(y|ξ) of the KL-divergence from the Bayesian pos-
terior distribution p(θ|y, ξ) to the prior p(θ). Because the
prior is not fixed in this work, we consider EIG to be a
function of both the prior p(θ) and the experiment ξ,

I(p, ξ) = Ep(y|ξ)[DKL(p(θ|y, ξ)∥p(θ))]. (1)

Bayesian optimal experimental design seeks the experiment
ξ∗ that maximizes this quantity,

ξ∗ = argmax
ξ∈Ξ

I(p, ξ).

Although the form of EIG in (1) is the most intuitive for
Bayesian experimental design, other equivalent definitions
map more directly on the robust variant we introduce in
section 5 and the sampling-based estimators in section 6.
The EIG of an experiment is also the mutual information

Figure 1: The expected information gain of two tests for
condition X depends on the condition’s prior probability.

between θ and y,

I(p, ξ) = DKL(p(θ, y|ξ)∥p(θ)p(y|ξ)) (2)
= Ep(θ)[DKL(p(y|θ, ξ)∥p(y|ξ))] (3)

= Ep(θ,y|ξ)
[
log

p(y|θ, ξ)
p(y|ξ)

]
. (4)

The last form in (4) is the preferred form for many meth-
ods that estimate EIG when the likelihood p(y|θ, ξ) and
prior p(θ) can be evaluated directly. We discuss methods for
estimating I(p, ξ) and other related quantities in section 6.

3 A SIMPLE EXAMPLE WITH TWO
EXPERIMENTS

Suppose a doctor has two blood tests for Condition X: test A
has a 10−14% chance of a false negative but a 50% chance
of a false positive, and test B has an ≈ 18.4% chance of
a false negative and the same chance of a false positive.
If the doctor estimates the prior probability that a patient
has condition X is 50%, it turns out that both tests have
the same expected information gain of ≈ 0.22 nats. If that
prior probability could be mistaken, however, the two tests
have different EIGs for prior probabilities in the vicinity of
50%, shown in fig. 1. If the prior probability the patient has
Condition X is actually > 50%, then test A has a greater
EIG than test B, and vice versa if it is < 50%.

We interpret these results as follows: For test A, if the prior
probability of Condition X is > 50%, then a negative test
result is surprising because there are essentially no false
negatives, but if the prior probability is < 50%, then a posi-
tive result is less surprising because it has a high probability
of being a false positive. So in comparison to test B, the
EIG of test A is more sensitive to the choice of prior. In any
neighborhood of p = 50%, there are priors where test A is
expected to be less informative than test B. So one could
argue that a risk-averse doctor, who would maximize how
informative the test would be in the worst case, should select
test B.



4 AMBIGUITY SETS

In the simple example above, we used a range of prior prob-
abilities for the model parameter to argue that some tests are
less locally sensitive to perturbations of the prior distribu-
tion. To generalize this idea from a simple discrete example
to other probability distributions, we rely on the notion of
an ambiguity set [Bayraksan and Love, 2015, Watson and
Holmes, 2016], which is a set of distributions that are not far
from a reference prior p(θ) in some statistical distance. We
use KL-divergence as distance, so our ambiguity set with
radius ϵ centered at reference distribution p(θ) is

A(ϵ, p) = {q : DKL(q(θ)∥p(θ)) ≤ ϵ}.

KL-divergence as a distance works well with Bayesian op-
timal experimental design, because the KL-divergence ap-
pears in the definition of EIG, and because the set A(ϵ, p)
is defined as a convex subset of positive measurable func-
tions q(θ) with just two conditions:

∫
Θ
q(θ) dθ = 1 and

DKL(q(θ)∥p(θ)) ≤ ϵ. Thus the minimization over q ∈
A(ϵ, p) of a well-behaved convex function f(q), which ap-
pears difficult because A(ϵ, p) of the infinite dimensionality
of space of measurable functions, transforms into an equiva-
lent dual convex program with only two variables.

We direct the interested reader to [Shapiro, 2017] for addi-
tional details: here we summarize the results that are impor-
tant for this work. If the objective function of interest f(q)
is the expectation under q(θ) of a measurable quantity of
interest Z(θ), then it is an affine function of q and we may
use duality to simplify the maximization or minimization of
Eq(θ)[Z(θ)] over A(ϵ, p(θ)) into a dual problem with only
one variable λ ≥ 0. The maximization problem

Rϵ = sup
q∈A(ϵ,p)

[Z(θ)] (5)

can be solved in dual form as

Rϵ = inf
λ≥0

λϵ+ λ logEp(θ)[exp(λ
−1Z(θ))], (6)

and the minimization problem

Mϵ = inf
q∈A(ϵ,p)

[Z(θ)] (7)

can be solved in dual form as

Mϵ = − inf
λ≥0

λϵ+ λ logEp(θ)[exp(−λ−1Z(θ))]. (8)

It is important to note that these are non-parametric re-
sults. Given a parameterized family of priors {p(θ;ψ)}ψ,
the gradient ∇ψEp(θ;ψ)[Z(θ)] is sufficient to compute the
optimizer in A(ϵ, p) of (5) or (7) within the parametric fam-
ily because the objective is affine. But (6) and (8) allow us to
compute the optimal objective value over the entire ambigu-
ity set without explicitly computing an optimal distribution
in the set.

5 ROBUST BAYESIAN EXPERIMENTAL
DESIGN

The insight of the example of section 3 was that a risk-averse
approach to experimental design that allows for some uncer-
tainty in the prior distribution would select the experiment
that maximizes the worst-case EIG in the vicinity of the ref-
erence prior p(θ). Using the ambiguity set A(ϵ, p(θ)) from
section 4 to define the vicinity of p(θ), we first formalize
the worst-case EIG as Itrueϵ (p, ξ), the true robust expected
information gain with radius ϵ,

Itrueϵ (p, ξ) = inf
q∈A(ϵ,p)

I(q, ξ). (9)

The experiment that maximizes this quantity is

ξ∗REIG,ϵ,true = argmax
ξ∈Ξ

Itrueϵ (p, ξ)

= argmax
ξ∈Ξ

inf
q∈A(ϵ,p)

I(q, ξ).

This optimization problem in this definition has a clear
meaning, but we note that I(q, ξ) is a quantity that is con-
cave in q, so it can have multiple local minima in the convex
ambiguity setA(ϵ, p) and the duality framework of section 4
cannot be applied directly.

5.1 AFFINE EXPECTED INFORMATION GAIN
APPROXIMATION

To define a relaxation to a tractable problem, we split I(q, ξ)
into two contributions, one with the marginal distribution of
y fixed by the reference prior, y ∼ p(y|ξ), and the other a
correction that is the divergence between p(y|ξ) and q(y|ξ),

I(q, ξ) = Eq(θ,y|ξ)
[
log

(p(y|θ, ξ)
p(y|ξ)

p(y|ξ)
q(y|ξ)

)]
= Eq(θ,y|ξ)

[
log

p(y|θ, ξ)
p(y|ξ)

]
−DKL(q(y|ξ)∥p(y|ξ)).

(10)

We denote the first term in this difference

Iaff(q, ξ; p) = Eq(θ,y|ξ)
[
log

p(y|θ, ξ)
p(y|ξ)

]
, (11)

because it is an approximation to I(q, ξ) that is affine and
exact when q = p. By the concavity of EIG with respect to
its first argument q,

Iaff(q, ξ; p) ≥ I(q, ξ) for all q. (12)

Due to the data processing inequality that the mutual infor-
mation between two random variables cannot increase by
a deterministic or random transformation of the arguments,
the error in I(q, ξ; p) is bounded by

|I(q, ξ)− Iaff(q, ξ; p)| ≤ DKL(q(y|ξ)∥p(y|ξ))
≤ DKL(q(θ)∥p(θ)).

(13)



In fact Iaff(q, ξ; p) is the affine approximation to I(q, ξ) that
is tangent at q = p.

Theorem 1. The function Iaff(q, ξ; p) from (11) is tangent
to I(q, ξ) at q = p for every design ξ.

Proof. It is sufficient to show that the difference between
the two functions, which by (10) is DKL(q(y|ξ)∥p(y|ξ)), is
gradient free at q = p.

We first calculate the gradient with respect to ξ: by the chain
rule applied to (4), the derivative in the direction ξ̂ is

∇ξDKL(q(y|ξ)∥p(y|ξ))[ξ̂]

= ∇q(y|ξ)DKL(q(y|ξ)∥p(y|ξ))[∇ξq(y|ξ)[ξ̂]]

− Eq(y|ξ)
[∇ξp(y|ξ)[ξ̂]

p(y|ξ)
]
.

For general distributions Q and P the KL divergence sat-
isfies ∇|Q=PDKL(Q∥P ) = 0, so the first term vanishes
when q = p. In the second term, when q = p the denomina-
tor cancels with the measure and we have

Eq(y|ξ)
[∇ξp(y|ξ)[ξ̂]

p(y|ξ)
]
|q=p =

∫
∇ξp(y|ξ)[ξ̂] dy

= ∇ξ(Ep(y|ξ)[1])[ξ̂] = 0,

where we use the fact that Ep(y|ξ)[1] = 1 for all ξ.

Finally, we can see that the gradient with respect to q(θ) in
the direction q̂(θ) is

∇q(θ)DKL(q(y|ξ)∥p(y|ξ))[q̂(θ)]
= ∇q(y|ξ)DKL(q(y|ξ)∥p(y|ξ))[∇q(θ)q(y|ξ)[q̂(θ)]],

which vanishes at q = p for the same reasons as above.

5.2 ROBUST EXPECTED INFORMATION GAIN
(REIG)

Having shown that Iaff(q, ξ; p) is a good approximation to
I(q, ξ) near the reference prior p(θ), we now use it to define
a robust quantity that approximates Itrueϵ , which we refer to
simply as Iϵ,

Iϵ(p, ξ) = inf
q∈A(ϵ,p)

Iaff(q, ξ; p). (14)

By the properties established in (12), (13), and theorem 1,
we have the following relationships between Itrueϵ and Iϵ:

I(p, ξ) ≥ Iϵ(p, ξ) ≥ Itrueϵ (p, ξ); (15)

|Iϵ(p, ξ)− Itrueϵ (p, ξ)| ≤ ϵ; (16)

|Iϵ(p, ξ)− Itrueϵ (p, ξ)| ∈ O(ϵ2). (17)

These facts suggest an experiment that maximizes Iϵ(p, ξ),

ξ∗REIG,ϵ = argmax
ξ∈Ξ

Iϵ(p, ξ),

has similar robustness to ξ∗REIG,ϵ,true over perturbations of
the the prior p(θ), as long as the radius ϵ of the ambiguity
set is not too large.

5.3 COMPUTATION OF Iϵ(p, ξ) VIA DUALITY

We have selected Iϵ(p, ξ) as our robust quantity to optimize
because (14) can be optimized by the dual transformation
described in section 4. Applying (8) to EIG in the form (3),
we have Iϵ(p, ξ) =

− inf
λ≥0

λϵ+λ logEp(θ)
[
exp

(
−DKL(p(y|θ, ξ)∥p(y|ξ))

λ

)]
.

(18)
We will show in section 6 that this 1D convex optimization
problem can be solved efficiently by a small adaptation of
existing EIG estimators.

5.4 RELATED DESIGN CRITERIA

Our definition of Iϵ was motivated by a risk-aversion argu-
ment in favor of the design with the best worst-case EIG
in a neighborhood. Because the approximation Iaff(q, ξ; p)
is affine, however, maximization over the ambiguity set
can also be solved by duality. This means that the same
methodology can be used to define a risk-loving strategy for
experimental design, which selects the experiment that has
the highest EIG for some prior in the ambiguity set. We call
this criterion Iϵ,max(p, ξ) =

inf
λ≥0

λϵ+ λ logEp(θ)
[
exp

(DKL(p(y|θ, ξ)∥p(y|ξ))
λ

)]
.

(19)
This criterion is used in section 7 to counteract biased un-
derestimation of EIG by some estimators.

Last, we note that our decision to limit the uncertainty in the
models of the experiments to just the prior p(θ) and not the
likelihood p(y|θ, ξ) is arbitrary, at least from the perspec-
tive of the methods we have developed. An ambiguity set
A(ϵ, p(θ, y|ξ)) can be centered around the joint prior of the
model p(θ, y|ξ), and an affine approximation can be taken
that would allow for optimization over that ambiguity set
via duality. The result would be an even more conservative
quantity, Iϵ,joint(p, ξ) =

− inf
λ≥0

λϵ+ λ logEp(θ,y|ξ)
[
exp

(
λ−1 log

p(y|ξ)
p(y|θ, ξ)

)]
.

(20)
We will not explore this criterion more in this work.

6 REIG ESTIMATION VIA SAMPLING

The design of efficient estimators for EIG has been the sub-
ject of much research, in part because their use in experimen-
tal design is computationally demanding. The combination
of nested iterations to estimate the densities of implicitly
defined distributions, to evaluate the expectation of the EIG,
and finally to optimize that quantity lead to many passes
over the problem data as well as many model evaluations.



When introducing an implicitly defined quantity like Iϵ, we
should be leery of adding another nested loop to the calcu-
lation. This is why we immediately discounted the design
criterion Itrueϵ from (9), which would require optimization
in the original variables parameterizing p(θ), which could
be numerous.

6.1 CONSTRUCTING A REIG ESTIMATOR

When both the prior p(θ) and the likelihood p(y|θ, ξ) can be
sampled directly, sampling-based approaches to estimating
EIG often have a two-level structure: an inner estimator is
defined for a fixed θ and/or y in the integrated quantity —
either DKL(p(θ|y, ξ)∥p(θ)) in (1), DKL(p(y|θ, ξ)∥p(y|ξ))
in (3), or log(p(y|θ, ξ)/p(y|ξ) in (4) — and an outer Monte
Carlo estimator over either p(θ) or p(θ, y|ξ) calls the inner
estimator for each generated θ or (θ, y).

This basic paradigm maps closely onto the dual formulation
of Iϵ in (18), in a method we sketch in algorithm 1 that
defines a REIG estimator Îϵ.

1. Draw N1 i.i.d. samples {θi}N1
i=1 from p(θ).

2. For each θi, use estimator D̃(θ, ξ) to compute an
estimate di ← D̃(θi, ξ) of DKL(p(y|θ, ξ)∥p(y|ξ)).

3. Solve the 1D convex optimization problem

Mϵ = inf
λ≥0

λϵ+ λ log
1

N1

N1∑
i=1

exp(−λ−1di) (21)

and return −Mϵ.
Algorithm 1: Iϵ Estimation via Sampling

In this approach the inner estimator is called N1 times in
step 2, which is the same number of times it would have been
called to compute the EIG estimator 1

N1

∑N1

i=1 di, but those
estimates are saved and treated as an empirical distribution,
so that the optimization problem in step 3 solves (18) by
sample average approximation (SAA) instead of stochastic
approximation (SA). The assumption is that this 1D convex
problem will be solved quickly and the dominant cost in
algorithm 1 is the cost of computing the KL-divergence
estimators di ← D̃(θi, ξ).

Although the inner optimization in step 3 is solved by SAA,
we note that algorithm 1 can be used within either SAA
or SA for the optimization over ξ, depending on whether
the samples in step 1 are reused or not. The derivative
∇ξ Îϵ(p, ξ) can be computed as −∇dMϵ · ∇ξd, where d
is the vector of di estimates from step 2. The partial deriva-
tives ∇ξd are also present in computing the gradients of
EIG estimators, so existing methods for this term can be
reused: ∇dMϵ are the only additional derivatives needed
for REIG. Letting λ∗ be the optimal value and letting
L(d) = log 1

N1

∑N1

i=1 exp(−di), if λ∗ ̸= 0 then ∇dMϵ =

∇dL(d/λ∗). If λi = 0, there is some i∗ = argmini di and
Mϵ = −di, so that either −ei = ∇dMϵ or −ei ∈ ∂dMϵ if
i∗ is not unique.

6.2 EIG ESTIMATORS

There are many possible choices for the estimator D̃(θ, ξ)
of DKL(p(y|θ, ξ)∥p(y|ξ)). In fact, any EIG estimator
D̂(p(θ), p(y|θ, ξ)) that accepts general prior distributions
can be used by running a separate instance of D̂ for each θi
with the prior distribution θ ∼ δθi . In practice, this approach
would have poor performance because sequestering the sam-
ples θi into separate estimator instances would not allow
for vectorization across samples. Vectorization and batching
are best exploited in a nested EIG estimator if all instances
of the inner estimator have the same hyperparameters to
maximize throughput.

In the experiments in section 7, we have primarily used
the estimators developed in [Foster et al., 2019, 2020, Klei-
negesse and Gutmann, 2020]. The first is the Variational
Nested Monte Carlo (VNMC) estimator, which is based
on the form of EIG in (4). It draws N samples (θi, yi) ∼
p(θ, y|ξ) from the joint prior, evaluates log p(yi|θi, ξ) di-
rectly, and then uses an inner estimator for log p(yi|ξ). That
estimator is based on the identity

log p(y|ξ) = logEq(θ)
[ p(θ)

q(θ|y, ξ)
p(y|θ, ξ)

]
,

where q(θ|y, ξ) can be any distribution that is absolutely
continuous with respect to p(θ), but the variance of that
expectation is lower the closer q(θ|y, ξ) is to the posterior
distribution p(θ|y, ξ). M samples {θji }Mj=1 are drawn from
q(θ|y, ξ) for each yi, resulting in the EIG estimator

ÎVNMC =

N∑
i=1

log
p(yi|θi, ξ)

1
M

∑M
j=1

p(θji )

q(θji |yi,ξ)
p(yi|θji , ξ).

(22)

This estimator is consistent in the limit as M → ∞, but
for finite M is in expectation an upper bound for EIG. For
details see Foster et al. [2019].

The second estimator that we use is the Adaptive Contrastive
Estimator (ACE) from [Foster et al., 2020]. In description
it is almost identical to VNMC, except that in estimating
p(yi|ξ) we add to the samples {θji }Mj=1 the original sample
θ0i = θi drawn from p(θ) that generated yi. The result is

ÎACE =

N∑
i=1

log
p(yi|θi, ξ)

1
M+1

∑M
j=0

p(θji )

q(θji |yi,ξ)
p(yi|θji , ξ).

(23)

This is also a consistent estimator of EIG, but the addition
of the prior-samples θ0i to the estimator for p(yi|ξ) makes
it in expectation a lower bound for EIG for finite M : see
[Foster et al., 2020] for more details.



The last estimator that we use is the Mutual Information
Neural Estimation (MINE), which trains the ratio, p(y|θ,ξ)p(y|ξ) ,
with samples and estimate the EIG with SAA method [Klei-
negesse and Gutmann, 2020],

ÎMINE =

N∑
i

[Tψ(θi, yi)− eTψ(θi,y
∗
i )−1], (24)

where y∗i represents the shuffled y and T is a neural network
with parameters ψ.

The outer loop for ACE, VNMC and MINE methods draw
from p(θ, y|ξ) or p(θ)p(y|ξ), and in the implementations
provided by the authors one sample from p(y|θi, ξ) is drawn
for each of N samples θi drawn from p(θ). To adapt these
methods to the needs of our algorithm 1, we split N into
N = N1N2, and draw N2 samples from p(y|θi, ξ) for each
ofN1 samples drawn from p(θ). We then take the mean over
the N2 samples for our estimate of DKL(p(y|θi, ξ)∥p(y|ξ))
on line 2 of our algorithm.

6.3 REIG AS LOG-SUM-EXP STABILIZATION

Step 3 of algorithm 1 shows that the convex dual objec-
tive function for the Iϵ design criterion manifests as a λϵ-
biased and λ−1-weighted log-sum-exp combination of the
−DKL(p(y|θ, ξ)∥p(y|ξ)) estimates.

From the bounds for log-sum-exp operators we have

λϵ−min
i
{di} ≥ λϵ+ λ log

1

N

N∑
i=1

exp(−λ−1di)

> λϵ−min
i
{di} − λ logN.

When the ambiguity set radius ϵ is smaller, the optimal
λ is larger, and Mϵ becomes more like the sample mean;
when ϵ is larger, the optimal λ is smaller until eventually
the λ ≥ 0 constraint becomes binding. In that case the limit
as λ→ 0 is achieved and the value is squeezed to become
Mϵ = −mini di.

We interpret these facts in the following way: Iϵ tends to bias
the samples in the EIG estimate more towards the smaller
values of DKL(p(y|θi, ξ)∥p(y|ξ)) the larger ϵ is. A well-
recognized problem in EIG estimation [Foster et al., 2020]
is the presence of samples where p(y|ξ) is under-estimated,
leading to artificially inflated EIG estimates.

We have until this point consider Iϵ a design criterion in its
own right, but this biasing behavior suggests that the use
of algorithm 1 with an appropriate choice of ϵ can also be
useful as an estimator for the original EIG criterion whose
bias protects the estimate from sampling error. This may be
a viable approach for stabilizing the computed EIG value
when there are insufficient samples to converge the estimate
of p(y|ξ) well in the nested sampling approaches.

Figure 2: Preference test: EIG change with prior perturba-
tion and the performance of Iϵ

Since ÎVNMC is an upper bound while ÎACE and ÎMINE are
lower bounds for I , we define an estimator ÎVNMC

ϵ that uses
VNMC as the estimator for (18) and the estimators ÎACE

ϵ,max

and ÎMINE
ϵ,max that use ACE and MINE, respectively. The mini-

mization / maximization in each case acts counter to the bias
of the sampling process, which we measure in the following
section.

7 EXPERIMENTS

We perform two types of numerical experiments. In the first
type, we test to see how well Iϵ performs as a “worst-case”
EIG estimate, as discussed in section 5. In the second type,
we compare the previously developed EIG estimators from
section 6.2 with a large number of samples to Iϵ with a small
number of samples to see if the bias against large summands
described in section 6.3 is as effective as additional samples
in stabilizing the computation.

7.1 REIG AS A WORST-CASE ESTIMATE

This test uses the Preference model test case from [Foster
et al., 2019]. The parameter θ is a location parameter with
a reference prior p(θ) that is normally distributed, and the
experiments are indexed by locations relative to θ.

To test how well Iϵ serves at computing worst-case estimate,
we select as second prior q(θ) such that I(p) and I(q) look
visibly distinct over the range of possible experiments in
fig. 2, and then measure the KL-divergence between p(θ)
and q(θ) and take this number to be ϵ (in this case, ϵ = 0.2).
We then compute the Iϵ criterion for all experiments as well,
and plot them in fig. 2. (In all of these calculations we use a
sampling estimator with a large number of samples so we
can be reasonably sure that the values are converged.) What
we see is that Iϵ(p, ξ) succeeds at being a lower bound for
both I(p, ξ) and I(q, ξ) in this case. We also see that this is
not the result of a uniform or log-uniform scale reduction:



Iϵ(p, ξ) has more drastically reduced the gain of some ex-
periments than others, meaning that Iϵ(p, ξ) determines a
different optimal ξ∗ than I(p, ξ).

7.2 EIG STABILIZATION VIA REIG

We now test the effectiveness of Îϵ(p, ξ)’s log-sum-exp sta-
bilization at producing a stabilized estimation of I(p, ξ). We
use the benchmarks designed by [Foster et al., 2019, Klei-
negesse and Gutmann, 2020], especially three experimental
designs which have explicit models for the likelihood distri-
bution: A/B test, Preference, and Pharmacokinetic model.

7.2.1 A/B test

An A/B test [Kohavi et al., 2009, Box et al., 1978] can
be used to determine which experiment in a set of two or
more results in the largest information gain. Foster et al.
[2019] introduces the group size selection problem between
groups A and B. We have n experiment participants, and we
can select nA participants for group A and n− nA partic-
ipants for group B. Each participant is represented as two
random variables: the first is measured for participants in
group A, and the second for group B. This A/B test models
each participant’s random variables using a Bayesian linear
model, y = Xθ + ϵ; the prior and likelihood distributions
are Gaussian distributions.

Each of the estimators under consideration uses a neural
network to generate samples that musts be trained. The pro-
posal distribution used by the VNMC and ACE estimators
is trained with A and Σp as in [Foster et al., 2019]: more
details about the proposal distribution can be found there.
Likewise, the parameters ψ of the neural network in ÎMINE

are trained for each θ with samples of y from the given
distributions.

In our work, we start from a different reference prior distri-
bution, with its mean taken to be [4.46, 0] instead of [0, 0].
We find that the VNMC estimator shows considerably more
error for some designs with a small number of samples
M = 30 (fig. 3, top left), and requires more samples to
converge (M ≥ 100). MINE, on the other hand, doesn’t
have big difference when we have enough samples (fig. 3,
bottom left).

In contrast to that larger number of samples, we compute
ÎVNMC
ϵ and ÎACE

ϵ,max estimators using only M = 30 posterior
samples and ÎMINE

ϵ,max using 1000∗10 samples, with an increas-
ing series of ambiguity set radii ϵ (fig. 3, right). The estimate
is almost unaffected by the ambiguity set if ϵ = 0.001, but
increasing ϵ to 0.1 seems to improve the estimates for the
designs that were highly overestimated without negatively
affecting the other experiments that were already properly
estimated.

Figure 3: A/B test convergence for EIG estimators (left
column): 100*10 samples from p(θ, y) and 30/100/1000
samples from qϕ(θ|y, ξ) (10,000, 30,000, 50,000 samples
for the MINE estimator); Iϵ estimators (right column): 100
θ samples from p(θ) and 10 y samples from each θi and 30
posterior samples for the marginal likelihood distribution
(1000 θ and 10 y samples for the MINE estimator).

7.2.2 Preference

Another benchmark that we use to test the effectiveness of
Iϵ(p, ξ)’s log-sum-exp stabilization is Preference test. The
Preference experiment is designed to understand consumer
behavior with a utility function [Samuelson, 1948, Foster
et al., 2019]. The experiment provides the proposal to sub-
jects and checks their preference as an output to use in the
utility function.

We use the experiment from [Foster et al., 2019]. We start
from different reference prior distribution using −7.35 as
the mean instead of 0. The KL divergence from the origi-
nal prior distribution is ϵ = 0.2. VNMC estimator in our
test shows more error with a small number of samples M
= 30 (fig. 4, top left), while ACE estimator shows accurate
estimation for the EIG with small number of marginaliza-
tion samples (fig. 4, middle left). MINE estimator, on the
other hand, estimate the EIG lower than the true EIG (fig. 4,
bottom left). But the optimal experimental set-up are same
with the true EIG.

We further estimate ÎVNMC
ϵ and ÎACE

ϵ,max estimator using only
M = 30 samples and MINE, with an increasing series of
ambiguity set radii ϵ (fig. 4, right). By applying ambiguity
set 0.01, the I estimation boundary becomes tight. If we ap-
ply ambiguity set ϵ = 0.1, the lower bound (ACE) becomes
higher than the true I while the upper bound (VNMC) be-
comes lower than the True I (fig. 4, right). The ÎACE

ϵ,max and
ÎVNMC
ϵ are no longer the corresponding upper bound and

lower bound. ÎMINE
ϵ,max with ϵ = 0.1 increase the EIG esti-

mation and change the optimal experimental set up (fig. 4,
bottom right).



Figure 4: Preference test convergence for EIG estima-
tors (left column): 100*10 samples from p(θ, y) and
30/100/1000 samples from qϕ(θ|y, ξ) (10,000, 30,000,
50,000 samples for the MINE estimator); Iϵ estimators
(right column): 100 θ samples from p(θ) and 10 y sam-
ples from each θi and 30 posterior samples for the marginal
likelihood distribution (1000 θ samples and 10 y samples
for MINE estimator).

7.2.3 Pharmacokinetic model

The last benchmark that we use to test the effectiveness
of Iϵ(p, ξ) is Pharmacokinetic study. The Pharamcokinetic
study is designed to understand how the medicine is ab-
sorbed, distributed and eliminated in the subject’s body,
which we can understand with the compartmental model.
We can estimate the compartment model’s parameter by
blood sampling and we want to calculate the optimal blood
sampling time. [Ryan et al., 2014, Kleinegesse and Gut-
mann, 2020]

We start from a different reference prior distribution with its
mean taken to be [0.1, log 0.1 log 20] whose KL divergence
from the original prior distribution is 0.1. The accuracy of
the estimators ÎVNMC and ÎACE in our tests have increases
with M (fig. 5, top left, middle left) while ÎMINE, on the other
hand, does converge to a substantial underestimate (fig. 5,
bottom left), yet identifies the same optimal experiment.

We further compute ÎVNMC
ϵ and ÎACE

ϵ,max estimators using only
M = 30 samples and ÎMINE

ϵ,max, with an increasing series of
ambiguity set radii ϵ (fig. 5, right). By applying ambiguity
set 0.1, the lower bound (ACE) becomes higher than the true
I while the upper bound (VNMC) becomes lower than the
True I (fig. 5, right). The ÎACE

ϵ,max and ÎVNMC
ϵ are no longer

the corresponding upper bound and lower bound. MINE
estimator with ambiguity set ϵ = 0.1, on the other hand,
improve the EIG estimation so that the estimation is close
to the true EIG (fig. 5, bottom right).

Figure 5: Pharmacokinetic model convergence for EIG
estimators (left column): 100*10 samples from p(θ, y)
and 30/100/1000 samples from qϕ(θ|y, ξ) (10,000, 30,000,
50,000 samples for the MINE estimator); Iϵ estimators
(right column): 100 θ samples from p(θ) and 10 y sam-
ples from each θi and 30 posterior samples for the marginal
likelihood distribution (1000 θ samples and 10 y samples
for MINE estimator).

8 DISCUSSION

This work presents an introduction and initial numerical
experiments testing the use of a robust modification of ex-
pected information gain as a criterion for Bayesian model
selection. The Iϵ estimator is designed to both have rigor-
ously defined approximation properties (as the minimization
of a tangent approximation to the EIG over a convex am-
biguity set), and to yield a practical algorithm in practice
(algorithm 1, which post-processes the samples of previ-
ously defined estimators by the solution of a 1D convex
optimization problem).

While our initial results are promising, our understanding of
how to apply this method is not complete at this time. Most
of the remaining questions relate to the choice of the radius
ϵ of the ambiguity set over which the approximated EIG is
taken to be robust. A definite a priori estimate for ϵ seems
unlikely in most cases.

In an approach analogous to Morozov’s discrepancy princi-
ple, a logical choice of ϵ would be one such that the implied
radius of the ambiguity set is on the same order as the er-
ror that the sampling based estimator (such as VNMC or
ACE) has introduced into the problem. The fact that these
two estimators provide (in expectation) an upper and lower
bound for the true EIG of a design suggests that there may
be a way to combine the two estimators into an a posteriori
estimate of the proper choice of ϵ. Further investigation into
this topic is the subject of future research.
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A EXPERIMENTS DETAILS

A.1 IMPLEMENTATION

All experiments were implemented in PyTorch 1.4.0 [Paszke
et al., 2019] and Pyro 0.3.4 [Bingham et al., 2018].



A.2 A/B TEST

The reference prior and likelihood for the A/B test were as
follows:

θ ∼ N (

(
0
0

)
,

(
102 0
0 1.822

)
), y|θ, ξ ∼ N (Xξθ, I) (25)

A.3 PREFERENCE

We use the utility function from [Foster et al., 2019].

let ξ ∈ R (26)

θ ∼ N (−7.35, 202) (27)

η|θ, ξ ∼ N (ξ − θ, 1 + |ξ|2) (28)
y = f(η) (29)

f : R→ [ϵ, 1− ϵ] (30)

x→


ϵ if x ≤ logit(ϵ)
1− ϵ, ifx ≥ logit(1− ϵ)

1
1−e−x otherwise,

(31)

A.4 PHARMACOKINETIC MODEL

The prior distribution and noise distributions for the phar-
macokinetic model are defined as follows,

kake
V

 ∼ logN

 0.1
log 0.1
log 20

 ,

0.05 0 0
0 0.05 0
0 0 0.05


(32)

yt =
400

V

ka
ka − ke

(exp−ket− exp−kat)(1 + ϵ1t) + ϵ2t,

(33)

where ϵ1t ∼ N (0, 0.01), ϵ2t ∼ N (0, 0.1), and ka > ke.
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