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Abstract
In recent years, there has been a growing research
interest in decision-focused learning, which em-
beds optimization problems as a layer in learn-
ing pipelines and demonstrates a superior per-
formance than the prediction-focused approach.
However, for distributionally robust optimization
(DRO), a popular paradigm for decision-making
under uncertainty, it is still unknown how to em-
bed it as a layer, i.e., how to differentiate deci-
sions with respect to an ambiguity set. In this
paper, we develop such differentiable DRO lay-
ers for generic mixed-integer DRO problems with
parameterized second-order conic ambiguity sets
and discuss its extension to Wasserstein ambigu-
ity sets. To differentiate the mixed-integer deci-
sions, we propose a novel dual-view methodol-
ogy by handling continuous and discrete parts of
decisions via different principles. Specifically,
we construct a differentiable energy-based sur-
rogate to implement the dual-view methodology
and use importance sampling to estimate its gradi-
ent. We further prove that such a surrogate enjoys
the asymptotic convergency under regularization.
As an application of the proposed differentiable
DRO layers, we develop a novel decision-focused
learning pipeline for contextual distributionally
robust decision-making tasks and compare it with
the prediction-focused approach in experiments.

1. Introduction
In real-world scenarios, decision-making problems are typi-
cally affected by uncertainties. Therefore, machine learning
techniques are usually leveraged to predict the behavior of
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the uncertainty, and then this prediction is passed to an opti-
mization problem to derive decisions (Ning & You, 2019).
Conventionally, the learning model is trained by minimizing
a prediction loss, i.e., in a prediction-focused way.

In recent years, decision-focused learning, also known as
smart predict-and-optimize in operations research (Elmach-
toub & Grigas, 2022), has received much research interest
(Mandi et al., 2023; Sadana et al., 2023). Different from
prediction-focused learning, decision-focused learning aims
to train a learning model that minimizes a decision loss,
i.e., improving the decision quality. To implement decision-
focused learning, differentiable optimization layers play
the central role of passing gradient information from the
decision back to the learning model, and this is achieved
by differentiating the decision with respect to the learning
target.

From the learning side, the learning target of most differ-
entiable optimization layer research is a point prediction of
uncertain quantity, and some research learns to predict the
distribution of uncertainty. However, in prior research, the
robustness of prediction is typically ignored, so the decision
made based on this prediction is also in lack of robustness.
As an emerging paradigm for robust decision-making, dis-
tributionally robust optimization (DRO) has seen a boom in
both theory and applications in recent years (Delage & Ye,
2010; Wiesemann et al., 2014; Mohajerin Esfahani & Kuhn,
2018; Rahimian & Mehrotra, 2022). Therefore, to improve
decision quality while preserving robustness, developing
a differentiable DRO layer to learn the ambiguity set in a
decision-focused way is highly desired but has not been
investigated yet.

From the optimization side, most differentiable optimiza-
tion layer research focuses on either pure continuous or
pure discrete decisions. However, the decisions in practical
problems are typically mixed-integer. Only Ferber et al.
(2020) developed a mixed-integer linear program (MILP)
layer. However, their approach relies on the specific solution
structure of linear program (LP). Therefore, how to differen-
tiate the mixed-integer decisions for generic mixed-integer
convex optimization remains an unsolved problem.

To fill the aforementioned research gaps, this paper devel-
ops the first differentiable DRO layers with mixed-integer
decisions. That is, the learning target is an ambiguity set
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Figure 1. Sequential learning and decision-making pipeline.

and the output decisions are mixed-integer. The ambiguity
set we mainly focus on is the class of parameterized second-
order conic (SOC) ambiguity set (Bertsimas et al., 2019),
which is widely adopted in various applications (Zhou et al.,
2019; Zhang et al., 2022; Yang et al., 2023), and Wasserstein
ambiguity set is also discussed in Appendix C.

The major contributions of this paper are summarized as
follows.

• We develop the first generic differentiable DRO layers,
which enable integrating learning and distributionally
robust decision-making via gradient descent.

• We propose a novel dual-view methodology to differ-
entiate the mixed-integer decisions. We note that this
methodology can be applied to develop any mixed-
integer convex optimization layer, not limited to the
proposed DRO layers.

• We construct a differentiable energy-based surrogate
value function to implement the dual-view methodol-
ogy and use importance sampling to estimate its gradi-
ent. In theory, we prove that such a surrogate enjoys
the asymptotic convergency under regularization.

• As an application of the proposed differentiable DRO
layers, we develop a novel decision-focused learning
pipeline, which is of interest in its own right, for con-
textual distributionally robust decision-making tasks
and compare it with the prediction-focused approach
in experiments.

2. Related Literature
We first review existing work on differentiable optimization
layers with pure continuous and pure discrete decisions.

Convex optimization layers. To differentiate continuous
decisions of constrained optimization, the basic idea is to
apply the implicit differentiation theorem to the optimality
conditions. Following this idea, Amos & Kolter (2017) suc-
cessfully differentiated through constrained quadratic pro-
grams. Differentiating through LP was achieved by adding
regulation terms in Wilder et al. (2019) and Mandi & Guns
(2020). For linear conic programming, the optimality condi-
tion was derived by leveraging the homogeneous self-dual
embedding technique (Busseti et al., 2019), and then the
implicit differentiation was applied (Agrawal et al., 2019b).
Finally, Agrawal et al. (2019a) aggregated all these work
and developed the differentiable convex optimization layer

package cvxpylayers.

Combinatorial optimization layers. To handle the non-
differentiability of discrete decisions, Berthet et al. (2020)
developed differentiable surroagte solution by adding pertur-
bation. Similar ideas also appeared in Niepert et al. (2021)
and Pogančić et al. (2020). We refer to Dalle et al. (2022)
for a review of this perturbation technique.

Aside from the differentiable optimization layer approach
that manages to differentiate the decision, some research
constructs a surrogate loss to circumvent difficulty.

Surrogate loss approach. The seminal work Elmachtoub &
Grigas (2022) developed a surrogate SPO+ loss. Shah et al.
(2022) and Zharmagambetov et al. (2023) constructed a
training-based surrogate loss. Kong et al. (2022) developed
a surrogate loss for stochastic programming (SP) by using
an energy-based model. For combinatorial optimization
problems, Mulamba et al. (2020) and Mandi et al. (2022)
constructed surrogate loss functions by maximizing the prob-
ability of the ground-truth optimal decision.

From the perspective of the learning target, most of the work
mentioned above only considered point prediction, except
for Donti et al. (2017) and Kong et al. (2022), which learned
conditional distributions. Chenreddy et al. (2022) and Sun
et al. (2023) investigated prediction-focused learning meth-
ods for uncertainty sets, and Wang et al. (2023) developed a
learning method for robust optimization (RO) based on an
augmented Lagrangian method. Very recently, Chenreddy
& Delage (2024) developed an end-to-end learning method
for robust optimization.

Perhaps the most relevant work to this paper is Costa & Iyen-
gar (2023), which to the best of our knowledge is the only
research on distributionally robust decision-focused learn-
ing. However, their framework presumes the uncertainty
distribution to have a residual structure and only applies to
specific financial problems with continuous decisions. On
the contrary, our differentiable DRO layers apply to general
distributions and a broad family of optimization problems
with mixed-integer decisions.

3. Background
In this section, we provide some background information
on the topic of this paper.
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3.1. Decision-Making under Uncertainty

A typical sequential learning and decision-making pipeline
is shown in Figure 1, where the decision-maker first lever-
ages a learning model Mϕ to predict some information U
concerning the uncertainty y from covariate z. Such infor-
mation U can be a point prediction, conditional distribution,
uncertainty set, or ambiguity set of the uncertainty y.

Subsequently, the decision-maker takes U as a pa-
rameter and solves a constrained optimization problem
minx∈X f(x,U ) to derive the decision x∗. Depending
on the form of U , this constrained optimization problem
can be deterministic optimization, SP, RO, or DRO.

Finally, after the decision is made, the uncertainty y is
revealed and the decision loss l(x∗,y) is realized.

3.2. Decision-Focused Learning

In the conventional prediction-focused approach, the learn-
ing model is trained independently of the subsequent op-
timization process. On the contrary, in decision-focused
learning, the learning model is trained by directly minimiz-
ing the decision loss, which can be formally expressed as
the following bilevel problem.

min
ϕ∈Φ

E(z,y)∼P l
(
x∗(Mϕ(z)),y

)
s.t. x∗(Mϕ(z)) = argmin

x∈X
f(x,U = Mϕ(z))

(1)

where ϕ is the parameter of the learning model Mϕ we
want to train, P is the joint distribution of covariate z and
uncertainty y, and here we assume (1) is well-defined, i.e.,
the solution set of the argmin operator is a singleton.

To optimize this bilevel problem by gradient descent, it
necessitates the computation of the following gradient.

∂l
(
x∗(Mϕ(z)),y

)
∂ϕ

=
∂l
(
x∗(Mϕ(z)),y

)
∂x∗

∂x∗

∂Mϕ(z)

∂Mϕ(z)

∂ϕ

(2)

where the first and last terms are easy to compute. However,
the existence of argmin operator poses great difficulty in
the computation of the middle term ∂x∗

∂U , so the goal of a
differentiable optimization layer is to compute this term.

In this paper, we aim to develop a differentiable DRO
layer, i.e., the learning target U is an ambiguity set and
minx∈X f(x,U ) is a DRO problem. Therefore, the goal is
to develop a method to differentiate the mixed-integer deci-
sion x∗ with respect to the ambiguity set U , i.e., computing
∂x∗

∂U .

3.3. Distributionally Robust Optimization

The DRO takes an ambiguity set as the parameter and out-
puts a decision by optimizing the following problem.

x∗(U ) = argmin
x∈X

f(x,U ) := max
P∈U

Ey∼P[c(x,y)] (3)

where the cost function c is usually taken as the decision
loss l and f is often referred to as ‘worst-case expectation’.

4. Differentiable Distributionally Robust
Optimization Layers

Since the space of all ambiguity sets is infinite-dimensional,
directly learning in this space is generally computationally
impossible. Therefore, we focus on the class of parameter-
ized SOC ambiguity sets, which stem from the well-known
SOC ambiguity set (Bertsimas et al., 2019).

To define the parameterized SOC ambiguity set, we first
introduce the following differentiable parameterized second-
order cone representable set, which is an extension of the
conventional second-order cone representable set (see Ap-
pendix A.1).

Definition 4.1. A set W (θ) ⊂ RK is a differentiable param-
eterized second-order cone representable set with parameter
θ if there exists a collection of J second-order cone inequal-
ities such that

y ∈ W (θ) ⇔ ∃v : Aj(θ)

[
y

v

]
− bj(θ) ≥Lmj 0,∀j ∈ [J ]

where Lmj represents a mj dimensional second-order cone
and matrixes Aj(θ) and vectors bj(θ) are differentiable
functions of θ.

Now we define the parameterized SOC ambiguity set.

Definition 4.2. An ambiguity set U (θ) is a parameterized
SOC ambiguity set with parameter θ if it can be expressed
as follows.

U (θ) =

{
P

∣∣∣∣∣ P(Ξ) = 1

EP[gi(y,αi)] ≤ σi,∀i ∈ [I]

}
(4)

where P is a distribution of y, θ = (α1, σ1, · · · ,αI , σI),
support Ξ ⊂ RK of the uncertainty is a second-order cone
representable set, and the epigraph of each gi,

epi gi = {(y, u)|u ≥ gi(y,αi)} (5)

is a differentiable parameterized second-order cone repre-
sentable set with parameter αi

By selecting functions gi, the parameterized SOC ambiguity
set can characterize a variety of distributional features. We
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present some examples of the parameterized SOC ambiguity
set in Appendix A.2 and see also Bertsimas et al. (2019).

For the cost function c(x,y) in Equation (3), we consider
both the single- and two-stage cost functions.
Assumption 4.3. The cost function c(x,y) admits a single-
stage formulation (i) without recourse or a two-stage formu-
lation (ii) with relatively complete recourse as follows.

(i). Single-stage formulation: c(x,y) =
∑K

k=1 ck(x)yk,
where the epigraph of each function ck is a second-order
cone representable set and the uncertainty y is required to
be non-negative.

(ii). Two-stage formulation: c(x,y) is the optimal value of
an LP, i.e.,

c(x,y) = min
γ≥0

qTγ s.t. T (y)x+Wγ = h(y) (6)

where T (y) = T 0 +
∑K

k=1 T kyk, h(y) = h0 +∑K
k=1 hkyk, and the constraint in (6) is feasible for all

x ∈ X and y ∈ Ξ .

To derive a tractable reformulation of the DRO problem (3),
we need the following regularity assumption on the parame-
terized SOC ambiguity set, and the detailed explanation of
Assumption 4.4 is presented in Appendix A.3.
Assumption 4.4. Slater’s condition holds for the parame-
terized SOC ambiguity set U (θ).

Now we can state the following reformulation theorem.
Theorem 4.5. Suppose U (θ) is a parameterized SOC
ambiguity set and Assumption 4.3 and Assumption 4.4
hold, then the worst-case expectation f(x,U (θ)) =
maxP∈U (θ) Ey∼P[c(x,y)] is a linear second-order cone
program.

Proof. See Appendix B.1
Since the parameterized SOC ambiguity set is determined
by the finite-dimensional parameter θ, it suffices to use the
learning model Mϕ(z) to learn the parameter θ, i.e.,

θ = Mϕ(z). (7)

Therefore, the goal of the differentiable DRO layer comes
down to computing ∂x∗

∂θ .

By Theorem 4.5, the worst-case expectation function f is
a linear second-order cone programming. Therefore, if the
decision x is continuous, the gradient ∂x∗

∂θ can be directly
computed by the technique of differentiating through a cone
program (Agrawal et al., 2019b). We formally state this
result in Theorem 4.6.
Theorem 4.6. Suppose conditions in Theorem 4.5 hold and
x is a continuous variable with X a second-order cone
representable set, then x∗ = argminx∈X f(x,U (θ)) is
differentiable with respect to θ.

Proof. See Appendix B.2

However, when the decision x is mixed-integer, it is in-
herently non-differentiable due to the discreteness of inte-
ger variables. Therefore, it is necessary to develop a new
methodology to handle mixed-integer decisions.

4.1. Dual-View of Mixed-Integer Decisions

Existing research on differentiable optimization layers all
views the decision x∗ as a function of the parameter and
handles it by the principle of automatic differentiation. How-
ever, this view does not work for discrete decisions. Al-
though some research manages to differentiate the discrete
decisions by adding perturbations (Berthet et al., 2020),
these approaches are still restricted to integer linear pro-
gramming.

Alternatively, by examining the bilevel formulation (1) of
the whole decision-focused learning task, we notice that the
decision-making process is the lower-level problem. There-
fore, the decision x∗ can be viewed as a constraint, and we
can handle it via the principle of constrained optimization.

By the above observations, we propose the following dual-
view methodology to address mixed-integer decisions.

Dual-View Methodology:

I The continuous part of the decisions is viewed as a
function of parameters and handled via the principle of
automatic differentiation.

II The discrete part of the decisions is viewed as a con-
straint of the whole bilevel learning problem and han-
dled via the principle of constrained optimization.

In this dual-view methodology, we have already established
part I in Theorem 4.6. To better illustrate the idea of part II,
we make the following assumptions and notations.

Assumption 4.7. x = (xd,xc) is a mixed-integer variable
with discrete part xd ∈ {0, 1}n1 and continuous part xc ∈
Rn2 . The feasible region of x is X = X ∩({0, 1}n1 ⊗Rn2),
where X is a second-order cone representable set.

We denote by Xd the feasible region of the discrete part
of variable x, i.e., Xd = {xd ∈ {0, 1}n1 |∃xc ∈ Rn2 :
(xd,xc) ∈ X}, and by Xc(xd) the feasible region of the
continuous part variable xc given the integer part xd ∈ Xd,
i.e., Xc(xd) = {xc ∈ Rn2 |(xd,xc) ∈ X}.

The next assumption ensures that the bilevel problem (1) is
well-defined, and see Appendix A.4 for a detailed discussion
of this assumption.

Assumption 4.8. (i) For all ϕ ∈ Φ, z ∈ Z , and xd ∈ Xd,
the optimal continuous solution

x∗
c(xd,Mϕ(z)) := argmin

xc∈Xc(xd)

f
(
(xd,xc),Mϕ(z)

)
4
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is unique.

(ii) For all ϕ ∈ Φ, the optimal integer solution

x∗
d(Mϕ(z)) := argmin

xd∈Xd

f
(
(xd,x

∗
c(xd,Mϕ(z)),Mϕ(z)

)
is unique almost surely, i.e.,

∀ϕ ∈ Φ,Pz

(
x∗
d(Mϕ(z)) is a singleton

)
= 1

where Pz is the marginal distribution of covariate z.

By the above assumptions, the bilevel problem (1) can be
reformulated as follows.

Corollary 4.9. Suppose Assumption 4.7 and Assumption 4.8
hold, the decision-focused learning can be formulated as

min
ϕ∈Φ

E(z,y)∼P l
((

x∗
d(Mϕ(z)),x

∗
c(x

∗
d,Mϕ(z))

)
,y
)

s.t. x∗
d(Mϕ(z))

= argmin
xd∈Xd

f
(
(xd,x

∗
c(xd,Mϕ(z))),Mϕ(z)

) (8)

From the bilevel form (8) we can see more clearly the idea
of dual-view methodology. The optimal continuous decision
x∗
c is embedded as a function of the integer decision and

learning target Mϕ(z). On the contrary, the optimal integer
solution x∗

d is explicitly expressed as a constraint.

Let R(ϕ) denote the value function of problem (8), i.e.,

R(ϕ) := E(z,y)∼P l
((

x∗
d(Mϕ(z)),x

∗
c(x

∗
d,Mϕ(z))

)
,y
)

Then problem (8) is equivalent to minϕ∈Φ R(ϕ).

Following Part II in the dual-view methodology, we han-
dle the constrained optimization (8) by approximating the
value function sequentially. That is, we want to construct a
sequence of differentiable surrogate value functions Rλ(ϕ)
such that Rλ(ϕ) → R(ϕ) in some sense.

4.2. Energy-Based Surrogate Value Function

To construct such a surrogate function Rλ(ϕ), we first con-
struct point surrogate function rλ(Mϕ(z),y) for each point
(z,y) and then define Rλ(ϕ) as

Rλ(ϕ) = E(z,y)∼P rλ(Mϕ(z),y) (9)

We construct the point surrogate function rλ(ϕ, z,y) by
leveraging the energy-based model. Specifically, we assign
each feasible integer decision xd ∈ Xd the following energy
function E(xd,Mϕ(z), λ), where λ is a positive scalar.

E(xd,Mϕ(z), λ)

=exp
(
−f((xd,x

∗
c(xd,Mϕ(z)),Mϕ(z))

λ

)
(10)

Based on the energy function, we can define a distribution
p(xd|Mϕ(z), λ) over Xd.

p(xd|Mϕ(z), λ) =
E(xd,Mϕ(z), λ)∑

x
′
d∈Xd

E(x
′
d,Mϕ(z), λ)

(11)

We then construct point surrogate function rλ(ϕ, z,y) as
follows.

rλ(Mϕ(z),y)

:= Exd∼p(xd|Mϕ(z),λ)l((xd,x
∗
c(xd,Mϕ(z))),y) (12)

=
∑

xd∈Xd

p(xd|Mϕ(z), λ)l((xd,x
∗
c(xd,Mϕ(z))),y)

By the above construction, we notice that the optimal in-
teger solution x∗

d(Mϕ(z)) has the largest energy, so the
corresponding probability p(x∗

d|Mϕ(z), λ) is also the high-
est. When λ → 0+, this probability will converge to 1,
and rλ(ϕ, z,y) will also converge to the true decision loss
l
(
(x∗

d(Mϕ(z)),x
∗
c(x

∗
d,Mϕ(z))),y

)
.

To further establish convergence results of the surrogate
value function Rλ(ϕ), we need the following continuity
assumptions and the concept of epi-convergence.

Assumption 4.10. The decision loss l((xd,xc),y) is
bounded and continuous in xc. For any z ∈ Z ,
f((xd,xc),Mϕ(z)) is continuous in xc and ϕ.

Assumption 4.11. For all xd ∈ Xd and z ∈ Z , the optimal
continuous decision x∗

c(xd,Mϕ(z)) is continuous in ϕ.

We note that Assumption 4.10 is easily satisfied. For As-
sumption 4.11, since x∗

c(xd,Mϕ(z)) is differentiable with
respect to θ = Mϕ(z) by Theorem 4.6, Assumption 4.11
simply requires the continuity of Mϕ in its parameter ϕ.

Definition 4.12 (Bonnans & Shapiro (2013), p.41). A se-
quence of functions {Rn(ϕ)} epi-converges to a function
R(ϕ) if and only if ∀ϕ ∈ Φ, condition (i) and (ii) hold.

(i) For any sequence {ϕn} converges to ϕ,
lim infn→∞ Rn(ϕn) ≥ R(ϕ)

(ii) There exists a sequence {ϕn} converging to ϕ such
that lim supn→∞ Rn(ϕn) ≤ R(ϕ)

The epi-convergence of Rλ(ϕ) and asymptotic convergence
of optimal solution are established in Theorem 4.13.

Theorem 4.13. Suppose Assumption 4.7, Assumption 4.8,
Assumption 4.10, and Assumption 4.11 hold, then for any
sequence λn ↘ 0+ as n → ∞, the following two assertions
hold for the energy-based surrogate value function Rλ(ϕ).

(i) Rλn(ϕ) epi-converges to R(ϕ) as n → ∞.

(ii) if ϕλnk
∈ argminϕ∈Φ Rλnk

(ϕ) for some sub-sequence
{nk} ⊂ N and {ϕλnk

} converges to a point ϕ∗, then
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Figure 2. Decision-focused learning pipeline for contextual distributionally robust decision-making.

ϕ∗ ∈ argminϕ∈Φ R(ϕ) and limk→∞ infϕ∈Φ Rλnk
(ϕ) =

infϕ∈Φ R(ϕ)

Proof. See Appendix B.3

4.3. Gradient Estimation

According to Theorem 4.13, the optimal parameter ϕ of
the learning model Mϕ can be derived by optimizing the
surrogate value functions Rλ(ϕ) sequentially. We next
show in Theorem 4.14 that the surrogate value function
Rλ(ϕ) is differentiable, so it can be optimized via gradient
descent.

Theorem 4.14. Suppose conditions in Theorem 4.5 and The-
orem 4.13 hold, then Rλ(ϕ) is differentiable with respect
to ϕ and the gradient is

∂Rλ(ϕ)

∂ϕ
= E(z,y)∼P

[
∂rλ(θ,y)

∂θ

∂θ

∂ϕ

]
(13)

where θ = Mϕ(z) is the learning target, and ∂rλ(θ,y)
∂θ can

be computed by

∂rλ(θ,y)

∂θ

= Exd∼p

[
E

′
(xd,θ, λ)

E(xd,θ, λ)
l
((

xd,xc
∗(xd,θ)

)
,y
)]

−

Exd∼p

[
E

′
(xd,θ, λ)

E(xd,θ, λ)

]
Exd∼p

[
l
((

xd,xc
∗(xd,θ)

)
,y
)]

+ Exd∼p

[
∂l
((

xd,xc
∗(xd,θ)

)
,y
)

∂xc
∗

∂xc
∗(xd,θ)

∂θ

]
(14)

where p = p(xd|θ, λ) and E
′
(xd,θ, λ) =

∂E(xd,θ,λ)
∂θ .

Proof. See Appendix B.4

Note that in the last term of Equation (14), ∂xc
∗(xd,θ)
∂θ is the

gradient of continuous decision with respect to the parame-
ter, which is exactly what we develop in Theorem 4.6.

The gradient (14) can be estimated by sampling from
distribution p(xd|θ, λ). However, direct sampling from
p(xd|θ, λ) necessitates the computation of the normalizer

in Equation (11), which requires the calculation of the en-
ergy function of all the feasible integer solutions.

To avoid this problem, we adopt the self-normalized impor-
tance sampling method (See Appendix A.5). To construct a
proposal distribution q that resembles p(xd|θ, λ), we first
derive T integer solutions C = {xd

1, · · · ,xd
T } with the

largest energy functions by solving f for T times (See Ap-
pendix A.6 for readers not familiar with this oracle) and
then construct the proposal distribution q as follows.

q(xd) =
E(xd,θ, λ)∑

t∈[T ] E(xd
t,θ, λ) +M(|Xd| − T )

,∀xd ∈ C

q(xd) =
M∑

t∈[T ] E(xd
t,θ, λ) +M(|Xd| − T )

,∀xd /∈ C

(15)

where M is a constant that can be understood as the energy
of other integer solutions.

Therefore, each term in Equation (14) can be estimated
unbiasedly by sampling from q.

5. Application: Contextual Distributionally
Robust Decision-Making

As an application of the differentiable DRO layers in Sec-
tion 4, we develop a decision-focused learning pipeline
for contextual distributionally robust decision-making tasks
(Bertsimas & Van Parys, 2022; Wang et al., 2021; Yang
et al., 2022).

In this paper, we mainly focus on and develop a decision-
focused learning method for DRO with SOC ambiguity set,
but in fact, the proposed DRO Layer technique can also be
extended to the Wasserstein ambiguity set and we discuss
this issue in Appendix C.

5.1. Decision-Focused Learning Pipeline

The proposed pipeline is illustrated in Figure 2. A learn-
ing model Mϕ is first leveraged to learn the ambiguity set
parameter θ from covariate z. However, the output parame-
ter θ provided by the learning model can lead to an empty
ambiguity set, i.e., U (θ) = ∅, and this problem typically
happens when the learning model is a neural network (NN).
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To fix this problem, we add a projection layer after the
learning layer. The projection layer takes θ as input and
outputs θproj such that U (θproj) is always non-empty. To
achieve this, we construct the projection layer as follows.

θproj := argmin
θproj

∥∥∥θproj − θ
∥∥∥ s.t. Qz ∈ U (θproj) (16)

In the constraint of (16), we explicitly require that a dis-
tribution Qz lies in the parameterized SOC ambiguity set
U (θproj), which ensures the non-emptyness of U (θproj).
This distribution Qz should be understood as an estima-
tion of the conditional distribution of uncertainty y given
covariate z.

To construct such a conditional distribution estimation Qz ,
we take the idea in Bertsimas & Kallus (2020), which con-
structed the conditional distribution from data (zn,yn), n ∈
[N ] in a weighted sample average way as follows.

Qz =

N∑
n=1

ωn(z)δyn
, ωn(z) ≥ 0,

N∑
n=1

ωn(z) = 1 (17)

where δ[·] is the Dirac delta function.

In (17), the weight ωn(z) can be intuitively understood as
a measurement of closeness between z and data zn. Some
research papers provide such weight functions to choose
from (Bertsimas & Kallus, 2020; Kallus & Mao, 2023), for
example, the k-nearest-neighbors weight function.

With the formulation (17) of Qz , the constraint of (16) is
equivalent to

N∑
n=1

ωn(z)gi(yn,αi) ≤ σi, ∀i ∈ [I] (18)

Further, if gi, i ∈ [I] are selected as in Appendix A.2, then
(18) can be reformulated into finitely many second-order
cone constraints (See Appendix A.7 for this result). There-
fore, the projection layer is a convex optimization layer.

After projection, θproj is fed into the DRO layer to con-
struct the surrogate value function Rλ(ϕ), which is usually
estimated by data of a certain batch size. Then, the back-
propagation and parameter update processes are conducted.

5.2. Prediction-Focused Pre-training

If the learning model is very complicated, for example,
a deep neural network, it can be hard to train it directly
via the decision-focused learning pipeline. Therefore, to
facilitate convergence, we first pre-train the learning model
in a prediction-focused fashion.

In Definition 4.2, function gi(y,αi) captures distribu-
tional features of the uncertainty y. Therefore, lower

Ey∼Q[gi(y,αi)] can be deemed as better characterization
of these distributional features, i.e., better prediction.

By the above observation, we define the loss function of
prediction-focused pre-training as

Loss =
I∑

i=1

∥∥∥EQz [gi(y,αi)]
∥∥∥+ ∥∥∥EQz [gi(y,αi)]− σi

∥∥∥
where Qz is defined in Equation (17).

6. Experiments
To validate the effectiveness of the proposed differentiable
DRO layers, we conduct experiments on a toy example and
the portfolio management problem1.

In both experiments, problems are formulated in a contex-
tual DRO setting and thus we can apply the decision-focused
learning pipeline developed in Section 5. The detailed ex-
periment setup is presented in Appendix D.

6.1. Toy Example: Multi-item Newsvendor Problem

We consider a multi-item newsvendor problem (19) where
two options are provided for buying each item, i.e., retail
and wholesale. The wholesale price ad

i is lower than the
retail price ac

i but it can only be sold at a fixed amount vi.

min
xc,xd

{ n∑
i=1

acix
c
i + adi vix

d
i + bi(yi − xc

i − vix
d
i )

+

+ di(x
c
i + vix

d
i − yi)

+

}
s.t. xc

i ≥ 0, xd
i ∈ {0, 1}, ∀i ∈ [n] (19)

where yi is the demand of item i, the continuous variable
xc denotes amount of item bought from retail, integer vari-
able xd denotes the wholesale option, b is the unit price of
additional ordering, and d is the unit holding cost.

To characterize the uncertainty in demand yi, we consider
the following three types of parameterized SOC ambiguity
sets, where first- and second-order moment features are
characterized.

UI(µI, σI) =

{
P

∣∣∣∣∣ P(Ξ) = 1

EP [∥y − µI∥1] ≤ σI

}
(SOC-I)

UII(µII, σII) =

P

∣∣∣∣∣∣
P(Ξ) = 1

EP

[
∥y − µII∥

2
2

]
≤ σII

 (SOC-II)

UIII(µI, σI,µII, σII) = UI(µI, σI)
⋂

UII(µII, σII)

(SOC-III)

1Source code of all the experiments is available at
https://github.com/DOCU-Lab/Differentiable DRO Layers.
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Figure 3. Experimental results on the multi-item newsvendor problem.

The ambiguity set parameters are learned by NN in all the
experiments. We compare the proposed decision-focused
learning method (Section 5.1) with the prediction-focused
learning method, which is described in Section 5.2.

To fully verify the superior performance of the decision-
focused learning method, we further compare it with the
prediction-focused benchmark. The parameters of the am-
biguity set in the prediction-focused benchmark are se-
lected with the full knowledge of the conditional distribution
p(y|z). For example, in SOC-I, the parameters µI and σI
are directly set to the mean and first-order absolute central
moment of the conditional distribution p(y|z). Therefore,
the performance of the prediction-focused benchmark is the
‘optimal’ performance that the prediction-focused learning
method can expect.

In experiments, we take n = 4 and conduct 10 runs for cases
of different training data sizes. We use the percentage opti-
mality gap, whose definition can be found in Appendix D, to
measure the performance of each method. The experiment
results are presented in Figure 3.

By Figure 3, the performance of prediction-focused learn-
ing will converge to the prediction-focused benchmark as
the training data size grows. On the contrary, by directly
minimizing the decision loss, the proposed decision-focused
learning method demonstrates better performance. Quan-
titatively, the proposed decision-focused learning method
demonstrates average improvements of 21.4%, 18.7%, and
18.1% compared with the prediction-focused benchmark in
the three ambiguity sets, respectively.

6.2. Portfolio Management Problem

As mentioned in the literature review, Costa & Iyengar
(2023) also developed an end-to-end DRO method for port-
folio management problems, but their method only applies
to pure continuous decision cases. Therefore, in this part,
we make a direct comparison with the method proposed in
Costa & Iyengar (2023) on the portfolio management prob-
lem with pure continuous decisions, and then we further

conduct experiments with mixed-integer decisions.

6.2.1. PORTFOLIO MANAGEMENT PROBLEM WITH
PURE CONTINUOUS DECISIONS

The portfolio management problem (20) with pure continu-
ous decisions aims to select the optimal portfolio x ∈ Rn

that minimizes the cost and the uncertainty comes from the
return y.

min
x

−yTx

s.t. 1Tx = 1, x ≥ 0
(20)

To characterize the uncertainty in return y, we consider the
following parameterized SOC ambiguity set.

U (µ,σ) =

P

∣∣∣∣∣∣
P(Ξ) = 1

EP

[
∥yi − µi∥

2
2

]
≤ σi,∀i ∈ [n]


(21)

In experiments, we take the dimension n of assets to 40.
For learning the ambiguity set parameter, we use the same
2-layer neural network in both our method and the method
proposed in Costa & Iyengar (2023) for a fair comparison.

We use 2,500 data for training, 500 data for validation, and
1,000 data for testing. The average percentage profit of
the proposed decision-focused learning method, prediction-
focused learning method, and the method proposed in Costa
& Iyengar (2023) are 0.289, 0.082, and 0.268, respectively.
We also plot the wealth evolution in Figure 4. This superi-
ority in performance is ascribed to the fact that a restrictive
assumption on the structure of uncertainty distribution is
presumed in the method of Costa & Iyengar (2023) while
our method applies to general distributions.

6.2.2. PORTFOLIO MANAGEMENT PROBLEM WITH
MIXED-INTEGER DECISIONS

We further conduct experiments on the mixed-integer port-
folio management problem (22), where some of the assets

8
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Figure 4. Wealth evolution on a 40-dimensional continuous port-
folio management problem using decision-focused learning,
prediction-focused learning, and method proposed in Costa &
Iyengar (2023). (In the legend, ‘DFL’ stands for decision-focused
learning, and ‘PFL’ stands for prediction-focused learning.)

are only allowed to be bought with either a fixed amount or
0. Thus, the decisions on these assets are binary variables.

min
xc,xd

−yT
c xc − yT

d diag(v)xd

s.t. 1Txc + vTxd = 1, xc ≥ 0,xd ∈ {0, 1}
(22)

where yc,yd are returns corresponding to assets with con-
tinuous decisions xc and binary decisions xd, and v denotes
the fixed amount of assets allowed to be bought.

In experiments, the SOC ambiguity set is set to (21) if not
explicitly specified and the number of binary decisions is
set to 1

5 of the number of the problem dimension.

Performance with Different Dimensions: We compare
the performance of the proposed decision-focused learn-
ing method with prediction-focused learning method on
mixed-integer portfolio management problems of different
dimensions, and the results are presented in Table 1, where
problem dimension refers to the number of assets. Gen-
erally, the performance gap between decision-focused and
predict-focused learning methods scales as the problem di-
mension becomes larger. The advantage of decision-focused
method becomes more apparent as the problem dimension
increases.

Table 1. Average percentage profit of decision-focused learning
and prediction-focused learning on mixed-integer portfolio man-
agement problems with different dimensions.

Problem dimension Method Improvement
DFL PFL

20 0.1561 0.0583 167%
40 0.1763 0.0634 178%
60 0.2145 0.0479 347%

Performance with Different SOC Ambiguity Sets: The
the SOC ambiguity set (4) is determined by the constraints
gi, which significantly affect the performance. Therefore,

we conduct experiments on 60-dimensional mixed-integer
portfolio management problems with three SOC ambiguity
sets with different numbers of constraints. The detailed
information of these three ambiguity sets is presented in
Appendix D.

The performance of decision-focused and prediction-
focused learning methods using these three types of ambi-
guity sets are presented in Table 2. With more complex am-
biguity sets, both decision-focused and prediction-focused
methods have better performance, and the improvement for
decision-focused learning generally grows.

Table 2. Average percentage profit of decision-focused learning
and prediction-focused learning on 60-dimensional mixed-integer
portfolio management problem with different SOC ambiguity sets.

SOC constraint No. Method Improvement
DFL PFL

15 0.0762 0.0357 113%
30 0.1349 0.0491 174%
60 0.2145 0.0479 347%

7. Discussion of Limitations
The major limitation of applying the proposed DRO-Layer
method to large-scale problems lies in the heavy computa-
tional burden. Specifically, the decision-focused learning
pipeline we developed in Section 4 can be decomposed into
four processes: 1. learning layer; 2. projection layer; 3.
solving MICP; 4. DRO Layer. Processes 2 and 4 are built
on Cvxpylayers (Agrawal et al., 2019a), and Process 3 is
built on commercial solver Gurobi. To test the computa-
tional efficiency and scalability, we conduct experiments
and present the computational time of each of these four
processes in Appendix E.

It is noteworthy that both Cvxpylayers and Gurobi are built
on CPU rather than on GPU, thereby leading to computa-
tional inefficiency and relatively weak scalability inevitably.
If GPU training is allowable in these software, we believe
the computation will not be a burden.

8. Conclusion
We developed the first generic differentiable DRO layers,
where a novel dual-view methodology was proposed to han-
dle the mixed-integer decision via distinct principles. Based
on the proposed differentiable DRO layers, we further de-
veloped a decision-focused learning pipeline for contextual
DRO problems and verified its effectiveness in experiments.

9
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A. Supplementary Background Material
In this section, we give supplementary information on DRO with SOC ambiguity set in A.1, A.2, and A.3. Most of these
materials are selected from Ben-Tal & Nemirovski (2001) and Bertsimas et al. (2019).

In Appendix A.4, A.5, A.6, and A.7, detailed information on our method are provided.

A.1. Second-Order Cone Representable Set

[Ben-Tal & Nemirovski (2001), p.86] A set W ⊂ Rn is a second-order cone representable set if there exists J second-order
cone inequalities of the form

Aj

[
y

v

]
− bj ≥Lmj 0,∀j ∈ [J ] (23)

such that

y ∈ W ⇐⇒ ∃v : Aj

[
y

v

]
− bj ≥Lmj 0,∀j ∈ [J ] (24)

where Lm is the m dimensional second-order cone:

Lm =
{
y = (y1, · · · , ym)T ∈ Rm

∣∣∣ym ≥
√
y21 + · · ·+ y2m−1

}
(25)

A.2. Examples of Parameterized SOC Ambiguity Set

The parameterized SOC ambiguity set is determined by its constraints EP[gi(y,αi)] ≤ σi, and here we present some
choices of function g and the parameter α.

1. g = µTy with vector µ as the parameter.
2. g = |µTy − h| with vector µ and scalar h as the parameter.
3. g = (|µTy − h|)p for some rational p ≥ 1 with vector µ and scalar h as the parameter.
4. g = ((µTy − h)+)2 = (max{0,µTy − h})2 vector µ and scalar h as the parameter.
5. g = ∥Ay − µ∥p for some rational p ≥ 1 norm ∥ · ∥p with matrix A and vector µ as the parameter.

More examples can be constructed by taking the maximum, i.e., g = maxl∈[L] gi, and non-negtive sum, i.e., g =
∑L

l=1 λigi
for λi ≥ 0. See Ben-Tal & Nemirovski (2001) for more operators that preserve the second-order cone representable property
of g.

A.3. Slater’s Condition for Parameterized SOC Ambiguity Set

According to Proposition 1 in Bertsimas et al. (2019), the parameterized SOC ambiguity set U (θ) (defined in Definition 4.2)
can be equivalently reformulated as follows.

U (θ) =

#yQ

∣∣∣∣∣∣∣
(y,u) ∼ Q

EQ[ui] ≤ σi,∀i ∈ [I]

Q(V ) = 1

 (26)

where each dimension ui of variable u corresponds to the constraint gi in U (θ), distribution Q is on the space of (y,u),
#yQ is the marginal distribution of Q on dimension y, and the support V is defined as

V = {(y,u)|y ∈ Ξ, gi(y,αi) ≤ ui,∀i ∈ [I]} = {(y,u)|y ∈ Ξ}
I⋂

i=1

{(y,u)|gi(y,αi) ≤ ui} (27)

By Definition 4.2, {(y,u)|y ∈ Ξ} is second-order cone representable set, and each {(y,u)|gi(y,αi) ≤ ui} are differ-
entiable parameterized second-order representable sets. Therefore, V is also a differentiable parameterized second-order
representable set, so V can be represented by finitely many second-order cone constraints.

V =

(y,u)

∣∣∣∣∣∣∣∃v : Aj(θ)

yu
v

− bj(θ) ≥Lmj 0,∀j ∈ [J ]

 (28)
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The Slater’s condition requires that there exist a (y∗,u∗,v∗) such that u∗
i < σi, ∀i ∈ [I] and

Aj(θ)

y
∗

u∗

v∗

− bj(θ) >Lmj 0,∀j ∈ [J ] (29)

A.4. Discussion of Assumption 4.8

Assumption (i) ensures the uniqueness of the continuous decision, which is common in differentiable optimization layer
research (Agrawal et al., 2019a).

For the discrete decision xd, since its feasible region Xd is finite, we can not require the uniqueness of xd for all θ ∈ Θ,
where θ = Mϕ(z). For example, if we consider the combinatorial optimization problem, i.e.,

xd = argmin
xd∈{0,1}n

f(xd,θ) := θTxd, s.t. 1Txd = 1 (30)

The solution to this problem is not unique when the prediction θ has multiple minimum elements.

However, we note that for problem (30), the θ leading to multiple solutions has measure zero in its space Θ, and this property
holds for a lot of problems. Therefore, we require in assumption (ii) the uniqueness to hold almost surely with respect to the
marginal distribution Pz of z.

Specifically, in combinatorial optimization problem (30), if the learning model is a linear one, i.e., θ = Az + b with
ϕ = (A, b), where the rows of matrix A are all different, and covariate z has marginal distribution absolutely continuous
with respect to the Lebesgue measure, then (ii) is satisfied.

We further note that (ii) is also implicitly assumed in Pogančić et al. (2020).

A.5. Self-Normalized Importance Sampling

Suppose we want to compute the expectation of a random variable J(xd), i.e.,

Exd∼p(xd|θ,λ)[J(xd)] (31)

where p(xd|θ, λ) is defined as in Equation (11).

The importance sampling aims to compute Exd∼p(xd|θ,λ)[J(xd)] by leveraging a proposal distribution q which is absolutely
continuous with respect to p(xd|θ, λ). With proposal distribution q, the above expectation can be computed by

Exd∼p(xd|θ,λ)[J(xd)] =

Exd∼q(xd)

[
E(xd,θ,λ)

q(xd)
J(xd)

]
Exd∼q(xd)

[
E(xd,θ,λ)

q(xd)

]
Therefore, by sampling from the known distribution q, the expectation can be estimated unbiasedly.

A.6. Oracles to Get T Optimal Integer Solutions

Suppose that we want to solve T optimal integer solutions of the following mixed-integer linear cone program.

min
xd,xc,v

aTxd + bTxc + cTv

s.t. xd ∈ {0, 1}nd , xc ∈ Rnc

AT
i xd +BT

i xc +CT
i v ≤Ki 0,∀i ∈ [I]

(32)

Such mixed-integer linear cone program can be solved by commercial solvers like gurobi. We solve this program and get
the optimal integer solution x1

d, and then we add the following constraint to problem (32).(
1− 2x1

d

)T
xd + 1Tx1

d ≥ 1 (33)
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Constraint (33) only cuts out x1
d from the feasible region. Therefore, by solving (32) with extra constraint (33) we will get

the second optimal solution x2
d. Then we cut out x2

d to get x3
d.

Repeat the above process for T times and we will get T optimal integer solutions.

A.7. Analysis of the Projection Layer

If gi, i ∈ [I] in the parameterized SOC ambiguity set are selected as what we give in Appendix A.2, then the epigraph of
gi(y,αi) with respect to αi, i.e.,

{(αi, u)|αi ∈ Ai, u ≥ gi(y,αi)} (34)

is also a second-order cone representable set.

By Ben-Tal & Nemirovski (2001) p.91, this representability is preserved by a non-negative sum, so

N∑
n=1

ωn(z)gi(yn,αi) ≤ σi (35)

can be expressed by finitely many second-order cone constraints.

B. Proofs
B.1. Proof of Theorem 4.5

When the cost function c(x,y) is of the form (ii) in Assumption 4.3, then Theorem 4.5 coincides with Theorem 1 in
Bertsimas et al. (2019).

For the case the cost function c(x,y) is of the form (i) in Assumption 4.3, the proof is quite similar. Since in this case
c(x,y) is linear in y, according to Theorem 1 in Bertsimas et al. (2019), the worst-case expectation f(x,U (θ)) =
maxP∈U (θ) Ey∼P[c(x,y)] is equivalent to

f(x,U (θ)) = min
r,β

r + βTσ (36)

s.t. r ≥ c(x,y)− βTu, ∀(y,u) ∈ V ,y ≥ 0 (37)
β ≥ 0 (38)

where V is defined in Equation (27).

Since Assumption 4.4 holds, we can leverage the duality theory to reformulate constraint (37) as follows.

r ≥ max
y,u∈V ,y≥0

c(x,y)− βTu ⇐⇒ r ≥ max
y,u∈V ,y≥0

K∑
k=1

ck(x)yk − βTu (39)

⇐⇒ r ≥ max
y≥0

min
ηj≥L

mj 0


K∑

k=1

ck(x)yk − βTu+

J∑
j=1

ηT
j

(
Ay

j (θ)y +Au
j (θ)u+Av

j (θ)v − bj(θ)
) (40)

⇐⇒ r ≥ min
ηj≥L

mj 0
max
y≥0


K∑

k=1

ck(x)yk − βTu+

J∑
j=1

ηT
j

(
Ay

j (θ)y +Au
j (θ)u+Av

j (θ)v − bj(θ)
) (41)

⇐⇒ r ≥ −
J∑

j=1

ηT
j bj(θ),−

J∑
j=1

(Ay
j (θ))

Tηj ≥


c1(x)

...
cK(x)

 ,

J∑
j=1

(Au
j (θ))

Tηj = β,

J∑
j=1

(Av
j (θ))

Tηj = 0,ηj ≥Lmj 0

(42)

where (Ay
j (θ),A

u
j (θ),A

v
j (θ)) = Aj(θ) and bj(θ) are defined in Equation (28), and (41) hold by duality theory since the

Slater’s condition holds by Assumption 4.4.
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The second term in (42) can be reformulated as

−
J∑

j=1

(Ay
j (θ)ek)

Tηj ≥ ck(x), ∀k ∈ [K] (43)

where ek is the vector where the kth element is 1 and other elements are 0. Since by Assumption 4.3 the epigraph of ci(x)
is a second-order cone representable set, thus each −

∑J
j=1(A

y
j (θ)ek)

Tηj ≥ ck(x) can be expressed by finitely many
second-order cone constraints.

Therefore, Theorem 4.5 holds for both the cases in Assumption 4.3.

B.2. Proof of Theorem 4.6

By Theorem 4.5, the worst-case expectation f(x,U (θ)) is a linear second-order cone program and all the constraints are
linear in x, so under continuous assumption of x, the DRO problem

min
x∈X

f(x,U (θ)) (44)

is also a linear second-order cone program.

Specifically, by Appendix B.1, if the cost function c(x,y) is of the form (i) in Assumption 4.3, (44) is equivalent to

min
x∈X

f(x,U (θ)) = min
x∈X ,r,β

r + βTσ (45)

s.t. r ≥ −
J∑

j=1

ηT
j bj(θ) (46)

−
J∑

j=1

(Ay
j (θ)ek)

Tηj ≥ ck(x), ∀k ∈ [K] (47)

−
J∑

j=1

(Au
j (θ))

Tηj = β (48)

J∑
j=1

(Av
j (θ))

Tηj = 0,ηj ≥Lmj 0 (49)

β ≥ 0,ηj ≥Lmj 0,∀j ∈ [J ] (50)

where constraint (47) is defined in Equation (43) in Appendix B.1 and can be reformulated into finitely many second-order
cone constraints that are linear in x.

If the cost function c(x,y) is of the form (ii) in Assumption 4.3, a similar reformulation can be derived.

The cone programming minx∈X f(x,U (θ)) takes Aj(θ) = (Ay
j (θ),A

u
j (θ),A

v
j (θ)) and bj(θ) as its parameter. Then by

Agrawal et al. (2019b), the optimal value x∗ = argminx∈X f(x,U (θ)) is differentiable with respect to parameter Aj(θ)
and bj(θ). Further, by Definition 4.1, Aj(θ) and bj(θ) are differentiable with respect to θ.

Therefore, x∗ = argminx∈X f(x,U (θ)) is differentiable with respect to θ.

B.3. Proof of Theorem 4.13

(i) It suffices to prove that for any sequence λn ↘ 0, ϕ ∈ Φ, and sequence ϕn → ϕ, the following equality holds

lim
n→∞

Rλn
(ϕn) = R(ϕ) (51)

For ease of notation, we define

f∗(xd,Mϕ(z)) = min
xc∈Xc(xd)

f((xd,xc),Mϕ(z)) = f
(
(xd,x

∗
c(xd,Mϕ)),Mϕ(z)

)
(52)
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By Assumption 4.10, f((xd,xc),Mϕ(z)) is continuous in xc and ϕ, and by Assumption 4.11, x∗
c(xd,Mϕ(z)) is also

continuous in ϕ, so f∗(xd,Mϕ(z)) is continuous in ϕ.

If for a pair of (z,ϕ) the optimal integer solution x∗
d(Mϕ(z)) = argminxd∈Xd

f∗(xd,Mϕ(z)) is unique, then it holds that

min
xd∈Xd/{x∗

d(Mϕ(z))}
f∗
(
xd,Mϕ(z)

)
− f∗

(
x∗
d,Mϕ(z)

)
> 0 (53)

Then by the continuity of f∗(xd,Mϕ(z)) in ϕ, there exists a ϵ > 0 such that

∀ϕ ∈
{
ϕ
∣∣∥ϕ− ϕ∥ ≤ ϵ

}
, min
xd∈Xd/{x∗

d(Mϕ(z))}
f∗
(
xd,Mϕ(z)

)
− f∗

(
x∗
d(Mϕ(z)),Mϕ(z)

)
≥ ϵ (54)

By the above observation, we further define

Y (ϕ, N) =

{
z

∣∣∣∣ min
xd∈Xd/{x∗

d(Mϕ(z))}
f∗
(
xd,Mϕ(z)

)
− f∗

(
x∗
d(Mϕ(z)),Mϕ(z)

)
≥ 1

N
,∀ϕ ∈

{
ϕ

∣∣∣∣∥ϕ− ϕ∥ ≤ 1

N

}}
(55)

It is obvious that Y (ϕ, 1) ⊂ Y (ϕ, 2) ⊂ · · · ⊂ Y (ϕ, N) ⊂ · · · .

By the argument concerning (54), we conclude that if inequality (53) holds for a pair of (z,ϕ), then z ∈ Y (ϕ, N) for
sufficiently large N .

Since by Assumption 4.8, for any ϕ ∈ Φ, inequality (53) holds almost surely, thus we have

P
( ∞⋃

N=1

Y (ϕ, N)

)
= 1 (56)

By Assumption 4.10, l is bounded, and we denote this bounded by Ψ.

Therefore, for any ϵ > 0, there exist a Nϵ/Ψ such that

P(Y (ϕ, Nϵ/Ψ)) ≥ 1− ϵ/Ψ (57)

Therefore, when n ≥ Nϵ/Ψ, we have

|Rλn
(ϕn)−R(ϕ)| (58)

=

∣∣∣∣∣E(z,y)∼P

[ ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)

−l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)]∣∣∣∣∣
(59)

≤

∣∣∣∣∣E(z,y)∼P

{
1
(
z ∈ Y (ϕ, Nϵ/Ψ)

)[ ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)

−l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)]}∣∣∣∣∣
+

∣∣∣∣∣E(z,y)∼P

[
1
(
z /∈ Y (ϕ, Nϵ/Ψ)

) ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)

]∣∣∣∣∣
+

∣∣∣∣E(z,y)∼P

[
1
(
z /∈ Y (ϕ, Nϵ/Ψ)

)
l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)]∣∣∣∣

(60)

≤

∣∣∣∣∣E(z,y)∼P

{
1
(
z ∈ Y (ϕ, Nϵ/Ψ)

)[ ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)

−l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)]}∣∣∣∣∣+ 2
ϵ

Ψ
Ψ

(61)
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where 1 is the indicator function.

In (61), for xd
∗(Mϕ(z)),

p
(
xd

∗(Mϕ(z))
∣∣∣Mϕn

(z), λn

)
=

exp

−
f∗
(
xd

∗(Mϕ(z)),Mϕn
(z)

)
λn


∑

xd
′∈Xd

exp

−
f∗

(
x

′
d,Mϕn

(z)

)
λn

 (62)

=
1

1 +
∑

xd
′∈Xd/

{
xd

∗(Mϕ(z))
} exp

−
f∗

(
x

′
d,Mϕn

(z)

)
−f∗

(
xd

∗(Mϕ(z)),Mϕn
(z)

)
λn

 (63)

Since ϕn → ϕ, then for sufficiently large n, |ϕn − ϕ| ≤ 1
Nϵ/Ψ

. Therefore, for z ∈ Y (ϕ, Nϵ/Ψ),

f∗
(
x

′

d,Mϕn
(z)
)
− f∗

(
xd

∗(Mϕ(z)),Mϕn
(z)
)
≥ 1

Nϵ/Ψ
,∀xd

′
̸= xd

∗ (64)

Therefore,

p
(
xd

∗(Mϕ(z))
∣∣∣Mϕn

(z), λn

)
≥ 1

1 +
∑

xd
′∈Xd/

{
xd

∗(Mϕ(z))
} exp(− 1

λnNϵ/Ψ
)
=

1

1 + (|Xd| − 1)exp(− 1
λnNϵ/Ψ

)
(65)

Since λn ↘ 0+, we have
lim
n→∞

p
(
xd

∗(Mϕ(z))
∣∣∣Mϕn

(z), λn

)
= 1 (66)

So

lim
n→∞

∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y) = l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)
(67)

Or equally

lim
n→∞

{ ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)− l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)}
= 0

(68)

Since l is bounded, by the bounded convergence theorem, we have

lim
n→∞

∣∣∣∣∣E(z,y)∼P

{
1
(
z ∈ Y (ϕ, Nϵ/Ψ)

)[ ∑
xd∈Xd

p(xd|Mϕn
(z), λn)l((xd,x

∗
c(xd,Mϕn

(z))),y)

−l

((
x∗
d(Mϕ(z)),x

∗
c(xd

∗(Mϕ(z)),Mϕ(z))
)
,y

)]}∣∣∣∣∣ = 0

(69)

Therefore,
lim

n→∞
|Rλn(ϕn)−R(ϕ)| ≤ 2ϵ (70)

Since ϵ can be selected arbitrarily small, we have

lim
n→∞

|Rλn(ϕn)−R(ϕ)| = 0 (71)

Therefore, Rλn
(ϕ) epi-converges to R(ϕ) as n → ∞.

(ii) Since Rλn(ϕ) epi-converges to R(ϕ), (ii) can be immediately derived by applying Proposition 4.6 in Bonnans &
Shapiro (2013)

17



Differentiable Distributionally Robust Optimization Layers

B.4. Proof of Theorem 4.14

We first prove Equation (14). By the chain rule,

∂rλ(θ,y)

∂θ
=

∑
xd∈Xd

∂p(xd|θ, λ)
∂θ

l
((

xd,xc
∗(xd,θ)

)
,y
)
+ p(xd|θ, λ)

∂l
((

xd,xc
∗(xd,θ)

)
,y
)

∂xc
∗

∂xc
∗(xd,θ)

∂θ


(72)

By Assumption 4.7, the feasible region Xc(xd) given xd is a second-order cone representable set. Therefore, by Theorem 4.6,
the optimal continuous solution xc

∗(xd,θ) is differentiable with respect to θ, so the last gradient term ∂xc
∗(xd,θ)
∂θ in

Equation (72) is well-defined.

Since the energy function

E(xd,θ, λ) = exp

(
−
f
(
(xd,x

∗
c(xd,θ)),θ

)
λ

)
(73)

and x∗
c(xd,θ)) is differentiable, thus E(xd,θ, λ) is also differentiable with respect to θ.

Therefore, the first gradient term ∂p(xd|θ,λ)
∂θ in Equation (72) is well-defined since

p(xd|θ, λ) =
E(xd,θ, λ)∑

x
′
d∈Xd

E(x
′
d,θ, λ)

(74)

Let Z(θ, λ) denote the normalizer
∑

x
′
d∈Xd

E(x
′

d,θ, λ). By the chain rule, we have

∂p(xd|θ, λ)
∂θ

=

∂ E(xd,θ,λ)∑
xd

′∈Xd
E(xd

′ ,θ,λ)

∂θ
=

E
′
(xd,θ, λ)

Z(θ, λ)
− E(xd,θ, λ)

Z(θ, λ)

∑
xd

′ E
′
(xd

′
,θ, λ)

Z(θ, λ)
(75)

= p(xd|θ, λ)
E

′
(xd,θ, λ)

E(xd,θ, λ)
− p(xd|θ, λ)

[ ∑
xd

′∈Xd

p(xd
′
|θ, λ)E

′
(xd

′
,θ, λ)

E(xd
′ ,θ, λ)

]
(76)

= p(xd|θ, λ)

{
E

′
(xd,θ, λ)

E(xd,θ, λ)
− Exd

′∼p(xd
′ |θ,λ)

[
E

′
(xd

′
,θ, λ)

E(xd
′ ,θ, λ)

]}
(77)

By combining Equation (72) and Equation (77), we have

∂rλ(θ,y)

∂θ
=

∑
xd∈Xd

p(xd|θ, λ)
E

′
(xd

′
,θ, λ)

E(xd
′ ,θ, λ)

l
((

xd,xc
∗(xd,θ)

)
,y
)

− Exd
′∼p(xd

′ |θ,λ)

[
E

′
(xd

′
,θ, λ)

E(xd
′ ,θ, λ)

]( ∑
xd∈Xd

p(xd|θ, λ)l
((

xd,xc
∗(xd,θ)

)
,y
))

+
∑

xd∈Xd

p(xd|θ, λ)
∂l
((

xd,xc
∗(xd,θ)

)
,y
)

∂xc
∗

∂xc
∗(xd,θ)

∂θ

(78)

= Exd∼p(xd|θ,λ)

[
E

′
(xd,θ, λ)

E(xd,θ, λ)
l
((

xd,xc
∗(xd,θ)

)
,y
)]

− Exd∼p(xd|θ,λ)

[
E

′
(xd,θ, λ)

E(xd,θ, λ)

]
Exd∼p(xd|θ,λ)

[
l
((

xd,xc
∗(xd,θ)

)
,y
)]

+ Exd∼p(xd|θ,λ)

[
∂l
((

xd,xc
∗(xd,θ)

)
,y
)

∂xc
∗

∂xc
∗(xd,θ)

∂θ

] (79)
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Therefore, we have derived Equation (14).

Since rλ(θ,y) = rλ(Mϕ(z),y) is bounded by Assumption 4.10, then according to Theorem 9.56 in Shapiro et al. (2021),

∂Rλ(ϕ)

∂ϕ
=

∂E(z,y)∼P rλ(Mϕ(z),y)

∂ϕ
= E(z,y)∼P

[
∂rλ(Mϕ(z),y)

∂ϕ

]
= E(z,y)∼P

[
∂rλ(θ,y)

∂θ

∂θ

∂ϕ

]
(80)

C. Extension to Wasserstein DRO Layer
Here we present how to extend the proposed DRO Layer to Wasserstein-based DRO with a learnable radius.

In the non-contextual setting, the reference distribution of the Wasserstein ambiguity set is typically set to an empirical
distribution of N data points. In the contextual setting, we take the idea in Bertsimas & Kallus (2020) and set the conditional
empirical distribution P̂(z) as a weighted sum of data points, i.e.

P̂(z) =
N∑

n=1

ωn(z)δyn
(81)

where δ[·] is the Dirac delta function and ωn(z), n ∈ [N ] are the weights satisfying
∑

n∈[N ] ωn(z) = 1.

Let ϵθ(z) be the learnable radius with parameter θ. Then, the Wasserstein ambiguity set is

U
(
P̂(z), ϵθ(z)

)
=
{
P
∣∣∣P(Ξ) = 1, dW

(
P̂(z),P

)
≤ ϵθ(z)

}
, (82)

and the Wasserstein DRO problem is
min
x∈X

max
P∈U (P̂(z),ϵθ(z))

EP[c(x,y)] (WDRO)

where x is the mixed-integer decision variable satisfying Assumption 4.7 and c(x,y) is the cost function satisfying
Assumption 4.3.

As outlined in the paper, the procedure of the proposed DRO Layer is presented as follows.

z
θ−→ U

(
P̂(z), ϵθ(z)

)
−→ Problem (WDRO) Solve (WDRO) for T times−−−−−−−−−−−−−−→ Construct proposal distribution

Importance sampling−−−−−−−−−−−→ Compute gradient (14) → θ update

Therefore, in order to learn the ambiguity set in a decision-focused style, we only need to ensure that

(i) The problem (WDRO) is a mixed-integer linear cone programming.
(ii) When the integer part of the decision variable (i.e., xd) is fixed, the problem (WDRO) is a linear cone programming.

where condition (i) allows us to use a commercial solver like Gurobi to solve problem (WDRO) for T times so that we can
construct the proposal distribution, and condition (ii) allows us to derive the gradient of continuous variables with respect to
learnable parameter in computing gradient (14).

In fact, these two conditions are satisfied for Wasserstein DRO, and we formally present this result in the following corollary.

Corollary C.1. If the mixed-integer decision variable x satisfies Assumption 4.7 and the cost function c(x,y) satisfies
Assumption 4.8, then condition (i) and (ii) hold for the problem (WDRO).

Proof. The proof is straightforward by combining techniques in Wasserstein DRO (Mohajerin Esfahani & Kuhn, 2018) and
second-order cone programming (Ben-Tal & Nemirovski, 2001).

In fact, since Assumption 4.7 holds, we only need to show that condition (ii) holds when the decision variable x is pure
continuous and the feasible region X is second-order cone representable. For simplicity, we prove the corollary for bilinear
cost function

c(x,y) = max
k∈[K]

xTT ky (83)

and proof for general cost functions satisfying Assumption 4.3 is quite similar but with heavier notations.
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According to Mohajerin Esfahani & Kuhn (2018), the problem (WDRO) can be reformulated as

inf
x∈X ,λ,sn,γnk

λϵθ(z) +

N∑
n=1

ωn(z)sn

s.t. sn ≥ sup
y∈Ξ

(
xTT ky − γT

nky
)
+ γT

nkyn, ∀n ∈ [N ],∀k ∈ [K]

∥γnk∥∗ ≤ λ, ∀n ∈ [N ],∀k ∈ [K]

(84)

Since the uncertainty support Ξ is a second-order cone representable set, it can be formulated as follows.

Ξ =
{
y | ∃v s.t. Ay

j y +Av
j − bj ≥Lmj 0,∀j ∈ [J ]

}
(85)

By leveraging expression (85), we can further reformulate (84) as

inf
x∈X ,λ,sn,γnk,ηnkj

λϵθ(z) +

N∑
n=1

ωn(z)sn

s.t. sn ≥
∑
j∈[J]

−bTj ηnkj , ∀n ∈ [N ],∀k ∈ [K]

T T
k x− γnk +

∑
j∈[J]

Ay
j
T
ηnkj = 0, ∀n ∈ [N ],∀k ∈ [K]

∑
j∈[J]

Av
j
T
ηnkj = 0, ∀n ∈ [N ],∀k ∈ [K]

ηnkj ≥Lmj 0, ∀n ∈ [N ],∀k ∈ [K],∀j ∈ [J ]

∥γnk∥∗ ≤ λ, ∀n ∈ [N ],∀k ∈ [K]

(86)

Problem (86) is already in the form of a linear cone programming.

D. Experiment Setup
D.1. Toy Example: Multi-item Newsvendor Problem

We measure the performance by the following percentage optimality gap.

Percentage Optimality Gap =
E(z,y)∼P l(xlearning(z),y)− E(z,y)∼P l(x∗(z),y)

E(z,y)∼P l(x∗(z),y)
(87)

where xlearning(z) is the decision given by the learning method and x∗(z) is the optimal decision derived by solving the
following problem.

x∗(z) = argmin
x∈X

Ey∼p(y|z)l(x,y) (88)

In computing the percentage optimality gap, we compute E(z,y)∼P l(xlearning(z),y) by sample average approximation using
1× 105 pairs of (z,y) i.i.d. sampled from P. Since

E(z,y)∼P l(x∗(z),y) = Ez∼Pz

[
min
x∈X

Ey∼p(y|z) l(x,y)

]
(89)

we follow a two step approach to compute E(z,y)∼P l(x∗(z),y). The outer expectation in Equation (89) is approximated by
sample average approximation using 400 z i.i.d. sampled from the marginal distribution Pz . The inner stochastic program
minx∈X Ey∼p(y|z) l(x,y) is also solved by sample average approximation using 200 y i.i.d. sampled from the conditional
distribution p(y|z).

In experiments, we use k-nearest-neighbors weight function to construct the distribution Qz (defined in Equation (17)) in
the projection layer, i.e.,

ωn(z) =
1

K
, if zn is in the k-nearest-neighbor of z. Else, ωn(z) = 0. (90)
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In the experiments, we select K as N
20 , where N is the training data size.

We use neural networks to learn the ambiguity set parameters µI, σI,µII, σII, the architecture are presented as follows.

µI : FC(1, 60) → FC(60, 60) → FC(60, 4) (91)
σI : FC(1, 60) → FC(60, 60) → FC(60, 1) (92)
µII : FC(1, 60) → FC(60, 60) → FC(60, 4) (93)
σII : FC(1, 60) → FC(60, 60) → FC(60, 1) (94)

where FC(m1,m2) represents full connection layer with m1 inputs and m2 outputs.

Since µ and σ are learned by different neural networks, in the pre-training, we first train the parameter µ by minimizing∥∥∥EQz [gi(y,αi)]
∥∥∥ and then train σ by minimizing

∥∥∥EQz [gi(y,αi)]− σi

∥∥∥.

In conducting experiments, we vary the training data size N from 100 to 800, and in each case, 10 runs are conducted. In
each case, the size of the validation data set is set to N

5 . In generating data, we first sample covariate z, and then sample y
conditioned on z.

In the multi-item newsvendor problem (19) with n = 4, we set ac = (0.25, 0.5, 0.75, 1),ad = 0.95 × ac,v =
(10.0, 13.0, 16.0, 19.0), b = (2.0, 4.0, 6.0, 8.0),d = (0.5, 1.0, 1.5, 2.0). The covariate z follows the uniform distribu-
tion on [0, 1], and conditioned on z, we set the distribution of demand y by

y1 ∼ N
(
8 + 6(z − 0.2)2,

1

1 + 8|z − 0.2|

)
, y2 ∼ N

(
11 + 6(z − 0.4)2,

1

1 + 8|z − 0.4|

)
y3 ∼ N

(
14 + 6(z − 0.6)2,

1

1 + 8|z − 0.6|

)
, y4 ∼ N

(
17 + 6(z − 0.8)2,

1

1 + 8|z − 0.8|

)

D.2. Portfolio Management Problem

In the experiment on the portfolio management problem, the covariate z is a vector of 5 dimensions, and the returns of n
assets are generated by the following non-linear model.

y = a+Bz +Ce+Dflat(zzT ) + ∥z∥1diag(s)g (95)

where matrixes B ∈ Rn×5,C ∈ Rn×3,D ∈ Rn×25 and vector s ∈ Rn are randomly picked parameters, e ∈ R3 and
g ∈ Rn are random variables independent of covariate z ∈ R5, and ∥ · ∥1 is the 1-norm.

We use 2,500 data for training, 500 data for validation, and 1,000 data for testing. The distribution Qz is also set to k-nearest
distribution as in (90), and K is set to 20.

In the gradient estimation, we solve the DRO 3 times to construct (15) and use 4 samples to estimate the gradient term by
importance sampling. For the energy parameter λ in (10), we initially set it to 10, and subsequently reduce it by one-third
every 30 epochs.

D.2.1. PORTFOLIO MANAGEMENT PROBLEM WITH PURE CONTINUOUS DECISIONS

We use the following two-layer full-connected neural network to learn the ambiguity set parameter in both our method and
the method proposed in Costa & Iyengar (2023).

FC(5, 22) → FC(22, 27) → FC(27,m) (96)

where m is the dimension of the ambiguity set parameter.

D.2.2. PORTFOLIO MANAGEMENT PROBLEM WITH MIXED-INTEGER DECISIONS

In problem (22), the number of binary decisions is set to n
5 where n is the number of assets, and the problem parameter

v ∈ Rn/5 is set to [1/n, · · · , 1/n].
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To analyze the impact of the number of constraints in the SOC ambiguity set on the performance of the proposed decision-
focused learning, we conduct experiments on the 60-dimensional mixed-integer portfolio management problem and consider
the following three types of SOC ambiguity sets.

U15(µ,σ) =

P

∣∣∣∣∣∣∣∣
P(Ξ) = 1

EP

 4∑
j=1

∥∥∥y4(i−1)+j − µ4(i−1)+j

∥∥∥2
2

 ≤ σi,∀i ∈ [15]

 (97)

U30(µ,σ) =

P

∣∣∣∣∣∣∣∣
P(Ξ) = 1

EP

 2∑
j=1

∥∥∥y2(i−1)+j − µ2(i−1)+j

∥∥∥2
2

 ≤ σi,∀i ∈ [30]

 (98)

U60(µ,σ) =

P

∣∣∣∣∣∣
P(Ξ) = 1

EP

[
∥yi − µi∥

2
2

]
≤ σi,∀i ∈ [60]

 (99)

Intuitively, U15 constrains 4 dimensions together and thus leads to 15 constraints, U30 constrains 2 dimensions together and
thus leads to 30 constraints, and U60 constrains different dimensions individually and leads to 60 constraints.

E. Discussion of Limitations
The decision-focused learning pipeline we developed in Section 4 can be decomposed into four processes: 1. learning layer;
2. projection layer; 3. solving MICP; 4. DRO Layer.

Processes 2 and 4 are built on Cvxpylayers (Agrawal et al., 2019a), and Process 3 is built on commercial solver Gurobi.
Processes 1, 2, and 4 participate in both the forward and backward path, and solving MICP is only involved in the forward
path.

To test the scalability of our method, we test the running time for a batch of 100 instances on large-scale problems, and the
results are presented in Table 3. The experiments are conducted on a laptop with an i7 CPU and 32G RAM. In Table 3, the
running time for solving MICP and DRO Layer pertains to T = 1 and S = 1, so the total computational time for these two
processes should be multiplied by T and S, respectively.

From Table 3, we can see the computational time is very long in high-dimensional problems. However, we note that this
computational inefficiency is due to the inefficiency of Cvxpylayers and Gurobi, because both of them are built on CPU
rather than on GPU.

Table 3. Running time for a batch of 100 instances on problems with different dimensions. (T stands for the number of solutions we
derive to construct the proposal distribution, and S stands for the number of sampling to estimate gradient (14).)

Dimension Forward path Backward propagation
learning layer projection layer solving MICP (×T ) DRO Layer (×S)

100 < 1ms 16.5s 8.4s 1.2s 9.8s
200 < 1ms 19.6s 12.8s 1.4s 13.1s
400 < 1ms 44.0s 24.1s 5.8s 90.5s
800 < 1ms 82.9s 47.6s 15.3s 358.7s
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