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ABSTRACT

Existing rule-based rewards in preference-based reinforcement learning rely on
manual engineering, limiting scalability. We present AUTORULE, a fully auto-
mated method for extracting rules from preference feedback and formulating them
into rule-based rewards. AUTORULE extraction operates in three stages: it lever-
ages a reasoning model to interpret user preferences, identifies candidate rules
from the reasoning chains of these interpretations, and synthesizes them into a
unified rule set. Using the finalized rule set, we employ language-model verifiers
to judge rule satisfaction, using this metric as an auxiliary reward alongside the
learned reward model during policy optimization. Empirically, AUTORULE yields
gains for both Llama-3-8B and Olmo-2-7B in both in-distribution and out-of-
distribution benchmarks. On Llama-3-8B, it achieves a 25.6% relative improve-
ment in length-controlled win rate against GPT4 on AlpacaEval2.0, and a 6.1%
relative gain in second-turn performance on a held-out MT-Bench subset, com-
pared to baseline models. Further analysis shows that the extracted rules exhibit
strong agreement with dataset preferences and are behaviorally consistent across
multiple runs, extraction scales, and aggregated scores. Notably, these rules also
contribute to mitigating reward hacking in reward models, likely because they
serve as constraints that prevent the policy from exploiting spurious features. Ex-
tracted rules are provided; code and model checkpoints will be open-sourced.

1 INTRODUCTION

Reinforcement learning has become a cornerstone technique for aligning large language models
(LLMs) with preferences and enhancing their ability to follow human instructions (Ouyang et al.,
2022). RLHF and related preference-based optimization approaches have been utilized in top in-
dustry models like GPT-4 (OpenAI, 2024), Gemini (Google, 2025), Claude (Anthropic, 2024) and
Llama 3 (Meta, 2024). RL-based post-training methodologies have also been leveraged to enhance
the reasoning capabilities of LLMs. Notably, a key advancement in Deepseek-R1 is the adoption
of rule-based rewards for accuracy and formatting in place of model-based rewards, as a strategy to
mitigate reward hacking (DeepSeek-AI, 2025). Rule-based rewards for reasoning tasks are particu-
larly effective because they provide objective, verifiable criteria that govern policy behavior. When
a language model’s output satisfies these rules, it can be reliably considered an accurate response.

While rule-based rewards work well for verifiable tasks, utilizing them for preference alignment in
language models remains challenging. Unlike domains such as code or mathematics, where explicit
rule-based verifiers are available, preference alignment is difficult because human preferences are
often ambiguous and subjective. Existing industry approaches typically rely on expert-crafted rules
(Glaese et al., 2022; Mu et al., 2024), large-scale crowd annotations (Bai et al., 2022b), or prompt-
specific rule generations (Gunjal et al., 2025; Viswanathan et al., 2025) which can be costly and
difficult to scale.

We propose AUTORULE, an automatic rule-extraction framework that leverages the reasoning ca-
pabilities of frontier LLMs to derive rules directly from preference data for more subjective tasks.
Here, we use the term rule to mean an explicit, natural-language criterion that specifies some de-
sirable property of a response (e.g., accuracy, clarity, or adherence to instructions). Unlike prior
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approaches that rely on hand-crafted, crowd-sourced, or prompt-specific rules, AUTORULE induces
explicit rule-like statements from model-generated reasoning chains over a sample of preference
examples, enabling broad application across the task domain. The core intuition is that each prefer-
ence reflects a set of policies, and logical reasoning on these preferences and responses can reveal
the underlying criteria. Aggregating these decisions across multiple examples, AUTORULE can con-
struct a comprehensive rule set that captures the key drivers of human preferences for that particular
task. During RL training, an LLM-as-a-judge verifier evaluates candidate responses for compliance
with the extracted rules, and the resulting rule scores are aggregated to form a composite rule-based
reward. This reward is further combined with a standard model-based reward trained to predict
preferences, yielding a robust and informative signal for preference alignment.

AUTORULE consistently outperforms vanilla PPO/GRPO and other rule-based reward tech-
niques—including simple human-crafted rules based on the UltraFeedback dimensions (Cui et al.,
2024) and Rubrics as Rewards (Gunjal et al., 2025)—across multiple preference learning bench-
marks. Our experiments demonstrate that rule-based scores derived from AUTORULE align closely
with human preferences on both UltraFeedback and MT-Bench Human Judgment datasets, indicat-
ing the quality of the extracted rules. Importantly, AUTORULE also demonstrates strong rule consis-
tency across runs, extraction scales, and aggregate scores, underscoring the stability and reliability
of the extracted rewards. Reward hacking experiments further demonstrate that AUTORULE’s rule-
based rewards are robust to overoptimization, maintaining high win rates and strong generalization
throughout training compared to vanilla GRPO.

In summary, our key contributions are three-fold:

• We introduce AUTORULE, a framework for automatically extracting alignment rules from
preference data for subjective tasks, enabling their use as rewards in RL training.

• We show that rule-based rewards derived via AUTORULE improves preference alignment
and instruction following when compared to standard preference optimization baselines.

• We demonstrate that AUTORULE produces high-quality and stable rule-based rewards that
align with human preferences and enable models to mitigate reward hacking.

2 RELATED WORK

Reinforcement learning from human feedback (RLHF) is a standard framework for aligning large
language models (LLMs) with human preferences (Ouyang et al., 2022). RLHF typically in-
volves: (1) supervised fine-tuning on human-annotated responses; (2) training a reward model to
predict human preferences; (3) reinforcement learning, commonly via proximal policy optimization
(PPO) (Schulman et al., 2017) or group relative policy optimization (GRPO) (Shao et al., 2024),
using a learned reward model as the optimization signal.

A well-documented challenge in RLHF with learned reward models is reward hacking (Bai et al.,
2022a; Stiennon et al., 2022; Gao et al., 2023), in which models exploit idiosyncrasies of the reward
model to achieve high reward without genuinely improving response quality. For example, Miao
et al. (2024) find that reward models may overfit to superficial features, such as response length, that
do not generalize to the true distribution of human preferences. Supporting this, Singhal et al. (2024)
show that optimizing solely for response length during PPO can yield performance comparable to
using a learned reward model, indicating that reward models often capture simple heuristics rather
than more nuanced aspects of response quality.

Several strategies have been proposed to mitigate reward hacking, including modifying reward
model architectures and adjusting reward scaling. ODIN (Chen et al., 2024) adds an auxiliary
length prediction head to “disentangle” length from other features. Reward shaping methods such
as PAR (Fu et al., 2025) and LSC (Wang et al., 2024b) apply sigmoid or log-sigmoid transforma-
tions centered on reference model outputs or percentiles. Other approaches leverage multiple reward
models: WARM (Ramé et al., 2024) averages outputs from several reward models to reduce overop-
timization, while ArmoRM (Wang et al., 2024a) combines interpretable reward objectives using a
gating mechanism.

A growing strategy for mitigating reward hacking is the adoption of rule-based reward objectives,
especially in large-scale industrial LLM deployments. For instance, DeepSeek utilized rule-based
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Figure 1: Overview of the AUTORULE method, which derives rule-based rewards by extracting and
merging rules from reasoning chains that justify preferences.

rewards during the post-training of DeepSeek-R1 (DeepSeek-AI, 2025), explicitly prioritizing rule-
based criteria over learned reward models to reduce reward hacking. Their approach incorporates
two types of rewards: an accuracy reward, which evaluates whether the response is both correct
and adheres to a specified format, and a format reward, which encourages the model to present its
reasoning chain within designated “think” tags.

While rule-based rewards are straightforward for verifiable tasks with clear-cut success criteria (e.g.,
factual correctness or format adherence), extending them to preference optimization is more chal-
lenging. Human preferences are often subjective, subtle, and non-binary, making it difficult to define
rules that capture the nuances of desirable behavior. Nonetheless, several works have explored rule-
based objectives. Anthropic’s Constitutional AI (Bai et al., 2022b) uses a curated set of constitutional
principles to guide response revision and preference judgments. DeepMind’s Sparrow (Glaese et al.,
2022) uses researcher-defined behavioral rules, with human raters annotating violations to train a
rule reward model for joint optimization with preference-based rewards. OpenAI has also investi-
gated rule-based rewards for safety alignment, decomposing policy rules into simple propositions
and using them as features in a fitted linear model to construct a reward signal during RL (Mu et al.,
2024).

Some parallel work has explored automating rule construction by leveraging LLMs to extract per-
prompt evaluation criteria, aiming to reduce the manual effort and domain expertise required for rule
design. For instance, Rubrics as Rewards (RaR) (Gunjal et al., 2025) proposes generating detailed
rubric items and associated importance weights for each prompt using LLMs, enabling the deriva-
tion of scalar rewards from either holistic or itemized judgments. Similarly, RLCF (Viswanathan
et al., 2025) constructs prompt-specific checklists by identifying relevant failure modes and scoring
responses against these criteria, which are then converted into preference data for downstream pol-
icy optimization. These approaches represent a shift toward more scalable and systematic rule-based
reward construction, though they still rely on prompt-level customization.

Although useful, constructing effective rule sets is costly, requires significant domain expertise, and
often demands scenario-specific customization. Concurrent approaches, like RLCF and RaR require
prompt-specific rules, which are expensive to generate and scale. As a result, rule-based approaches
in preference learning remain largely proprietary within industry.

3 METHODS

In this section, we outline the automatic rule extraction process of AUTORULE, demonstrate how
these rules can be used to form a reward score, and how the reward is used in RL. Figure 1 provides
an overview of the AUTORULE pipeline.

3.1 AUTORULE EXTRACTOR

We denote the language model (LM) as πθ, where a prompt x serves as the state and the next token t
as the action, i.e., t ∼ πθ(· | x). Unrolling this process over N tokens, the probability of generating
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an output sequence y = (y1, . . . , yN ) is given by πθ(y | x) =
∏N

i=1 πθ(yi | y<i, x). For brevity, we
write a sampled output as y ∼ πθ(· | x).
The automatic rule extraction process in AUTORULE consists of three main stages, each leveraging
a reasoning teacher model πϕ that given input x, decomposes a response y into an output o and an
associated reasoning trace r, i.e., (y, r) ∼ πϕ(· | x).

Reasoning Generation. To guide the reasoning model toward producing a coherent, step-by-step
reasoning chain suitable for rule extraction, we prompt it to justify why a selected response is chosen
versus rejected. Given a preference dataset

Dprefs =
{
(instruction(1), chosen(1), rejected(1)), . . . , (instruction(N), chosen(N), rejected(N))

}
we randomly present the reasoning model with either promptreason(instruction, chosen, rejected, 1)
or promptreason(instruction, chosen, rejected, 2), varying the candidate order to avoid bias. For every
example i, we extract the reasoning trace r(i) from the model’s generation (y(i), r(i)) ∼ πϕ(· | x),
where x is the input prompt. This results in a collection of reasoning chains RC =

{
r(1), . . . , r(N)

}
.

The prompts used for this step as well as the remaining steps are displayed in Appendix I.

Rule Extraction. Next, we extract explicit rules from each individual reasoning chain. For every
reasoning chain r(i) ∈ RC, we prompt the reasoning model with promptextract(r

(i)) to elicit the
underlying rules that justify the preference. The model outputs a set of rules R(i) for each r(i). We
then aggregate these across all examples to obtain the overall rule set:

R(i) ∼ πϕ(· | promptextract(r
(i))) RS =

N⋃
i=1

R(i)

By leveraging the reasoning model in this staged manner, we systematically decompose complex
reasoning traces into precise, actionable rules. Extracting rules individually from each reasoning
chain simplifies the model’s task, as it avoids requiring direct rule extraction from raw preferences.
This decomposition promotes higher-quality and more interpretable rule sets.

Rule Merging. Given the large number of rules extracted from the training set, it is crucial to
merge and refine these rules to ensure computational efficiency and focus on stable, consensus-
driven rules. Merging serves to reduce redundancy, eliminate noise, and consolidate semantically
similar rules, thereby capturing the ”wisdom of the crowd.” To achieve this, we prompt the reasoning
model with explicit instructions to identify and merge duplicate or overlapping rules within RS. The
resulting set is a compact, non-redundant collection of merged rules:

MR, r ∼ πϕ(· | promptmerge(RS))

where MR denotes the final set of merged rules. Empirically, this merging process substantially
reduces redundancy and low-occurence rules, typically compressing the rule set to just 1–2% of its
original size. This significantly improves the efficiency of the rule-based reward calculation process.

3.2 AUTORULE REWARD

To use these merged rule sets in the RL objective, we employ LLM-as-a-judge verifiers, denoted
as Vθ. Given a prompt x, a response y, and each extracted rule rulei ∈ MR, the verifier provides
a rule score si ∼ Vθ(· | promptverify(x, y, rulei)). We constrain the rule scores to binary values,
si ∈ {Yes,No}. The AUTORULE reward rRA is then defined as the mean rule satisfaction across all
|MR| rules:

rRA(x, y) =
1

|MR|

|MR|∑
i=1

1 {si = Yes}

where each si is obtained as above. The final reward used for training combines the rule-based
reward rRA with the standard reward model score rθ and the standard KL penalty (exact KL penalty
formulation in Appendix B.3):

rtotal(x, y) = rRA(x, y) + rθ(x, y)− βKLKLapprox
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Unlike conventional reward models that assign continuous scores reflecting subtle preference dis-
tinctions, our verifier Vθ is tasked solely with determining whether each rule is satisfied, producing a
binary outcome. This simplification reduces the complexity of the reward modeling process, making
the verifier less susceptible to erroneous judgments, mitigating the risk of reward hacking. Collec-
tively, the rule set enables partial rewards, offering a smooth and incremental learning signal as the
policy outputs satisfy additional rules.

3.3 AUTORULE REINFORCEMENT LEARNING

While our reward system can be integrated with various policy optimization algorithms, in this work
we adopt the GRPO algorithm (Shao et al., 2024) and use rtotal as the reward signal. GRPO is a policy
optimization algorithm that uses the relative rewards from a group of outputs to determine advantage
estimates. Formally, GRPO utilizes a group of outputs and computes their rewards, consolidating
them into a reward vector r = {r1, . . . , rn}. Then, it computes advantage estimates for a particular
output i as

Âi =
ri − mean(r)

std(r)

This advantage estimate is then used in the following clipped surrogate objective (Schulman et al.,
2017):

L(w) = E(x,y)∼Dwold

[
min

(
πw(y | x)
πwold

(y | x)
Â, clip

(
πw(y | x)
πwold

(y | x)
, 1− ϵ, 1 + ϵ

)
Â

)]
where ϵ is a clipping hyperparameter and πw(y|x)

πwold
is the likelihood ratio.

In summary, AUTORULE introduces an automated, reasoning-chain-based rule extraction frame-
work that can generate precise and actionable alignment rules, thereby eliminating the need for
manual rule engineering for subjective tasks. Furthermore, by leveraging LLM-as-a-judge verifiers
that provide binary rule satisfaction judgments, our approach provides additional interpretable con-
straints on top of conventional continuous reward models.

4 EXPERIMENTAL METHODOLOGY

Dataset. We use the UltraFeedback-Binarized dataset (referred to as UltraFeedback), a binarized
version of UltraFeedback (Cui et al., 2024), which contains nearly 64K pairwise preference annota-
tions across diverse model types and instructions. This dataset provides a large-scale and heteroge-
neous base, making it well-suited for evaluating generalization across prompts of varying difficulty.
For training, we select a filtered subset of 33K examples (details in Appendix B.6). In addition, we
leverage the MT-Bench human judgment dataset (Mu et al., 2024), which provides expert preference
annotations on multi-turn questions.

Evaluation Metrics. We report win rate on the UltraFeedback-Binarized test split, using GPT-4o
as an automatic judge with randomized candidate and reference response order. We also evaluate on
MT-Bench (using a GPT-4 judge) and AlpacaEval 2.0 (Dubois et al., 2024). AlpacaEval comple-
ments UltraFeedback and MT-Bench by emphasizing instruction-following in a single-turn setting,
while also correcting for verbosity bias via its length-controlled win-rate. For AUTORULE, AlpacaE-
val 2.0 and UltraFeedback win rate are measured on a model trained with rules from UltraFeedback.
For MT-Bench, we split the 80 questions into 40 for training AUTORULE and 40 for testing (5 per
category for each split).

Together, these benchmarks span a spectrum of evaluation regimes—ranging from single-turn in-
struction following (AlpacaEval 2.0), to multi-turn dialogue across diverse categories (MT-Bench),
to large-scale, heterogeneous preference data (UltraFeedback).

Rule Extraction. We use Deepseek-R1 (DeepSeek-AI, 2025) to generate reasoning chains for au-
tomatic rule extraction. For the LLM-as-a-judge verifier, we use Llama-3-8B-Instruct (Meta, 2024)
for computational efficiency. To extract rules, we sample 256 random examples from the Ultra-
Feedback training split and for MT-Bench, we use the 40-question training split and sample up to 8
examples per question for training, or all available if fewer.
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Table 1: Main evaluation results on UltraFeedback win-rate vs SFT, AlpacaEval 2.0 (denoted as
“AE”) length-controlled and vanilla win-rate, and MT-Bench average, turn 1, and turn 2 score.

OLMo-2-7B (base) Llama-3-8B (base)
UF AE LC WR (WR) MT-Bench UF AE LC WR (WR) MT-Bench

Methods WR vs SFT vs GPT4 Avg (T1/T2) WR vs SFT vs GPT4 Avg (T1/T2)

SFT – – 6.6 (4.7) 6.05 (6.75/6.35) – – 10.8 (7.2) 6.40 (6.98/5.83)

PPO 74.6 72.8 (74.6) 14.0 (10.9) 6.79 (7.15/6.43) 67.6 66.3 (67.0) 15.2 (11.1) 7.09 (7.41/6.78)

GRPO 76.6 76.4 (79.4) 15.7 (12.8) 6.75 (7.16/6.33) 75.9 72.7 (82.2) 15.1 (16.1) 7.68 (7.98/7.38)

+ Length Control 75.5 76.8 (80.1) 15.6 (12.6) 6.91 (7.21/6.60) 75.9 66.1 (80.2) 16.8 (16.8) 7.40 (7.45/7.35)

+ Length Penalty 74.6 77.2 (77.4) 15.7 (10.6) 6.60 (6.95/6.25) 76.1 71.0 (76.6) 16.2 (12.5) 7.29 (7.58/7.00)

+ Concise Rule 72.8 77.5 (75.6) 18.6 (11.1) 7.01 (7.51/6.51) 69.9 71.6 (75.8) 17.2 (13.7) 7.06 (7.49/6.63)

RaR-Implicit 66.2 58.3 (63.5) 9.8 (8.8) 6.62 (7.24/6.00) 63.2 59.4 (66.0) 13.6 (11.5) 7.11 (7.41/6.80)

RaR-Explicit 70.3 68.9 (77.9) 13.0 (14.1) 6.68 (7.30/6.05) 70.4 64.6 (78.0) 13.0 (14.1) 7.06 (7.33/6.80)

AUTORULE 79.4 81.6 (83.9) 20.0 (15.9) 7.03 (7.25/6.80) 77.2 77.0 (83.3) 21.6 (18.6) 7.85 (7.88/7.83)

Baselines. We first compare to the SFT checkpoint (“SFT”) and a PPO baseline. Next, we consider
GRPO-based baselines: (1) GRPO with the base reward (rθ) (“GRPO”), (2) GRPO with length-
driven hyperparameter tuning (“GRPO + Length Control”, LC), (3) GRPO with a length penalty
(“GRPO + Length Penalty”, LP), and (4) GRPO with a single concise rule reward (“GRPO + Con-
cise Rule”); all use the same learned reward model. Finally, we evaluate GRPO with rubric-based
rewards using automatic rubric generation: (5) GRPO + RaR-Implicit, which uses a holistic 1–10
rubric judge as reward, and (6) GRPO + RaR-Explicit, which aggregates per-item rubric checks by
a normalized weighted sum. Conciseness rule and RaR baseline details are in Appendix B.7.

AUTORULE Model. For AUTORULE, we use a scaled rule-based reward rRA: rRA′ = αrRA + β,
aligning the rule-based reward magnitude with the learned reward model for stable training. The
verifier prompt is modified so si = 1 only if the response is concise and fully satisfies the extracted
rule. We set (α, β) = (10,−7.5) for AUTORULE on Llama-3-8B (UF and MT rules) and OLMo-2-
7B (UF rules), and (α, β) = (5,−3) for OLMo-2-7B (MT rules).

Implementation Details. All models are initialized from the same SFT and reward model check-
points for comparability. SFT checkpoints are obtained by fine-tuning Llama-3-8B and OLMo-2-7B
(OLMo et al., 2025) on chosen responses from filtered UltraFeedback-Binarized. The reward model
is initialized from this SFT checkpoint and further fine-tuned on filtered UltraFeedback-Binarized
preference annotations. Actor, critic, and value networks (where applicable) are initialized from the
SFT checkpoint. Training uses OpenRLHF (Hu et al., 2024), an open-source RLHF framework.
Training details are in Appendix B, and asset URLs are available in Appendix J.

5 EVALUATION RESULTS

In this section, we present a comprehensive evaluation of AUTORULE by analyzing model perfor-
mance, teacher model efficiency, ablation studies, rule effectiveness, and reward hacking mitigation.

5.1 MODEL PERFORMANCE

Table 1 demonstrates that AUTORULE achieves strong in-distribution performance on both Ultra-
Feedback and MT-Bench. For Llama-3-8B, AUTORULE delivers a 1.4% relative improvement in
UltraFeedback win rate and a 6.1% relative gain in MT-Bench Turn 2 performance over the best
baseline, highlighting the effectiveness of rule-based rewards in capturing human preferences and
supporting complex, multi-turn interactions.

Furthermore, AUTORULE demonstrates strong out-of-distribution generalization and robustness
to length bias. On AlpacaEval 2.0, AUTORULE, using rules extracted from UltraFeedback data,
achieves a 5.9% relative improvement in length-controlled win rate against SFT and a 25.6% im-
provement against GPT-4 Turbo over the best baseline, indicating that rule-based rewards promote
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substantive response quality rather than superficial length-based cues. These gains also generalize
across different LLM families. For OLMo-2-7B, AUTORULE attains the highest UltraFeedback win,
AlpacaEval 2.0 length-controlled win rate, best average MT-Bench score, among all methods.

Collectively, these results show that AUTORULE not only excels within its training distribution but
also transfers effectively to diverse evaluation settings and model families.

Table 2: Teacher model token usage. *Estimated
token count extrapolated from 256 examples.

LLM API Call (Tokens)

Phase Input Output Total

Reasoning 230K 357K 587K
Extraction 232K 135K 366K
Merging 29K 1K 30K

Total 490K 493K 983K

RaR* 34.2M 54.5M 88.7M

Teacher Model Efficiency. Another advan-
tage of the AUTORULE framework lies in
its efficiency in teacher model usage. Un-
like concurrent approaches such as Rubrics
as Rewards (RaR), which necessitate teacher
model inference for every training prompt,
AUTORULE requires only a modest set of
examples to extract its rule set (256 vs
full 33K training set). As shown in Ta-
ble 2, AUTORULE results in nearly 90-
fold lower teacher model token consumption.
This underscores the practicality and scala-

bility of AUTORULE, particularly in settings
where teacher model inference is costly.

5.2 ABLATION STUDY

Table 3: Ablation study of rule source, extrac-
tion source, and rule reward construction on Ul-
traFeedback win-rate vs SFT and AlpacaEval 2.0
(AE) length-controlled and vanilla win-rate. All
methods use Llama-3-8B as the base model.

UF AE LC WR (WR)

Method WR vs SFT vs GPT4

Best Baseline 76.1 72.7 (82.2) 16.8 (16.8)

Rule Source
AUTORULE 77.2 77.0 (83.3) 21.6 (18.6)

UF Dimensions 54.7 46.4 (61.4) 8.7 (9.3)

Extraction Source
Reasoning 77.2 77.0 (83.3) 21.6 (18.6)

Justification 75.9 75.9 (82.2) 19.7 (16.5)

Rule Reward Construction
Scale+Concise 77.2 77.0 (83.3) 21.6 (18.6)

Scale+NoConcise 74.6 65.2 (82.4) 16.5 (21.6)

NoScale+NoConcise 75.7 68.6 (82.5) 14.5 (17.8)

We perform ablations to analyze contributions
of rule source, extraction source, and rule re-
ward construction, with results in Table 3.

Rule Source. Designing effective rules man-
ually remains a challenge. When we employ
the text descriptions of the four UltraFeedback
dimensions (with “LLM” replaced by “The as-
sistant”) as rules, performance is notably lower
than AUTORULE. To better understand this
gap, we analyze optimization dynamics at the
per-rule level. Table 4 presents per-rule scores
at early and late training (step 1 vs. 32), as well
as preference alignment. Notably, three of the
UltraFeedback dimension rules are nearly sat-
urated, which forces optimization onto a single
signal (the fourth rule). Qualitative analysis fur-
ther reveals that these human-authored rules are
relatively vague. In contrast, the rules automat-
ically extracted by AUTORULE are more spe-
cific, as they are derived directly from prefer-
ence data. We observe empirically that many of
these rules exhibit meaningful score increases
after training (see Appendix Figure 7).

Extraction Source. We find that extracting rules from the reasoning chain, rather than from the
final justifications, yields substantially higher UltraFeedback and AlpacaEval 2.0 length-controlled
win rates. This suggests that reasoning chains provide more specific and actionable guidance for rule
formulation, whereas justifications tend to be less detailed and more generic, leading to diminished
downstream performance. We further demonstrate this observation with a case study in Appendix F.

Rule Reward Construction. Both reward scaling and the explicit inclusion of conciseness as a
reference in the verifier prompt are critical for optimal performance. To assess their impact, we
evaluate two ablation variants: (1) a version without conciseness references (“Scale+NoConcise”),
and (2) a version with reward scaling parameters set to α = 1, β = 0 and no conciseness
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Table 4: Per-rule training dynamics (step 1 → 32) and preference alignment.

Rule ∆ Score Align

The assistant should respond to humans without deviating from the require-
ments.

0.91 → 0.96 84.6%

The assistant should provide useful and correct answers to address the given
problems.

0.91 → 0.96 87.1%

The assistant’s output should be grounded in the instructions and real-world
knowledge, and avoid introducing any self-contradiction.

0.92 → 0.96 87.2%

The assistant should know what they (don’t) know and express uncertainty to-
wards the given problem.

0.37 → 0.81 64.4%

(a) Rule alignment (b) Rule agreement (c) Agreement vs scale (d) Correlation

Figure 2: 2a shows rule alignment distributions for UF and MT-extracted rules , 2b plots matched
rule behavior agreement, 2c shows average behaviorial agreement between rules at different training
example scales matched with the original rule set (extracted from 256 examples), and 2d plots rule
scores for two AUTORULE runs.

references (“NoScale+NoConcise”). Results for these variants, alongside the original methåod
(“Scale+Concise”), are shown in the lower section of Table 3. We observe that removing either
reward scaling or conciseness guidance consistently reduces both UltraFeedback and AlpacaEval
2.0 length-controlled win rates. The lack of reward scaling appears to limit the model’s ability to
fully leverage rule-based supervision, while omitting conciseness guidance leads to responses that
are less aligned with human preferences for brevity and clarity. These findings highlight the neces-
sity of both rule reward scaling and conciseness encouragement within the AUTORULE framework.

Note that conciseness alone does not account for the observed performance improvements. As
shown by the “GRPO + Concise Rule” baseline in Table 1, training with only a single conciseness
rule yields substantially lower performance than AUTORULE.

5.3 EFFECTIVENESS OF AUTORULE RULES

In the following experiments, we analyze the effectiveness of AUTORULE to extract high-quality,
consistent rules. All extracted rules are displayed in Appendix C, and a case study comparing rules
extracted from different datasets is provided in Appendix G.

Rule quality. To assess rule quality, we calculate rule alignment on 1,024 UltraFeedback test
examples and the full MT-Bench human judgment split. Alignment is computed as

Alignment =

∑
pairs 1{schosen = 1 ∧ srejected = 0}∑

pairs 1{schosen ̸= srejected}

Figure 2a presents the distributions for individual rule alignment. We observe that individual rules
from both rule sets are in good alignment with the ground-truth preferences in the datasets.

Rule consistency. To assess the stability of individual rules, we construct a binary vector for each
rule, indicating whether the rule is satisfied for 512 responses, and compute the normalized Ham-
ming distance as a measure of behavioral agreement. We match rules from different rule lists using
the Hungarian algorithm (Kuhn, 1955), and report the behavioral agreement of matched pairs. The
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(a) Step 1 → 64 (b) Aggregated rule score (c) UltraFeedback WR (d) AlpacaEval2.0 LC WR

Figure 3: 3a and 3b show upward rule score trends, and 3c and 3d show 128-example subset evals
of AUTORULE and GRPO (Llama-3-8B) for two episodes with 10-step rolling average smoothing.

resulting distributions, shown in Figure 2b, reveal that the mean matched agreement exceeds 0.9
across both datasets, demonstrating that AutoRule consistently extracts highly stable rules.

We further examine the robustness of rule consistency with respect to extraction scale. Specifically,
we compare rules extracted from varying numbers of examples to those obtained from the original
set of 256 examples, again using behavioral agreement and the Hungarian algorithm for matching.
As illustrated in Figure 2c, while the number of merged rules decreases as n is reduced, the average
behavioral agreement remains high. This suggests that, although fewer examples may yield a less
comprehensive rule set, the extracted rules themselves remain consistent. Collectively, these results
highlight that rule extraction via AUTORULE produces robust rules across different extraction scales.

Additionally, we assess aggregate rule score consistency by analyzing the correlation between ag-
gregated scores assigned by different rule sets, as shown in Figure 2d. The mean pairwise correla-
tions across five runs are 0.967 for UltraFeedback and 0.964 for MT-Bench, further confirming the
strong consistency and reproducibility of the AUTORULE extraction process in generating reliable
aggregate scores. Additional detailed consistency experiments are presented in Appendix E.

5.4 REWARD HACKING MITIGATION

To analyze the impact of rules on reward hacking mitigation, we tracked model performance and
rule scores throughout training. Our results show that AUTORULE helps prevent reward hacking on
in-distribution benchmarks. Figure 3c plots the UltraFeedback win rate as a function of global step,
smoothed with a rolling average over 10 steps. Initially, both the baseline and AUTORULE models
achieve similar win rates; however, after step 52, the GRPO baseline exhibits declining performance,
whereas AUTORULE maintains consistently high win rates.

The AUTORULE approach also mitigates reward hacking on out-of-distribution benchmarks. Fig-
ure 3d shows the AlpacaEval 2.0 win rate as a function of global step, also smoothed with an 10-step
rolling average. Here, AUTORULE consistently outperforms GRPO, achieving an improvement of
roughly 5% after two episodes. These results demonstrate that rule-based rewards provide robust-
ness against reward hacking in both in-distribution and out-of-distribution settings.

We attribute this robustness to the effectiveness of rule-based rewards. As shown in Figures 3a and
3b, the consistent upward trend in rule scores indicates that the AUTORULE model reliably optimizes
the rule-based reward signal. The underlying intuition is that rule-based rewards serve as constraints,
limiting the model’s ability to exploit weaknesses or spurious local optima in the reward model.

6 CONCLUSION

In this paper, we introduce AUTORULE, a reasoning chain-based automatic rule extraction mecha-
nism for leveraging rule-based rewards in language model alignment. We demonstrate that rules ex-
tracted by AUTORULE align well with preference datasets and improve performance on instruction-
following benchmarks. Additionally, we show that rule-based rewards help mitigate certain aspects
of reward model overoptimization. We hope that AUTORULE will enable AI researchers and prac-
titioners to construct and utilize more effective rule-based rewards in post-training pipelines, ulti-
mately advancing the development of models for creative and subjective tasks.
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7 REPRODUCIBILITY STATEMENT

An overview of our experimental setup is provided in Section 4. Detailed descriptions of training
procedures, including data filtering, inference and training hyperparameters, and KL divergence ap-
proximations, are presented in Appendix B. The complete codebase will also be released to facilitate
reproducibility.
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A LLM USAGE

We describe the ways in which LLMs were utilized in this work:

Polishing writing. LLMs were employed to refine language, grammar, and overall clarity through-
out the paper.

Retrieval and discovery. LLMs assisted in identifying related work, including research on length-
based reward hacking and rule-based objectives for alignment.

Research ideation. LLMs contributed to the selection and formulation of certain evaluation metrics,
such as the AlpacaEval 2.0 win rate and MT-Bench score, as well as to the choice of the datasets for
rule extraction and model training.

Other. LLMs are central to this work itself, serving as the models being aligned, as judges for
evaluation, and as mechansism for rule generation.

B ADDITIONAL EXPERIMENT DETAILS

B.1 TRAINING SETTINGS

Settings used for the SFT, reward model, and RL training are available in Tables 5, 6, and 7 respec-
tively.

B.2 INFERENCE PARAMETERS

Inference parameters are displayed in Table 8.

B.3 KL APPROXIMATION

We utilize two versions of KL approximation as implemented in OpenRLHF (Hu et al., 2024). The
first is used for PPO, and the second is used for GRPO.

log

(
πϕ(y | x)

πSFT (y | x)

)
(1)

e
− log

(
πϕ(y|x)

πSFT (y|x)

)
− 1 + log

(
πϕ(y | x)

πSFT (y | x)

)
(2)

B.4 LENGTH PENALTY

To implement the length penalty, we subtract the following from the reward:

1

2

(
response length

L

)
− 1

2

where L = 300 is the target length.

B.5 GRPO ADVANTAGE ESTIMATION

To improve numerical stability, as implemented in OpenRLHF, we utilize a modified version of the
advantage estimation formula displayed in Section 3.3 as follows:

Âi =
ri − mean(r)
std(r) + 10−9

B.6 DATASET FILTERING

Following the filtering process and using the code by (Fu et al., 2025), to select data for training, we
filter and only include the examples where the chosen and rejected responses are both less than 512
tokens, the chosen score is higher than the rejected score, and the word “confidence” is not in the
either response.
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B.7 RULE-BASED BASELINES

We evaluate two rule-based baselines that incorporate auxiliary rule rewards into GRPO.

GRPO + Concise Rule. This baseline applies a single auxiliary rule that encourages brevity: “The
assistant should respond in a concise manner.” Compliance is assessed using the same concise
verifier prompt used in AUTORULE (Figure 11).

GRPO + RaR. We employ Deepseek-R1 as a teacher model to synthesize rubrics for each Ultra-
Feedback example, following (Gunjal et al., 2025) with prompt adaptations for instruction-following
and alignment tasks. We study two variants: (1) GRPO + RaR-Implicit, which uses the rubric’s
holistic 1–10 score as the reward; and (2) GRPO + RaR-Explicit, which composes an explicit re-
ward by aggregating normalized per-item checks via a weighted sum.

All rule-based baselines use the same GRPO hyperparameters as the “GRPO” model, which are
detailed in Table 7.

Table 5: Supervised fine-tuning settings.

Setting Value

Base model Llama-3-8B/OLMo-2-7B
Dataset / split UltraFeedback SFT training split
Epochs 2
Train / micro batch 256 / 2
Learning rate 5× 10−6

LR scheduler Constant with warmup
LR warmup ratio 0.1
Adam β1, β2 0.9, 0.95
Precision bfloat16
Grad-norm clip 10
Seed 42

Table 6: Reward model training settings.

Setting Value
Base checkpoint SFT checkpoint
Loss Pairwise sigmoid
Epochs 1
Train / micro batch 256 / 2
Learning rate 5× 10−6

LR scheduler Constant with warmup
LR warmup ratio 0.1
Adam β1, β2 0.9, 0.95
Attention Flash
Precision bfloat16
Grad-norm clip 5
Seed 42
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Table 7: RL training settings. AUTORULE and GRPO + LP uses the same settings as GRPO, except
the verifier for AUTORULE uses a temperature of 0.0.

Setting PPO GRPO GRPO + LC
Actor init (policy) SFT ckpt SFT ckpt SFT ckpt
Reward / critic init RM ckpt RM ckpt RM ckpt
Dataset / split UF Prefs training split same same
KL estimator version (1) (2) (2)
Initial βKL 0.005 0.001 0.005
λ 0.95 1.00 1.00
γ 1 1 1
Samples per prompt 1 2 2
PTX coefficient 0.05 0.05 0.05
Actor learning rate 3× 10−7 5× 10−7 3× 10−7

Critic learning rate 5× 10−6 9× 10−6 9× 10−6

LR scheduler Constant w/ warmup same same
LR warmup ratio 0.1 0.1 0.1
Adam β1, β2 0.9, 0.95 0.9, 0.95 0.9, 0.95
Rollout batch (total/micro) 1024 / 32 1024 / 32 1024 / 32
Train batch (total/micro) 128 / 16 128 / 16 128 / 16
Temperature / top-p 0.9 / 0.9 1.0 / 1.0 0.9 / 1.0
vLLM max new tokens 1024 1024 1024
Epochs 1 1 1
Precision bfloat16 bfloat16 bfloat16
Attention Flash Flash Flash
Seed 42 42 42
Grad-norm clip 5 1 1

Table 8: Inference parameters used, “preset” means it is defined by the benchmark.

Model (Purpose) Temperature Top P Max new tokens

Verifier (Rule agreement experiments) 0.0 1.0 256
Verifier (Determinism experiment) 1.0 1.0 256
Trained model (UF win-rate) 0.9 1.0 1024
Trained model (AlpacaEval 2.0) 0.9 1.0 1024
Trained model (MT-Bench) Preset 1.0 1024
Deepseek-R1 (Full rule extraction process) 0.6 1.0 32768
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C RULES

Rules extracted from UltraFeedback (reasoning chain), MT-Bench (reasoning chain), and Ultra-
Feedback (justification) are displayed in Tables 9, 10, 11 respectively.

Table 9: UltraFeedback rules extracted via the AUTORULE extraction process.

Index Rule Align (%)

0 The assistant’s responses should present explanations in a coherent, step-by-
step structure with logical flow, numbered points, and clear sections.

75.1

1 When addressing user misconceptions, the assistant must clarify misunder-
standings before offering solutions.

75.9

2 Translations must use accurate terminology, preserve original tone and struc-
ture, and avoid introducing unrelated content.

79.4

3 Responses must prioritize technical accuracy, correct formulas, error-free code
examples, and validated context alignment.

76.2

4 Incorporate vivid sensory details, figurative language, and relatable examples
when explicitly requested.

74.1

5 Provide actionable advice, practical steps, and concrete implementation strate-
gies tailored to the user’s context.

74.8

6 Indicate confidence levels while acknowledging uncertainty and limitations
when appropriate.

74.8

7 Maintain a conversational, empathetic, and professional tone while avoiding
overly formal or dismissive language.

71.4

8 Integrate cultural sensitivity, domain-specific terminology, and contextual rele-
vance into explanations.

73.9

9 Include properly formatted citations, references, and academic conventions
when required.

73.1

10 Address all components of the user’s query comprehensively without omission
or tangential content.

73.6

11 Avoid assumptions when ambiguity exists; seek clarification for insufficient
context.

69.9

12 Use illustrative examples of both correct/incorrect approaches to demonstrate
concepts.

78.2

13 Strictly adhere to user-specified formats, structures, and output requirements. 70.2
14 Address ethical considerations, legal compliance, and recommend professional

consultation when relevant.
80.9

15 Prioritize security measures, error handling, and technical robustness in solu-
tions.

78.1

16 Ensure conciseness by eliminating redundancy and focusing on core query rel-
evance.

67.4

17 Explain underlying mechanisms, reasoning processes, and cause-effect relation-
ships explicitly.

74.8

18 Validate answers against provided context and avoid unsupported extrapolation. 85.5
19 Maintain narrative coherence with source material when discussing plots or

characters.
84.3

20 Structure comparisons, analyses, and recommendations using clear categoriza-
tion.

76.1

21 Anticipate user needs by providing comprehensive details without requiring
follow-ups.

78.6

22 Preserve specific terms, measurements, and formatting conventions during lo-
calization.

76.3

23 Use collaborative language and hierarchical organization for complex informa-
tion.

77.4

24 Balance thoroughness with brevity to prevent information overload while en-
suring clarity.

66.6
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Table 10: MT-Bench rules extracted via the AUTORULE extraction process.

Index Rule Align (%)

0 The assistant’s responses must provide detailed step-by-step explanations and
calculations to ensure correctness and clarity.

86.7

1 The assistant’s code should avoid unnecessary complexity, handle edge cases,
include error handling, and use appropriate data structures.

80.4

2 The assistant’s responses must maintain a professional and approachable tone,
adapting to the nature of the user’s query.

83.8

3 The assistant’s responses must strictly adhere to user-specified formats (e.g.,
JSON/YAML) with correct syntax and structure.

72.2

4 The assistant’s explanations should prioritize logical coherence, clarity, and
avoidance of redundant or ambiguous content.

78.2

5 The assistant must adhere to ethical guidelines by avoiding medical diagnoses
and prioritizing user safety in critical situations.

77.0

6 Creative outputs must maintain structural integrity (e.g., rhyme schemes,
metaphors) while retaining key informational elements.

78.7

7 The assistant should proactively address user misunderstandings, anticipate
follow-up questions, and provide actionable feedback.

86.7

8 The assistant must apply appropriate theoretical principles (e.g., Bayes’ theo-
rem) and clarify their relevance to the problem.

81.7

9 The assistant’s responses should validate assumptions, acknowledge limita-
tions, and use verified data in calculations.

77.2

10 The assistant must tailor recommendations to user constraints (e.g., allergies,
pregnancy) and cultural context.

81.6

11 The assistant’s structured outputs should prioritize readability through proper
formatting and organizational patterns.

80.9

12 The assistant must avoid contradictions between answers and follow-up expla-
nations while maintaining roleplay consistency.

78.4

13 The assistant should provide culturally adapted translations of idioms/phrases
rather than literal interpretations.

78.0

14 The assistant must verify numerical accuracy through step-by-step validation
and real-world feasibility checks.

81.9

15 The assistant’s code examples must be complete, functional, and demonstrate
separation of concerns (HTML/CSS/JS).

79.2

16 The assistant should address all query components methodically, even if inter-
mediate steps contain errors.

81.1

17 The assistant must maintain logical flow between concepts and preserve essen-
tial content in creative adaptations.

82.8

18 The assistant should prioritize factual accuracy over hypothetical interpretations
unless explicitly requested.

82.1

19 The assistant’s self-evaluations must critically assess response quality and iden-
tify specific improvement areas.

73.6
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Table 11: UltraFeedback rules extracted on justifications instead of reasoning CoTs.

Index Rule Align (%)

0 The assistant’s responses should include concrete examples, actionable insights,
and specific applications to explain mechanisms and variables.

73.1

1 The assistant’s code must handle edge cases, ensure functionality, avoid unsafe
practices, and include error handling.

81.2

2 Structure explanations logically with step-by-step formats, clear sections, and
thematic grouping while maintaining flow.

72.8

3 Correct user misconceptions with accurate information using empathetic and
polite language.

80.5

4 Be concise, avoid redundancy, and prioritize clarity by eliminating unnecessary
details.

65.3

5 Provide complete, functional code examples with necessary parameters and
modular structures.

77.3

6 Maintain a neutral, professional tone appropriate to context without unsolicited
commentary.

74.7

7 Strictly adhere to user instructions without deviation or unwarranted assump-
tions.

71.8

8 Use structured formatting like bullet points and headings for readability and
scannability.

74.8

9 Address all query components comprehensively with direct answers and rele-
vant context.

76.7

10 Validate code functionality, address pitfalls, and ensure integration with existing
setups.

78.3

11 Anticipate implicit needs while avoiding speculative language beyond provided
evidence.

82.1

12 Include practical details, alternatives, and implementation steps for real-world
application.

76.2

13 Ensure technical accuracy, correct terminology, and compliance with domain
standards.

82.8

14 Avoid tangential topics and focus strictly on core requests without scope creep. 67.1
15 Transparently admit limitations and provide actionable alternatives when uncer-

tain.
70.6

16 Prioritize ethical responsibility, legal compliance, and cultural sensitivity. 83.8
17 Use precise language, avoid jargon, and explain technical terms contextually. 77.9
18 Incorporate error handling, reliability checks, and security best practices. 78.8
19 Balance brevity with necessary detail, adapting to user’s proficiency level. 68.7
20 Provide self-contained, compilable code with headers and standard libraries. 71.4
21 Maintain logical coherence, avoid contradictions, and ensure factual consis-

tency.
83.7

22 Structure narratives chronologically/thematically with clear cause-effect rela-
tionships.

71.5

23 Use empathetic tone, constructive feedback, and collaborative language. 74.9
24 Include quantitative data, contextual reasoning, and measurable outcomes. 71.9
25 Offer platform-agnostic solutions unless specific tools are requested. 73.0
26 Highlight key takeaways with memorable framing and searchable keywords. 73.1
27 Ensure translations preserve meaning, context, and grammatical correctness. 84.8
28 Link concepts to real-world impacts, case studies, and stakeholder outcomes. 74.5
29 Adopt solution-oriented tone with proactive guidance and troubleshooting tips. 76.9
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D RULE AGREEMENT MATRICES

We showcase full rule agreement matrices between UltraFeedback and MT-Bench extracted rules
on both UltraFeedback and MT-Bench data in Tables 4 and 5.

Figure 4: Rule agreement matrix on UltraFeedback data
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Figure 5: Rule agreement matrix on MT-Bench Human Judgements data
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Step Similarity Metrics

Reasoning Lexical BLEU-1/ROUGE-1/Unigram Jaccard = 0.634 / 0.694 / 0.465
Rule extraction Behavior σmean/σstd/rmean/rstd = 0.088 / 0.059 / 0.865 / 0.043

LLM-judge Jaccard = 0.563 ± 0.206
Merging Behavior σmean/σstd/rmean/rstd = 0.037 / 0.027 / 0.960 / 0.011

LLM-judge Jaccard = 0.378 ± 0.140

Table 12: AutoRule stability summary (means across UF examples; rounded to 3 decimals).

E DETAILED RULE CONSISTENCY ANALYSIS

A set of additional replication experiments was conducted to quantify the stability of the AUTORULE
pipeline. For the reasoning stage, 10 UltraFeedback examples were selected and, for each response
pair, chain-of-thought (CoT) traces were generated 64 times; pairwise lexical similarity was then
computed across the generated CoTs. For rule extraction, 10 preference pairs were processed with 64
extraction runs; consistency was measured both behaviorally (by comparing aggregated rule scores
over 256 UltraFeedback examples) and semantically using LLM-judged rule similarity. The latter
was used to construct mutual k-NN graphs of extracted concepts, and pairwise concept-set similarity
was summarized via the Jaccard index |A∩B|

|A∪B| . Finally, the merging procedure was repeated 64 times
on 256 UF examples and evaluated with the same behavioral and LLM-judged metrics.

Results in Table 12 quantify stability across the pipeline. The reasoning stage shows moderate-to-
high lexical agreement (BLEU-1 (Papineni et al., 2002) / ROUGE-1 (Lin, 2004) / Unigram Jaccard
= 0.634 / 0.694 / 0.465). The rule-extraction stage exhibits lower behavioral variance and higher
behavioral correlation (σmean/σstd/rmean/rstd = 0.088/0.059/0.865/0.043) and substantial seman-
tic agreement by LLM judgment (Jaccard = 0.563 ± 0.206). The merging stage has even lower
behavioral variance and higher behavioral correlation (0.037/0.027/0.960/0.011) while showing a
lower LLM-judged semantic Jaccard (0.378 ± 0.140), consistent with consolidation producing be-
haviorally consistent but semantically more variable rule sets. Altogether, these metrics support that
AUTORULE yields stable, reproducible rules appropriate for deriving reward signals.

We also conducted a small experiment to assess the determinism of the rules by running veri-
fier inference with a temperature of 1.0, 100 times on 20 UltraFeedback test-set responses for
the UltraFeedback-extracted rules and 16 MT-Bench test-set responses for the MT-Bench-extracted
rules. Using a determinism score calculated as (max(#Yes,#No)/(#Yes+#No)), where Yes/No
indicates the answer to rule satisfaction, we obtained average determinism scores of 83.6% and
82.5% for UltraFeedback and MT-Bench-extracted rules, respectively. These results suggest that
the rule verification exhibit a high degree of consistency and that the verifier provides reliable judg-
ments, supporting their suitability for reward formulation.
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F CASE STUDY: REASONING CHAIN VS JUSTIFICATION EXAMPLES

To further analyze the importance of utilizing reasoning chains for rule extraction, we showcase a
case study of a prompt asking about the role of zoos in animal conversation in Figure 6. In the
two model responses, Response A is clearly worse as it includes an out-of-place rhetorical ques-
tion. While both the justification and the reasoning chain offer valid points, the reasoning chain is
much more detailed and step-by-step in offering these points, including more examples and specific
references to text, whereas the justification just provides a final summary.

By using a reasoning chain, our belief is that AUTORULE is able to extract better more in-depth and
logical rules since the reasoning chain offers logical justifications rather than vague descriptions.
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User Prompt

What role do zoos and aquariums play in educating the general public about conservation efforts?

Assistant A (Rejected)

Did you know that zoos and aquariums provide critical opportunities for conservation education?
When people visit these institutions, they learn about the dangers of habitat destruction, loss of bio-
diversity, and environmental disruptions. Many zoos and aquariums also participate in conservation
efforts directly by breeding endangered species, supporting research, and protecting wild popula-
tions. It’s essential that we prioritize education and conservation efforts to help protect our planet
and its amazing wildlife.

Assistant B (Chosen)

Zoos and aquariums play a crucial role in educating the general public about conservation efforts.
They not only offer a visual representation of the animals and their natural habitats but also provide
valuable information about the animals, their behaviors, and the challenges they face in the wild.
Many zoos and aquariums also support research, conservation projects, and breeding programs for
endangered species. Additionally, they offer interactive exhibits and educational programs that en-
gage visitors in these conservation efforts.

Reasoning Chain

The user wants to know why Assistant B’s conversation was preferred over Assistant A’s. I need to
compare both responses based on clarity, coherence, helpfulness, tone, and overall quality.
Starting with Assistant A: The response mentions that zoos and aquariums provide critical oppor-
tunities for conservation education. They talk about habitat destruction, biodiversity loss, and envi-
ronmental disruptions. They also mention breeding programs, research, and protecting wild popu-
lations. The tone seems positive, ending with a statement about prioritizing education and conser-
vation. But maybe the structure isn’t as organized. They start with a question (”Did you know...?”)
which might be engaging, but then list points without much flow. The information is there, but
maybe not as detailed or structured.
Now Assistant B: They start by stating the role is crucial, then break it down into parts. First, visual
representation and information about animals and their challenges. Then mention research, conser-
vation projects, breeding programs. Also include interactive exhibits and educational programs. The
structure here is more logical—each sentence builds on the previous, covering different aspects like
education methods, direct conservation work, and visitor engagement. The tone is informative and
straightforward without rhetorical questions. It feels more comprehensive.
Comparing clarity: Both are clear, but Assistant B is more structured, making it easier to follow.
Coherence: Assistant B connects the points better, moving from education to conservation efforts to
engagement. Helpfulness: Assistant B provides specific examples like ”interactive exhibits,” which
gives concrete details. Assistant A mentions similar points but less specifically. Tone: Both are
positive, but Assistant A’s use of ”Did you know” might come off as less formal, whereas B is
consistently professional. Overall quality: B’s answer is more thorough and organized, which likely
makes it more effective for the user seeking a detailed explanation.

Final Justification

Assistant B’s response was preferred due to superior clarity, coherence, and depth of information.
Here’s why:
Clarity: Assistant B used structured points and avoided rhetorical distractions.
Coherence: Assistant B presented a logical narrative from educational content to conservation ac-
tions and visitor engagement.
Helpfulness: It included concrete examples like ”interactive exhibits” and ”challenges they face in
the wild.”
Tone: B maintained a focused, declarative tone. A’s ”Did you know...” approach detracted from
professionalism.
Overall Quality: B was more comprehensive and detailed, effectively answering both the ”how”
and ”why” aspects of the user’s question.

Figure 6: Case study: reasoning chain vs justification.
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Table 13: Top 6 unique and similar rules from the UltraFeedback and MT-Bench rule sets, ranked
by maximum agreement (%) as the similarity metric; “unique” rules exhibit low agreement with all
rules from the other set, while “similar” rules show high agreement with at least one rule from the
other set.

Top unique rules Top similar rules

Rule Data Max Rule Data Max

Ensure conciseness by eliminat-
ing redundancy and focusing on
core query relevance.

UF 75.6 The assistant must maintain log-
ical flow between concepts and
preserve essential content in cre-
ative adaptations.

MT 96.1

Balance thoroughness with
brevity to prevent information
overload while ensuring clarity.

UF 78.6 Maintain narrative coherence with
source material when discussing
plots or characters.

UF 96.1

The assistant’s self-evaluations
must critically assess response
quality and identify specific im-
provement areas.

MT 79.1 Validate answers against provided
context and avoid unsupported ex-
trapolation.

UF 95.4

Avoid assumptions when ambigu-
ity exists; seek clarification for in-
sufficient context.

UF 80.6 The assistant’s responses must
maintain a professional and ap-
proachable tone, adapting to the
nature of the user’s query.

MT 95.2

The assistant’s responses must
provide detailed step-by-step ex-
planations and calculations to en-
sure correctness and clarity.

MT 82.2 Address ethical considerations,
legal compliance, and recommend
professional consultation when
relevant.

UF 95.2

The assistant’s code examples
must be complete, functional, and
demonstrate separation of con-
cerns (HTML/CSS/JS).

MT 82.3 The assistant must avoid contra-
dictions between answers and
follow-up explanations while
maintaining roleplay consistency.

MT 94.9

G CASE STUDY: RULE SET COMPARISON ACROSS DATASETS

Rule Agreements. To further investigate the effectiveness of rule extraction, we conduct a com-
parative analysis of rule sets derived from UltraFeedback and MT-Bench. Specifically, we construct
a rule agreement matrix by evaluating all pairs of rules on a test set of 1,024 UltraFeedback exam-
ples and the full MT-Bench human judgment test split. Based on this matrix, we identify similar and
unique rules according to their agreement scores.

Table 13 present the top six unique and top six similar rules, respectively, as determined by the
maximum rule agreement with rules from the opposing set across both UltraFeedback and MT-
Bench examples. Unique rules from UltraFeedback seem to predominantly emphasize conciseness
and clarity, while unique rules from MT-Bench are oriented toward handling complex tasks, such as
self-evaluation, performing calculations, or providing code examples. This distinction likely reflects
the broader topical diversity of UltraFeedback and the specialized, challenging nature of MT-Bench
prompts. In contrast, the similar rules shared between the two sets consistently address core aspects
of high-quality assistant responses, including logical flow, professional tone, contextual coherence,
and answer consistency. Comprehensive rule agreement matrices are provided in Appendix D for
further reference.
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(a) Top half by last score (b) Bottom half by last score

Figure 7: Figures 3a and 3b show individual rule curves for two episodes on a Llama-3-8B
AUTORULE run.

H RULE CURVES

We plot AUTORULE rule curves over 64 training steps in Figure 7. The trend shows that all rules
exhibit upward score behavior.
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I PROMPTS

We list the prompts used for the extraction process in Figures 8 , 9, and 10 respectively. Additionally,
we include the prompts for rule verification in Figures 11 and 12, and the prompt used to determine
UltraFeedback winner judgments for win-rate calculation in Figure 13.

Justification Prompt

[Instruction]
You are tasked with analyzing two conversations between an AI assistant and a user. Based
on the content, please provide a detailed explanation of why the user might have preferred
the winning conversation.
Please consider aspects such as clarity, coherence, helpfulness, tone, and overall quality.
[Conversation with Assistant A]
{conversation a}
[Conversation with Assistant B]
{conversation b}
[Winning Conversation]: {winner}
[Your Explanation]

Figure 8: Justification (AUTORULE Extractor stage 1) prompt.

Rule Extraction Prompt

[Instruction]
Based on the following reasoning about why conversation with assistant winner is better,
extract any rule-like statements implied by the reasoning that indicate this preference. Rule-
like statements should be able to be judged objectively and deterministically. Below are a
few examples of rule-like statements:
Example 1:
- The assistant’s responses should validate any assumptions made with sufficient context and
examples.
Example 2:
- The assistant’s responses should not simply restate information provided by the user as its
answer.
Example 3:
- The assistant’s responses should have a structure that satisfies the user’s request.
Return the list as a JSON array of strings. Do not use “‘json“‘, just output the JSON array
directly. If there are no rule-like statements, return an empty JSON array.
[Reasoning]
{reasoning chain}

Figure 9: Rule extraction (AUTORULE Extractor stage 2) prompt.
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Rule Merging Prompt

[Instruction]
Below is a large list of rule-like statements regarding the behavior of an AI assistant. Some
of these rules might be duplicates or very similar in meaning.
Please merge them so that there are no duplicates or rules with very similar meanings.
Return the merged list as a JSON array of strings. Do not use “‘json“‘, just output the JSON
array directly.
[Rules]
{rules text}

Figure 10: Rule merging (AUTORULE Extractor stage 3) prompt.

Rule Verifier Prompt

You are an impartial judge. Determine whether the AI assistant’s response in the following
conversation both complies with the rule below and does so in a concise manner:

Rule:
{rule}

[Start of Conversation]
{conversation}
[End of Conversation]

[Analysis]
Base your judgment solely on whether (1) the response satisfies the rule and (2) the response
does so in a concise manner.

Only respond with ”[[Yes]]” if **both** conditions are fully satisfied. If either con-
dition is not met, respond with ”[[No]]”. If the rule is not applicable to the task, treat it as
satisfied.

Respond with one of the following options, and nothing else: ”[[Yes]]” or ”[[No]]”.

Figure 11: Rule verifier prompt.
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Rule Verifier Prompt (no conciseness)

[Instruction]
Please act as an impartial judge and evaluate whether the responses provided by an AI assis-
tant in the following conversation satisfy the following rule:
{rule}
Be as objective as possible when evaluating the rule and do not evaluate other characteristics
of the response. If the rule is not applicable for this task, treat it as if the rule is satisfied.
You must provide your answer by strictly outputting either one of the following two options:
”[[Yes]]” or ”[[No]]” and nothing else.
[Start of Conversation]
{conversation}
[End of Conversation]

Figure 12: Rule verifier prompt (no conciseness).
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UF Win-rate Judgement Prompt

I want you to create a leaderboard of different large-language models. To do so, I will give
you the instructions (prompts) given to the models, and the responses of two models. Please
rank the models based on which responses would be preferred by humans. All inputs and
outputs should be python dictionaries.

Here is the prompt:
{{
”instruction”: ”””{instruction}”””
}}

Here are the outputs of the models:

[
{{

”model”: ”model 1”,
”answer”: ”””{output 1}”””

}},
{{

”model”: ”model 2”,
”answer”: ”””{output 2}”””

}}
]

Now please rank the models by the quality of their answers, so that the model with rank
1 has the best output. Then return a list of the model names and ranks, i.e., produce the
following output:

[
{{’model’: ¡model-name¿, ’rank’: ¡model-rank¿}},
{{’model’: ¡model-name¿, ’rank’: ¡model-rank¿}}

]

Your response must be a valid Python dictionary and should contain nothing else because
we will directly execute it in Python. Please provide the ranking that the majority of humans
would give.

Figure 13: UltraFeedback win-rate judgement prompt.
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J LICENSES

Asset URLS and licenses are displayed in Table 14.

Table 14: Asset URLs and licenses. *Custom license available at https://llama.meta.com/
llama3/license.

Asset URL Purpose License

Llama-3-8B https://huggingface.
co/meta-llama/
Meta-Llama-3-8B

Base model Custom*

DeepSeek-R1 https://aws.amazon.com/
bedrock/deepseek/ (Used on
Bedrock)

Extraction process MIT

UltraFeedback-
Binarized

https://huggingface.co/
datasets/lmsys/mt_bench_
human_judgments

Dataset MIT

MT-Bench
Human Judge-
ments

https://huggingface.co/
datasets/lmsys/mt_bench_
human_judgments

Dataset CC-BY 4.0

LLM-as-a-
judge code

https://github.com/
lm-sys/FastChat/tree/main/
fastchat/llm_judge

MT-Bench benchmark Apache-2.0

AlpacaEval
repo

https://github.com/
tatsu-lab/alpaca_eval

AlpacaEval 2.0 bench-
mark

Apache-2.0

PAR repo https://github.com/
PorUna-byte/PAR

Filtering code MIT

OpenRLHF https://github.com/
OpenRLHF/OpenRLHF

Training framework Apache-2.0

vLLM https://github.com/
vllm-project/vllm

Model inference Apache-2.0
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