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Abstract

Many cooperative multi-agent tasks are naturally defined by graph-structured objectives,1
where agents must collectively reach, for example, a desired relational configuration or2
satisfy a set of constraints. These objectives often encode spatial arrangements, inter-3
agent relations, or constraints that can be formalized as target graphs. However, current4
goal-conditioned multi-agent reinforcement learning (MARL) algorithms do not employ5
these symbolic and structured representations to direct their agents towards effective6
strategies. We propose Graph Embeddings for Multi-Agent coordination (GEMA),7
which couples any cooperative learner with a State–Goal Graph Encoder (SGE). The8
SGE is contrastively pre-trained to embed state graphs in a common metric space. At run9
time each agent builds the state graph, queries the SGE, and computes a scalar distance to10
the broadcast goal embedding. This distance is appended to the agent’s observation and11
converted into an intrinsic reward signal, providing the agent with progress information.12
Experiments on two benchmarks show that GEMA accelerates convergence and boosts13
team returns, outperforming strong MARL baselines across all scenarios.14

1 Introduction15

Numerous real-world tasks—ranging from robot formation control to load balancing in data cen-16
ters—require teams of learning agents to steer a system towards a graph-structured goal: a desired17
configuration of entities and their relations. Traditional cooperative multi-agent reinforcement learn-18
ing (MARL) algorithms face significant challenges in these settings. First, progress toward a goal19
is often only sparsely rewarded by the environment, which can impede learning. Second, tradi-20
tional algorithms do not fully exploit the relational structure present in many tasks, missing the21
permutation-invariant inductive biases that graph-based representations naturally provide. We address22
these challenges with Graph Embeddings for Multi-Agent Coordination (GEMA). GEMA is a23
plug-in module that can be paired with any cooperative MARL algorithm. Before policy learning, we24
contrastively pre-train a State-Graph Encoder (SGE) that maps both the current system graph and25
the objective graph into a metric space calibrated to task progress. At run time, each agent reconstructs26
the current state graph, feeds both graphs through the frozen SGE, and obtains (i) a similarity feature27
appended to its private observation, and (ii) an intrinsic reward equal to that similarity.28

Our study makes three contributions. First, it formalises graph objectives in cooperative MARL29
and designs SGE, a contrastively pre-trained module that aligns state and goal graphs in a metric30
space. Second, it introduces GEMA, which equips agents with progress-aware features and potential-31
based shaping using the pre-trained SGE without modifying the underlying learner. Third, extensive32
experiments on cooperative navigation and a load balancing benchmark environment show that33
GEMA accelerates convergence, improves asymptotic returns, and scales efficiently from three to ten34
agents, outperforming baselines such as MAPPO, MASAC, VDN, and MADDPG.35
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2 Related Work36

Early Feudal reinforcement learning (RL) designed low-level controllers rewarded when achieving37
sub-goal states selected by higher-level managers, establishing the hierarchical perspective on goal38
conditioning (Dayan and Hinton, 1992). Similarly and independently, although not strictly related to39
the concept of “goal”, potential-based reward shaping demonstrated that adding intrinsic rewards of40
the form Φ(s′)− Φ(s) preserves optimality, provided Φ is a well-defined potential over states (NG,41
1999). These foundational perspectives laid the groundwork for later methods that treat goals as42
structured inputs to be encoded and injected directly into the learning process.43

Building on this, recent work in goal-conditioned RL has explored how to embed goals into policy44
and value networks, and how to augment sparse-reward environments with goal-aware replay and45
training strategies. Universal Value Function Approximators (UVFAs) embed both state and goal and46
exploit their common structure to calculate a single scalar regression output as value estimate (Schaul47
et al., 2015). Hindsight Experience Replay exploits goal relabeling to overcome sparse rewards,48
retrospectively treating each reached state as if it had been the intended goal (Andrychowicz et al.,49
2017). Feudal Network (FuN) refine the initial intuition of Feudal RL by having higher-level Managers50
output a latent goal vector gt every c steps and training it via a cosine-similarity policy-gradient51
update. At the same time, a lower-level policy Worker receives an intrinsic reward proportional to52
how closely its trajectory follows those directions (Vezhnevets et al., 2017). While our approach53
takes inspiration from such foundational methods and how they exploit state-goal structural relations,54
we pre-train a contrastive encoder that embeds graph representations of state and goal into a metric55
space calibrated to task progress, and then leverages this distance both as an observation feature and56
as an intrinsic reward signal for multi-agent domains.57

Goal conditioning in cooperative MARL remains comparatively under-explored. Recent work58
begins to close this gap: Latent Goal Allocation infers per-agent subgoals as latent variables from59
demonstrations (Chen et al., 2021), MASER generates per-agent subgoals from replay and rewards60
agents for achieving them while preserving team value consistency (Jeon et al., 2022). LAGMA61
constructs a latent space via a VQ-VAE and samples goal-reaching trajectories, using distance in that62
latent space as an intrinsic bonus (Na and Moon, 2024). These methods either infer subgoals, learn63
individual intrinsic functions, or operate in entire goal-reaching trajectories. Our method assumes64
that both the desired configuration and the current configuration can be reconstructed as graphs by65
every agent. A contrastively trained state-goal graph encoder then supplies a global progress-aware66
similarity that is shared as an additional observation and as an intrinsic reward shaping signal.67

3 Preliminaries68

Decentralized Markov decision processes. A decentralized Markov decision process (Dec-MDP)69
extends the standard Markov decision process (MDP) to cooperative multi-agent settings with70
decentralized information. Formally, a Dec-MDP is defined by a tuple (S,AN

i=1,ON
i=1, P,R, γ),71

where S is the global state space, Ai denotes the action space available to the ith agent, and72
Oi represents the observation space for agent i. In a Dec-MDP, the global state is determined73
by the combination of all agents’ observations (Bernstein et al., 2002). The transition function74
P : S × (A1 × · · · × AN ) describes state transitions, while R : S × (A1 × · · · × AN ) → R is75
a common reward function shared by all agents. The discount factor γ ∈ [0, 1] determines the76
importance of future rewards. MARL has been employed to tackle Dec-MDP, often through the77
centralized training with decentralized execution (CTDE) paradigm. In this framework, agents78
leverage centralized information during training to learn coordinated behaviors.79

Graph Neural Networks. Graph neural networks (GNNs) perform differentiable message passing80
over graph structures, offering permutation-invariant inductive biases beneficial for multi-agent81
scenarios (Battaglia et al., 2018). In MARL, agents are represented as nodes, while edges capture82
relationships such as physical proximity or communication links (Jiang et al., 2020). At each layer,83
nodes iteratively aggregate and update embeddings based on messages from neighbors, effectively84
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capturing local interactions and higher-order dependencies. Additionally, graph-level embeddings,85
which summarize the entire graph structure, can be obtained through permutation-invariant pooling86
functions (e.g., sum, mean, max) applied to node embeddings (Xu et al., 2019).87

Contrastive representation learning. Contrastive representation learning is a paradigm for learning88
embeddings that capture meaningful (dis)similarities between data samples. The core objective is to89
learn how to map given inputs into a latent space where similar inputs are positioned closer together,90
while different ones are placed farther apart. This approach often involves comparing pairs or groups91
of samples to learn discriminative features that reflect the underlying structure of the data. Within92
this framework falls the triplet loss function, proposed in the context of face recognition (Schroff93
et al., 2015). It operates on triplets of samples: an anchor xa, a positive sample xp (similar to the94
anchor), and a negative sample xn (dissimilar to the anchor). The goal is to ensure that the distance95
between the anchor and the positive is less than the distance between the anchor and the negative by96
at least a margin α. This is formalized as:97

Ltriplet =

N∑
i=1

[
∥f(xai )− f(x

p
i )∥

2
2 − ∥f(xai )− f(xni )∥22 + α

]
+

(1)

Here, f(·) denotes the embedding function (often a neural network), and [·]+ represents the hinge98
function, which outputs the value inside if it’s positive and zero otherwise. The margin α enforces a99
minimum separation between positive and negative pairs in the embedding space.100

Multi-Agent Proximal Policy Optimization. Multi-Agent Proximal Policy Optimization101
(MAPPO) is an extension of the Proximal Policy Optimization (PPO) algorithm tailored for102
MARL (Yu et al., 2021). It employs a CTDE framework, where each agent acts using its policy103
network based on its local observations, i.e. the actor network, while a centralized value function, the104
critic, is trained using a broader observation often including the entire global state of the environment.105

4 Method106

Our proposed method introduces a novel and scalable approach to cooperative decentralized multi-107
agent tasks where a desired system state (i.e., the goal) and the current state can be represented108
as graphs. The intuition is to learn a latent representation space where the relational similarity109
of the current configuration and the desired goal can be meaningfully compared, and inform the110
agents of such (dis)similarities as they train their distributed policy. To this end, prior to policy111
training, we introduce a contrastive representation learning phase to train a SGE that captures relevant112
relational properties of the task. Once learned, we employ the SGE to allow each agent to compute an113
embedding of the current state and measure its similarity to the desired goal. This similarity serves114
two purposes: (i) it is appended as an additional observation feature available to the agents’ policy115
networks, and (ii) it defines an intrinsic reward signal that complements the environment reward,116
thereby shaping the learning process toward satisfying the global objective.117

In this section, we will first discuss how graphs are constructed from an agent perspective, including118
the necessary notation. Then we will discuss the generation of state embeddings and how to train the119
SGE. Finally, we will introduce the complete GEMA architecture employed by each agent.120

4.1 State and Goal Graphs121

A state graph G=(V,E) is an undirected, attributed graph that encodes one joint configuration of122
the multi-agent system.123

• Nodes. Each node v ∈ V corresponds to an entity (e.g. an agent or any other relevant entity to124
the task) and carries a feature vector xv ∈ Rdx describing its local properties, e.g. position, load,125
battery level, etc.126
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Figure 1: Overview of GEMA. Agents encode local state and shared goal graphs via a pre-trained
SGE, their embedding similarity provides both an observation feature and an intrinsic reward.

• Edges. Optional edge attributes euv ∈ Rde capture pairwise relations such as Euclidean distance,127
line-of-sight, or communication cost. If no explicit metric is provided, we set euv = ∅ and learn128
purely from node attributes.129

• Goal Graph. A goal state is represented by a graph G⋆ encoding the desired configuration that130
the agents must cooperate to achieve. For tasks that admit many interchangeable goals (e.g. any131
permutation of agents on landmarks), we uniformly sample a single valid instance.132

We assume that the environment exposes enough information in each agent’s observation oi to133
construct the current state graph G. This assumption holds for all benchmarks in Sec. 5.1 and is134
critical for our proposed method, as every agent must be able to reconstruct the same graphs without135
additional communication.136

4.2 GEMA137

4.2.1 Learning the State-Graph Encoder (SGE)138

Training the SGE is conducted purely in an offline process where no policies are learned at this stage,139
and the environment is queried only to record diverse states. We first generate a dataset of state–goal140
graph pairs annotated with coarse progress labels. Next, an encoder architecture based on GNNs141
embeds each graph into a permutation-invariant representation. Finally, a contrastive objective with142
adaptive margins learn the latent space so that the cosine distance faithfully mirrors task progress. The143
encoder parameters obtained at the end of this phase are frozen and reused during policy optimisation.144

Dataset. We collect a replay bufferD = {(Gk, G
⋆
k)}

|D|
k=1 by rolling out random interactions, simple145

heuristics, or expert controllers chosen only for their state-space coverage. For each entry we also146
instantiate a goal graph G⋆

k that captures the configuration the team should achieve, without encoding147
any agent–to–role assignment. In a landmark-covering task, for instance, G⋆

k contains one agent node148
per landmark but does not specify which particular agent must occupy which landmark. Each pair149
(Gk, G

⋆
k) is then assigned a progress label ck ∈ {1, . . . , C} that quantifies closeness to the goal via150

task-specific heuristics, such as geometric error thresholds or the number of satisfied constraints.151

4



Encoding Goals as Graphs: Structured Objectives for Scalable Cooperative MARL

Graph Neural Network. State and goal graphs are embedded with an L-layer GNN followed by a152
pooling layer:153

h(ℓ)v = ϕupd

(
h(ℓ−1)
v ,

⊕
u∈N (v)

ψ
(
h(ℓ−1)
v , h(ℓ−1)

u , euv
))
, fθ(G) = R(h(ℓ)i |vi ∈ V ),

where N (v) denotes the immediate neighbors of v. ϕupd, ψ are multilayer perceptrons (MLPs) that154
share parameters across all layers and nodes, and we denote their union by θ. Message passing155
and the multiple layers work as relational kernels to provide multi-hop relational context to each156
node (Jiang et al., 2020). The final pooling layer functionR and the aggregation operation

⊕
must be157

permutation-invariant, such that any reordering of node indices leaves fθ(G) unchanged. Optionally,158
raw node features and the final fθ(G) representation can be further transformed by additional MLPs.159

Contrastive representation learning with adaptive margins. We sample graph triplets160
(Ga, Gp, Gn) from the replay buffer such that the anchor and positive share the same progress161
label c(Ga) = c(Gp), while the negative has c(Gn) ̸= c(Ga). Each graph is processed by the SGE162
and a comparison MLP, producing embeddings za = fθ(G

a), zp = fθ(G
p), and zn = fθ(G

n). We163
minimise the cosine-based triplet loss164

dcos(u, v) =
1

2
(1− u⊤v

∥u∥2 ∥v∥2
),Ltriplet =

[
dcos

(
za, zp

)
− dcos

(
za, zn

)
+ αpn

]
+
,

where adaptive margin αpn is defined as αpn = m |c(Ga) − c(Gn)|, with m > 0 as a global scale165
factor, and grows linearly with the class gap, driving embeddings of states that differ more in task166
progress to be proportionally farther apart under the cosine metric. The cosine distance dcos is167
multiplied by 1

2 limiting its range to [0, 1]. Once the loss converges, the encoder parameters θsge are168
frozen, keeping the learned representation stable during policy updates.169

4.2.2 Training the Agents170

We integrate the SGE into the online learning loop by augmenting each agent’s perception with (i) a171
shared, task-level context derived from the current state–goal similarity, and (ii) an intrinsic reward172
proportional to that similarity. Figure 1 illustrates the overall flow of our proposed method from the173
point of view of a single agent.174

At every time step, each agent constructs the current state graph Gt and goal graph G⋆. The SGE175
generates embeddings zt = fθsge(Gt) and z⋆ = fθsge(G

⋆). We then compute their cosine similarity176
ct = cos(zt, z

⋆), serving as a compact, global context shared among all agents. Each agent i then177
concatenates ct with its observation ot,i and feds it into a policy/ or -function head. The scalar178
similarity ct provides an intrinsic shaping reward rint

t = ct, combined with the environment reward as179
r̃t = renv

t + rint
t . Our method is algorithm-agnostic and can be adopted by policy-based and value-180

based learning approaches, as it simply involves adding the cosine similarity between embeddings181
from the SGE into the agent’s observation and guiding the agents through intrinsic reward signals.182
Additional experimental implementation details are provided in Section 5.2.2.183

5 Experiments184

In this section, we evaluate the performance of GEMA across two cooperative multi-agent tasks:185
cooperative navigation and load balancing. We compare GEMA against four widely adopted MARL186
baselines: VDN(Sunehag et al., 2018), MAPPO(Yu et al., 2021), MADDPG(Lowe et al., 2017a),187
and a similar extension for multi-agent environments for SAC (Haarnoja et al., 2018), covering both188
value-based and policy-based paradigms. We report performance in terms of episodic returns and189
task-specific success metrics, and analyze scalability as the number of agents increases.190
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Figure 2: Cooperative navigation environment.
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Figure 3: Load balancing environment.

5.1 Benchmark Environments191

We evaluate GEMA’s performance in two benchmark environments with different goal structures192
and reward density, these being cooperative navigation and load balancing. Both tasks are fully193
observable, allowing each agent to encode the complete state, and the goal configuration is known as194
part of the agents’ observation.195

Cooperative navigation. In the cooperative navigation task, N agents move within a 4 × 4196
two-dimensional map to cover N landmarks (Lowe et al., 2017b). We model the environment197
as a fully connected graph with two node types: agent nodes and landmark nodes. Each node is198
represented by its 2-D position and a binary type indicator (0 for agents, 1 for landmarks). Every199
edge carries two features: the Euclidean distance and the unit direction vector between the connected200
nodes. Agents receive a shared reward that increases as the summed distances between agents and201
landmarks decrease; the closer each agent is to a distinct landmark, the higher the collective return.202
The reward is linearly scaled to lie within [−1, 1].203

Load balancing. In the load balancing task, three cooperative agents each control a dedicated204
computing resource. A resource’s load is the number of jobs it is currently processing; accepting or205
forwarding a job increments that load. The agents aim to redistribute jobs so that the loads match206
a desired target-load vector. The environment is represented as a fully connected graph with two207
node types: agent nodes and target nodes. Each node is characterised by its load value and a binary208
type indicator (0 for agents, 1 for targets). Every edge carries the load difference between connected209
nodes. At the beginning of every episode the environment samples the current-load vector L ∈ R3210
and the target-load vector T ∈ R3; both are normalised so that

∑
i Li = 1 and

∑
i Ti = 1. At each211

timestep, an agent receives a new job and chooses an action at ∈ {0, 1, 2} that specifies the resource212
to which the job is routed. After every action, the environment produces a reward common to all213
agents, proportional to the number of targets satisfied. Because the targets are unordered, any agent214
may fulfil any target, but no target may be satisfied by more than one agent. The reward is linearly215
scaled to lie within [−1, 1].216

5.2 Experimental settings217

5.2.1 SGE Dataset Generation218

Cooperative navigation. We build the dataset with a heuristic that first computes the pairwise219
distances between agents and landmarks, then applies the Hungarian algorithm (Kuhn, 1955) to220
assign each agent to a landmark. To diversify the samples, we introduce a 20% probability that an221
agent selects a random action. Each sample is assigned to one of ten distance classes defined by the222
upper-bound thresholds {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,∞}. Let d be the sum of the agents’223
minimum Euclidean distances to the landmarks. A state belongs to class k if d is smaller than the k-th224
threshold. The final dataset contains ≈ 9× 105 samples, allocated uniformly at ≈ 1× 105 instances225
per class. The margin αpn grows linearly at a rate of 0.1 per class.226
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Algorithm 1: PICKJOBDESTINATION(L,T)
Input: Current loads L ∈ R3, target loads

T ∈ R3

Output: Destination index k ∈ {0, 1, 2}
total←

∑2
i=0 Li;

for i← 0 to 2 do

ratioi ←
Li

total
;

deficiti ← Ti − ratioi;

k ← arg max
i∈{0,1,2}

deficiti;

return k;

Load balancing. We generate the dataset with227
a deficit-oriented heuristic, Algorithm 1. Each228
resource is assigned a target load; at every229
timestep, each agent forwards its job to the node230
with the greatest deficit—that is, the resource231
most under-loaded relative to its target. Every232
environment state is labelled with one of three233
classes: (0) no targets satisfied, (1) exactly one234
target satisfied, and (2) at least two targets sat-235
isfied. Because

∑
i Ti = 1, satisfying two tar-236

gets automatically satisfies the third. The final237
dataset contains ≈ 4.5× 105 samples, allocated238
uniformly at ≈ 1.5 × 105 instances per class.239
The margin αpn grows linearly at a rate of 0.3 per class.240

5.2.2 GEMA, Policy, and Value Networks241

Our SGE architecture consists of three stages: (i) a two-layer input MLP that embeds raw node242
features, (ii) a GATv2 (Brody et al., 2022) layer applied over the entire graph to produce contextualized243
node embeddings, and (iii) a projection MLP used exclusively during contrastive pretraining and244
discarded afterward. GEMA is instantiated using MAPPO as the underlying algorithm. Its actor245
network employs a single GATv2 convolution, which processes the agent graph. The resulting246
embedding of the agent node is appended with the cosine similarity between current and goal state247
embeddings as computed by the SGE. Finally, this representation is fed into a dedicated MLP to248
produce the action distribution. The critic concatenates all the node-level features of the raw state249
graph and appends the current state and goal embeddings, along with their cosine similarity.250

To ensure a fair comparison, all baselines are evaluated under both GNN-based and MLP-based as251
policy/value networks. In the MLP version, we use a flattened private observation with full state252
information relative to each observing agent as implemented in Lowe et al. (2017a) for the cooperative253
navigation task. Additional information on the implementation of the architectures involved, as well254
as the hyperparameters adopted, can be found in Appendix A.255

5.3 Results256

Cooperative Navigation. Figure 4 shows the mean episodic reward over training when every257
method employs a GNN actor. GEMA achieves a return of 0.936 and converges with fewer samples258
than any baseline. MAPPO follows with 0.859, then VDN with 0.795, MASAC with 0.770, and259
MADDPG with 0.320. Figure 5 presents the same task when the baselines use an MLP actor, whereas260
GEMA retains its GNN actor. In this setting, MAPPO attains a mean return of 0.872, MASAC 0.865,261
VDN 0.790, and MADDPG 0.550.262

Table 1 reports the mean episodic return (± standard deviation) in cooperative navigation as the team263
size increases from three to ten agents. For each setting, we ran 200 evaluation episodes under seven264
random seeds, comparing the best-performing GEMA model with the best-performing GNN-based265

Table 1: Average return (mean ± std) across team sizes in cooperative navigation.

Algorithm 3 Agents 6 Agents 10 Agents

GEMA 93.79 ± 2.58 93.48 ± 1.47 93.08 ± 1.04
MAPPO 86.59 ± 4.00 88.51 ± 2.20 89.69 ± 1.49
MASAC 77.05 ± 7.92 84.07 ± 4.18 87.77 ± 2.62
VDN 81.18 ± 5.98 84.81 ± 3.39 86.65 ± 2.51
MADDPG 30.62 ± 11.27 36.70 ± 7.87 40.78 ± 5.99
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Figure 4: Average episodic reward on cooperative
navigation using GNN actors.
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Figure 5: Average episodic reward on cooperative
navigation: GEMA (GNN actor) vs. MLP-based.

MAPPO, MASAC, VDN, and MADDPG. GEMA consistently achieves the highest performance,266
maintaining scores above 93 with minimal variance. MAPPO ranks second but trails GEMA by 4–7267
points across all team sizes. MASAC and VDN returns remain 5–16 points lower than GEMA’s at268
every scale. MADDPG performs worst, remaining well below the other methods.269
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Figure 6: Average episodic reward on load bal-
ancing using GNN actors.

Load Balancing. Figure 6 plots the mean270
episodic reward during training, averaged over271
five random seeds. As in cooperative navigation,272
GEMA converges more rapidly than the baselines.273
By the end of training, it reaches an average re-274
turn of −0.008, whereas MAPPO and VDN sta-275
bilise at−0.158 and−0.396, respectively. Table 2276
summarises the evaluation results. We report the277
mean episodic return (± standard deviation) and278
the average proportion of timesteps in which the279
load-balancing constraints are satisfied. Each met-280
ric is computed over 100 evaluation episodes and281
seven random seeds. GEMA secures the only pos-282
itive mean reward, 0.10 ± 0.59, outperforming283
MAPPO (−0.04± 0.62) and VDN (−0.23± 0.51). It also maintains a feasible load distribution for284
29.5% of the timesteps, compared with 24.0% for MAPPO and 13.2% for VDN.285

6 Conclusion and Future Work286

We introduced GEMA, a plug-in that lets cooperative MARL algorithms exploit the symbolic and287
structured information carried by graph objectives via a pre-trained SGE. Its similarity score is288
included in the agent observations and incorporated as an intrinsic shaping reward, accelerating289
convergence and improving final performance on both dense and sparse reward benchmarks while290
scaling from three to ten agents and outperforming state-of-the-art MARL algorithms. Future research291
will explore end-to-end training of the encoder, extensions to partial observability, hierarchical sub-292
goal discovery, and deployment on environments where state reconstruction is imperfect.293

Table 2: Average return and no. of steps where load balancing constraints are satisfied.

Algorithm Avg. Reward (mean ± std) Steps (mean ± std)

GEMA 0.10 ± 0.59 29.5 ± 38.9
MAPPO -0.04 ± 0.62 24.0 ± 36.5
VDN -0.23 ± 0.51 13.2 ± 25.8
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Encoding Goals as Graphs: Structured Objectives for Scalable Cooperative MARL

A Extended Experimental Setup359

A.1 GEMA Implementation360

A.1.1 SGE361

The SGE comprises three distinct stages:362

1. Input Embedding: Each node’s raw features are first embedded using a two-layer MLP. Specifi-363
cally, the input encoder consists of 128 hidden units and produces a 16-dimensional output vector,364
forming the initial representation of nodes for the subsequent graph encoder.365

2. Graph Encoder: We employ a GATv2 convolutional layer (Brody et al., 2022) with multi-head366
attention. The number of attention heads and dimensionality of node embeddings depend on the367
task:368

• Cooperative navigation: one attention head yielding 32-dimensional node embeddings.369

• Load balancing: three attention heads producing 48-dimensional node embeddings.370

A sum-pooling operation aggregates these embeddings across all nodes to form a graph-level371
representation.372

3. Contrastive Head: The pooled graph embedding is further transformed by a two-layer MLP,373
consisting of 64 hidden units followed by a 16-dimensional output layer. This module is only374
present during the SGE training phase and dropped thereafter.375

A.1.2 Actor376

Let’s assume agent i corresponds to node i in the graph:377

1. Raw node features are embedded using a two-layer MLP with a 128-unit hidden layer, outputting378
16-dimensional node embeddings.379

2. These embeddings feed into a three-head GATv2 convolutional layer, resulting in 32-dimensional380
node-level representations, resulting in a single message passing round.381

3. We append the similarity between state and goal graph embeddings as produced by the SGE to the382
new representation of agent i features.383

4. Agent i processes its node representation (33-dim) using a three-layer MLP with two hidden384
layers of 256 units each, resulting in the action logits for policy-based methods or Q-values for385
value-based methods.386

A.1.3 Critic387

1. We concatenate all the node-level features of the raw state graph.388

2. We compute embeddings zt and z∗ for the current state and goal using the frozen SGE.389

3. We compute the cosine similarity ct = cos(zt, z
∗).390

4. The critic receives as input the concatenation of the node-level features, the scalar ct alongside the391
two embeddings.392

5. A two-layer MLP with a single hidden layer of 256 units processes this compact representation to393
produce the scalar state-value estimate.394

A.2 Baseline Architectures395

For a fair evaluation, we tested each baseline algorithm using two distinct parameterizations, adopting396
a GNN and an MLP for policy actors/Q-functions.397

11



Under review for RLC 2025, to be published in RLJ 2025

A.2.1 Actors398

GNN Actor Architecture. Let’s assume agent i corresponds to node i in the graph:399

1. Raw node features are embedded using a two-layer MLP with a 128-unit hidden layer, outputting400
16-dimensional node embeddings.401

2. These embeddings feed into a three-head GATv2 convolutional layer, resulting in 32-dimensional402
node-level representations, resulting in a single message passing round.403

3. Agent i processes its node representation using a three-layer MLP with two hidden layers of 256404
units.405

MLP Actor Architecture. The MLP-based actor processes a flattened private observation with full406
state information relative to each observing agent via a simpler architecture:407

1. This observation is processed by a two-layer MLP featuring a single hidden layer of 256 units.408

2. The MLP directly outputs action logits or Q-values.409

A.2.2 Critics (for Policy-based methods)410

All policy-based methods employ a shared critic with parameters common to all agents.411

1. We concatenate all the agents’ node-level features in case the observation has a graph structure412
(algorithm adopting GNN actors) or the agents’ private observations otherwise.413

2. A two-layer MLP with a single hidden layer of 256 units processes this compact representation to414
produce the scalar state-value estimate.415

A.3 Training hyperparameters416

Training seeds: 3412, 0, 45455, 566778, 445417
Evaluation seeds: 225131, 11225, 22355, 99985, 113374, 998653, 11253

Table 3: Key hyper-parameters for COOPERA-
TIVE NAVIGATION.

Hyper-parameter Value

γ 0.9
Learning rate 5× 10−5

Adam ϵ 1× 10−6

Grad. clip (norm) Yes, 5
Target update Soft (τ = 0.005)
ε start→end 0.8→0.01
Anneal frames 1 000 000
Total frames 10 000 000

On-policy
Frames / batch 60 000
Minibatch iters 45
Minibatch size 4 096

Off-policy
Frames / batch 6 000
Opt. steps / batch 1 000
Train batch size 128
Buffer size 1 000 000

Table 4: Key hyper-parameters for LOAD BAL-
ANCING.

Hyper-parameter Value

γ 0.9
Learning rate 5× 10−5

Adam ϵ 1× 10−6

Grad. clip (norm) Yes, 5
Target update Soft (τ = 0.005)
ε start→end 0.8→0.01
Anneal frames 300 000
Total frames 1 000 000

On-policy
Frames / batch 10 000
Minibatch iters 45
Minibatch size 4 096

Off-policy
Frames / batch 10 000
Opt. steps / batch 100
Train batch size 100
Buffer size 100 000

418
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