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Abstract

This paper briefly introduces the application of
artificial intelligence in space science. In some
simulated satellite tasks in space, artificial intel-
ligence can provide assistance when combined
with traditional methods to produce better results.
In the realm of satellite sampling and image re-
construction endeavors, we employ Large Lan-
guage Models (LLMs) to enhance the CUDA op-
erator within the data simulation and image re-
construction phases. This strategic application
has yielded a marked improvement in operational
efficiency and has effectively addressed computa-
tional bottlenecks that have historically plagued
conventional methodologies. In addition, we spec-
ulate that we can use diffusion models to simulate
the reconstruction of images for each period. If
feasible, after the actual satellite operation time
reaches the upper limit, we can approximately
obtain more period reconstruction results.

1. Introduction
The exploration of the ultra-long-wavelength (ULW) radio
spectrum (Boonstra et al.), specifically frequencies below 30
MHz, occupies a critical juncture in astronomical research,
presenting unparalleled opportunities to probe the early uni-
verse’s mysteries. This spectral range, largely uncharted
due to terrestrial constraints, is where the cosmic dark ages
and the epoch of reionization—key phases in cosmic his-
tory—can be studied in detail. Ground-based observations
in this frequency band are significantly hindered by the
Earth’s ionosphere, which distorts and absorbs radio waves,
and by ubiquitous radio frequency interference (RFI) from
human-made sources. These challenges have necessitated
a shift towards space-based observations, with the Moon’s
orbit emerging as a particularly promising platform. This
shift not only circumvents the limitations posed by the iono-
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sphere and RFI but also opens new avenues for acquiring
high-resolution sky maps and detecting faint cosmic sources
with an unprecedented level of precision.

The 1970s marked a significant era with the launch of mis-
sions like IMP-6 (Brown, 1973) and the Radio Astronomy
Explorers (RAE-1 (Alexander & Novaco, 1974) and RAE-2
(Alexander et al., 1975)), which undertook the first low-
frequency radio observations from space. These missions
underscored the Moon’s far side as an ideal location for such
observations, offering a natural shield against Earth’s RFI
(Zheng et al.(Zheng et al., 2017)). Nevertheless, the tech-
nological limitations of that time restricted the resolution
and accuracy of the collected data, highlighting the need for
advancements in observational technology and strategies.

The advancement of interferometric arrays orbiting the
moon signifies a paradigm shift in low-frequency radio as-
tronomy. These arrays, using the Moon as an RFI shield and
using solar power efficiently (Huang et al., 2018), promise
to overcome the spatial and spectral challenges that have
long hindered observations in this frequency band. The de-
ployment of linear arrays in lunar orbit paves the way for
high-precision spectral measurements and detailed celestial
mappings, heralding a new era of discoveries in the least
explored regions of the electromagnetic spectrum.

2. Background
The simulate image reconstruction task is used to simu-
late satellites that observe and obtain sensor information
from the sun in lunar orbit, generate sensor data sampled
by the satellite through simulation, and then generate sim-
ulation images. In this task, a mother satellite and eight
sub-satellites form a satellite array that orbits the moon at
an approximate inclination angle. It should be noted that
the distance between satellites is not constant, and the entire
satellite array orbits the moon in a spring-like stretching
transformation. Lunar orbit allows sensors to sample more
lossless information than the ground, but the moon itself is
obscured, and not all of the sampled points can be used for
subsequent missions, only about one-third of the sampling
points in each period can be used for subsequent calcula-
tions.The satellite sensors for lunar orbit flight have more
non-destructive information for sampling compared to the
ground, but due to the obstruction of the moon itself, not all
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sampling points can be used for subsequent tasks, and only
about one-third of the sampling points in each period can
be used for subsequent calculations.

The Imaging Algorithm for a Lunar Orbit Interferometer
Array, as proposed by Huang et al. (Huang et al., 2018), is a
groundbreaking approach designed to tackle the unique chal-
lenges of reconstructing sky maps from an array of satellites
orbiting the Moon. This algorithm addresses the complex-
ities introduced by the three-dimensional distribution of
baselines and the time-dependent sky blockage caused by
the moon’s presence.

The algorithm is based on the principle that the visibility
data, which are the correlations between signals from dif-
ferent antennas, are linearly related to the sky brightness
distribution. The visibilities are measured when the satel-
lites are on the far side of the moon, where the Earth’s
RFI is shielded. The data collected are then processed to
reconstruct the sky map.

The algorithm begins by discretizing the sky into pixels and
expressing the visibilities as a sum over these pixels (Huang
et al., 2018). This is represented mathematically as:

V = B · T + n (1)

where V is the vector of measured visibilities, B is the re-
sponse matrix that encapsulates the antenna beam patterns
and the baseline distribution; T is the sky brightness tem-
perature distribution; and n is the noise vector.

Reconstruction of the sky map T is achieved by solving
the above equation, which is a linear inverse problem. The
minimum variance estimator for T is given by:

T̂ = (BHN−1B)−1BHN−1V (2)

where BH is the Hermitian transpose of B, N is the noise
covariance matrix, and N−1 is its inverse.

The algorithm (Chen et al., 2021) also incorporates the
moon’s blockage into the visibility data, which is crucial
for accurate sky map reconstruction. The blockage function
is introduced as a shade function in the visibility equation,
effectively modifying the visibility data to account for the
regions of the sky that are obscured by the moon.

In this algorithm, there are mainly the following steps:

First, compute visibility.

V (u, v, w) =

∫
A(l,m)T (l,m)e−2πi[ul+vm+w(n−1)] dldm

n
(3)

Then, remove the phase:

V ′(u, v, w) = V (u, v, w) · e−2πiw (4)

Finally, reconstruct the sky map image:

TB(l,m, n) =
∑

V ′(u, ν, w)e2πi(ul+vm+wn) (5)

In some studies, the sampling space of the baseline point is
divided into some approximate subspaces, frequency statis-
tics are performed at a low frequency, and then the rule is
approximated to a higher frequency. In the process of image
reconstruction, the multiplication of dots in the approximate
space is added to the frequency in the approximate space
to reduce the influence on the repeated sampling points in
each period. The formula for this method is as follows:

TB(l,m, n) =
∑

V ′(u, ν, w)e2πi(ul+vm+wn)∆c (6)

where ∆c is the frequency penalty of each baseline coordi-
nate in the subspace.

However, this method has the drawback that it cannot deter-
mine whether the frequency in the low-frequency scenario
still works after it is extended to the high frequency. In
addition, only part of the sampling points are selected un-
der each frequency condition, so the frequency weight on
the dot multiplication of the baseline coordinates in the im-
age reconstruction process is different from the actual one.
Moreover, this frequency is the sum of all occurrences of
coordinate points in the subspace, so the result is definitely
inaccurate.

It is worth noting that in the task of reconstructing the sky
map, we need to not only accurately reconstruct the sky map
results based on satellite observation data, which requires
numerical accuracy in the calculation process, but also visu-
ally observe the changes in the sky map. The former often
requires a large amount of computation and is slow in speed,
while the latter can provide assistance in some scenarios,
such as observing the diffusion path of solar storms.

AI in Space
2.1. Optimize traditional methods

In this paper, we introduce how to use AI to complete and
optimize tasks in space science. The satellite samples data
on the lunar orbit, reconstructs the image on the basis of
algorithms, and intuitively displays information in the data,
such as the propagation of solar storms. However, we need
to predict the format of satellite sampling data and the ef-
fectiveness of the algorithm in advance, so a task is needed
to theoretically verify.

We break down the entire process into three parts. Firstly,
there is data simulation, including baseline construction
and plane table coordinate construction; next, visibility con-
struction, which simulates the data collected by sensors;
and finally, image reconstruction, which is performed to
generate images based on visibility data inversion.

In the data simulation stage, we use LLMs to find a data
sampling strategy that maximizes the number of points in
each period and reduces repetition rates. Then, with the
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assistance of GPT4, we optimized the CUDA operator by
simulating sampling in batches for each satellite, as well
as sorting and deduplication, so that the data simulation for
one period under 10Mhz can be completed in a few minutes,
as shown in Table 1. For calculating the frequency of each
coordinate point appearing throughout the entire period,
it is also possible to complete the statistics of billions of
coordinate points in ten hours.

Table 1. Comparison of generation times using different methods
in one period.

Method Construct Baseline Generate UVW

Matlab (1Mhz) 14.82s 58.33s

C++ Only (1Mhz) 91.82s 861.33s

Ours (1Mhz) 0.0017s 0.38s

Ours (10Mhz) 0.02s 4.53s

On this basis, we discovered the relationship between the
number of simulated sampling points and the number of
sampling periods at different frequencies and also found an
upper bound, as shown in Figure1, which is important for
future research. Researchers can predict future development
and perform quantitative analysis based on this foundation.

Figure 1. The relationship between the number of sampling points
and the number of sampling periods. The sampling time interval
is 1 second, 0.1 second, and 0.01 second from 0.1Mhz to 10Mhz
respectively. In practice, satellites operate for a period of 14 days,
with a maximum of 5 years, which is 130 cycles. This is the actual
sampled data, but theoretically, we can reach the upper bound of
the sampling points in 225 cycles (red line)

Similarly, in the simulating visibility construction stage, we
can also use optimized operators, but unfortunately, the op-
timized operators currently cannot perform well at 10MHz,
so violent operations are currently used in high-frequency
situations.

In the image reconstruction stage, we use traditional algo-

rithms to select coordinate points for reconstruction at high
frequencies, as shown in the Figure 2. Specifically, since
the simulated data points are in the range of -1 to 1, and
only the sampling frequency changes, that is, the density of
the points. To demonstrate that at 10MHz, we used uniform
sampling to generate a graph (b) with the same number of
points as at 1MHz. In simulation, we still use the original
data.

The generated image results are shown in Figure 3. It can
be seen that although similarity can be seen on the contour,
there is still a lot of noise in reality, which may be related to
the small proportion of sampling points in the entire space
in each period. At the same time, due to the orbit of the
satellite, the imbalance of sampling points is concentrated
on the main orbit surface, which is the white stripe in the
inversion result.

Diffusion Model in Space

From the above, it can be seen that traditional methods not
only have low computational efficiency, but also require
further improvement in effectiveness. The diffusion model
(Ho et al., 2020; Rombach et al., 2021; Nichol & Dhariwal,
2021; Peebles & Xie, 2022) proposed in the field of genera-
tive modeling has shown promising prospects for generating
high-quality images by iteratively refining noise inputs. We
speculate whether diffusion models can be applied to our
space task, which generate images based on previously ob-
served periodic sequences.

Considering image sequences as generated by diffusion
processes, where the original image is the target that the dif-
fusion model learns to reconstruct. The earlier the image in
the sequence, the more noise is injected during the diffusion
process, while the later the image, the less noise is injected
during the diffusion process, making it closer to the original
image.

We utilize an initial set of 130 periodic images, each de-
noted as It for t = 1, 2, ..., 130. These images represent
the cumulative results up to this period t. The images are
normalized to have pixel values in the range [0, 1].

In the forward process, we define a series of noisy images
xt t = 1, 2, ..., T , where T is the total number of diffusion
steps. Starting from the original image It, noise is added
according to:

xt =
√
ᾱtIt +

√
1− ᾱtϵ (7)

where αt is a predefined noise schedule, ᾱt is the noise
variance parameter of all α at step t and ϵ ∼ N (0, I) is
Gaussian noise. The reverse process involves training a neu-
ral network ϵθ to predict the noise added in each step. The
network is trained using a mean squared error loss between
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(a) 1Mhz (b) 10Mhz

Figure 2. Image reconstruction results. (a) is the coordinate points with a resolution of 2094 * 2094, which is 1Mhz; (b) is the coordinate
points with a resolution of 10Mhz, but with uniformly distributed sampling.

Figure 3. Results of simulating image reconstruction using traditional methods. The first image is the original image, while the others are
the results of simulation generation. For example, the last image is the result of image reconstruction after simulating 130 periods.

the predicted noise and the actual noise with condition z:

L(θ) = Et,It,z,ϵ

[
∥ϵ− ϵθ(xt, z, t)∥2

]
(8)

where x0 is target image (idea sky image), z is normalized
difference between original and noisy images, ϵ is Gaus-
sian zero-mean unit variance noise N (0, I). The results
obtained from the model, after filtering and trend removal,
are compared as shown in Fig. 4

The diffusion model has enormous potential in this field,
even when there are few image sequences, the model can
basically show comparable contour effects. Our results
demonstrate that the diffusion model effectively captures the
temporal evolution of the cumulative images. The predicted
images for future periods maintain the visual characteristics
and cumulative patterns observed in the training set. In
practical applications, the number of images generated by

satellite sampling may far exceed the simulation results.

3. Discussion
This paper summarizes some simple practices using AI in
space science. With the assistance of large language models,
data simulation and processing can be greatly improved,
which help finding latent patterns, such as the relationship
between the number of sampling points and the number of
sampling periods. In terms of image reconstruction, the
images generated in each period need to be accumulated
together to form the final result. Similarly to the image
generation process of diffusion models, the time constraints
faced by satellites in actual operation can also be simulated
through diffusion models to approximate more steps, we
have successfully applied diffusion models to predict future
cumulative images in a sequential process. This approach
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(a) result1 (b) result2

Figure 4. Results predicted by diffusion models using images with different levels of noise. Preprocessed image size is 256 * 256, which
is similar in outline to the original image.

leverages the strengths of diffusion models in handling noisy
data and iterative refinement, making it a promising tool
for time-series image prediction tasks.providing a feasible
solution for subsequent work. In future, we will focus on
refining the model architecture and exploring its application
to other domains requiring sequential image prediction. In
addition, we will also investigate whether LLMs can be
used to simulate satellite orbit around the moon and other
scenarios, and researchers can explore more applications of
AI in space science based on this research.
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