
VolTeMorph: Realtime, Controllable and Generalisable Animation of
Volumetric Representations

STEPHAN J. GARBIN∗, MAREK KOWALSKI∗, VIRGINIA ESTELLERS∗, STANISLAW SZYMANOWICZ∗,
SHIDEH REZAEIFAR, JINGJING SHEN, MATTHEW JOHNSON, and JULIEN VALENTIN,Microsoft

Real-time Photo-Realistic Animation

User-Controlled

Pose & Expression

Canonical Model

Simulation

Fig. 1. We propose a method to deform static multi-view volumetric models, such as NeRF, in real-time using blendshape or physics-driven animation. This
allows us to create dynamic scenes from static captures in an interpretable, artistically controllable way. Top: a face tracker controls an avatar which shows
expressions unseen during training. Bottom: object shattering controlled by physics-based simulation.

The recent increase in popularity of volumetric representations for scene
reconstruction and novel view synthesis has put renewed focus on animating
volumetric content at high visual quality and in real-time. While implicit
deformation methods based on learned functions can produce impressive
results, they are ‘black boxes’ to artists and content creators, they require
large amounts of training data to generalise meaningfully, and they do
not produce realistic extrapolations outside the training data. In this work
we solve these issues by introducing a volume deformation method which
is real-time, easy to edit with off-the-shelf software and can extrapolate
convincingly. To demonstrate the versatility of our method, we apply it in
two scenarios: physics-based object deformation and telepresence where
avatars are controlled using blendshapes. We also perform thorough experi-
ments showing that our method compares favourably to both volumetric

∗Denotes equal contribution.

approaches combined with implicit deformation and methods based on mesh
deformation.

CCS Concepts: • Computing methodologies → Computer graphics
Rendering; Computer graphics Animation.

Additional KeyWords and Phrases: Tetrahedral Geometry, Neural Rendering

1 INTRODUCTION
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] is a method
for generating 3D content from images taken with commodity cam-
eras that has prompted a major change in the field. The main lim-
itations of NeRF are its rendering speed and being constrained to
static scenes. Rendering speed has been successfully addressed by
multiple follow-up works e.g. [Garbin et al. 2021; Hedman et al. 2021;
Yu et al. 2021], but the constraint to static scenes remains an open

ar
X

iv
:2

20
8.

00
94

9v
1 

 [
cs

.G
R

] 
 1

 A
ug

 2
02

2



2 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

Method Axis of Scalability
Enrol Control Render Content

AVAPS [Cao et al. 2022] ✓ ✓ ✓ ✗

NHA [Grassal et al. 2022] ✓ ✓ ✓ ✗

Nerfies [Park et al. 2021a] ✗ ✓ ✗ ✓

NerFace [Gafni et al. 2021] ✗ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 1. Comparison of our method to other popular solutions for animating
NeRF-style models. The evaluated factor is scalability in terms of: enrolment,
provided control over generated content, speed of rendering as well as the
ability to adapt to different types of content.

challenge to deploying this technology in interactive applications.
In this work we present a technique for generating photo-realistic
dynamic content in a scalable way. While we use a neural radiance
field for its photo-realism, our technique is compatible with most
volumetric representations built on neural, explicit or even hash-
coded voxel representations [Fridovich-Keil et al. 2022; Müller et al.
2022].
We focus on four major aspects of scalability. Scalable render-

ing: ability to render in real-time on commodity graphics hard-
ware. Scalable content: support for different types of content from
generic objects to personalized human avatars. Scalable enrol-
ment: capacity of training with minimal amount of data and ability
to generalize to unseen dynamics. Scalable control: compatibility
with existing control mechanisms for animation, for instance using
physics-based simulation for virtual objects or blendshape-based
face tracking for virtual heads.

Scalable control is critical to overcome the limitations of existing
methods for animating NeRF-based scene representations, which ei-
ther cannot deform beyond motion seen during training or only sup-
port specific objects and motions (see Table 1). For instance, [Gafni
et al. 2021; Park et al. 2021a] are capable of high quality interpolation
between the training samples but are not designed to be robust to
extrapolations, while [Cao et al. 2022; Grassal et al. 2022] are capa-
ble of extrapolating outside of the training data but only support
human heads. We propose a technique for Volumetric Tetrahedral
Morphing, VolTeMorph, that allows for realistic-looking extrapola-
tions and equally supports generic objects and humans.
At the core of VolTeMorph lie tetrahedral volumetric elements

that compactly capture dynamic contents while allowing us to pre-
serve the visual quality of NeRF. The resulting volumetric mesh
can be intuitively deformed and controlled by artists, physics-based
simulation, or traditional animation techniques like blendshapes. To
demonstrate the versatility of VolTeMorph, we perform experiments
with two very different types of motion and objects.

In our first application we use physics-based simulation to control
the deformation of a static object undergoing complex topological
changes and render photo-realistic images of the process for every
step of the simulation. This application is designed to show the
representation power of our deformation model and the ability to
render images from physical deformations difficult to capture with
a camera. For that reason this series of experiments is conducted on
synthetic data.

In our second application, we demonstrate photo-realistic anima-
tions of human head avatars in real-time with a blendshape-based
face tracker similar to [Wood et al. 2022]. The avatars are trained
with 30 images of the subject taken from different viewpoints at
the same instant. Thus, for each avatar the method has only seen a
single face expression and pose. To animate the head avatars we use
the control parameters of the parametric 3DMM face model that
we extend from a surface mesh to the volume around it. We call
the resulting parametric volumetric face model Vol3DMM. Build-
ing on the parametric face model allows us to generalize to face
expressions and poses unseen at training and to drive the animation
using face trackers built for real-time control. A key benefit of our
method over traditional 3DMM face models is that hair, accessories
and other elements not modelled by the 3DMM are captured by the
volumetric geometry. While we demonstrate results on faces, we
believe that the proposed technique to generalize 3DMM models to
volumetric representations could be applied to full bodies [Loper
et al. 2015].

In summary, our main contributions are:
• VolTeMorph, a method to animate volumetric scene represen-
tations with well-understood techniques such as blendshape
animation and physics-based simulation.

• Vol3DMM, a volumetric extension to the traditional 3DMM
allowing our system to be integrated seamlessly with existing
tools for face tracking.

• A scalable, real-time system for rendering photorealistic avatars
of human faces built on VolTeMorph and Vol3DMM.

2 RELATED WORK
Despite our method being a generic approach to deforming volumes,
we demonstrate the animation of static face scans as our main area
of application. Representation and animation of faces also serves
as a relevant way to structure the literature around mesh-based
and volumetric neural rendering, where faces are often chosen as a
particularly difficult and sought after use-case. We do not discuss
purely or 3D-assisted neural rendering methods such as [Kim et al.
2018; Thies et al. 2019], and refer the interested reader to [Zollhöfer
et al. 2018] (Section 10) for a more in-depth review.

2.1 Mesh-Based Neural Rendering
Codec Avatars [Lombardi et al. 2018] demonstrated that meshes in
combination with textures generated by a Variational Autoencoder
(VAE) conditioned on expression and view direction could be em-
ployed to generate highly realistic avatars in real-time given large
amounts of multi-view training data.
Relying on only one camera to reduce the data overhead of

such methods, the authors in Neural Head Avatars [Grassal et al.
2022] model a deforming head by first fitting a parametric model
(FLAME) [Li et al. 2017], and subsequently using optimised pose and
expression parameters to generate displacements and textures with
learned functions. This assumes a fixed view direction. I M Avatar is
another recent example [Zheng et al. 2022] that learns blendshape
correctives and textures directly from monocular video data.

In contrast to these approaches that use several hundred frames,
we train on a maximum of two frames of a multi-view capture only.



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 3

We also use a volumetric equivalent of a 3DMM, such as FLAME,
which allows us to capture hair with greater fidelity, faithfully rep-
resenting transparency for composites over background content.

2.2 Volumetric Neural Rendering
Given the limitations of mesh and texture based representations
to model things such as vegetation, hair, clouds, or any other class
of object inherently easier to represent volumetrically [Vicini et al.
2021a], learned 3D representations have grown in popularity in
recent years.
In Neural Volumes, Lombardi et al. learn the parameters, i.e.

colour and density, of a purely emissive volume on a dense grid to
represent bounded scenes.

NeRF [Mildenhall et al. 2020] showed that such a volumetric func-
tion can be compressed using a single Multi-Layer Perceptron (MLP)
in combination with a frequency encoding that enables the MLP to
learn complex functions in two and three dimensions. These encod-
ings were previously proposed for different applications by [Gehring
et al. 2017; Vaswani et al. 2017], although a single-scale variant was
used in computer graphics by [Müller et al. 2019]. The notion of
frequency encodings was subsequently generalised in [Tancik et al.
2020].
Since NeRF’s initial breakthrough, many methods that mix to-

gether implicit functions and explicit voxel grids have emerged [Garbin
et al. 2021; Hedman et al. 2021; Liu et al. 2020; Sun et al. 2022; Yu et al.
2021]. We note that all of these are compatible with VolTeMorph.
This is because whether represented implicitly or explicitly, these
representations are fundamentally volumetric functions in R3, and
can be animated by a displacement field in that space.

2.2.1 Volumetric Deformation Using Learned Functions. In Neural
Volumes, Lombardi et al. learn a model that generates inverse warp
fields to map voxels back to a canonical space [Lombardi et al. 2019].
Neural Body is a variation of this concept, where a latent code
volume is produced by diffusing features anchored to a SMPL [Loper
et al. 2015] model to a voxel grid, and subsequently feeding them
through a decoder network [Peng et al. 2021].
D-NeRF uses an implicit deformation model that maps sample

positions back to a canonical space [Pumarola et al. 2020]. Two com-
mon issues with models that use (implicit) deformation functions
like D-NeRF are (a) lack of generalisation to unseen deformations
and (b) runtime overheads due to querying a deformation network
MLP, potentially millions of times per frame for coordinate-based
models.
Nevertheless, Nerfies [Park et al. 2021a] and its extension [Park

et al. 2021b] use a similar concept as [Pumarola et al. 2020], but
account for changes in the observed scenes with a per-image latent
code which enables modelling changes in colour in addition to shape.
This is crucial to allow for modelling dynamic scenes with multiple
temporal frames of training data. For example a person might blink
or otherwise move their face between subsequent observations. The
authors in Nerfies also propose a rigidity constraint on the implicit
learned canonical mapping to prevent overfitting. The model by
Gafni et al. opts to use a single implicit network conditioned on
a face tracking signal from a 3D morphable model as well as a
per-image latent code to an implicit volumetric model of animated

human faces from monocular video [Gafni et al. 2021]. An implicit
deformation model is also employed in Non-rigid NeRF [Tretschk
et al. 2021], but augmented with a segmentation of the scene into
rigid and deforming parts, as well as a non-divergence constraint
of the deformation field. In contrast to these approaches, we focus
on using as little temporal enrolment data as possible while still
ensuring generalisation by exploiting prior knowledge encoded in
our volumetric blendshape model in order to address the issue of bad
generalisation. We circumvent the issue of performance by propos-
ing a real-time algorithm for deformation that runs on commodity
graphics hardware.

2.2.2 Hybrid Volumetric Deformation. The Mixture of Volumetric
Primitives (MVP) model represents a return to an explicit volu-
metric representation. Instead of one dense grid, a convolutional
decoder generates many small, rectangular volumetric primitives
conditioned on an input signal representing view direction and
other latent information [Lombardi et al. 2021]. These primitives are
anchored to a tracked face mesh in a learned way, and can be ren-
dered efficiently. Using a large corpus of 3D captures, an approach
built on a similar representation was recently shown to generalise
given limited enrolment data captured using handheld devices [Cao
et al. 2022].

2.3 Volumetric Deformation using Geometry
In terms of using a surface mesh to drive a volumetric function,
Neural Actor [Liu et al. 2021] is conceptually related to our appli-
cation to faces. In their method, sample points are mapped to a
canonical space using the interpolated inverse skinning transform
of the closest face of a posed SMPL model. However, an implicit
neural deformation function is still learned to account for the low
fidelity of the deformation field, as well as for reproducing non-rigid
motion. Neural Actor also focuses on whole body deformation only.
RigNeRF, a similar method for faces uses an MLP in combination
with a 3DMM to improve generalisation [Athar et al. 2022]. How-
ever, using an MLP comes with challenges related to run-time and
limited generalisation. SnaRF [Chen et al. 2021] employs a similar
concept without the additional MLP, but instead relies on determin-
ing skinning weights for each point in the volume. While a notable
work, this method lacks the fidelity required for facial animation.

In terms of using volumetric geometry (e.g. tetrahedral), the use
of a guide mesh for smooth deformation fields has been known
in geometry editing for a while [Ju et al. 2005]. It is relatively un-
common in computer vision and machine learning as compared to
learned approaches.

In Neural Cages [Yifan et al. 2020], the authors propose to predict
the deformation of a coarse geometric cage and compute the dis-
placement of contained geometry using mean value coordinates [Ju
et al. 2005]. We see this work as complimentary to our paper in that
it would be possible to predict the positions of the vertices of our
tetrahedral meshes in canonical pose.
Recently and concurrent to our work, NeRF-Editing [Yuan et al.

2022] proposed to use tetrahedral meshes to deform single-frame
NeRF reconstructions. While the basic idea of using tetrahedra with
barycentric coordinates is the same, our method is more general on
several fronts. First, we extend deformation fields to non-tetrahedral



4 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

primitives such as the mouth region of the face discussed below.
Second, we propose an algorithm to make the deformation model
real-time using concepts from raytracing. Third, we add a principled
way to deal with changes in view direction due to tetrahedral defor-
mation. Fourth, we show that editing a surfacemesh and transferring
that motion to the volumetric one is not required for good results -
we propose several ways of working directly with the tetrahedral
geometry such as our volumetric blendshape model, or simulation-
based approaches that allows us to demonstrate shattering effects
previously elusive to NeRF models.
Prior to this stream of work, the authors of DefTet [Gao et al.

2020] propose deforming a template tetrahedral mesh to fit image
observations, where colour and occupancy live directly on the mesh.
This was recently extended to learning texture and material directly
on mesh surfaces along with environment illumination [Munkberg
et al. 2022]. Similarly, Deep Marching Tetrahedra proposes to embed
a signed distance field (SDF) in a tetrahedral grid, where the SDF is
defined directly on mesh vertices [Shen et al. 2021].
In the context of medical imaging, Gascón et al. propose to use

tetrahedral deformation for volume data which is similar to this
work [Gascón et al. 2013]. However, their focus is mainly on Finite
Element Simulation as a means of control and their rasterisation
algorithm requires a preprocessing step on the CPU. In contrast,
we propose expanded ways to control volumetric models as well as
faster tetrahedral lookups.
Because we describe deformations using piece-wise linear tetra-

hedral primitives, finding out which tetrahedron a point falls in
efficiently is key to our method. This problem of localisation in un-
structured tetrahedral geometry was previously addressed by [Wald
et al. 2019], who proposed using hardware-accelerated raytracing in
combination with per-face tetrahedral indices in a departure from
rasterisation-based techniques [Gascón et al. 2013]. We build on this
work by (a) exploiting coherence along rays to reduce the overall
number of required rays, and (b) extending the algorithm to work
on any closed, non self-intersecting triangulated primitives.

3 METHOD
VolTeMorph allows for controlling volumetric scene representations
(Section 3.1) through deformation of a tetrahedral mesh that en-
velops the scene in its canonical state. To produce a modified version
of the scene one begins by deforming the canonical tetrahedral mesh
to the desired shape. The volume rendering method then generates
samples along the camera rays in the deformed space and all the
samples that fall within the deformed tetrahedral mesh are assigned
with the index of the corresponding tetrahedron - this is shown on
the left side of Figure 2, details in Section 3.5. Thanks to the known
sample-tetrahedron associations, the samples can be transformed
to the canonical space where the scene representation lives (Figure
2 and Sections 3.2, 3.3). Once the canonical state of each sample is
known volume rendering can be applied as normal.
VolTeMorph is agnostic to the way in which the tetrahedral de-

formation is generated and what kind of an object is deformed. In
Section 4.1 we describe how our method can deform generic objects
while in Section 4.2 we describe its application to faces. Finally,
VolTeMorph is also flexible in terms of the type of training sequence

as it can work both with sets of images of a static scene as well
as sequences where each image represents the scene in a different
state, details in Section 3.4.

3.1 Learned Volumetric Scene Representations
Volumetric scene representations using learned functions to account
for the scattering events, have enjoyed a renaissance in recent years
The final colour, opacity and depth at each pixel is obtained by
sampling points 𝑝𝑖 along rays traced through a bounded 3D scene.
For each sample a functionV is queried to obtain the colour 𝒄 as
well as density 𝜎 at that position in space. Commonly, the colour of a
pixel on the image plane, �̂� , is obtained via volume rendering using
an emission-absorption form of the volume rendering equation
[Kajiya and Von Herzen 1984]:

�̂� =
𝑁∑︁
𝑖=1

𝑤𝑖 𝒄𝑖 , 𝑤𝑖 = 𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 )), (1)

where 𝛿𝑖 = (𝒑𝑖+1 − 𝒑𝑖 ) denotes the distance between samples (in
total 𝑁 ) along straight rays, and the transmittance, 𝑇𝑖 , is defined
as 𝑇𝑖 = exp(−∑𝑖−1

𝑗=𝑖 𝜎 𝑗𝛿 𝑗 ).V is usually modelled by a Multi-Layer
Perceptron (MLP) [Mildenhall et al. 2020; Müller et al. 2022], an
explicit voxel grid [Sun et al. 2022; Yu et al. 2021] or a combination
of both [Hedman et al. 2021; Liu et al. 2020]. In addition to sample
position 𝒑, V is also conditioned on the direction of the ray 𝒗,
which allows it to model view-dependent effects such as specular
reflections. Models such as NeRF also typically omit image formation
models for traced rays, opting instead to evaluate one ray per pixel,
located at evenly spaced intervals. The resulting aliasing can be
addressed by integrating the frequency encodings [Barron et al.
2021] as compared to more expensive oversampling.

3.2 Modelling Volumetric Deformations with Closed
Triangular Primitives

Following prior work, our approach to animation relies on mapping
points to positions in a ‘rest’ or ‘canonical’ space. As NeRF-based
models use volumetric representations, this requires mapping points
in the volume that supports the radiance field. In order to animate a
wide variety of object categories in this representation interactively,
the deformation model should (a) be real-time, (b) capable of rep-
resenting both smooth and discontinuous functions, (c) allow for
intuitive (manual) control, thereby allowing good extrapolation or
generalisation to configurations not observed in training.
We propose to represent complex motion fields using closed tri-

angular volumetric primitives. The most common type of primitive
used in this work is a tetrahedron, and we start our explanation
from this perspective. This representation is compatible with GPU-
accelerated ray tracing and can be queried in milliseconds, even with
complex geometry. It is capable of reproducing hard object bound-
aries by construction and can be edited in off-the-shelf software
thanks to being composed of only points and triangles.

A tetrahedron, one fundamental building block of our method, is
a four-sided pyramid. We define the undeformed ‘rest’ position of
its four constituent points as:

𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4}, (2)



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 5

samples 𝒑𝒑𝒊𝒊

Samples generated along 
camera ray 𝒗𝒗 in deformed space

transform to 
canonical shape

∀𝑖𝑖: �𝒑𝒑𝑖𝑖 = 𝑀𝑀𝑗𝑗𝒑𝒑𝒊𝒊

Sample positions transformed 
into canonical space

volume lookup

𝑉𝑉(�𝒑𝒑𝑖𝑖 ,𝑅𝑅𝒗𝒗)

Colour 𝒄𝒄𝒊𝒊 and opacity 𝜎𝜎𝑖𝑖 for 
each sample along ray 𝒗𝒗

𝒄𝒄 𝜎𝜎

volume rendering

Rendered pixel colour

Fig. 2. Overview of the VolTeMorph rendering process. To render a single pixel a ray is cast from the camera centre, through the pixel into the scene in
its deformed state. A number of samples are generated along the ray and then each sample is mapped to the canonical space using the deformation𝑀𝑗 of the
corresponding tetrahedron 𝑗 (Section 3.2). The volumetric representation of the scene (Section 3.1) is then queried with the deformed sample position 𝑝′

𝑗

and the direction of the ray rotated based on the rotation of the 𝑗-th tetrahedron (Section 3.3). The resulting per-sample density and colour values are then
integrated using volume rendering (Equation 1).

Fig. 3. A point 𝒑 in deformed spaced is mapped to 𝒑 in canonical space using
barycentric coordinates defined for both the canonical tetrahedron 𝑋 =

{𝒙1, 𝒙2, 𝒙3, 𝒙4 } as well as the deformed tetrahedron 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4 }.

and denote the deformed state 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4}. Because tetra-
hedra are simplices, we can represent points that fall inside them
using barycentric coordinates (𝜆1, 𝜆2, 𝜆3, 𝜆4) with respect to 𝑋 or
𝑋 [Sifakis and Barbic 2012].

An input point 𝒑 can be parameterised as 𝒑 =
∑4
𝑖=1 𝜆𝑖 ∗ 𝒙𝑖 if it

falls inside the tetrahedron, and we can obtain its rest position 𝒑 in
the canonical space as:

𝒑 =

4∑︁
𝑖=1

𝜆𝑖 ∗ 𝒙𝑖 . (3)

This is illustrated in Figure 3. For volumetric primitives that are not
simplices (such as the interior of the mouth of our face model or
any irregularly shaped rigid part of a mesh), no such barycentric
mapping can be defined. We use simple affine transformations in
these cases, which are expressive enough for large rigidly moving
sections of the motion field.

3.3 Accounting for Changes in View Direction
Transforming sample positions between canonical and deformed spaces
takes care of changes to the shape of the scene. However, as de-
scribed in Section 3.1 the density and colour at each point in the
scene is a function of both sample position and view direction. If

sample positions are moved, but view directions stay unchanged, the
light reflected off the elements of the scene will appear the same for
every deformation. To alleviate this problem we propose to rotate
the view direction 𝒗 of each sample with a rotation 𝑅 between the
canonical tetrahedron and its deformed equivalent:

𝒗 = 𝑅𝒗,

𝑈 , 𝐸,𝑉 = 𝑆𝑉𝐷 ((𝑋 − 𝒄𝑥 )𝑇 (𝑋 − 𝒄𝑥 )),

𝑅 = 𝑈𝑉𝑇 ,

(4)

where 𝒄𝑥 , 𝒄𝑥 are the centroids of the canonical and deformed states
of the tetrahedron that a given sample falls into. With this approach,
the direction from which the light is reflected at each point of the
scene will match the deformation induced by the tetrahedral mesh.
Note however, that the reflected light will represent the scene in its
canonical pose.

In practice, computing𝑅 for each sample or even each tetrahedron
in the scene is inefficient as it requires computing Singular Value
Decomposition (SVD) for each 𝑅 separately. What we do instead is
take a stochastic approach where we compute 𝑅 for a small fraction
𝜌 of all tetrahedra and propagate 𝑅 to the remaining tetrahedra via
nearest neighbour interpolation. In all experiments we set 𝜌 = 0.05.

3.4 Enrolling from as Little as a Single Frame
As we decouple the deformation of the model from its appearance
in canonical space, we can train our dynamic scene representations
on images of a scene taken from multiple viewpoints at the same
moment in time. This is not a requirement as we can also enroll
from images taken at different moments in time as long as we
have the ground-truth deformation for these frames. Ground truth
deformations are usually only available for synthetic scenes, for real
data we need to resort to object trackers to estimate the deformation
and account for tracker failures. Small errors in the tracker produce
small errors in the deformation into the canonical space, where the



6 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

scene’s appearance is learned, and this in turn produces blurrier
renders because the canonical space averages the appearance of
samples within regions defined by these errors. While learning the
errors in all training frames is a possibility, we would still need to
account for temporal changes to appearance caused by illumination
and other factors. We have empirically found that training from a
single frame where a good estimate of the deformation is available
produces sharp images and simplifies the method.

3.5 Tetrahedral Point Lookups
While the proposed deformation model is simple, it relies on accu-
rately determining which primitive a point falls into.

With complex meshes, checking each tetrahedron for association
with each input point we wish to deform naively is not feasible given
the complexity of point-in-tetrahedron tests. We choose triangles
as primitives of our motion field to build on the work of [Wald et al.
2019], who show that for non self-intersecting tetrahedral meshes
the notions of a point being ‘in front’ or ‘behind’ a certain triangle
are uniquely determined by the triangle vertices’ winding order. In
their approach determining which tetrahedron a point belongs to
amounts to shooting a ray in a random direction from the point,
evaluating the triangle at first intersection and checking which side
of the triangle the sample is on. This identifies the tetrahedron
uniquely as each triangle can belong to at most two tetrahedra.
Especially when hardware acceleration is available, these queries
are highly efficient in terms of memory and compute.

We extend this work in two ways: First, we apply the same accel-
eration to arbitrarily triangulated shapes that let us combine tetra-
hedra with triangulated rigidly-moving shapes that do not need to
be filled with tetrahedra but can be treated as a unit in terms of
deformation. Second, we reduce the number of point-in-tetrahedron
tests required by noting that many samples along a single ray can
fall into the same element. If we know the previous and next inter-
section, a simple depth-test determines which tetrahedron samples
fall into. Barycentric coordinates are linear, and so we can obtain
a barycentrically interpolated value by interpolating values at the
previous and next intersection within each element. To do this, we
rewrite Equation (3) as:

𝒑 = 𝛼 ∗
4∑︁

𝑖=1

𝜆1𝑖 ∗ 𝒙1𝑖 + (1.0 − 𝛼) ∗
4∑︁

𝑖=1

𝜆2𝑖 ∗ 𝒙2𝑖 , (5)

where the superscripts 1 and 2 refer to the previous and next inter-
section, and 𝛼 is the normalised distance between the two intersec-
tions which defines the point that we are interpolating for. Thanks to
this modification, per point values remain stable even if the ‘wrong’
side of a triangle (or incorrect triangle all together) is queried due to
a lack of numerical precision. This is because intersections tend to
be reported as numerically close as possible to triangles in ray trac-
ing libraries such as Optix [Parker et al. 2010]. One important side
effect of this per-ray as opposed to per-point formulation of tetrahe-
dral index lookups is that it naturally integrates with ray marching
approaches to rendering, such as FastNeRF [Garbin et al. 2021]. In
the latter, rays are terminated based on transmittance, which our
reformulated tetrahedral lookup algorithm naturally allows.

4 APPLICATIONS

4.1 Applying VolTeMorph to support generic objects
Given a collection of images and associated camera intrinsic and
extrinsic parameters, we can use VolTeMorph to animate generic
static scenes. The volumetric model is trained using the standard
approach of the given scene representation method (we use Fast-
NeRF [Garbin et al. 2021] as detailed in Section 5). To create the
volumetric geometry, we first extract a coarse mesh from the den-
sity of a trained model using Marching Cubes [Lorensen and Cline
1987], and subsequently produce a tetrahedral embedding of that
mesh using off-the-shelf software (SideFX Houdini). Once we have
a coarse mesh we can animate it or produce interesting motion with
simulation, letting the object deform or shatter under the effects of
gravity. This process is shown in Figure 4, and is also done using
off-the-shelf software (SideFX Houdini1). We note that the function
deforming the tetrahedra or assembling the tetrahedra itself could
be learned as well [Gao et al. 2020; Yifan et al. 2020], but we leave
this as future work.

4.2 Applying VolTeMorph to support Faces
To achieve generalisation and control of faces with VolTeMorph, we
introduce a generalisation of parametric 3DMM, which animates
a mesh with a skeleton and blendshapes, to a parametric model
that animates a volume around a mesh which we coin Vol3DMM.
Vol3DMM animates a volumetric mesh using a set of volumetric
blendshapes and a skeleton.

We define the skeleton and blendshapes of Vol3DMM by extend-
ing the skeleton and blendshapes of a parametric 3DMM face model
of [Wood et al. 2021]. The skeleton has the same four bones as
the 3DMM face model: the root bone controlling global rotation,
the neck, the left eye, and the right eye. To use this skeleton in
Vol3DMM, we extend the linear blend skinning weights from the
vertices of the 3DMMmesh to the vertices of the tetrahedra by a sim-
ple nearest-vertex look up, that is, each tetrahedron vertex has the
skinning weights of the closest vertex in the 3DMMmesh. The volu-
metric blendshapes are also created by extending the 224 expression
blendshapes and the 256 identity blendshapes of the 3DMM model
to the volume surrounding its template mesh: the 𝑖-th volumetric
blendshape of Vol3DMM is created as a tetrahedral embedding of
the mesh of the 𝑖-th 3DMM blendshape. To create the tetrahedral
embedding, we use the same procedure used to create a single volu-
metric structure from a generic mesh described in Section 4.1 and
manually curate it to avoids tetrahedral inter-penetrations between
upper and lower lips, covers hair, and have higher resolution in
areas subject to more deformation. The resulting Vol3DMM is more
easily understood graphically, as illustrated in Figure 5.

As a result of this construction, Vol3DMM is controlled and posed
with the identity, expression, and pose parameters 𝛼, 𝛽, 𝜃 of the
3DMM face model. This means that we can animate it with a face
tracker built on the 3DMM face model by changing 𝛽, 𝜃 and, more
importantly, that it generalises convincingly to any expression rep-
resentable by the 3DMM face model. During training we use the

1https://www.sidefx.com/products/houdini/



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 7

Single-Frame

NeRF Training

+ 

Meshing

Simulation

+ 

Rendering

Fig. 4. Converting a static scene to an animatable one. Surface mesh extraction (from volume density), tetrahedralisation and simulation are automated using
off-the-shelf software, but manual animation is equally possible.

Fig. 5. Our volumetric face model extends the blendshapes of a traditional face 3DMM model from a surface (blue mesh) to a tetrahedral partition of the
volume around it (green). The tetrahedral volume defines the support of the deformation and can be extended to cover hair, headphones or headgear (red).

parameters 𝛼, 𝛽, 𝜃 to pose the tetrahedral mesh of Vol3DMM to de-
fine the physical space, while the canonical space is defined for each
subject by posing Vol3DMM with identity parameter 𝛼 and setting
𝛽, 𝜃 to zero for a neutral pose. Each tetrahedron in the physical
space {𝑋 𝑖 }𝑛

𝑖=1 has a canonical counterpart {𝑋 𝑖 }𝑛
𝑖=1. From each cam-

era, we shoot rays in the physical space, detect the tetrahedron 𝑋𝑘

incident to each sample 𝒑 along the ray and compute its barycentric

coordinates (𝜆𝑘1, 𝜆
𝑘
2, 𝜆

𝑘
3, 𝜆

𝑘
4) such that

𝒑 =

4∑︁
𝑖=1

𝜆𝑘𝑖 𝒙
𝑘
𝑖 , (6)

where (𝒙𝑘1, 𝒙
𝑘
2, 𝒙

𝑘
3, 𝒙

𝑘
4) are the vertices of the tetrahedron 𝑋𝑘 . The

samples inside the volume are then deformed into canonical space
as 𝒑 =

∑4
𝑖=1 𝜆

𝑘
𝑖
𝒙𝑘
𝑖
and used as input to the coordinate-based MLP



8 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

that approximates the neural radiance field in canonical space. Once
trained, the avatar for this subject is controlled by pose and expres-
sion parameters of the 3DMM model, which can be obtained by a
real-time face tracking system e.g. [Wood et al. 2022]. In particular,
our 224 expression blendshapes are a superset of the 85 expression
blendshapes our real-time face tracker. This allows us to build a
volumetric model compatible with a real-time face tracker but not
limit its expressivity to a specific set of blendshapes chosen for a
real-time system.
Support for mouth interior. Vol3DMM is built on top of a

Fig. 6. The two planes delineating rigid mouth regions. Tetrahedral mesh
not shown for clarity, reference teeth geometry for illustration only.

3DMM - a surface model of the face that does not handle the inside
of the mouth. Simply filling the mouth with tetrahedra and extrapo-
lating the deformation of the surface model to those elements would
result in unrealistic motion, especially for rigid components such as
the teeth. Since we animate a static volumetric model, we cannot
learn a deformation model from temporal data. Instead, we model
the mouth interior as a closed, irregularly shaped triangular mesh.
Samples in its interior are deformed using two rigid ‘jaw’ regions
delineated by planes, one placed just below the top teeth and one
just above the bottom teeth (see Figure 6). Samples above the top
plane are moved by the motion of the head, while samples below
the bottom plane are moved together with the jaw. We decide not
to support the tongue at this time, and therefore assume the space
between the planes is empty and we do not render the samples that
fall in that region.

5 IMPLEMENTATION
We use a solution similar to FastNeRF [Garbin et al. 2021] as its
high performance allows the whole system to run in real-time on
a Nvidia RTX 3090 GPU. Compared to FastNeRF, we increase the
layer width of the position-dependent network to 512 and the num-
ber of frequency encodings of that network to 12 with the goal
of improving render quality. We also reduce the size of the view-
dependent network to 2 layers consisting of 8 units each to mitigate

overfitting. Finally we modify FastNeRF’s rendering infrastructure
by substituting the density-derived collision mesh with the tetrahe-
dral geometry of Section 3.2 with 8908 vertices and 39179 tetrahedra
for the faces and lower resolution meshes for the various synthetic
scenes.
We use the Adam optimizer [Kingma and Ba 2014] to train our

models with a least-squares RGB loss. For faces we add a sparsity-
promoting term to the loss.

Sparsity terms for faces. We use additional sparsity terms to
deal with incorrect background reconstruction and reduce arte-
facts arising from disocclusions2 in the mouth interior region. We
use the following Cauchy loss on the density 𝜎 along rays, as in
SNeRG [Hedman et al. 2021]:

L𝑠 =
𝜆𝑠

𝑁

∑︁
𝑖,𝑘

log
(
1 + 2𝜎 (r𝑖 (𝑡𝑘 ))2

)
, (7)

where 𝑖 indexes rays r𝑖 shot from the training cameras, 𝑘 indexes
samples 𝑡𝑘 along each of the rays, 𝑁 is the total number of samples,
and 𝜆𝑠 is a scalar hyperparameter. To ensure the space is evenly
covered by the sparsity loss, we only apply it to the coarse samples.
In our experiments we use 128 coarse samples, 64 fine samples.
We apply the sparsity loss in two regions: in the volume sur-

rounding the head and in the mouth interior. Applied to the volume
surrounding the head, the sparsity loss prevents opaque regions ap-
pearing in areas where there is not enough multi-view information
to disentangle foreground from background in 3D. To detect these
regions, we apply the loss to (1) samples which fall in the tetrahe-
dral primitives as this is the only region we render at test-time, and
(2) samples which belong to rays which fall in the background in
the training images as detected by 2D face segmentation similar
to [Wood et al. 2021] of the training images.
We also apply the sparsity loss to the coarse samples that fall

inside the mouth interior volume. This prevents the creation of
opaque regions inside the mouth cavity in areas that are not seen at
training, and therefore have no supervision, but become disoccluded
at test time.
We set 𝜆𝑠 = 10−4 for the volume surrounding the head and use

𝜆𝑠 = 2 × 10−6 for the mouth interior.
Disoccluded mouth interior colour. The sparsity loss inside

the mouth interior ensures there is no unnecessary density inside
the mouth interior. However, the colour behind the regions which
were occluded at training time remains undefined, resulting in vi-
sual artefacts when these regions are disoccluded at test-time. We
mitigate this by overriding the colour and density of the last sample
along each ray that falls in the mouth interior. We set the rendered
colour to match the colour visible between the teeth in the training
frame.

5.1 Sampling
NeRF [Mildenhall et al. 2020] uses both a coarse and a fine MLP to
approximate opacity functions at coarse and fine resolutions. First,
𝑁𝑐 samples are evaluated by the first network to obtain a coarse
estimate of the densities along the ray. This estimate guides a second
round of 𝑁𝑓 samples, placed according to the normalised weights
2Disocclusion is a situation where a previously occluded object becomes visible.



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 9

Ground truth

Coarse weight pdf

Ray Coarse sample locations Sampling bin boundaries

NeRF sampling region

Boundaries missed

Proposed sampling region

Fig. 7. NerF’s per-ray sampling aims to accurately capture the ground truth
density (top). The first set of samples (red ticks) are used to obtain a coarse
estimate. The second set of samples is placed according to the estimated
contribution to the ray colour (second row, blue). NeRF’s second round of
sampling (third row, red arrow) takes samples from bins defined by mid-
points between the coarse samples (black ticks). This leads to errors (third
row, black arrows) when using the same network for the coarse and fine
samples. We propose to extend the boundaries of the sampling bins (third
row, green arrow) to avoid these artefacts.

𝑤𝑖 = 𝑤𝑖/
∑
𝑖 𝑤𝑖 (with 𝑤𝑖 defined as in Equation 1) of the coarse

stage. The fine network is then queried at both coarse and fine
sample locations, leading to 𝑁𝑐 evaluations in the coarse network
and 𝑁𝑐 + 𝑁𝑓 evaluations in the fine network. During training, both
MLPs are optimised independently, but only the samples from the
fine one contribute to the final pixel colour.
We would like to to improve efficiency by avoiding querying

the fine network at the locations of coarse samples and instead
reusing the output from the first round of coarse samples. Using
two networks, this would result in the coarse network modelling
the overall appearance of the scene and the fine network only the
areas of high density. Since we use FastNeRF, a single cache has
to be distilled for the whole scene. With two MLPs, there isn’t a
single network that encodes both high-frequency detail and covers
all required space. Thus, we use a single network for both sampling
stages.
We found that making the change to a single network without

other adjustments leads to artefacts due to the way the reference
implementation of NeRF’s hierarchical sampling works. As shown
in Figure 7, areas around segments of a ray that have been assigned
high weights can be clipped. Clipping can occur because the bin
placement for drawing the fine samples treats density like a step
function at the sample location instead of a point estimate of a
smooth function. We hypothesise [Mildenhall et al. 2020] did not
observe this because the coarse network learns a lower-frequency
function due to never being sampled at the refined locations. Our
solution is to increase the size of bins used in the fine sampling stage.
This makes an assumption of the density being smooth, which is in
line with recent findings on volumes with exponential transmittance
[Vicini et al. 2021b].

We note that addressing sample efficiency and aliasing in Neu-
ral Radiance Fields has been the topic of other works, e.g. Mip-
NeRF [Barron et al. 2021]. Our changes are complementary to this
approach and should be applicable to most NeRF-like methods using
two-stage sampling.

6 EXPERIMENTS
We conduct evaluation on both synthetic data with easy to interpret,
procedural motion to motivate the need for our method, as well
as more challenging real data of human faces using blendshape
animation. Note that human faces are a particularly difficult case
due to a non-trivial combination of rigid and (visco)elastic motion.
Ablations further help explain the motivation for design choices.

Please note that all timings were evaluated on a single RTX 3090
GPU, and that our models are implemented in pytorch with custom
extensions for tetrahedral lookups and FastNeRF, following the
implementation of [Garbin et al. 2021].

6.1 Synthetic Data
6.1.1 Baseline Comparison. To demonstrate why explicit volume
deformation methods such as ours are needed despite the existence
of seemingly powerful coordinate-based deformation models, we
first create a simple dataset of a propeller undergoing a continuous
compression and rotation. The compression motion can be thought
as a very simple linear blendshape model, whereas rotation is part
of joint-based animation models. For both types of deformation,
we render 48 consecutive temporal frames for 100 cameras. These
frames do not exhibit random motion. Rather, successive frames
can be thought of as successive time steps of a realistic animation
representing small increments per frame of the respective type of
motion.
We train D-NeRF [Pumarola et al. 2020] on this dataset with

access to every other temporal frame for the interpolation test, and
access to the first half of the frames for the extrapolation test. For
our model, we train only on the first frame for which we supply a
coarse tetrahedral mesh, which can be considered the ’rest‘ state.
The base tetrahedral geometry is trivial to extract from NeRF’s
density field as described in Section 4.1 and its animation can be
produced in off-the-shelf software or programatically. The coarse
tetrahedral mesh is illustrated in Figure 8 in its rest state on the left,
and rotated by 45 degrees on the right. We report the mean PSNR
and LPIPS on both interpolation of every other frame (unseen in
training) and extrapolation over time (second half of the frames,
unseen in training) in Tables 2 and 3. Qualitative results are shown
in Figure 9.
Despite having access to significantly more data and using posi-

tional encoding on the time signal, the D-NeRF baseline is unable
to capture the rotational motion at all (Table 2), and fails to extrapo-
late on the compression as well (Table 3). In contrast, our method
handles both compression and rotation well, albeit with baked-in
illumination from the training frame. Using FastNeRF as the ren-
dering method, VolTeMorph is also substantially faster, producing
images at around 10ms a frame with resolution 512 × 512, as op-
posed to seconds for the baseline (these times do not include the
posing of the tetrahedral mesh which is done offline for this set of



10 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

Fig. 8. Coarse Tetrahedral Cage (roughly 2K elements) of the ’propeller’
dataset, in ’rest‘ state of the left, and rotated counter clockwise by 45

degrees on the right. Propeller mesh shaded for illustration only.

Method
Spinning

Interpolation Extrapolation
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

D-NerF 16.63 0.265 12.78 0.346
Ours 27.72 0.022 29.87 0.014

Table 2. Quantitative evaluation on the propeller undergoing a spinning
motion. While our system performs equally well for interpolation and ex-
trapolation, D-NeRF [Pumarola et al. 2020] fails to learn a model that is
able to handle rotational motion.

Method
Compression

Interpolation Extrapolation
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

D-NerF 34.22 0.004 17.87 0.108
Ours 31.68 0.007 29.83 0.009

Table 3. Quantitative evaluation on the propeller undergoing compression.
It is interesting to note that unlike our system, the baseline is trained on
multiple temporal frames and hence observed appearance changes due to
e.g. change in relative orientation of the lighting with respect to the object.
This extra supervisory signal allows the baseline to interpolate a bit better
than our system. When it comes to extrapolating, the baseline fails where
our systemmaintains a similar level of quality compared to the interpolation
regime.

experiments, see Section 6.5 for a more detailed performance eval-
uation). Such speeds are possible as MLP evaluations are avoided
entirely when FastNeRF and VolTeMorph are used in combination.

6.1.2 Generalisation to other Types of Deformation. One of the
strengths of VolTeMorph is that once a static model is trained, we
can generalise to any geometric deformation that can be expressed
with the tetrahedral field constructed from its density. This opens
new possibilities to use volumetric models in games or AR/VR con-
texts where a user’s manipulation of the environment is not known
a priori. To illustrate the generalisation power of VolTeMorph, we
use the Finite Element Method to apply physical simulations to the
tetrahedral mesh and thereby the scene. This allows us to demon-
strate effects that have previously eluded volumetric models, such
as elastic deformation (Figure 10) and shattering (Figure 11).

D-NerF Ours GT

(a) Interpolation: horizontal compression

(b) Extrapolation: horizontal compression

(c) Interpolation: rotation

(d) Extrapolation: rotation

Fig. 9. Qualitative comparison on the ’propeller’ dataset. These test results
show that D-NerF [Pumarola et al. 2020] can handle the interpolation of
compressing well (shown in a) but not extrapolation (b), and fails to handle
rotations both interpolation (c) and extrapolation (d), while ours can handle
all well.

6.2 Face Data
Our multi-view face data is acquired with a camera rig that cap-
tures synchronized videos from 31 cameras at 30 fps. These cameras
are located 0.75–1 m from the subject, with viewpoints spanning
270◦ around their head and focusing mostly on frontal views within
±60◦. Illumination is not uniform. All the images are down-sampled
to 512×512 pixels and colour corrected to have consistent colour
features across cameras. We estimate camera poses and intrinsic pa-
rameters with a standard structure-from-motion pipeline by Agisoft
Metashape ®3.

For the experiments, we captured speech sequences with natural
head motion for four subjects. Half the subjects additionally per-
formed various facial expressions and head rotations. To train the
models for each subject we use the face tracking result from the

3https://www.agisoft.com/



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 11

Fig. 10. The NeRF ficus undergoing elastic deformation. Top row : Simplified
view of the tetrahedral cage surrounding the density mesh extracted from
the static scene. Bottom row : Rendered result. Best viewed zoomed in.

Fig. 11. The NeRF chair shattering. Top row : Simplified view of the tetra-
hedral cage surrounding the density mesh extracted from the static scene.
Bottom row : Rendered result, note that the mesh is larger than the object
contained within it. Best viewed zoomed in.

multi-view system described in [Wood et al. 2022] and images from
multiple cameras at a single time-instance (frame). The frame is
chosen to satisfy the following criteria: 1) a significant area of the
teeth is visible and the bottom of the upper teeth is above the top of

the lower teeth to place a plane between them, 2) the subject looks
forward and some of the eye white is visible on both sides of the
iris, 3) the face model fit for the frame is accurate, 4) the texture of
the face is not too wrinkled (e.g. in the nasolabial fold) due to the
mouth opening. The last point is important because our system does
not account for expression-dependant appearance changes, and we
cannot train it with a frame where the mouth opening creates strong
appearance changes that are only visible for certain expressions.
When a single frame satisfying constraints 1–4 is not available, we
use two frames: a frame where the user has a neutral expression
looking forward that satisfies 2–4 to train everything but the mouth
interior, and a frame with the mouth open and that satisfies 1 and 3
to train the mouth interior.

To evaluate the ability of the baselines and our model to generate
novel views, we exclude views from two cameras from training
and reserve them for testing. To evaluate the ability of the models
to animate the avatars, we use 600 consecutive frames from the
captures that exclude training and use them as ground truth for
quantitative metrics. Additionally, we evaluate qualitatively an end-
to-end system with videos of two of the subjects talking in front of
a webcam and performing various facial expressions. We use the
real-time monocular face tracker system described in [Wood et al.
2022] to track the users’ face, and animate their avatars in a virtual
presence application.

6.3 Qualitative results on faces
We first show qualitative results of face avatars performing various
expressions in Figure 12. Our method nicely separates the head from
the background, without the use of a green screen. Our volumetric
3DMM model allows to seamlessly generate consistent and photo-
realistic expressions across different identities. Furthermore, by
incorporating an implicit representation of the surface model, we
are able to render hair effortlessly. The underlying face model allows
to synthesize new expressions and poses for each avatar. Our mouth
interior model produces plausible images, including expressions
with an open mouth and showing teeth (e.g., the third column).

Being able to render photo-realistic content driven by a self-
recorded webcam sequence is an essential step toward creating a
telepresence system (scalable rendering). Therefore, we evaluated
our method qualitatively with animations driven by webcam record-
ings. In these recordings, the subject is sitting frontal to the camera
(either a laptop camera or an external webcam camera). In the first
part of the capture, each subject was asked to vocalise a number
of sentences. In the second part, we asked the subjects to enact a
couple of facial expressions, head motions and eye movements. The
per-frame expression and pose parameters of these sequences are ob-
tained using the monocular face tracker system described in [Wood
et al. 2022], with identity parameters taken (and fixed) from the
multi-view fitting result of the training frame (see Section 6.2). The
resulting avatars from these sequences and their corresponding
webcam images are shown side-by-side in Figure 13.



12 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

Fig. 12. Avatars of three subjects rendered from viewpoints not seen at training time. Each column shows activation of a single facial expression blendshape
with all the other blendshape values set to 0. Note that each expression is consistent for all three identities.

Fig. 13. Avatars of two subjects rendered from their webcam recording. In
the first part of webcam recordings, each subject speaks and moves their
head naturally. In the second half, each subject was asked to enact various
facial expressions and head motions.

6.4 Comparison to State of the Art
Our baseline method for quantitative evaluation on faces is Neural
Head Avatars [Grassal et al. 2022], a method that learns a deforma-
tion and a texture on top of the FLAME [Li et al. 2017] model from
RGB videos. This 3DMM model defines a mesh of the face that is
controlled by identity, pose, and expression parameters estimated
by a face tracker. As the mesh only describes the coarse geometry
of the face, it is refined by subdivision and deformed with a learned
per-vertex deformation to create a finer mesh where the learned

texture is applied. To train [Grassal et al. 2022] we use 1000 frames
from a frontal camera and test it for both animation and novel-view
synthesis on different 600 frames from the same clip. We use the
code provided by the authors and adapted the data and training
setup to match their input format.

Both our method and [Grassal et al. 2022] use a 3DMM face model
to control face deformations, but we use an implicit representation
of the surface while [Grassal et al. 2022] uses an explicit mesh. As a
result, we are able to better represent fine geometry details like hair
that is hard to accurately capture using meshes, see Figure 14. Our
renders are also sharper because we train the model from a single
frame, while [Grassal et al. 2022] depends on accurate face tracking
across multiple frames. Small errors in tracking directly translate to
a degradation in the sharpness of the learned textures.

Figure 14 evaluates the avatar animation from the training view:
our avatars look more realistic across different subjects and expres-
sions, and our special treatment of the mouth interior produces
plausible results for expressions with the mouth wide open where
[Grassal et al. 2022] faces significant quality degradations. Both
methods share limitations caused by using the parameters of a
3DMMmodel to control deformations and a face tracker to estimate
those parameters: visual quality degrades when parts of the images
are not modelled by the face model, e.g. when the user’s tongue
becomes visible, or when the face tracker does not accurately track
extreme or small expressions like eye closures.

We evaluate quantitatively the animation ability of both methods
by measuring the PSNR and LPIPS to ground truth images over the
head region and report results in Table 4. Our method has better
PSNR than [Grassal et al. 2022] by about 0.1dB and offers a 10%



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 13

representative renders open mouth extreme expressions eye tracking and tongue failures

gr
ou

nd
tru

th
[G

ra
ss
al
et

al
.2
02
2]

ou
rs

Fig. 14. Comparison to Neural Head Avatars [Grassal et al. 2022], a method that learns a deformation and texture on top of a 3DMM face model to animate
avatars. The first 3 columns show renders of representative quality for both methods. Unlike our method, Neural Head Avatars learns a deformation on top of
a mesh and has difficulties representing structures that can open, close, or fold like the mouth or eyelids (columns 4 and 5) or fine details like the hair and the
ears. Both methods rely on an accurate face tracker and a 3DMM to deform the avatar, this leads to limitations when the face model cannot capture extreme
expressions or deformations of the tongue (columns 5–8). To focus the comparison on animation, the renders use the training camera used for training the
neural head avatars baseline.

train view test view test view train view test view test view

[G
ra
ss
al
et

al
.2
02
2]

ou
rs

Fig. 15. Comparison to neural head avatars in terms of novel-view rendering. Neural head avatars [Grassal et al. 2022] learns a deformation and texture on
top of a 3DMM face model from a RGB video with 1000 frames obtained from a single view. Even though the training video contains head rotation, the
learned model is highly biased towards the frontal view from the training camera (column 1 and 4) and cannot produce realistic novel views from camera
poses noticeably different than the training one (first row, columns 2, 3, and 5, 6). In contrast, our model generalizes well to novel views unseen at training
time (second row, columns 2, 3 and 5, 6) because it is trained from a single frame of a multi-camera capture and does not depend on accurate face tracking
over time to learn multi-view geometry.



14 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

Deformation network Ours

O
pe
ni
ng

m
ou

th
Cl
en
ch
in
g

Ch
ee
k
ra
isi
ng

Fig. 16. Extrapolation using a deformation network on expressions unseen during training e.g. mouth opening, clenching, and puffing does not yield
satisfactory results. The baseline presented here is very similar to [Pumarola et al. 2020], where we introduce a coordinate-based MLP conditioned on the
parameters of the face model to learn a deformation of the samples into canonical space, where a NeRF network is trained. The baseline can only open the
mouth as wide as it has seen during training and produce incorrect deformation for unseen expressions (no deformation for clenching, unrelated deformation
for cheek raising). Our method, on the contrary, can open the mouth beyond the examples seen in training and generalize to unseen expressions by leveraging
the deformations defined by the Vol3DMM face model.

Method PSNR ↑ LPIPS ↓
NHA [Grassal et al. 2022] 30.06 0.032

Ours 30.20 0.029
Table 4. Mean PSNR and LPIPS for all the subjects in the face dataset. The
metrics are computed inside a mask derived from foreground/background
segmentation masks extracted from each method individually.

improvement in LPIPS. This matches with the qualitative results
of Figure 14: while a pixel-to-pixel comparison like PSNR shows a
moderate improvement over the baseline, a metric measuring patch
statistics and able to measure sharpness like LPIPS shows a marked
improvement and captures human perception.
Figure 15 shows the ability of the models to generate realistic

novel views for two different subjects, the first one trained on a
clip with natural speech and the second one trained on a clip with
head rotation and speech. The ability of [Grassal et al. 2022] to
generate novel views depends highly on the amount of head rotation
available in the training clip: it obtains realistic and consistent novel
views for the second subject trained with head rotation, while it
produces unrealistic renders for views little seen at training for the
first subject trained with a speech clip. Our method produces good
quality renders from novel views because it is trained on multiple
view points from a single frame, and the renders are still sharper
and more photorealistic.
We further compare our method with models that use condi-

tioning to deform a neural radiance field in Figure 16. We train a
deformable NeRF model similar to [Pumarola et al. 2020] by condi-
tioning an MLP on the parameters of the face model and using it to

deform samples from physical space into a canonical pose where
a standard NeRF model is trained. We use conditioning with a de-
formation network, as opposed to directly conditioning NeRF as in
[Gafni et al. 2021], because the 3DMM face parameters only describe
geometric deformations and have considerably less impact on ap-
pearance. In particular, we condition a coordinate-based MLP on the
expression and pose parameters of the 3DMM model and added an
inductive bias with a regularizer that constrains the canonical pose
to a zero deformation that matches the 3DMM structure. Figure 16
compares the ability to extrapolate of our model as compared to the
baseline with three different expressions: mouth opening, clenching,
and cheek raising. The baseline can only open the mouth as wide
as it has seen during training, and does not produce meaningful
deformations for the unseen expression of clenching and cheek
raising. Our method can open the mouth beyond the examples seen
in training and generalise to unseen expressions by leveraging the
deformations defined by the 3DMM face model. This highlights
the main limitation of methods built on conditioning: they do not
generalise beyond expressions seen at training time because they
require a lot of samples to cover the high dimensional space of
expressions and pose (240 dimensions) to work well. Moreover, gen-
eralising to unseen expressions with minimum amount of training
data demonstrates scalable enrolment capabilities. None of our cap-
tures (1000-2000 frames) was long enough to provide meaningful
quantitative metrics for this baseline.

6.5 Analysis of performance
One of the key aspects of a scalable rendering method is how fast it
can render and whether it reaches a frame rate that allows for easily



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 15

Setting Rendering time in ms
Python time C++ time Total time

1280×720; cache 1024 14.79 15.68 30.47
1280×720; cache 512 14.34 12.09 26.43
854×480; cache 1024 14.40 9.39 23.79
854×480; cache 512 13.84 6.90 20.74

Table 5. Rendering times for VolTeMorph combined with FastNeRF for a
single frame averaged over all frames of a webcam video sequence. All the
times are in milliseconds, cache size refers to the position-dependent cache
size of FastNeRF, view direction dependent cache size was set to 256 in all
cases.

interacting with the scene, what one could call an "interactive frame
rate". In this section, we evaluate the combination of VolTeMorph
and FastNeRF in this aspect. To do so, we render one of the webcam
sequences used in Section 6.3 under two different resolutions and
cache sizes. Cache size is a key aspect of FastNeRF that trades quality
and memory for speed, for additional details please see the FastNeRF
paper.

The total renderings times, shown in Table 5, indicate that VolTe-
Morph can render at over 30 frames per second even at high res-
olution and with a very large cache, while it can be significantly
faster for lower cache sizes and lower resolutions. In fact, we believe
that VolTeMorph could be significantly faster with an optimised
implementation, especially because only a part of our rendering
pipeline is currently implemented in CUDA/C++ and a large part of
it is unoptimised and implemented in Python. To give an indication
of possible performance gains, we report how the total rendering
time is split between Python and CUDA/C++ for each scenario in
Table 5. The time spent in Python constitutes 49% or more of the
total rendering time for each setting, indicating that there may be
a lot of opportunity to further optimise the code. Moreover, the
Python time is quite consistent for all the settings as most of our
Python computation is independent of the image size (for example
posing of the tetrahedral mesh).

6.6 Ablation studies
Accounting for changes in view direction To evaluate the im-
portance of rotating the view directions with the rotation of tetrahe-
dra (Section 3.3) we show a series of face images rendered with and
without this feature in Figure 17. All these images are rendered with
the same camera pose and the only varying factor is the pose of the
head relative to the neck. The renders where view directions were
not rotated show specular reflections that are ‘attached’ to the face
surface and move together with the head, which creates uncanny
effects, including implausible specular patterns on the side of the
head and temple. When we rotate view directions according to the
rotation of the tetrahedra, as proposed in section 3.3, the specular
reflections are no longer attached to the face surface and the images
look more plausible.
Geometry model for mouth interior.
Figure 18 qualitatively compares the appearance of the mouth

interior between our geometric model driven by two planes and a
model that naively deforms the mouth interior with tetrahedra. A

N
aï
ve

O
ur
s

Fig. 17. View dependent effects. A face rendered under different head
poses in a static camera with view directions rotated by the tetrahedral
mesh (top) and with non-rotated view directions (bottom). The face with
an approximately neutral head pose is similar across both scenarios as this
pose is close to the one seen in the enrolment frame. Other head poses show
a fixed position of the specularities when view directions are not rotated
based on the motion of the tetrahedral mesh.

N
aï
ve

O
ur
s

Fig. 18. Mouth interior. A face with the mouth progressively opening (left
to right) trained and rendered using a geometric two-plane model for the
mouth interior (top) and with a naive fully tetrahedral model (bottom).
Two-plane model for the mouth interior allows for accurate modelling of the
teeth appearance and motion, while the fully tetrahedral approach results
in artefacts due to teeth being stretched and compressed.

fully tetrahedral model stretches and compresses the teeth, resulting
in artefacts and incorrect appearance. In contrast, our geometric
model of the mouth interior driven by two planes correctly models
the appearance of the teeth as the mouth opens.

Sparsity. Figure 19 qualitatively compares the impact of our
sparsity losses for the space around the head and for the mouth
interior. Without a sparsity loss there is density present in the vol-
ume surrounding the head because limited training views result in
an incorrect reconstruction of the background. Applying a sparsity
loss to the background samples that fall in the tetrahedra removes
that volume. Similarly, when the mouth is open beyond the train-
ing frame, white density appears in disoccluded regions inside the
mouth when the sparsity loss is not applied. Applying a sparsity
loss to the volume inside the mouth interior results in removal of
this spurious density, and allows for controlling the colour observed
when the mouth is open beyond the training frame.

Sampling. To evaluate the impact of our improved sampling
strategy, we use NeRF Synthetic datasets [Mildenhall et al. 2020]
and static versions of our face datasets (30 images from a single



16 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin
w
/o

sp
ar
sit
y

O
ur
s

(a) Density around the head (b) Density in the mouth interior

Fig. 19. Four face avatars trained with (top) and without (bottom) sparsity
losses. Sparsity losses successfully remove the incorrectly reconstructed
background density (first two columns) and spurious density inside the
mouth interior visible due to disocclusions (second two columns). Images in
(b) best viewed zoomed in.

Method NeRF Synthetic Faces
Two MLPs 29.32 36.31

One MLP, NeRF HS 29.49 36.25
One MLP, our HS 29.48 36.58

Table 6. Effect of number of networks and hierarchical sampling method
on novel-view synthesis of static scenes, as evaluated with Peak Noise-to-
Signal Ratio (PSNR) on NeRF synthetic scenes [Mildenhall et al. 2020] and
a single frame from each of the four face datasets.

timestamp in each of the four faces). We train models for three
different scenarios each with the same number total network eval-
uations per ray: (1) two-network setting with 64 samples for the
coarse network and 64 samples for the fine network, (2) one-network
setting with 128 coarse samples and 64 fine samples with NeRF’s
hierarchical sampling, and (3) one-network setting with our pro-
posed hierarchical sampling. Figure 21 compares qualitatively the
three sampling strategies for novel-view rendering. Our sampling
strategy results in sharper images than the two-MLP setting because
we double the number of coarse samples and it removes the banding
artefacts of a single MLP with NeRF’s hierarchical sampling because
it does not underestimate boundaries. This observation is supported
by quantitative results in Table 6.

7 LIMITATIONS AND FUTURE WORK
Our method has three main limitations. First, the interpolation in
our volumetric meshes is linear, and so very large or intricate defor-
mations require high resolution geometry. This can be addressed by
using techniques such as [Ju et al. 2005] at increased computational
cost. Second, our acceleration requires hardware ray tracing for
best performance. While ubiquitous in high-end desktop hardware,
mobile devices still mostly lack such implementations. Finally, our
method assumes no self-intersections of the geometry, similar to
what tetrahedral FEM models require. This means care has to be
taken when constructing the geometry to avoid visual artefacts.

(a) Failure because mouth interior and closed eyelids unseen in training.

(b) Failures because lips and eyelids are poorly fit in training.

(c) Failure because tetrahedra on eyeballs and eyelids share deformation.

Fig. 20. Limitations our method a) cannot accurately generate the ap-
pearance of regions unseen in training e.g. the mouth interior, b) requires
good alignment of the fitted face model to the training frame(s) to ensure
that face regions deform as intended by the face model, and c) constrains
eyeballs and eyelids to move jointly which can create unrealistic stretching
of the eye region for extreme gaze or lid motions.

VolTeMorph applied to objects. For the experimentswith generic
objects, we defined the topology and the position of vertices of the
tetrahedral mesh in a partly manual process. Future work includes
using machine learning to automatically predict the position of the
vertices of the tetrahedra [Yifan et al. 2020] and support for pose
dependent appearance.

VolTeMorph applied to avatars. Our model has three failure
modes when applied to faces: unseen regions, poor fit of training
frame, shared deformation of eyeballs and eye region. Our model
cannot generate regions unseen in training: expressions that expose
all the teeth, lip interior, or complete eyelids results in artefacts or
unrealistic stretching of the region, as shown in Figure 20a. Our
model relies on an accurate fit of the training frame to deform the
samples into a canonical pose. This is specially important for regions
with large motion, like the lips and eyes, as errors in the fit result
in wrong deformation of the samples and a canonical pose where
multiple face regions collide. For instance in 20b, a poor fit around
the lips deforms the teeth with the lips and learns a canonical pose
where teeth are inpainted on the lip and lips inpainted on teeth. A
poor fit around the eyelids can result in avatars that do not to fully
close the eyes because some of the eyeball is inpainted into the lid.
Finally, in our model, the motion of the eyeballs and the eye region
are all controlled by the same set of tetrahedra. As a result, gaze
motion in the eyeballs leaks to the boundary between eyes and lids.



VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations • 17

(a) 2 MLPs (b) 1 MLP, NeRF HS (c) 1 MLP, our HS (d) Ground truth

Fig. 21. Novel-view renders using different sampling strategies with a fixed total number of network evaluations. The default strategy of using two Multi-Layer
Perceptrons (MLPs) ((a), first column), does not use the samples in an efficient way, missing thin structures like the bottom teeth. Naively using a single
network with the default hierarchical sampling (HS) of NeRF ((b), second column) can improve sharpness, but leads to ring-like artefacts, for example, on the
lip or on the brown strip in the mic scene. Using one network with our proposed hierarchical sampling ((c), third column) improves the sharpness on the eyes,
teeth and fine mic structure while avoiding the artefacts. The number in blue in the bottom-left corner of each image is the Peak Signal-to-Noise Ratio (PSNR)
of the render or its crop.

Similarly, motion of the eyelids can leak into the eyeballs and stretch
them. Figure 20c shows examples of both failure cases. Future work
includes leveraging a generative photo-real head model [Cao et al.
2022; Wang et al. 2022] and to move away from the multi-view
single frame regime to the monocular multi-frame regime, which
is effectively the setup used by [Cao et al. 2022; Gafni et al. 2021;
Grassal et al. 2022; Park et al. 2021a].

8 CONCLUSIONS
In this work we introduced VolTeMorph, the first volumetric system
capable of generating photo-realistic dynamic content that can be
enrolled from a limited amount of data, can be controlled using
established control mechanisms like physics-based simulation and
blendshapes, can render in real-time, and can support both objects
and avatars. We presented applications of our system to dynamic
objects and avatars that experimentally improve on the state of the
art and show the versatility of our framework. We believe these
promising results demonstrate the potential of VolTeMorph for
developing high quality immersive experiences in the Metaverse,
AR, and VR.

REFERENCES
ShahRukh Athar, Zexiang Xu, Kalyan Sunkavalli, Eli Shechtman, and Zhixin Shu. 2022.

RigNeRF: Fully Controllable Neural 3D Portraits. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 20364–20373.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for
Anti-Aliasing Neural Radiance Fields. ICCV (2021), 5855–5864.

Chen Cao, Tomas Simon, Jin Kyu Kim, Gabe Schwartz, Michael Zollhoefer, Shunsuke
Saito, Stephen Lombardi, Wei, Shih-En Belko, Shoou-I Danielle Yu, Yaser Sheikh,
and Jason Saragih. 2022. Authentic Volumetric Avatars From a Phone Scan. In ACM
Siggraph 2005 Papers.

Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. 2021.
SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit

Shapes. In International Conference on Computer Vision (ICCV).
Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5501–5510.

GuyGafni, Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2021. Dynamic Neural
Radiance Fields for Monocular 4D Facial Avatar Reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 8649–8658.

Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire, and Sanja
Fidler. 2020. Learning deformable tetrahedral meshes for 3d reconstruction. Advances
In Neural Information Processing Systems 33 (2020), 9936–9947.

Stephan J Garbin,Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin.
2021. Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 14346–14355.

Jorge Gascón, José Miguel Espadero, Alvaro G. Perez, Rosell Torres, and Miguel A.
Otaduy. 2013. Fast Deformation of Volume Data Using Tetrahedral Mesh Raster-
ization. In Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation. http://www.gmrv.es/Publications/2013/GEPTO13

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. 2017.
Convolutional sequence to sequence learning. In International conference on machine
learning. PMLR, 1243–1252.

Philip-William Grassal, Malte Prinzler, Titus Leistner, Carsten Rother, Matthias Nießner,
and Justus Thies. 2022. Neural head avatars from monocular RGB videos. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
18653–18664.

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul E.
Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. 2021
IEEE/CVF International Conference on Computer Vision (ICCV) (2021), 5855–5864.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed
triangular meshes. In ACM Siggraph 2005 Papers. 561–566.

James T. Kajiya and Brian P Von Herzen. 1984. Ray Tracing Volume Densities. In
Proceedings of the 11th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’84). Association for Computing Machinery, New York, NY,
USA, 165–174. https://doi.org/10.1145/800031.808594

Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias
Nießner, Patrick Pérez, Christian Richardt, Michael Zollöfer, and Christian Theobalt.
2018. Deep Video Portraits. ACM Transactions on Graphics (TOG) 37, 4 (2018), 163.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. 2017. Learning a
model of facial shape and expression from 4D scans. ACM Transactions on Graphics
(ToG) 36, 6 (2017), 194:1–194:17. https://doi.org/10.1145/3130800.3130813

http://www.gmrv.es/Publications/2013/GEPTO13
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/3130800.3130813


18 • Stephan J. Garbin, Marek Kowalski, Virginia Estellers, Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen, Matthew Johnson, and Julien Valentin

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural sparse voxel fields. Advances in Neural Information Processing Systems 33
(2020), 15651–15663.

Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and
Christian Theobalt. 2021. Neural Actor: Neural Free-view Synthesis of Human
Actors with Pose Control. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.

Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep appear-
ance models for face rendering. ACM Transactions on Graphics (ToG) 37, 4 (2018),
1–13.

Stephen Lombardi, Tomas Simon, Jason M. Saragih, Gabriel Schwartz, Andreas M.
Lehrmann, and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable
Volumes from Images. CoRR abs/1906.07751 (2019). arXiv:1906.07751 http://arxiv.
org/abs/1906.07751

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh,
and Jason Saragih. 2021. Mixture of Volumetric Primitives for Efficient Neural
Rendering. ACM Transactions on Graphics (ToG) 40, 4, Article 59 (jul 2021), 13 pages.
https://doi.org/10.1145/3450626.3459863

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM transactions on
graphics (TOG) 34, 6 (Oct. 2015), 248:1–248:16.

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (aug 1987),
163–169. https://doi.org/10.1145/37402.37422

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. CoRR abs/2201.05989
(2022). arXiv:2201.05989 https://arxiv.org/abs/2201.05989

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural Importance Sampling. ACM Transactions on Graphics (ToG) 38, 5,
Article 145 (oct 2019), 19 pages. https://doi.org/10.1145/3341156

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting Triangular 3D Models,
Materials, and Lighting From Images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8280–8290.

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Dan B Bouaziz, Sofien an Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2021a. Nerfies: Deformable Neural
Radiance Fields. Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021), 5865–5874.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021b. HyperNeRF:
A Higher-Dimensional Representation for Topologically Varying Neural Radiance
Fields. ACM Trans. Graph. 40, 6, Article 238 (dec 2021).

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM
Transactions on Graphics (ToG) 29, 4, Article 66 (jul 2010), 13 pages. https://doi.org/
10.1145/1778765.1778803

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and
Xiaowei Zhou. 2021. Neural body: Implicit neural representations with structured
latent codes for novel view synthesis of dynamic humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9054–9063.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. 2020.
D-NeRF: Neural Radiance Fields for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 10318–10327.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape
Synthesis. In Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.
Curran Associates, Inc., 6087–6101. https://proceedings.neurips.cc/paper/2021/file/
30a237d18c50f563cba4531f1db44acf-Paper.pdf

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:
A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH ’12). Association for
Computing Machinery, New York, NY, USA, Article 20, 50 pages. https://doi.org/
10.1145/2343483.2343501

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459–5469.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and RenNg. 2020. Fourier
features let networks learn high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems 33 (2020), 7537–7547.

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred Neural Rendering:
Image Synthesis Using Neural Textures. ACM Transactions on Graphics (ToG) 38, 4,

Article 66 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.3323035
Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lass-

ner, and Christian Theobalt. 2021. Non-Rigid Neural Radiance Fields: Reconstruction
and Novel View Synthesis of a Dynamic Scene From Monocular Video. In IEEE
International Conference on Computer Vision (ICCV). IEEE, 12959–12970.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021a. A Non-Exponential Trans-
mittance Model for Volumetric Scene Representations. Transactions on Graphics
(Proceedings of SIGGRAPH) 40, 4 (Aug. 2021), 136:1–136:16. https://doi.org/10.1145/
3450626.3459815

Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021b. A Non-Exponential Trans-
mittance Model for Volumetric Scene Representations. ACM Trans. Graph. 40, 4,
Article 136 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459815

Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci. 2019.
RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing Cores for
Tet-Mesh Point Location. In High-Performance Graphics - Short Papers, Markus
Steinberger and Tim Foley (Eds.). The Eurographics Association. https://doi.org/
10.2312/hpg.20191189

Daoye Wang, Prashanth Chandran, Gaspard Zoss, Derek Bradley, and Paulo Gotardo.
2022. In SIGGRAPH.

Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman,
and Jamie Shotton. 2021. Fake it till you make it: face analysis in the wild using
synthetic data alone. In Proceedings of the IEEE/CVF international conference on
computer vision. 3681–3691.

ErrollWood, Tadas Baltrusaitis, Charlie Hewitt, Matthew Johnson, Jingjing Shen, Nikola
Milosavljevic, Daniel Wilde, Stephan Garbin, Toby Sharp, Ivan Stojiljkovic, Tom
Cashman, and Julien Valentin. 2022. 3D face reconstruction with dense landmarks.
https://doi.org/10.48550/ARXIV.2204.02776

Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and Olga
Sorkine-Hornung. 2020. Neural Cages for Detail-Preserving 3D Deformations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for Real-time Rendering of Neural Radiance Fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 5752–5761.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
NeRF-Editing: Geometry Editing of Neural Radiance Fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 18353–
18364.

Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C. Bühler, Xu Chen, Michael J.
Black, and Otmar Hilliges. 2022. I M Avatar: Implicit Morphable Head Avatars from
Videos. In Computer Vision and Pattern Recognition (CVPR).

Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick
Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018. State of
the art on monocular 3D face reconstruction, tracking, and applications. In Computer
graphics forum, Vol. 37. Wiley Online Library, 523–550.

http://arxiv.org/abs/1906.07751
http://arxiv.org/abs/1906.07751
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/37402.37422
https://arxiv.org/abs/2201.05989
https://doi.org/10.1145/3341156
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://proceedings.neurips.cc/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/30a237d18c50f563cba4531f1db44acf-Paper.pdf
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1145/3306346.3323035
https://doi.org/10.1145/3450626.3459815
https://doi.org/10.1145/3450626.3459815
https://doi.org/10.1145/3450626.3459815
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.48550/ARXIV.2204.02776

	Abstract
	1 Introduction
	2 Related work
	2.1 Mesh-Based Neural Rendering
	2.2 Volumetric Neural Rendering
	2.3 Volumetric Deformation using Geometry

	3 Method
	3.1 Learned Volumetric Scene Representations
	3.2 Modelling Volumetric Deformations with Closed Triangular Primitives
	3.3 Accounting for Changes in View Direction
	3.4 Enrolling from as Little as a Single Frame
	3.5 Tetrahedral Point Lookups

	4 Applications
	4.1 Applying VolTeMorph to support generic objects
	4.2 Applying VolTeMorph to support Faces

	5 Implementation
	5.1 Sampling

	6 Experiments
	6.1 Synthetic Data
	6.2 Face Data
	6.3 Qualitative results on faces
	6.4 Comparison to State of the Art
	6.5 Analysis of performance
	6.6 Ablation studies

	7 Limitations and future work
	8 Conclusions
	References

