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Abstract—Residual Reinforcement Learning (RL) is a pop-
ular approach for adapting pretrained policies by learning a
lightweight residual policy to provide corrective actions. While
Residual RL is more sample-efficient compared to finetuning
the entire base policy, existing methods struggle with sparse
rewards and are designed for deterministic base policies. We
propose two improvements to Residual RL that further enhance
its sample efficiency and make it suitable for stochastic base
policies. First, we leverage uncertainty estimates of the base policy
to focus exploration on regions in which the base policy is not
confident. Second, we propose a simple modification to off-policy
residual learning that allows it to observe base actions and better
handle stochastic base policies. We evaluate our method with both
Gaussian-based and Diffusion-based stochastic base policies on
tasks from Robosuite and D4RL, and compare against state-of-
the-art finetuning methods, demo-augmented RL methods, and
other residual RL methods. Our algorithm significantly outper-
forms existing baselines in a variety of difficult manipulation
environments.

I. INTRODUCTION

Residual Reinforcement Learning is popular in robotics
for adapting pretrained robot policies using a residual agent
that learns to maximize reward through environment interac-
tions [25, 13]. Directly fine-tuning the pretrained policy is
often computationally expensive, especially in the case of
policies with a large number of parameters [6, 4] and is
prone to instability [17]. In contrast, Residual RL provides
an efficient alternative to refine the base policy with minimal
additional computation. This residual correction enables the
agent to make targeted improvements, regardless of whether
the base policy is model-based or model-free.

Despite the promise of Residual RL, existing algorithms suf-
fer from unconstrained exploration, often requiring extensive
online interaction and dense reward shaping to achieve mean-
ingful improvements [15, 28]. Furthermore, recent advance-
ments in imitation learning leverage highly effective stochastic
policies: Gaussian mixture model-based policies [16] and
Diffusion policies [6] excel at modeling complex, multi-modal
distributions. Unfortunately, original Residual RL algorithms
[25, 13] are not suitable for such stochastic policies as they
implicitly assume that the underlying base policy is determin-
istic.

In this paper, we address these limitations by proposing
two improvements to Residual RL algorithm to enhance the
sample efficiency and make it more suitable for stochastic
policies. First, we leverage uncertainty estimates from the base
policy to guide the exploration of the residual policy. Our

key insight is that regions where the base policy is confident
require minimal exploration by the residual agent, allowing it
to focus exploration on areas of high uncertainty. This targeted
exploration significantly improves the sample efficiency of
residual learning.

Second, existing off-policy Residual RL algorithms learn the
Q(s, ar) function only for the residual action ar, implicitly
assuming that the base policy’s action can be inferred from
the state s. However, this is insufficient when dealing with
stochastic base policies, since they can take different actions
from the same state. In the stochastic setting, the Residual RL
agent is unable to infer the base action, making it difficult to
effectively learn a good residual action. Some works have used
learned bottleneck features of the base policy as a prior for
residual learning [1] while others augmented the observed
state with the base action for on-policy learning [3]. We
propose an asymmetric actor-critic RL approach, in which
the critic learns the Q function for the fully observed action
executed in the environment, comprising both the base action
and the residual action, while the actor learns partial residual
actions only. This formulation ensures that information about
the stochastic base actions is available to the Q function while
also making the learning invariant to the split between the
residual and base action.

We evaluate our approach on a variety of manipulation tasks
from Robosuite [16] and Franka Kitchen tasks from D4RL
[7]. We also test our approach with both Gaussian Mixture
Model-based and Diffusion-based base policies. Finally, we
compare our approach with state-of-the-art finetuning methods
[20], demo-augmented RL method [12], and other Residual
RL methods [27, 25, 13]. Our proposed approach is able to
outperform or is comparable to other baselines in all tasks. We
also perform several ablation studies to test various aspects of
our algorithm.

Our proposed approach is visualized in Figure 1 with the
main contributions summarized as follows:

1) We present a novel algorithm to accelerate Residual
Reinforcement Learning using uncertainty estimates.

2) We modify off-policy Residual Reinforcement Learning
to work with stochastic base policies by providing the
combined base and residual action to the critic and
sampling the residual action from the actor.

3) We validate our method on robotic manipulation tasks
from different simulators and against several baselines.



Fig. 1: We propose two improvements to accelerate Residual RL : 1) We use uncertainty metric to constrain the exploration
around base policy by using the base action directly if the base policy is certain and adding the residual action when the base
policy is uncertain. 2) We modify off policy critic to learn the Q function for the combined action.

II. RELATED WORK

Imitation Learning and Residual RL. Several works have
explored the integration of base policies trained using Imitation
Learning (IL) with Residual RL. [22] applied Residual RL to
insertion tasks, utilizing both a hand-designed controller as the
base policy and incorporating an auxiliary behavior cloning
(BC) loss during RL training, a technique first proposed in
[18]. FISH [11] employs a non-parametric base policy along-
side a residual policy that uses optimal transport matching
against offline demonstrations as the reward. BeT [24] intro-
duces a residual action corrector that refines continuous actions
on top of a discretized imitation policy. IBRL [12] does not
directly use Residual RL but it bootstraps an RL policy from
an IL policy by utilizing IL actions as alternative proposals
for both online exploration and critic updates. Closest to
our method is Policy Decorator [27] which learns bounded
residual actions using controlled exploration. Unlike Policy
Decorator, which uniformly samples action from the base
policy and residual policy, we use uncertainty estimates of
the base policy to decide when to learn corrective residual
actions.

Residual RL for Stochastic Base Policies. Residual RL,
first introduced for robotics in [13] and [25], learns a cor-
rective residual policy over a base controller, which can be
either hand-designed or derived from model-predictive con-
trol. Importantly, these methods assume a deterministic base
controller, as the residual policy is not conditioned on the base
action. However, current state-of-the-art imitation learning
algorithms like Diffusion policy [6] and GMM-based policies
[16] are non-deterministic making the original Residual RL
formulation insufficient due to the lack of information about
the base policy. [15, 28] introduce noise in the base action
to enhance robustness and induce stochasticity. Other works
inform the residual learning about the base policy by condi-
tioning the residual learning on the learned bottleneck features
of the base policy [1], and incorporating the base action in
the observed state to inform the residual policy for on-policy
learning [3]. In contrast, our work modifies off-policy RL

algorithm to learn the Q function for the combined action
taken in the environment (i.e. the sum of base and residual
action) while the actor still uses the same Q function to select
a residual action. Therefore, our Residual RL formulation can
handle the stochasticity of the base policies by making the
base action observable to the critic while also being invariant
to the split between the base action and residual action.
Policy Decorator [27] also uses the combined action as an
input to their critic for Residual RL, but we provide precise
pseudo code for changing the SAC algorithm as well as a
thorough quantitative evaluation with ablations to show that it
significantly improves performance.

Uncertainty estimates in Imitation Learning. Uncertainty
estimation plays a crucial role in improving the reliability
and robustness of machine learning models, particularly in
decision-making and RL tasks. Various approaches have been
proposed to quantify uncertainty, including distance-based
techniques [19, 26], ensemble-based techniques [2, 23, 8] and
learning another model to estimate uncertainty [21, 5, 9]. Suh
et al. [26] proposes a method that measures the distance of a
given input to the training data distribution. This approach
assumes that samples farther from the training distribution
exhibit higher uncertainty, making it particularly useful for de-
tecting out-of-distribution (OOD) inputs and improving model
generalization. Lee and Kuo [14] uses the loss function of
a Diffusion model to estimate uncertainty, where higher loss
values indicate greater uncertainty. Our algorithm is agnostic
to the uncertainty quantification method, and we test our
approach with different uncertainty metrics.

III. UNCERTAINTY AWARE RESIDUAL RL FOR
STOCHASTIC POLICIES

The problem statement for our method is defined in
Sec. III-A. We describe how to incorporate Uncertainty Es-
timates in Residual RL in Sec. III-B. Finally, we describe our
modified off-policy RL algorithm in Sec. III-C.



A. Problem Statement

In Residual RL, we assume that we have a suboptimal base
policy πb, either model-based or model-free. The objective
is to learn a lightweight residual policy πr, on top of the
base policy that gives a corrective action ar to produce a
more accurate and robust policy. Residual RL transforms the
original markov decision process (MDP) formulation M =<
S,A,R, T, γ > to the residual MDP (RMDP) formulation
Mr =< S,Ar, R, Tr, γ > [25]. S is the set of states, Ar

is the set of residual actions, R is the reward received for
taking action ar ∈ Ar in state s ∈ S, Tr is the probability of
taking action ar in state s and ending up in a new state s′ and
γ is the discount factor. The residual transition function can
be converted back to original transition function as follows :

Tr(s, ar, s
′) = T (s, πb(s) + ar, s

′) (1)

B. Uncertainty aware Residual RL

Prior works in Residual RL suffer from unrestrained explo-
ration as they learn corrective residual actions uniformly over
the entire state space. Our key insight is to improve exploration
by focusing residual learning on regions in which the base
policy is not confident. We propose using the uncertainty of
the base policy to decide when to learn a residual action for
the base policy. If the base policy is certain about its action for
the current state we directly use the action from base policy
ab to step in the environment and instead use a corrective
residual action when the base policy is uncertain. Our proposed
approach is agnostic to the uncertainty quantification method
and we further test our method with two metrics, namely
distance-to-data and ensemble variance. Distance-to-data has
been used to calibrate the uncertainty of a model by measuring
how out-of-distribution the current state is from an existing
dataset [26]. For a dataset D with each datapoint having F
features, we can estimate uncertainty using the minimum L2
distance of the current state s to all points d ∈ D :

uncertaintyd(s) = min
d∈D

√√√√ F∑
i=1

(di − si)2 (2)

Another popular approach to calibrate uncertainty is by mea-
suring the variance in predicted actions amongst an ensemble
of policies. For an ensemble of N base policies πb ∈ πB , the
ensemble uncertainty can be defined as -

uncertaintye(s) =
1

N

N∑
b=1

(
πb(a | s)− 1

N

N∑
i=1

πi(a | s)

)2

(3)
Furthermore, we use an uncertainty threshold τ to measure the
confidence of the base policy. This can be formulated as

ataken =

{
ab if uncertainty < τ

ab + ar otherwise
(4)

As learning progresses, we decay this uncertainty threshold
τ exponentially from a maximum uncertainty threshold value
U according to the following equation:

τ = U ∗ e
−step

decay rate (5)

The uncertainty threshold τ ultimately decays to 0 to let the
residual policy take over. We perform ablations for different
decaying strategies in Sec. IV-E1.

C. Optimizing Residual RL for Stochastic Policies

The original Residual RL algorithms are formulated to learn
only using the partial residual actions, operating under the
assumption that the underlying base policy is deterministic and
can be implicitly inferred. Therefore, it learns the Q function
for only the partial residual action which is different from
the action taken in the environment. Incorporating stochastic
policies into the residual transition function Tr can make it
much harder to learn as they are noisier in their predictions and
hence difficult to model. Thus, we suggest using Eq 1 to retreat
back to the original MDP formulation. Consequently, the Q
function is learned for the combined action (ac = ab + ar)
which is the actual action used during environment interaction.
Previously, ResiP [3] proposed augmenting the observed state
with base action to provide the missing information for on-
policy RL. We instead propose learning the critic for the
combined action (ac = ab + ar) for off-policy RL to provide
the necessary information about the base policy to the Q
function while also making it invariant to the split between
residual action and the base action. Specifically, we modify the
soft actor-critic [10] algorithm in the following ways (changes
marked in green). Initially, we store both the base action and
the combined action in the replay buffer. While computing the
target values, we should add the base action to the residual
action sampled from the actor as follows -

y(r, s′, d) = r + γ(1− d) ∗
(min
i=1,2

Qϕ′
i
(s′, a′r + a′b)− α log πr(a

′
r|s′)),

a′r ∼ πr(·|s′)

(6)

While updating the Q function we should use the combined
action stored in the replay buffer -

JQ(ϕi) = E
[
(Qϕi

(s, ac)− y(r, s′, d))
2
]
, i = 1, 2 (7)

When updating the actor, we can again add the base action
to get the Q value -

Jπ(θ) = E [Qϕi
(s, ar + ab)− α log πr(ar|s)] ,

i = 1, 2, ar ∼ πr(·|s)
(8)

The complete algorithm is described in Alg. 1 with the
proposed changes in SAC marked in green.



Algorithm 1 Uncertainty aware Residual RL

1: Initialize parameters of residual policy πr , Q-functions
Qϕ1 , Qϕ2 , and temperature α

2: Initialize target Q-function parameters ϕ′
1 ← ϕ1, ϕ′

2 ← ϕ2

3: Initialize base policy πb

4: for each environment step do
5: Sample residual action from actor
6: ar ∼ πr(st)
7: Sample base action from base policy
8: ab ∼ πb(st)
9: Calculate uncertainty threshold τ for the base policy, Eq. 5

10: Calculate the uncertainty in base policy, Eq. 2
11: Select the action to be taken in the environment, Eq. 4
12: Observe next state st+1 and reward rt
13: Store (st, ac, ab, rt, st+1) in replay buffer D
14: end for
15: for each gradient update step do
16: Sample a minibatch {(s, ac, ab, r, s

′)} from D
17: Compute target value according to Eq 6
18: Update Q-functions by minimizing according to Eq. 7
19: Update policy πθ using Eq. 8
20: Update target networks ϕ′

i

21: end for

IV. EXPERIMENTS

The setup for our experiments is described in Sec. IV-A.
We provide details on the baselines used in Sec. IV-B. We
conduct an analysis on our results in Sec. IV-C. We compare
the effect of deterministic base policy in Sec. III-C. Finally,
we describe our ablation studies in Sec. IV-E.

A. Experiment Setup

We define the robotic manipulation tasks for our experi-
ments in Sec. IV-A1. All environments use sparse rewards and
state-based observations with task visualizations in Fig. 2. We
run all experiments with 5 seeds and provide hyperparameters
used in the appendix.

1) Environments: Robosuite - We evaluate the performance
of the Panda robotic arm on three distinct tasks from the
Robosuite simulator. We receive a sparse reward of 1 for
successfully completing the task and 0 otherwise. We use the
following tasks: 1) Lift task, where the robot arm must pick
up a block placed at a random initial position on the table. 2)
Can task, where the robot arm has to pick up a can from one
table and place it in the top right corner of another table. 3)
Square task, where the robot arm must pick up a square nut
from the table and place it onto a square bolt.

Franka Kitchen - The Franka Kitchen environment from
the D4RL benchmark [7] features a Franka robot that is
required to interact with various objects to achieve a multitask
goal configuration. It receives a reward of 1 for successfully
completing each of the 4 sub-goals, and we report the normal-
ized reward for each trajectory. The environment includes three
datasets for the Franka Kitchen task from the D4RL bench-
mark: 1) Kitchen Complete - This dataset is limited in size
and consists solely of positive demonstrations. We perform
additional experiments with the other two datasets. 2) Kitchen
Mixed - This dataset includes undirected demonstrations, with
a portion of them successfully solving the task. 3) Kitchen

Fig. 2: We test our proposed approach on the Lift, Can, and
Square tasks from Robosuite [16] and the Franka Kitchen Task
from D4RL [7].

Partial - This dataset also contains undirected demonstrations,
but none of them fully solve the task. However, each demon-
stration successfully addresses certain components of the task.

2) Base Policies: We consider two kinds of IL base policies
to test the robustness of our algorithm :

GMM-based policy : We utilize Gaussian mixture model-
based behavior cloning (BC) policies from [16], which has
an RNN backbone. To introduce an additional challenge, we
train policies for the Lift and Can tasks using noisier multi-
human demonstrations. Since the Square task is inherently
challenging, we use proficient-human demonstrations, as even
high-quality demonstrations struggle to completely solve the
task.

Diffusion-based policy : To ensure a consistent comparison,
we use the same Diffusion policies from DPPO [20] for our ex-
periments. For Robosuite tasks, they use noisier multi-human
demonstrations, while for the Franka Kitchen environments,
they directly use datasets from D4RL benchmark.

B. Baselines

We compare our proposed approach against finetuning
methods, demo augmented RL methods and other Residual
RL methods.
Finetuning methods : As a baseline for Diffusion-based
policies, we use the recently proposed DPPO [20]. DPPO
formulates the denoising process of the Diffusion policy as a
separate MDP, effectively modeling the entire trajectory as a
sequence of MDPs. The policy is then optimized using policy
gradient across this entire chain of MDPs.
Demo augmented RL methods : We compare our method
against two demo-augmented RL approaches. IBRL [12]
maintains both an IL policy trained on demonstrations and
an RL policy trained from scratch. During environment inter-
action and RL training, both policies propose actions, and the
action with the highest Q value is selected. A variant of this
approach, IBRL-RPL, replaces the RL policy learned from
scratch with a residual policy. We conduct experiments with
both versions of IBRL.
Residual RL methods : The method most closely related to
ours is Policy Decorator [27], which also aims to mitigate
excessive exploration in Residual RL. It addresses this by
sampling actions uniformly from both the residual and base
policies while gradually decreasing the proportion of actions
taken from the base policy. Additionally, it bounds the actions
of the residual policy. For completeness, we also compare our
approach with the standard Residual RL [25, 13] algorithm,
incorporating our proposed modifications to the critic.



Fig. 3: Results on Robosuite environments with a GMM base policy. Our method is able to outperform all other baselines in
all tasks. The error bars indicate 95% confidence interval.

Fig. 4: Results on Franka Kitchen and Robosuite environments with a Diffusion base policy. Our method is able to outperform
all baselines for Kitchen Complete and Can task, and has comparable performance for Square Task. The error bars indicate
95% confidence interval.

C. Results and Analysis

We analyze the results for GMM-based policies in
Sec. IV-C1 and the results of Diffusion policies in Sec. IV-C2.
We also compare the performance of our method with deter-
ministic policies in Sec. IV-D and further ablations are done
in Sec. IV-E. We have also attached some qualitative videos
in the supplementary material.

1) GMM-based policies: We present the results of our
experiments with GMM based policies in Figure 3. We plot the
success rate over the course of environment interactions. Our
method with distance to data metric (red line) is able to out-
perform all the baselines in the three Robosuite environments.
We note that there is an initial dip in the performance for our
method where the residual policy is in exploration phase, but
it is stable once the exploration phase ends. IBRL performs
the best out of the other baselines with its performance
comparable to our method for the Lift Task, though the initial
dip in performance is more significant, and it is still unstable
afterwards. We performed a hyperparameter sweep for the two
additional parameters of Policy Decorator, namely the residual
bound and the decay rate. Policy Decorator performance is on
an upward trajectory while our method is able to converge in
the same number of timesteps. We suspect it is due to the more
targeted exploration of our method using uncertainty estimates.
The standard Residual Policy Learning method is only able to
go over the base policy performance for the Lift Task.

2) Diffusion policies: We present the results for Diffusion
policies in Figure 4. We run the experiments for the Kitchen
Complete environment of the D4RL benchmark. In Robosuite,
we perform experiments in the Can and Square environments,
excluding the Lift environment because of the near-optimal
performance of Diffusion policy on that task. We performed
a hyperparameter sweep of Policy Decorator as mentioned in
Sec. IV-C1. Our approach with distance-to-data uncertainty is
able to achieve higher success rates than all the baselines in
the Kitchen Complete environment. We note that even though
DPPO’s performance is stable in Kitchen Complete and Can
environments, its improvement over the initial performance of
the base policy is slow as compared to our approach despite
an initial dip in the performance. Our method with ensemble
variance as a metric has comparable performance to DPPO
for the Square task. These results suggest that our approach is
most promising in scenarios where the initial base policy per-
formance is average, and is comparable in scenarios where the
initial base policy performance is bad. Also, ensemble variance
as a metric works better or is comparable to distance-do-data
for the Can and Square environment but not in the Kitchen
Complete environment. We hypothesize that this is because of
the good quality of demonstrations in the Kitchen Complete
environment while the noiser multi-human demonstrations of
Can and Square tasks can result in a noisier distance-to-data
metric, though our method is still able to converge for the
same.



Fig. 5: Learning with combined action and residual action
for stochastic and deterministic base policies.

Fig. 6: Ablations for different threshold decay strategies.

D. Combined Action vs Residual Action

To emphasize the significance of utilizing combined actions
for stochastic policies, we compared our modified SAC algo-
rithm for Residual RL without uncertainty estimates to the
original Residual RL formulation. For this comparison, we
used the GMM policy as the stochastic base policy and a
standard MLP policy as the deterministic base policy, applied
to the Lift task in Robosuite. The results of using combined
actions and residual actions during learning for both stochastic
and deterministic base policies are shown in Figure 5. The
findings reveal that relying solely on the residual action
does not yield effective results for stochastic base policies,
highlighting the necessity of combining actions in such cases.
In contrast, for deterministic base policies, either residual
actions or combined actions can be effectively used.

E. Ablations

We ablated our proposed approach with different decaying
strategies for the uncertainty threshold in Sec. IV-E1, with
different decay rates in Sec. IV-E2 and for other kitchen
environments in Sec. IV-E3. All ablations are performed with
the Diffusion base policy for the Can task.

1) Threshold Decay Strategy: We tried different strategies
for decaying the uncertainty threshold τ : exponentially decay-
ing the threshold to zero, exponentially decaying to a minimum
threshold, and keeping the threshold constant. We plot the
success rate and the percentage of base policy actions used
in Figure 6. We observe that exponential decay has the most
stable performance out of the three. Exponentially decaying
to a minimum threshold converges at a lower success rate
compared to exponentially decaying the threshold to 0. The
base actions used when decaying the threshold to a minimum
value start increasing once that minimum threshold value
is reached, signifying that the optimal policy stays within
the distribution of base policy. Keeping the threshold value

Fig. 7: Ablations for different decay rates.

Fig. 8: Ablations for the other kitchen environments.

constant restricts residual policy to escape the performance of
the initial base policy.

2) Threshold Decay Rate: We evaluated our algorithm with
different decay rates in Figure 7. Lower rates resulted in
aggressive exploration, causing performance dips that were
hard to recover from, while higher rates slowed the conver-
gence. We need to balance decay rates for effective exploration
without hindering convergence. However, our approach is not
too sensitive to the chosen decay rate, as the performance is
similar for decay rates ranging between the 300k-500k.

3) Kitchen Environments: We tested our method on the
other two variations of the kitchen environments, Kitchen
Partial and Kitchen Mixed. As seen in Figure 8, our method
is not able to outperform the base policy. One key assumption
we make in our algorithm is that when the base policy is
certain, it will also be correct. However, this assumption does
not hold true for these two environments: the base policies for
these two environments are trained on the random play data,
so the confidence and correctness of the policy is not strongly
correlated, resulting in poorer performance.

V. CONCLUSION AND FUTURE WORK

In this work we propose two improvements to the Residual
RL framework to accelerate the learning with stochastic base
policies. First, we use uncertainty estimates of the base policy
to constrain the exploration of residual learning. Second, we
adapt Residual RL to improve stochastic base policies by
proposing an asymmetric actor-critic approach in which the
critic observes the combined action, while the actor pre-
dicts only the residual action. While our proposed method
demonstrates strong performance, it would also benefit from
a more robust epistemic uncertainty metric. We believe that
with reliable uncertainty metrics, our approach could also be
applied to larger models including robot foundation models.
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VI. APPENDIX

A. Environments

The observation space and the action space of each envi-
ronment used is below -

1) Lift - 19 dim observation space with object state and
robot end effector state. Action space is 7 DoF end
effector pose.

2) Can - 23 dim observation space with object state and
robot end effector state. Action space is 7 DoF end
effector pose.

3) Square - 23 dim observation space with object state
and robot end effector state. Action space is 7 DoF end
effector pose.

4) Kitchen - 60 dim observation space with all object
states and velocities, and robot joint states and angular
velocity. Action space is 9 DoF joint angular velocity
and gripper linear velocity.

B. Base Policies

1) GMM Base Policy: We use Robomimic [16] to train
Gaussian Mixture Model based policies with a Recurrent
Neural Network backbone.

2) Diffusion policy: We used the same base policies from
DPPO [20] to keep the comparisons consistent. The Diffusion
policies are trained with an action horizon of 1 and 20
denoising steps.

C. Hyperparameters

We used the same hyperparameters in each environment
for both GMM-based and Diffusion-based. We keep same
parameters for actor and critic for Robosuite environments
and used the advised hyperparametes from the DPPO paper
for kitchen environment. Hyperparameter details can be found
in Table I. The uncertainty threshold value, U and decay rate
values for our proposed approach with distance-to-data metric
can be found in Table II and with ensmble variance can be
found in Table III.

Environment Actor & Critic Dimensions Actor lr Critic lr
Robosuite (256,256) 1e-4 1e-4
Kitchen (256,256,256) 1e-5 1e-3

TABLE I: Hyperparameters used for each environment
Environment Base Policy U Decay Rate

Lift GMM 1e-6 200k
Can GMM 2e-5 75k

Square GMM 5e-5 150k
Kitchen Complete Diffusion 2.5e-3 200k

Can Diffusion 4.5e-5 400k
Square Diffusion 4.5e-5 1M

TABLE II: Uncertainty threshold U and Decay Rate values
for distance-to-data

Environment Base Policy U Decay Rate
Kitchen Complete Diffusion 0.5 200k

Can Diffusion 0.2 500k
Square Diffusion 0.4 750k

TABLE III: Uncertainty threshold U and Decay Rate values
for ensemble variance

https://openreview.net/forum?id=agTr-vRQsa


D. Tuning Policy Decorator

Policy Decorator [27] has two hyperparamters namely, α
the residual bound which scales the residual action to limit
exploration and H to schedule the exploration progressively.
According to their paper, the α value is set close to the action
scale of demonstration data while it is advised to keep H
large as a safe choice. We present the hyperparameters values
we used in our sweep in Table IV. The authors perform an
ablation with DPPO for the square task in their appendix and
we received the hyperparmeters from the authors for the same.
After looking at their implementation, we observed that they
train their RL policies with expanded action spaces using an
action horizon while we implement the RL policies in the
original form with a single action.

Environment Base Policy α H
Lift GMM 0.1, 0.2, 0.05 400k, 600k
Can GMM 0.05,0.1,0.2,0.5 400k, 600k, 800k

Square GMM 0.05, 0.1, 0.5 750k, 1M
Kitchen Complete Diffusion 0.1, 0.2, 0.3 400k, 600k

Can Diffusion 0.2, 0.5 400k

TABLE IV: Residual bound α and Progressive Exploration
schedule H for Policy Decorator
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