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Summary
Mitigating partial observability is a necessary but challenging task for general reinforce-

ment learning algorithms. To improve an algorithm’s ability to mitigate partial observability,
researchers need comprehensive benchmarks to gauge progress. Most algorithms tackling par-
tial observability are only evaluated on benchmarks with simple forms of state aliasing, such
as feature masking and Gaussian noise. Such benchmarks do not represent the many forms of
partial observability seen in real domains, like visual occlusion or unknown opponent intent.
We argue that a partially observable benchmark should have two key properties. The first is
coverage in its forms of partial observability, to ensure an algorithm’s generalizability. The
second is a large gap between the performance of a agents with more or less state information,
all other factors roughly equal. This gap implies that an environment is memory improvable:
where performance gains in a domain are from an algorithm’s ability to cope with partial ob-
servability as opposed to other factors. We introduce best-practice guidelines for empirically
benchmarking reinforcement learning under partial observability, as well as the open-source
library POBAX: Partially Observable Benchmarks in JAX. We characterize the types of partial
observability present in various environments and select representative environments for our
benchmark. These environments include localization and mapping, visual control, games, and
more. Additionally, we show that these tasks are all memory improvable and require hard-to-
learn memory functions, providing a concrete signal for partial observability research. This
framework includes recommended hyperparameters as well as algorithm implementations for
fast, out-of-the-box evaluation, as well as highly performant environments implemented in JAX
for GPU-scalable experimentation.

Contribution(s)
1. We investigate the efficacy of partially observable benchmarks in measuring an algorithm’s

ability to mitigate partial observability.
Context: None

2. We introduce the memory improvability property: a partially observable benchmark is
memory improvable if there is a gap between agents with more or less state information, all
other factors roughly equal.
Context: None

3. We categorize popular forms of partial observability, and present a list of representative
environments that covers these categories.
Context: This categorization does not cover all forms of partial observability.

4. We present the open-source POBAX benchmark: a suite of memory improvable environ-
ments designed to test an algorithm’s ability to mitigate partial observability. POBAX is
entirely implemented in JAX, allowing for fast and GPU-scalable experimentation.
Context: None
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Abstract

Mitigating partial observability is a necessary but challenging task for general rein-1
forcement learning algorithms. To improve an algorithm’s ability to mitigate partial2
observability, researchers need comprehensive benchmarks to gauge progress. Most al-3
gorithms tackling partial observability are only evaluated on benchmarks with simple4
forms of state aliasing, such as feature masking and Gaussian noise. Such benchmarks5
do not represent the many forms of partial observability seen in real domains, like visual6
occlusion or unknown opponent intent. We argue that a partially observable benchmark7
should have two key properties. The first is coverage in its forms of partial observabil-8
ity, to ensure an algorithm’s generalizability. The second is a large gap between the9
performance of a agents with more or less state information, all other factors roughly10
equal. This gap implies that an environment is memory improvable: where performance11
gains in a domain are from an algorithm’s ability to cope with partial observability as12
opposed to other factors. We introduce best-practice guidelines for empirically bench-13
marking reinforcement learning under partial observability, as well as the open-source14
library POBAX: Partially Observable Benchmarks in JAX. We characterize the types15
of partial observability present in various environments and select representative envi-16
ronments for our benchmark. These environments include localization and mapping,17
visual control, games, and more. Additionally, we show that these tasks are all memory18
improvable and require hard-to-learn memory functions, providing a concrete signal19
for partial observability research. This framework includes recommended hyperparam-20
eters as well as algorithm implementations for fast, out-of-the-box evaluation, as well21
as highly performant environments implemented in JAX for GPU-scalable experimen-22
tation.23

1 Introduction24

Reinforcement learning (Sutton & Barto, 2018) algorithms are being deployed to increasingly com-25
plex domains where partial observability (Kaelbling et al., 1998) is a fundamental problem. A26
system is partially observable if its observations contain only partial information about the underly-27
ing state. In this setting, agents cannot make effective decisions without reasoning about their past.28
Resolving partial observability is a necessary but typically challenging task (Zhang et al., 2012),29
and many system designers try to circumvent this issue with hand-designed environment-specific30
features (Mnih et al., 2015; Bellemare et al., 2020). The human engineering effort required to re-31
solve partial observability environment by environment reveals the crux of the problem: there exist32
many different forms of partial observability, each with their own challenges.33

To tackle partial observability, researchers develop history summarization algorithms through testing34
on benchmark partially observable tasks. The classic T-Maze (Bakker, 2001) problem was used35
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to test long-term recall with LSTMs (Hochreiter & Schmidhuber, 1997) in reinforcement learning.36
The RockSample (Smith & Simmons, 2004) task was originally used to develop partially observable37
planning algorithms and their capabilities on large state spaces.38

Current benchmarks are narrow in their scope of state aliasing, bringing into question whether per-39
formance on the benchmark translates to other forms of partial observability. The best-known ex-40
ample is the Atari benchmark (Bellemare et al., 2013), where using only a single frame is partially41
observable (Hausknecht & Stone, 2015). Similarly, masked continuous control (Han et al., 2020) is a42
popular benchmark where velocity or positional state information is hidden. Half of the masked con-43
tinuous control tasks, the agent only requires a few previous time steps to gauge velocity information44
to recover a Markov state. These benchmarks represent a narrow sampling of partial observability,45
but constitute a substantial fraction of empirical evaluations (Ni et al., 2022; 2023; Zhao et al., 2023;46
Lu et al., 2024). Although other benchmarks test on more forms of state aliasing (Morad et al., 2023;47
Beattie et al., 2016), individual benchmarks lack coverage across the categories of partial observ-48
ability and often lack justification as to why the selected tasks are good benchmark tasks. In some49
cases, performance on a partially observable benchmark depends more on implementation details50
rather than an algorithm’s ability to mitigate partial observability (Ni et al., 2022).51

Beyond good coverage of the forms of partial observability, a useful benchmark must have a clear52
signal for evaluating an algorithm’s ability to mitigate partial observability. We argue that one such53
valuable signal is memory improvability. An environment is memory improvable a gap exists be-54
tween the performance of agents imbued with more or less state information. This implies that55
using memory to mitigate partial observability will improve performance in this environment. The56
performance gap between observations that are partial and those that are (more) complete is exactly57
the gap that an agent mitigating partial observability ought to close. A large gap indicates that a58
particular environment can benefit from adding memory; a small or non-existent gap indicates that59
either the partial observability is not a major issue, or there is some other confounding factor—e.g.60
featurization scheme, learning dynamics or hyperparameters.61

We introduce a new open-source benchmark, POBAX1: Partially Observable Benchmarks in JAX.62
Since testing on all forms of partial observability is untenable, we categorize the different forms63
of partial observability and select representative environments for our benchmark to ensure that we64
have coverage of the space of task types. POBAX is a comprehensive suite of new and existing65
partially observable environments that cover all state aliasing categories of interest described here.66
These environments include tasks such as localization and mapping, visual control, games and more.67
Besides requiring hard-to-learn memory, these environments are all memory improvable; as we68
add more information into the state representation, we see an increase in performance. To show69
the utility of our benchmark, we test three popular reinforcement learning algorithms designed for70
mitigating partial observability. We also recommend per-environment hyperparamters for out-of-71
the-box evaluation of memory learning algorithms. The benchmark is also entirely implemented in72
JAX (Bradbury et al., 2018), allowing for fast simulation and GPU-scalable experiments.73

2 Background and Related Work74

We use Markov decision processes (MDPs) (Puterman, 1994) and their extension, partially observ-75
able Markov decision processes (POMDPs) (Kaelbling et al., 1998) as the framework for sequential76
decision making in an unknown environment. An MDP consists of a state space S, action space77
A, reward function R : S × A → R, stochastic transition function T : S × A → ∆S , initial78
state distribution p0 ∈ S, and discount factor γ ∈ [0, 1]. The goal of an agent interacting with an79
MDP is to learn a policy πS : S → ∆A which tries to maximize its expected discounted returns80
VπS (s) = EπS

[∑∞
i=0 γ

iRt+i

]
. In the POMDP framework, an agent receives observations o ∈ Ω81

through an observation function Φ : S → ∆Ω that maps the underlying hidden states to potentially82
incomplete state observations. These observations no longer have the Markov property: the obser-83
vation ot and action at at time step t are no longer a sufficient statistic of history to predict the next84

1Code: https://anonymous.4open.science/r/pobax-2042
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observation and reward, ot+1 and rt, or Pr(ot+1, rt | ot, at) ̸= Pr(ot+1, rt | ot, at, . . . , o0, a0).85
Under partial observability, an agent must use its history ht := (ot, at, . . . , o0, a0) ∈ H to learn a86
history-conditioned policy πΩ : H → ∆A to maximize returns.87

An agent can mitigate partial observability by learning memory functions µ : H → Rn. Memory88
functions condense past sequences of actions and observations into a memory state mt = µ(ht).89
Since ht is variable in size, it is often more efficient and convenient to use recurrent memory func-90
tions mt = µ(ot, at,mt−1). Ideally, a memory function learns to retain information that it needs91
in future decision making. While traditional approaches have relied on discrete state machines92
to reason about states (Chrisman, 1992; Peshkin et al., 1999), most modern approaches leverage93
parameterized deep neural networks (Goodfellow et al., 2016) to learn memory functions. One94
popular class of neural network memory functions are recurrent neural networks (RNNs) (Amari,95
1972; Mozer, 1995), powerful function approximators that can be optimized with truncated back-96
propagation through time (Jaeger, 2002). Another state-of-the-art class of memory functions are97
transformers (Vaswani et al., 2017), which is not recurrent, and looks at a fixed context-length win-98
dow of previous inputs in order to learn memory. For reinforcement learning in partial observability,99
one can use standard gradient-based reinforcement learning algorithms to learn a neural network100
memory function capable of summarizing history to mitigate partial observability. The algorithm101
we use throughout this work for optimization is the popular proximal policy optimization algorithm102
(PPO) (Schulman et al., 2017). We use this algorithm due to its strong performance in select partially103
observable environments with RNNs (Ni et al., 2022) and transformers (Ni et al., 2023). We also104
test on the λ-discrepancy algorithm (Allen et al., 2024), an extension to the recurrent PPO algorithm105
specifically made for mitigating partial observability.106

There have been many forms of benchmark tasks for partial observability. Partially observable tasks107
were formulated to solve the POMDP planning problem (Zhang et al., 2012), the most well-known108
instance being the Tiger problem (Kaelbling et al., 1998). In most cases, the scale of these problems109
are too small and are easily approximated with modern neural networks (Allen et al., 2024). The110
few exceptions to this rule are benchmarks from POMDP planning algorithms designed to scale up111
to large state spaces (Silver & Veness, 2010), which we include in our study. Modern deep rein-112
forcement learning algorithms have been tested on a number of difficult and large domains, includ-113
ing single-frame Atari (Hausknecht & Stone, 2015), masked (Han et al., 2020) and visual(Todorov114
et al., 2012; Ortiz et al., 2024) continuous control, and multiagent systems (Rutherford et al., 2023;115
Bettini et al., 2024; Lanctot et al., 2019). While there have been benchmarks specifically designed116
for partial observability (Morad et al., 2023; Osband et al., 2020), these benchmarks tend to have a117
narrow range of partially observable tasks.118

3 Confounding Factors in Assessing Partial Observability Mitigation119

The objective of any benchmark is to give researchers a reasonable signal for progress on a class of120
problems. If the goal of an algorithm is to effectively mitigate partial observability, then progress121
measured in a benchmark should be from an agent effectively mitigating partial observability, as122
opposed to other factors. While this may seem obvious, isolating performance increases is a chal-123
lenging task in practice, considering how many factors affect deep reinforcement learning perfor-124
mance (Henderson et al., 2018). We begin by investigating some potential confounding factors in125
partially observable reinforcement learning.126

There are confounding factors in existing partially observable benchmarks that obfuscate the ef-127
fects of partial observability. In the Atari benchmark (Bellemare et al., 2013), a single frame is128
partially observable, whereas four stacked consecutive frames is usually assumed to be fully observ-129
able (Mnih et al., 2015). We would expect an agent imbued with state information to outperform an130
agent that receives only single frames and must do the extra work of resolving partial observability.131
In reality, results are much more complicated (Hausknecht & Stone, 2015) and different algorithms132
make gains in different environments. In masked continuous control (Han et al., 2020) one might133
expect an agent with full state features to perform better than one where certain features are masked134
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Figure 1: Masked continuous control online undiscounted returns for observations only (gray), full
state (green), and an RNN agent (purple) over 30 seeds. Function approximation types play a large
role in performance. Full experiment details are presented in Appendix B.4.
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Figure 2: (Left) Image of the DMLab Minigrid maze environment for maze_id = 01. (Middle,
right) Online discounted returns in this environment comparing performance of using 64 vs 256
parallel environments. Experiments were conducted over 5 seeds.

out. In Figure 1 we show that more often than not, the opposite is true; RNNs under partial ob-135
servability outperform memoryless agents with fully observable features, as with position-only Ant136
and Walker. It seems for most of these tasks, agents struggle with other factors besides a lack of137
information in the state representation.138

Other confounding factors such as the choices of hyperparameters or function approximators often139
impact performance in partial observability benchmarks. An important question to consider is:140
how much of the improvement is from mitigating partial observability and how much is from other141
factors? Next, we study the effects of a few important general factors on performance for memory-142
learning tasks.143

3.1 Number of Parallel Environments144

Modifying the number of parallel copies of environments can drastically change the performance of145
a given featurization and algorithm. Reinforcement learning algorithms will use parallel copies of146
an environment to make uncorrelated minibatches of experience for more stable gradient updates.147
Figure 2 shows an ablation study on the number of parallel environments in the DeepMind Lab148
Minigrid domain introduced in Section 6.1. Note that the total number of environment steps used for149
training remains the same. The difference is in the size of the minibatch for each gradient update. As150
the number of parallel environments increases, the size of each minibatch increases, but the number151
of total updates decreases. We generally see improved performance with an increase in the number152
of parallel environments. Full details of this ablation study are in Appendix B.8. The trade-off for153
increasing the number of parallel environments is increased memory usage, making experiments less154
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Figure 3: Online undiscounted returns comparing network hidden sizes 32, 64 and 256 (left to right)
on velocity-only Walker.

scalable with more parallel environments. To ameliorate this variance, the benchmark we introduce155
includes recommendations for the number of parallel environments required for each task such that156
our baseline and skyline agents both learn.157

3.2 Network Width158

Network width is another general hyperparameter for deep reinforcement learning agents with a159
sizable but diminishing effect as width increases. The network width is the number of neurons160
in a neural network’s hidden layers, also called its hidden size. In Figure 3 investigate the effect of161
network width for the velocity-only Walker environment from the masked continuous control bench-162
mark. As network width increases, we see consistent but diminishing improvements in performance.163
The trade off with increased network width is again a large computational and memory overhead, re-164
quiring more resources per experiment. Our benchmark also includes default recommended network165
widths for each environment. All details of this ablation study are shown in Appendix B.8.166

We advocate for choosing general hyperparameter settings for each environment and fixing these167
settings across all algorithms to ensure a fair comparison between algorithms. Ideally, these settings168
should also be swept for each algorithm; but with computational resource constraints, sweeping169
many settings is untenable. As an alternative, our proposed benchmark provides recommended170
settings for general hyperparameters, including the two studied in this section. This is not to say171
practitioners should stop sweeping more algorithm-dependent hyperparameters like learning rate.172
Instead we advocate for a reasonable middle ground for computational feasibility and experimental173
rigor. Beyond these two hyperparameter settings, many other factors can affect deep reinforcement174
learning performance. Input featurization and neural network normalization are just a few factors175
important for performance that we do not investigate in this work. Fixing these confounding factors,176
we now consider properties that make for a good partially observable benchmark.177

4 Memory Improvability178

Controlling for confounding factors is not enough to isolate performance gains from mitigating par-179
tial observability. We argue that the most important characteristic of an environment is its memory180
improvability: an indication that performance gains are likely from mitigating partial observability.181
An environment is memory-improvable if there exists a gap between the performance of agents with182
less or more state information. If this gap exists, assuming most other factors are equal (e.g. learn-183
ing algorithm, network size), then gains from a memory-learning algorithm will likely come from184
mitigating partial observability.185

Environments should therefore admit multiple state representations that contain differing amounts of186
state information such that merely adapting the agent to the new input space is sufficient to achieve187
a performance improvement with minimal algorithmic changes. Consider the forms of observability188
in a version of the game Battleship (Silver & Veness, 2010) in Figure 4. In this game, players must189
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Figure 4: Different levels of observability in 5 × 5 Battleship. (Left) Observations in this version
of Battleship are whether or not the previous action hit. (Middle) “Perfect memory” observability,
where observations include all previous position hit and missed. Grayed out grids are unobservable.
(Right) Full observability, where ship positions are also included in observations.

select coordinates on a grid to fire at in order to sink ships. We show three examples of observability190
here: first is the least observable version, where observations only include whether or not the last191
shot hit. This poses a particularly hard challenge, since in addition to learning the dynamics of192
Battleship, the agent must also remember previous shot locations. The second agent has “perfect193
memory” where the observation is Markov (since no additional information can be gleaned from194
previous observations) and all previous hits and misses are tabulated in a grid. Lastly, we have the195
full state observation that also includes ship positions. An agent that learns memory should be able196
to attain performance matching an agent with perfect memory, whereas optimal performance with197
full observability is an upper-bound for performance, oftentimes unachievable. Performance with198
base memoryless observations gives a floor to the performance of an agent, whereas performance199
with either perfect memory or full state observations gives a ceiling. If a gap exists between the200
performance of these agents, then an environment is memory improvable. Conversely, it is also201
possible to create a memory improvability gap by further reducing the amount of information in202
already-partially-observable state features; for example, features in Battleship that only reveal hits203
but not misses in Battleship.204

With other factors held constant, performance gains by a partial-observability-mitigating algorithm205
in a memory-improvable environment are more likely due to mitigating partial observability. From206
Section 3 we know that without memory improvability, performance gains on a partially observable207
domain could be due to other confounding factors. When the biggest difference between agents is208
the information in the input features, the gains above the agent with less information are from an209
agent better mitigating partial observability.210

Now that we have described how we intend to evaluate agents with our benchmark, we can assess211
which environments would make for a good evaluation for mitigating partial observability.212

5 Categorizing Partial Observability213

To choose representative environments for benchmarking partial observability, we first must define214
categories of interest that partially observable environments fall into. In the following list, we focus215
on the different forms that partial observability can take, as opposed to categorization with solution216
methods in mind. We define eight categories popular in partial observability and example problems217
for each. Note that environments may fall into multiple categories of partial observability. We218
emphasize that this is not an exhaustive list of the archetypes of partial observability, but merely219
popular forms seen throughout reinforcement learning literature.220

Noisy state features State features with additive noise. The most popular option for additive noise221
is to add Gaussian noise to continuous state features: ϕ(x(s)) := x(s)+δ, where δ is sampled noise222
from a multivariate Gaussian with zero mean. Modeling partial observability as additive Gaussian223
noise is a popular technique in robotics (Thrun et al., 2005). An example of this is noisy Cartpole224
and Pendulum environments (Morad et al., 2023), where baseline observation-only agents already225
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perform well. Additive state features may not provide the best signal for algorithmic progress in226
partial observability.227

Visual occlusion A portion of the environment’s visibility is occluded by other parts of the en-228
vironment or distance. Visual occlusion is one of the most popular sources of partial observability229
in both robotics and reinforcement learning, with visual locomotion (Todorov et al., 2012) and oc-230
cluded maze navigation (Beattie et al., 2016; Chevalier-Boisvert et al., 2023) as popular and chal-231
lenging existing benchmarks.232

Object uncertainty & tracking The state of objects in the environment are unknown, requiring233
an agent to reason about each object and potentially track it. The classic POMDP benchmark Rock-234
Sample (Smith & Simmons, 2004) is an apt example, since an agent must test and remember the235
parity of each rock. Games such as Crafter (Hafner, 2021) contain objects and enemies that may236
leave the screen which an agent should track or act to observe.237

Spatial uncertainty Environments where the agent is required to localize and potentially map its238
environment. This form of partial observability is a classic task in robotics (Thrun et al., 2005). In239
reinforcement learning, the aforementioned maze navigation (Beattie et al., 2016) and first-person240
grid world environments (Chevalier-Boisvert et al., 2023; Pignatelli et al., 2024) are popular exam-241
ples.242

Moment features Environments where state representation is characterized by moments. In con-243
tinuous control domains (Todorov et al., 2012), position and velocity (first and second moments)244
of the agent’s joints characterize the full state of the system. Environments can be made partially245
observable by obscuring position or velocity information (Han et al., 2020).246

Unknown opposition In multiagent systems, an agent is unaware of the opponent’s policy, making247
the world partially observable. Adding more agents, each with their own policy, exponentially248
increases the size of the system. Multiagent reinforcement learning is a large field of study with249
many existing benchmarks (Rutherford et al., 2023; Bettini et al., 2024; Lanctot et al., 2019). Due250
to the scope of this category, we leave this form of partial observability to these benchmarks.251

Episode nonstationarity Tasks where aspects of the environment change over episodes. Maze252
environments from DeepMind Lab (Beattie et al., 2016) are a classic example of this, where the253
start and goal positions are randomized at every step for each maze configuration. ProcGen (Cobbe254
et al., 2019) is an extreme example of this, the environment is partially observable and each episode255
also instantiates in a randomly generated level of each game.256

Needle in a haystack These difficult environments test an agent’s ability to memorize a random257
sequence of events, oftentimes unrelated to one another. An example of this is the diagnostic Au-258
toencode task (Morad et al., 2023), where an agent must repeat back a shuffled deck of 52 cards259
backwards. In this setting, the only sequence of observations that holds any information about re-260
wards is the sequence of cards shown to the agent—there is no accumulation of information, only261
a single sequence of actions among exponentially many possibilities of sequences that will result in262
a reward. We leave out environments of this form because they are diagnostic and purely meant to263
test memory length, as opposed to partial observability of interest.264

Together with memory improvability in Section 4, we are now ready to establish a benchmark for265
mitigating partial observability.266
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(a) Visual Mujoco (b) No-inventory Crafter

Figure 5: Pixel-based environments in POBAX. (Left) Ant and HalfCheetah in visual continuous
control. Images are rendered with full JAX support in the Madrona MJX rendering engine (Shack-
lett, 2024), with the dark coloration due artifacts of the new framework. (Right) Observations in
no-inventory Crafter have the agent’s inventory cropped out, requiring the agent to remember its
items and stats.

6 POBAX: A Fast, Memory-Improvable Benchmark for Reinforcement267

Learning Under Partial Observability268

Partially Observable Benchmarks in JAX (POBAX) is a new suite of reinforcement learning envi-269
ronments for benchmarking partial observability. It includes partially observable environments with270
hard-to-learn memory functions. These environments cover the categories of partial observability of271
interest in Section 5, and are all memory improvable with the provided recommended hyperparam-272
eter settings. POBAX is also written entirely in JAX (Bradbury et al., 2018) which allows for fast273
GPU-scalable experimentation.274

6.1 Environments275

We briefly summarize each environment before testing them on a set of popular reinforcement learn-276
ing algorithms made for mitigating partial observability. Environment identification strings (for the277
get_env function) are given after their names. Full details of all environments are in Appendix B.278

T-Maze (tmaze_{nlength}) A small diagnostic benchmark for partial observability and memory279
length (Bakker, 2001). At the beginning of an episode, the agent is told whether the reward at the end280
of a hallway is up or down, and the agent must remember this by the time it gets to the T-junction.281
We recommend using this environment as a sanity check for memory learning algorithms, since282
the optimal policy’s return will always be 4 × γnlength+1, where nlength is the length of the hallway.283
Category: object uncertainty & tracking284

RockSample (rocksample_11_11 and rocksample_15_15) A classic medium-sized285
problem in POMDP literature (Smith & Simmons, 2004). In RockSample(11, 11) and RockSam-286
ple(15, 15), the agent needs to sample good rocks throughout its environment and exit. Partial287
observability comes from the need to test each rock with its distance-dependent stochastic sensor.288
This environment is extendable to the general RockSample(ngrid, k) problem, where ngrid is the289
size of the ngrid × ngrid grid, and k is the number of randomly dispersed rocks in the environment.290
Category: object uncertainty291

Battleship (battleship_10) Another medium-sized problem based on the board game, also292
from POMDP planning literature (Silver & Veness, 2010). An agent must hit all 4 ships in a 10×10293
grid, and sees only HIT or MISS at every step. This environment is extendable to any ngrid ×294

8



Benchmarking Partial Observability in RL with a Suite of Memory-Improvable Domains

ngrid map, with any number of ships of any sizes. Categories: spatial uncertainty and episode295
nonstationarity296

Masked Mujoco (Walker-V-v0 and HalfCheetah-V-v0) Medium-sized continuous con-297
trol environments (Walker and HalfCheetah) with only velocity features (Han et al., 2020). In this298
setting, an agent is required to integrate over its history of velocities to mitigate partial observability.299
From the experiments in Figure 1, both Walker-V-v0 and HalfCheetah-V-v0 are memory300
improvable and we include them in this benchmark. These environments were made on top of the301
Brax framework (Freeman et al., 2021). Category: moment features302

DeepMind Lab MiniGrid mazes (Navix-DMLab-Maze-{maze_id}-v0, maze_id ∈303
{01,02,03}) Medium-to-large tasks that are 2D versions of the DeepMind Lab (Beattie et al.,304
2016) mazes implemented in MiniGrid (Chevalier-Boisvert et al., 2023; Pignatelli et al., 2024), as305
seen in Figure 2. The agent is randomly initialized to a start position and has to navigate to a ran-306
domly sampled goal position. Observations are agent-centric views of the 3 × 2 area in front of307
itself, requiring an agent to localize in its environment and find where the goal is. This environment308
was built on top of the NAVIX framework (Pignatelli et al., 2024). Categories: spatial uncertainty309
and episode nonstationarity.310

Visual Mujoco (ant_pixels and halfcheetah_pixels) Large-scale continuous control311
with single-frame observations (Todorov et al., 2012). An agent is required to gauge its proprio-312
ceptive state through frame-by-frame pixel images, as shown in Figure 5a. Using pixel images not313
only obfuscates the velocity of each joint, but also includes visual occlusion of the other aspects314
of the state. These environments were built on top of the Brax framework (Freeman et al., 2021).315
Categories: visual occlusion and moment features.316

No-inventory Crafter (craftax_pixels) Large-scale pixel-based alternative version of the317
Crafter benchmark (Hafner, 2021). In regular Crafter, the agent is already partially observable.318
To make a memory improvability gap, we make the original state features more partially observ-319
able by obscuring the agent’s inventory as shown in Figure 5b. This version, called no-inventory320
Crafter, is memory improvable because there is a performance gap between the original Crafter321
observations and the no-inventory observations. This environment was built on top of the Craftax322
framework (Matthews et al., 2024). Categories: visual occlusion, spatial uncertainty, and object323
uncertainty & tracking.324

6.2 Results325

We test the above environments on three popular reinforcement learning algorithms designed for326
mitigating partial observability:327

1. Recurrent PPO (Schulman et al., 2017),328

2. λ-discrepancy (Allen et al., 2024) with recurrent PPO,329

3. Transformer-XL (Parisotto et al., 2020) with PPO.330

General hyperparameters for each environment were kept fixed, while algorithm-specific hyperpa-331
rameters were swept. Both recommended environment hyperparameters and swept-and-selected332
algorithm hyperparameters are detailed in Appendix A.333

To show the utility of our library, we evaluate all three memory-based reinforcement learning algo-334
rithms on the POBAX benchmark environments listed in Section 6.1. Results are shown in Figure 6.335
The gap between observations-only agents (gray) and the additional state information agents (green)336
imply that the environments are all memory improvable. All three memory-learning algorithms man-337
age to improve upon the performance of the observations-only agent, and underperform the agent338
with more state information, implying that performance gains are most likely from mitigating partial339
observability. Results show mean and 95% confidence interval over 30 seeds.340
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Figure 6: Performance across all POBAX domains. Experiments are run over 30 seeds, with shaded
regions denoting a 95% confidence interval.

Ceilings for performance do not have to be the “perfect memory” or fully observable featurizations.341
In no-inventory Crafter, the “full state” agent is in fact a transformer agent trained on regular Crafter342
with the inventory included in the observations. The full state agent in BattleShip is the mean343
performance of an optimal belief policy (Berry, 2011) calculated programmatically. Both of these344
ceilings represent the mean performance that an algorithm with its original observation feature set345
should be able to achieve if it can mitigate partial observability effectively.346

Finally, the third DMLab Minigrid maze (maze_id = 03) was not included in this benchmark347
due to its difficulty. In addition to requiring complex localization of the environment, these maze348
environments also pose a hard exploration and sparse reward task for all three algorithms. For349
maze_id = 01, 02, agents were trained on 256 and 512 parallel environments respectively in350
order for agents to learn effectively. This large number of parallel environments already pose a351
significant computational overhead, leaving the third task as a difficult, unsolved challenge.352

7 Conclusion353

Benchmarking an algorithm’s ability to mitigate partial observability is challenging due to the scope354
that partial observability covers and the many confounding factors of deep reinforcement learning.355
We introduce POBAX: Partially Observable Benchmarks for reinforcement learning in JAX. This356
open-source benchmark is built around two key properties: coverage over many forms of partial357
observability and memory improvability. An environment is memory improvable if performance358
gains are from an algorithm’s ability to mitigate partial observability as opposed to other factors. To359
achieve memory improvability in our benchmark, we investigate the affects of different confounding360
factors on performance to give a recommended set of hyperparameters for each environment. We361
then introduce categories of partial observability of interest and select representative environments362
for our benchmark. Experimental results show that the POBAX benchmark environments are mem-363
ory improvable, and evaluation of three popular algorithms demonstrate the utility of the benchmark364
as a signal for research on mitigating partial observability in reinforcement learning.365
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Supplementary Materials507

The following content was not necessarily subject to peer review.508
509

A Experimental and Hyperparameter Details510

A.1 Algorithms511

Our base PPO algorithm is an online learning method designed for training on vectorized environ-512
ments. It is parallelized using the JAX library (Bradbury et al., 2018) based on a batch experimen-513
tation library written in JAX (Lu et al., 2022).514

Our experiments consist of two steps. First, we perform a hyperparameter sweep over all envi-515
ronments, using a small number of seeds. Then, we select the best hyperparameters based on the516
highest area under the curve (AUC) score. After selection, we rerun the best hyperparameters using517
30 seeds to generate our results. Note that specific hyperparameters being swept and the number of518
seeds may vary depending on the domain.519

We evaluate four algorithms: Memoryless PPO, Recurrent PPO, λ discrepancy with Recurrent PPO,520
and Transformer-XL. Memoryless PPO is the standard PPO algorithm without any form of internal521
memory. This means that it solely relies on the current observation to make decisions. In contrast,522
the other three algorithms are all memory learning algorithms which incorporate a mechanism to523
capture past experiences. We use observations-only PPO to show the memory improvability gap524
in our environments, we run this algorithm twice—once on partial observations and once on full525
observation to acquire the floor and ceiling of our plots. For Recurrent PPO, λ discrepancy with526
Recurrent PPO, and Transformer-XL, we also concatenate our action into the observation, which527
provides additional context to enhance memory learning.528

We implement our recurrent PPO model following the approach detailed in (Lu et al., 2022) and we529
implement the λ-discrepancy algorithm following the implementation of (Allen et al., 2024).530

Transformer-XL is a memory-augmented algorithm that extends from the conventional architecture531
of transformers by incorporating segment-level recurrence. Our algorithm followed the implemen-532
tation of Hamon (2024). One thing to notice is that traditional transformers use its attention mecha-533
nism on a fixed input sequence, during which it will lose temporal information and limit their ability534
to capture dependencies that span beyond the current window. Transformer-XL overcomes this by535
storing the hidden states from previous sequence, effectively extending the window of information536
to allow the agent to acquire information from earlier observations.537

A.2 Network Architecture538

The general architecture of the network used in all our experiments consist of three parts. First, if539
the environments have visual inputs, we use either FullImageCNN or SmallImageCNN. Then, we540
get the feature representations by one of three modules—Memoryless, Recurrent Neural Network541
(RNN), or Transformer—depending on the algorithms. Finally, we called Actor Critic on the pro-542
cessed features for decision making. The detailed descriptions of the components are provided in543
the following paragraphs.544

Actor Critic All our models use an actor-critic architecture. Both actor and critic networks con-545
sist of two layers of standard multi-layer perceptron (MLP) with ReLU activations between layers.546
There is an additional Categorical or MultivariateNormalDiag functions applied at the end of actor547
network over actor logits depending on the action space of the environments.548

ActorCritic(549
Actor(550

Sequential(551
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(0): Dense(in_dims=hidden_size, out_dims=hidden_size, bias=True)552
(1): ReLU()553
(2): Dense(in_dims=hidden_size, out_dims=action_dims, bias=True)554
(3): Categorical() or MultivariateNormalDiag()555

)556
)557
Critic(558

Sequential(559
(0): Dense(in_dims=hidden_size, out_dims=hidden_size, bias=True)560
(1): ReLU()561
(2): Dense(in_dims=hidden_size, out_dims=1, bias=True)562

)563
)564

)565

Memoryless The memoryless model is implemented as a four-layer MLP with ReLU activations566
between layers. The architecture is as follows:567

Memoryless(568
Sequential(569

(0): Dense(in_dims=input_dim, out_dims=hidden_size, bias=True)570
(1): ReLU()571
(2): Dense(in_dims=hidden_size, out_dims=hidden_size, bias=True)572
(3): ReLU()573
(4): Dense(in_dims=hidden_size, out_dims=hidden_size, bias=True)574
(5): ReLU()575
(6): Dense(in_dims=hidden_size, out_dims=hidden_size, bias=True)576

)577
)578

Recurrent Neural Network Our recurrent neural network consists of a dense layer with ReLU579
activation, a GRU cell, and another dense layer. In the Battleship environment, we insert an extra580
dense layer after the first dense layer (which outputs a vector with twice the latent size for this581
environment). This additional layer processes the first layer’s output and the hit-or-miss bit.582

RNN(583
Sequential(584

(0): Dense(in_dims=input_dim, out_dims=hidden_size, bias=True)585
(1): ReLU()586
(2): GRU(in_dims=hidden_size, hidden_size=hidden_size)587

)588
)589
BattleshipRNN(590
Sequential(591

(0): Dense(in_dims=input_dim, out_features=2*hidden_size, bias=True)592
(1): ReLU()593
(2): Dense(in_dims=2*hidden_size+1, out_features=hidden_size, bias=True)594
(3): ReLU()595
(3): GRU(input_size=hidden_size, hidden_dim=hidden_size)596

)597
)598

Transformer Our transformer model is taken from a JAX implementation of the transformer in599
library (Hamon, 2024).600
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Transformer(601
Sequential(602

(0): Encoder(in_dims=input_dim, out_dims=embed_size, bias=True)603
(1): PositionalEmbedding()604
(2): for i in num_layer:605

Transformer(value, query, positional_embedding, mask)606
)607

)608

CNN For environments with visual inputs, we use the following two CNN architectures based on609
image resolution. For image larger than 20 pixels, we employ a four-layers convolution network610
defined as follows:611

FullImageCNN(612
Sequential(613

(0): Conv(features=channels, kernel_size=(7, 7), strides=4)614
(1): ReLU()615
(2): Conv(features=num_channels, kernel_size=(5, 5), strides=2)616
(3): ReLU()617
(4): Conv(features=num_channels, kernel_size=(3, 3), strides=2)618
(5): ReLU()619
(6): Conv(features=num_channels, kernel_size=(3, 3), strides=2)620
(7): Flatten()621
(8): ReLU()622
(9): Dense(in_features=flattened_dim, out_features=hidden_size)623
(10): ReLU()624
(11): Dense(in_features=hidden_size, out_features=hidden_size)625

)626
)627

For image resolution smaller than 20 pixels, we use a three-layers convolutional network with kernel628
size and strides specific to each domain.629

SmallImageCNN(630
Sequential(631

(0): Conv(features=num_channels, kernel_size, strides)632
(1): ReLU()633
(2): Conv(features=num_channels, kernel_size, strides)634
(3): ReLU()635
(6): Conv(features=num_channels, kernel_size, strides)636
(7): ReLU()637
(8): Flatten()638
(9): Dense(in_features=flattened_dim, out_features=hidden_size)639

)640
)641

B Environment and Hyperparameter details642

All our environments are implemented in JAX (Bradbury et al., 2018) for hardware acceleration.643
A set of hyperparameters remains constant throughout our experiments. These common settings644
are provided in Table 1. Unless otherwise specified, these default parameters were used in every645
experiment. We also note that unless otherwise stated, the “fully observable” agent was trained with646
a memoryless MLP.647
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Hyperparam Name Value Description
num_envs 4 number of environments run in parallel
default_max_steps
_in_episode

1000 maximum steps allowed per episode

num_steps 128 number of steps per update iteration
num_minibatches 4 number of minibatches for gradient updates
double_critic False whether to use λ-discrepancy
action_concat False whether to concatenate actions with observations
lr [2.5e-4] learning rate(s) for the optimizer
lambda0 [0.95] GAE λ parameter for advantage estimation
lambda1 [0.5] λ-discrepancy GAE λ parameter
alpha [1.0] weighting factor for combining advantages
ld_weight [0.0] weight in λ-discrepancy loss
vf_coeff [0.5] value coeffient
hidden_size 128 hidden size of network
total_steps 1.5× 106 total number of training steps
entropy_coeff 0.01 entropy regularization coefficient
clip_eps 0.2 clipping parameter for PPO updates
max_grad_norm 0.5 maximum gradient norm for clipping
anneal_lr True whether to anneal the learning rate during training
image_size 32 size of input images
save_checkpoints False whether to save checkpoints during training
save_runner_state False whether to save the final runner state
seed 2020 base random seed
n_seeds 5 number of seeds to generate from base random seed
qkv_features 256 feature size for transformer query, key, and value
embed_size 256 embedding size used in the transformer model
num_heads 8 number of attention heads in the transformer
num_layers 2 number of transformer layers
window_mem 128 memory window size for caching hidden states
window_grad 64 gradient window size
gating True whether to apply gating in transformer
gating_bias 2.0 bias value for the gating mechanism

Table 1: Default Hyperparameter Settings

B.1 T-Maze648

T-Maze (Bakker, 2001) is a classic memory testing environment. The agent starts off with equal649
probability in one of two hallways: a hallway where the reward is up, and a hallway where the650
reward is down. At the first grid, the agent is informed which hallway its in. After leaving the651
first grid, the observations no longer inform the agent which hallway it is in, and the agent has to652
remember its initial observations until it reaches the junction. T-Maze 10 is this maze with a hallway653
length of 10.654

Observation Space The agent’s observation is a binary vector with 4 elements. The first two655
elements dictate which hallway the agent is in (reward up or reward down) and is only set at the start656
grid. The next element is 1 if the agent is in the hallway. The third elemnt is 1 if the agent is in the657
junction.658

Full Observation Space The full observation space environment has the same observation shape,659
but the first two elements are always set according to which hallway the agent is in.660
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Action Space The action space is discrete with 4 possible actions, corresponding to moving in the661
four cardinal direcitons.662

Reward The agent gets +4 for going to the correct side of the junction, and -0.1 for going to the663
wrong side.664

Hyperparameter For T-Maze 10, we conduct a hyperparameter sweep over 5 seeds for all hyper-665
parameters in Table 2 for memoryless, recurrent PPO, Transformer-XL and fully observable. For666
LD experiments, we sweep through Table 3. We set the hidden size to 32. We train all algorithms for667
1× 106 steps and the best hyperparameters are reported in Table 4. Then we rerun the experiments668
over 30 seeds using best hyperparameters.669

Hyperparameter
Step size {2.5× 10−3, 2.5× 10−4, 2.5× 10−5, 2.5× 10−6}
λ0 {0.1, 0.3, 0.5, 0.7, 0.9, 0.95}

Table 2: T-Maze-10 hyperparameters swept across non-Lambda discrepancy algorithms.

Hyperparameter
Step size {2.5× 10−3, 2.5× 10−4, 2.5× 10−5}
λ0 {0.1, 0.5, 0.95}
λ1 {0.5, 0.7, 0.95}
β {0.25, 0.5}

Table 3: T-Maze-10 hyperparameters swept across Lambda discrepancy algorithm.

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.5 – –
Memoryless 2.5× 10−4 0.3 – –
RNN 2.5× 10−3 0.7 – –
Transformer-XL 2.5× 10−4 0.9 – –
Lambda Discrepancy 2.5× 10−4 0.95 0.95 0.5

Table 4: T-Maze 10 Best Hyperparameters

B.2 Rocksample670

Rocksample (Smith & Simmons, 2004) is a navigation problem that simulates a rover searching671
the environment and assess the rocks. In a rocksample(n, k) problem, n represents the size of the672
grid and k represents the number of rock in the environments. In our experiments, we consider two673
variants: Rocksample(11, 11) and Rocksample(15, 15). At the start of each run, rock positions are674
sampled randomly, and every rock is independently assigned a status of either good or bad. The goal675
of the agent is to sample all the good rock and avoid all the back ones.676

Observation Space The agent’s observation is a binary vector with 2n+ k elements. The first 2n677
elements encode the agent’s positions on the board using a two-hot representation. The remaining678
k elements are only updated after the agent either checks or samples a rock and the corresponding i679
elements is set to 1 if ith rock appear to be good.680

Full Observation Space The full observation space of RockSample is a “perfect memory” state681
representation, also with 2n + k elements. The first 2n elements are the same positional encoding.682
The final k elements keep the most recent observation seen from each k rocks, either from checking683
or sampling a rock.684
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Action Space The action space is (5 + k, ). The first four dimensions correspond to movement685
of the agent. The fifth dimension corresponds to sampling a rock in its current position. The last k686
dimensions correspond to checking each rock. When the agent checks a rock, it receives the rock’s687
correct parity with probability determined by the half-efficiency distance, which is based on the688
distance from the rock being checked:689

1

2

(
1 + 2−d/maxd

)
, (1)

where d is the l2 distance to the rock, and maxd is the maximum distance from any grid in the690
domain. This means the closer an agent is to a rock, the more likely the agent will get the correct691
parity.692

Reward The agent gets +10 for exiting to the east. The agent also gets +10 for sampling a good693
rock, and -10 for sampling a bad rock.694

Hyperparameter For both Rocksample(11,11) and Rocksample(15,15), we conduct a hyperpa-695
rameter sweep over 5 seeds for all hyperparameters in Table 2 for memoryless, recurrent PPO,696
Transformer-XL and fully observable. For LD experiments, we sweep through Table 3. In Rock-697
sample(11,11), we set the hidden size to 256, the number of environments to 8 and entropy coeffi-698
cient to 0.2. In Rocksample(15,15), we set the hidden size to 512, number of environments to 16699
and entropy coefficient to 0.2. We train all algorithms for 5 × 106 steps and the best hyperparam-700
eters are reported in Table 2 and Table 3. Then we rerun the experiments over 30 seeds using best701
hyperparameters. For both Rocksample(11, 11) and Rocksample(15, 15), the perfect memory agent702
was trained with an RNN as opposed to a memoryless MLP. This was due to improved function703
approximation by the RNN, even with a fully observable state.704

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.5 – –
Memoryless 2.5× 10−3 0.3 – –
RNN 2.5× 10−4 0.95 – –
Transformer-XL 2.5× 10−4 0.1 – –
Lambda Discrepancy 2.5× 10−3 0.1 0.95 0.25

Table 5: Rocksample(11, 11) Best Hyperparameters

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.7 – –
Memoryless 2.5× 10−3 0.3 – –
RNN 2.5× 10−4 0.95 – –
Transformer-XL 2.5× 10−5 0.3 – –
Lambda Discrepancy 2.5× 10−4 0.5 0.5 0.25

Table 6: Rocksample(15, 15) Best Hyperparameters

B.3 Battleship705

Partially observable battleship (Silver & Veness, 2010) is a less observable variant of the traditional706
battleship game. The agent has a 10 × 10 board and four ships with length {5, 4, 3, 2} that are707
uniformly random generated on the board at the start of an episode. The agent’s objective is to hit all708
parts of each ship under the condition that no position was allowed to hit twice. This setup results709
in a finite horizon problem, with a maximum of 100 moves (one for each grid position). Therefore,710
we set the discounted factor γ = 1. The environment terminates when all positions on the grid with711
a ship are hit.712
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Observation Space After each step, the agent only receives a single binary signal. A 0 indicate no713
ship is hit and a 1 indicate the opposite. To simplify the learning process, we concatenate the agent’s714
last action to the observation. Since the action size is 10× 10. The observation space is (101, )715

Action Space The action space is defined as {1, . . . , 10} × {1, . . . , 10}, which correspond to row716
and column number of the board that indicate the next target to hit. Actions are masked at each step717
to prevent illegal moves.718

Reward The agent is penalised −1 for every step it took. When all ships are hit, the agent receive719
a reward of 100.720

Hyperparameter We conducted a hyperparameter sweep over 10 seeds across memoryless, fully721
observable, RNN, and Transformer-XL models using all the parameters in Table 2, and swept the722
hyperparameters in Table 3 for LD. All experiments are trained for 1 × 107 steps to select the723
best hyperparameters. The entropy coefficient was adjusted to 0.05 to encourage exploration, the724
hidden size was set to 512, and the number of environments was set to 32. Additionally, We set725
steps-log-frequency to 8 and update-log-frequency to 10. The best hyperparameters selected after726
the sweep are summarized in Table 7. Then we rerun the experiments over 30 seeds using best727
hyperparameters.728

Step size λ0 λ1 β
Fully Observable – – – –
Memoryless 2.5× 10−3 0.1 – –
RNN 2.5× 10−3 0.7 – –
Transformer-XL 2.5× 10−5 0.1 – –
Lambda Discrepancy 2.5× 10−3 0.1 0.95 0.5

Table 7: Battleship Best Hyperparameters

B.4 Masked Continuous Control729

Masked continuous control are Mujoco environments (Todorov et al., 2012; Freeman et al., 2021)730
with only velocity (Vel. Only) or only positional (Pos. Only) features.731

Observation Space The observation space for each environment changes depending on which732
environment is used and what variables are masked. We refer to our code repository (https:733
//anonymous.4open.science/r/pobax-2042) for full details of each observation space,734
as well as the Brax documentation (Freeman et al., 2021) for details of the original observation735
space. Note that all masked continuous control results presented in this work was smoothed using a736
Savitzky-Golay filter (Savitzky & Golay, 1964) with a window of 30 and a polynomial degree of 3.737

Fully Observable Observation Space The full observation of each environment are equivalent to738
the full observations in each Brax environment.739

Reward and Action Space The reward and action space are similar to the corresponding Brax740
environment.741

Hyperparameter For all environments, we conduct a hyperparam sweep over 5 seeds for all hy-742
perparameters in Table 2, Table 3. We trained for 5 × 107 steps. The hidden size is set to 256,743
step-log-frequency to 16, update-log-frequency to 20. For transformer, the embed size is set to 96.744
We list the best hyperparameters for the Walker-V and HalfCheetah-V environments in Tables 8745
and 9 as they appear in our benchmark. We refer to our codebase for the best hyperparameters se-746
lected for the full masked mujoco hyperparameter sweep. For both of these environments, we use747
RNN function approximation for the fully observable results, due to better performance.748
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Table 8: Halfcheetah-V Best Hyperparameters

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.1 – –
Memoryless 2.5× 10−4 0.7 – –
RNN 2.5× 10−4 0.9 – –
Transformer-XL 2.5× 10−4 0.9 – –
Lambda Discrepancy 2.5× 10−5 0.95 0.7 0.25

Table 9: Walker-V Best Hyperparameters

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.9 – –
Memoryless 2.5× 10−4 0.95 – –
RNN 2.5× 10−4 0.95 – –
Transformer-XL 2.5× 10−5 0.95 – –
Lambda Discrepancy 2.5× 10−4 0.95 0.95 0.5

B.5 DeepMind Lab MiniGrid mazes749

DeepMind Lab MiniGrid mazes are MiniGrid (Chevalier-Boisvert et al., 2023; Pignatelli et al.,750
2024) mazes with the maze layouts from the DeepMind Lab (Beattie et al., 2016) “navigation levels751
with a static map layout” as shown in Figure 7. These three mazes get increasingly complex and752
large. At the beginning of every episode, both agent start state and goal state are randomly initialized.753
Maximum number of episode steps is 2000, 4000 and 6000 for each maze, from lowest ID to highest754
ID.755

Observation Space One-hot first-person images of size (2, 3, 2), where the two channels represent756
the wall positions and goal locations in the 2× 3 grids in front of the agent.757

Fully Observable Observation Space Agent-centric one-hot images of size (2h−1, 2w−1, 2+4),758
where h and w are the height and width of each maze. Position is encoded by shifting the map so759
that the agent is always in the center. The first two channels represent the walls and goal positions.760
The last four dimensions represent a one-hot encoding (across the channels) of the direction the761
agent is facing.762

Action Space Discrete space of 3 actions, representing forward, turn left and turn763
right.764

Reward The agent gets +1 once it reaches the goal, with a discount factor of γ = 0.99.765

Hyperparameter For both Navix-01 and Navix-02, we conducted our experiments over 5 seeds766
for all hyperparameters in Table 10, 11. The hidden size is set to 512 and the embed size for767
transformer experiment is set to 220. The number of environment is set to 256 in Navix-01 and 512768
in Navix-02. Navix-01 is trained for 1 × 107 steps and Navix-02 is trained for 1 × 108 steps. The769
best hyperparameters are provided in Table 12, 13.770

Hyperparameter
Step size {2.5× 10−3, 2.5× 10−4, 2.5× 10−5, 2.5× 10−6}
λ0 {0.1, 0.5, 0.7, 0.9, 0.95}

Table 10: DeepMind Lab MiniGrid Maze hyperparameters swept across non-Lambda discrepancy
algorithms.
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Figure 7: (Left to right, top to down) Three DeepMind Lab MiniGrid mazes, maze_id = 01,
02, 03. As maze_id increases, maze complexity and size increases as well.

Hyperparameter
Step size {2.5× 10−4, 2.5× 10−5}
λ0 {0.1, 0.95}
λ1 {0.5, 0.7, 0.95}
β {0.25, 0.5}

Table 11: DeepMind Lab MiniGrid Maze hyperparameters swept across Lambda discrepancy algo-
rithm.

B.6 Visual Continuous Control771

Visual continuous control are Mujoco environments with pixel features. We integrate the Madrona772
MJX (Shacklett, 2024) renderer on top of Brax environments to enable just-in-time (JIT) compila-773
tion over rendering in JAX. Note that the Madrona MJX renderer supports only a single batched774
environment. Thus, we remove the parallelization of training hyperparameters in our algorithms775
specifically for visual mujoco experiment. Also note that all visual continuous control results pre-776
sented in this work were also smoothed with a Savitzky-Golay filter (Savitzky & Golay, 1964) with777
a window of 30 and a polynomial degree of 3.778

Observation Space To ensure that the environment is memory-improvable, we do not use frame779
stacking. The observation space is a single frame represent the current view of the agent. Height780
and width of the image are determined by the image size hyperparameter. In our experiments, we781
set the image size to 32, so the observation is (32, 32, 3) for visual mujoco experiments.782
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Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.95 – –
Memoryless 2.5× 10−4 0.95 – –
RNN 2.5× 10−4 0.9 – –
Transformer-XL 2.5× 10−4 0.95 – –
Lambda Discrepancy 2.5× 10−4 0.95 0.5 0.25

Table 12: DeepMind Lab MiniGrid Maze Level 1 Best Hyperparameters

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.95 – –
Memoryless 2.5× 10−3 0.95 – –
RNN 2.5× 10−4 0.95 – –
Transformer-XL 2.5× 10−4 0.95 – –
Lambda Discrepancy 2.5× 10−4 0.95 0.95 0.25

Table 13: DeepMind Lab MiniGrid Maze Level 2 Best Hyperparameters

Fully Observable Observation Space For fully observable ceiling, we use the observation space783
from original Brax (Freeman et al., 2021) environments for the HalfCheetah and Ant environments.784
Halfcheetah has observation space (18, ) and Ant has observation space (27, ).785

Action Space We use Brax HalfCheetah and Ant action space to evaluate all our algorithm.786
HalfCheetah has a continuous action space of shape (6, ) and Ant has a continuous action space787
of shape (8, ). The values of actions in both of the environments fall between -1 and 1, where each788
component representing the torque applied to a specific part of the agent.789

Reward The reward function of Ant consists three parts. The agent is rewarded for every second790
it survives and It is also rewarded for moving in the desired direction. It is penalised for taking too791
large action and also if the external force is too large. The reward function of Halfcheetah has two792
parts. The agent is rewarded for going in forward direction and it is penalised for taking too large793
action.794

Hyperparameter We swept both Halfcheetah and Ant over 3 seeds for all hyperparameter in Ta-795
ble 10, 11 and train for 5 × 106 to get the best hyperparameters. Specifically, we set the hidden796
size to 512. For transformer experiments, we set the embed size to 220 to match the total number797
of parameters in recurrent PPO. The rest hyperparameters are default. We present the best hyperpa-798
rameters found for environments in Table 14, 15. After the selection, we rerun the experiments over799
30 seeds using best hyperparameters.800

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.5 – –
Memoryless 2.5× 10−4 0.1 – –
RNN 2.5× 10−4 0.7 – –
Transformer-XL 2.5× 10−4 0.5 – –
Lambda Discrepancy 2.5× 10−4 0.1 0.5 0.5

Table 14: Ant Best Hyperparameters

B.7 No-inventory Crafter801

No-inventory Crafter is a more partially observable variant of Crafter (Hafner, 2021). This environ-802
ments was built on top of the Craftax framework (Matthews et al., 2024). Craftax is a version of803
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Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.5 – –
Memoryless 2.5× 10−4 0.7 – –
RNN 2.5× 10−4 0.7 – –
Transformer-XL 2.5× 10−4 0.7 – –
Lambda Discrepancy 2.5× 10−4 0.95 0.95 0.5

Table 15: Halfcheetah Best Hyperparameters

Crafter that is implemented in JAX (Bradbury et al., 2018). On top of their work, we furthur made804
this environment more partially observable by masking the inventory located at the bottom of an805
observation.806

Observation Space The original Craftax observation consists of a grid of 13 by 9 pixel squares,807
where each square is 10 × 10 pixels, making the original observation (130, 90, 3). To make it808
more efficient, our No-inventory Crafter pixel observation has the same form as Craftax, but we809
downscaled the square from 10 × 10 to 3 × 3 and then we mask the pixels that correspond to the810
inventory, resulting in a final observation shape (27, 33, 3).811

Fully Observable Observation Space For our fully observable ceiling, we use the Craftax sym-812
bolic observation, which has shape (8268, ). The first section is the flattened map representation813
containing information about block, item, mob and light level. Then the next section is the inven-814
tory, followed by potions, player’s intrinsics, player’s direction, armour and special values.815

Action Space We use the same action space with Craftax, which is a discrete action space of 43.816
Note that every action can be taken at any time, thus attempting to execute an action that is not817
available will result in a no-op action.818

Reward We adopt the same reward scheme used in Craftax. The agent receive the reward the819
first time it complete an achievement. There are a total 65 achievements which are characterized820
into 4 categories: ‘Basic’, ‘Intermediate’, ‘Advanced’, and ‘Very Advanced’, for which the agent is821
rewarded 1, 3, 5, 8 points respectively. The agent is also penalised 0.1 point every point of damage822
it took and rewarded 0.1 every health it recovered.823

Hyperparameter We swept Craftax over 3 seeds for all hyperparameters in Table 10 and 11 and824
train for 5 × 108 steps across all the algorithms. We set the number of environments to 256 and825
hidden size to 512. For the transformer experiments, we set the embed size to 220 to match the826
total number of parameters in recurrent PPO. The best hyperparameters selected after the sweep827
are summarized in Table 16. After selection, we rerun the experiments over 30 seeds with the best828
hyperparameters.829

Table 16: No-inventory Crafter Best Hyperparameters

Step size λ0 λ1 β
Fully Observable 2.5× 10−4 0.7 – –
Memoryless 2.5× 10−5 0.95 – –
RNN 2.5× 10−4 0.5 – –
Transformer-XL 2.5× 10−5 0.7 – –
Lambda Discrepancy 2.5× 10−4 0.1 0.95 0.25
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B.8 Ablation studies830

Here we describe details of the number of parallel environments and network width ablation stud-831
ies. Both studies were conducted over 5 seeds. Hyperparameters for the ablation study on num-832
ber of parallel environments swept were the same as Appendix B.5 for maze_id = 01, ex-833
cept with the additional sweep of num_envs∈ (64, 256). Hyperparameters for the ablation834
study on network width were the same as Appendix B.4, except with the additional sweep of835
hidden_size∈ (32, 64, 256). Best performance was taken over discounted returns.836
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