
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Benchmarking Partial Observability in
Reinforcement Learning with a Suite of

Memory-Improvable Domains
Anonymous authors

Paper under double-blind review

Keywords: reinforcement learning, partial observability, benchmarking

Summary
Mitigating partial observability is a necessary but challenging task for general reinforce-

ment learning algorithms. To improve an algorithm’s ability to mitigate partial observability,
researchers need comprehensive benchmarks to gauge progress. Most algorithms tackling par-
tial observability are only evaluated on benchmarks with simple forms of state aliasing, such
as feature masking and Gaussian noise. Such benchmarks do not represent the many forms of
partial observability seen in real domains, like visual occlusion or unknown opponent intent.
We argue that a partially observable benchmark should have two key properties. The first is
coverage in its forms of partial observability, to ensure an algorithm’s generalizability. The
second is a large gap between the performance of a agents with more or less state information,
all other factors roughly equal. This gap implies that an environment is memory improvable:
where performance gains in a domain are from an algorithm’s ability to cope with partial ob-
servability as opposed to other factors. We introduce best-practice guidelines for empirically
benchmarking reinforcement learning under partial observability, as well as the open-source
library POBAX: Partially Observable Benchmarks in JAX. We characterize the types of partial
observability present in various environments and select representative environments for our
benchmark. These environments include localization and mapping, visual control, games, and
more. Additionally, we show that these tasks are all memory improvable and require hard-to-
learn memory functions, providing a concrete signal for partial observability research. This
framework includes recommended hyperparameters as well as algorithm implementations for
fast, out-of-the-box evaluation, as well as highly performant environments implemented in JAX
for GPU-scalable experimentation.

Contribution(s)
1. We investigate the efficacy of partially observable benchmarks in measuring an algorithm’s

ability to mitigate partial observability.
Context: None

2. We introduce the memory improvability property: a partially observable benchmark is
memory improvable if there is a gap between agents with more or less state information, all
other factors roughly equal.
Context: None

3. We categorize popular forms of partial observability, and present a list of representative
environments that covers these categories.
Context: This categorization does not cover all forms of partial observability.

4. We present the open-source POBAX benchmark: a suite of memory improvable environ-
ments designed to test an algorithm’s ability to mitigate partial observability. POBAX is
entirely implemented in JAX, allowing for fast and GPU-scalable experimentation.
Context: None

Benchmarking Partial Observability in RL with a Suite of Memory-Improvable Domains

Benchmarking Partial Observability in Reinforcement
Learning with a Suite of Memory-Improvable Do-
mains

Anonymous authors
Paper under double-blind review

Abstract

Mitigating partial observability is a necessary but challenging task for general rein-1
forcement learning algorithms. To improve an algorithm’s ability to mitigate partial2
observability, researchers need comprehensive benchmarks to gauge progress. Most al-3
gorithms tackling partial observability are only evaluated on benchmarks with simple4
forms of state aliasing, such as feature masking and Gaussian noise. Such benchmarks5
do not represent the many forms of partial observability seen in real domains, like visual6
occlusion or unknown opponent intent. We argue that a partially observable benchmark7
should have two key properties. The first is coverage in its forms of partial observabil-8
ity, to ensure an algorithm’s generalizability. The second is a large gap between the9
performance of a agents with more or less state information, all other factors roughly10
equal. This gap implies that an environment is memory improvable: where performance11
gains in a domain are from an algorithm’s ability to cope with partial observability as12
opposed to other factors. We introduce best-practice guidelines for empirically bench-13
marking reinforcement learning under partial observability, as well as the open-source14
library POBAX: Partially Observable Benchmarks in JAX. We characterize the types15
of partial observability present in various environments and select representative envi-16
ronments for our benchmark. These environments include localization and mapping,17
visual control, games, and more. Additionally, we show that these tasks are all memory18
improvable and require hard-to-learn memory functions, providing a concrete signal19
for partial observability research. This framework includes recommended hyperparam-20
eters as well as algorithm implementations for fast, out-of-the-box evaluation, as well21
as highly performant environments implemented in JAX for GPU-scalable experimen-22
tation.23

1 Introduction24

Reinforcement learning (Sutton & Barto, 2018) algorithms are being deployed to increasingly com-25
plex domains where partial observability (Kaelbling et al., 1998) is a fundamental problem. A26
system is partially observable if its observations contain only partial information about the underly-27
ing state. In this setting, agents cannot make effective decisions without reasoning about their past.28
Resolving partial observability is a necessary but typically challenging task (Zhang et al., 2012),29
and many system designers try to circumvent this issue with hand-designed environment-specific30
features (Mnih et al., 2015; Bellemare et al., 2020). The human engineering effort required to re-31
solve partial observability environment by environment reveals the crux of the problem: there exist32
many different forms of partial observability, each with their own challenges.33

To tackle partial observability, researchers develop history summarization algorithms through testing34
on benchmark partially observable tasks. The classic T-Maze (Bakker, 2001) problem was used35

1

Under review for RLC 2025, to be published in RLJ 2025

to test long-term recall with LSTMs (Hochreiter & Schmidhuber, 1997) in reinforcement learning.36
The RockSample (Smith & Simmons, 2004) task was originally used to develop partially observable37
planning algorithms and their capabilities on large state spaces.38

Current benchmarks are narrow in their scope of state aliasing, bringing into question whether per-39
formance on the benchmark translates to other forms of partial observability. The best-known ex-40
ample is the Atari benchmark (Bellemare et al., 2013), where using only a single frame is partially41
observable (Hausknecht & Stone, 2015). Similarly, masked continuous control (Han et al., 2020) is a42
popular benchmark where velocity or positional state information is hidden. Half of the masked con-43
tinuous control tasks, the agent only requires a few previous time steps to gauge velocity information44
to recover a Markov state. These benchmarks represent a narrow sampling of partial observability,45
but constitute a substantial fraction of empirical evaluations (Ni et al., 2022; 2023; Zhao et al., 2023;46
Lu et al., 2024). Although other benchmarks test on more forms of state aliasing (Morad et al., 2023;47
Beattie et al., 2016), individual benchmarks lack coverage across the categories of partial observ-48
ability and often lack justification as to why the selected tasks are good benchmark tasks. In some49
cases, performance on a partially observable benchmark depends more on implementation details50
rather than an algorithm’s ability to mitigate partial observability (Ni et al., 2022).51

Beyond good coverage of the forms of partial observability, a useful benchmark must have a clear52
signal for evaluating an algorithm’s ability to mitigate partial observability. We argue that one such53
valuable signal is memory improvability. An environment is memory improvable a gap exists be-54
tween the performance of agents imbued with more or less state information. This implies that55
using memory to mitigate partial observability will improve performance in this environment. The56
performance gap between observations that are partial and those that are (more) complete is exactly57
the gap that an agent mitigating partial observability ought to close. A large gap indicates that a58
particular environment can benefit from adding memory; a small or non-existent gap indicates that59
either the partial observability is not a major issue, or there is some other confounding factor—e.g.60
featurization scheme, learning dynamics or hyperparameters.61

We introduce a new open-source benchmark, POBAX1: Partially Observable Benchmarks in JAX.62
Since testing on all forms of partial observability is untenable, we categorize the different forms63
of partial observability and select representative environments for our benchmark to ensure that we64
have coverage of the space of task types. POBAX is a comprehensive suite of new and existing65
partially observable environments that cover all state aliasing categories of interest described here.66
These environments include tasks such as localization and mapping, visual control, games and more.67
Besides requiring hard-to-learn memory, these environments are all memory improvable; as we68
add more information into the state representation, we see an increase in performance. To show69
the utility of our benchmark, we test three popular reinforcement learning algorithms designed for70
mitigating partial observability. We also recommend per-environment hyperparamters for out-of-71
the-box evaluation of memory learning algorithms. The benchmark is also entirely implemented in72
JAX (Bradbury et al., 2018), allowing for fast simulation and GPU-scalable experiments.73

2 Background and Related Work74

We use Markov decision processes (MDPs) (Puterman, 1994) and their extension, partially observ-75
able Markov decision processes (POMDPs) (Kaelbling et al., 1998) as the framework for sequential76
decision making in an unknown environment. An MDP consists of a state space S, action space77
A, reward function R : S � A ! R, stochastic transition function T : S � A ! �S , initial78
state distribution p0 2 S, and discount factor
 2 [0; 1]. The goal of an agent interacting with an79
MDP is to learn a policy �S : S ! �A which tries to maximize its expected discounted returns80
V�S (s) = E�S

[∑1
i=0

iRt+i
]
. In the POMDP framework, an agent receives observations o 2
81

through an observation function � : S ! �
 that maps the underlying hidden states to potentially82
incomplete state observations. These observations no longer have the Markov property: the obser-83
vation ot and action at at time step t are no longer a sufficient statistic of history to predict the next84

1Code: https://anonymous.4open.science/r/pobax-2042

2

https://anonymous.4open.science/r/pobax-2042

Benchmarking Partial Observability in RL with a Suite of Memory-Improvable Domains

observation and reward,ot +1 andr t , or P r (ot +1 ; r t j ot ; at) 6= P r (ot +1 ; r t j ot ; at ; : : : ; o0; a0).85
Under partial observability, an agent must use its historyht := (ot ; at ; : : : ; o0; a0) 2 H to learn a86
history-conditioned policy�
 : H ! � A to maximize returns.87

An agent can mitigate partial observability by learning memory functions� : H ! Rn . Memory88
functions condense past sequences of actions and observations into a memory statem t = � (ht).89
Sinceht is variable in size, it is often more ef�cient and convenient to use recurrent memory func-90
tionsm t = � (ot ; at ; m t � 1). Ideally, a memory function learns to retain information that it needs91
in future decision making. While traditional approaches have relied on discrete state machines92
to reason about states (Chrisman, 1992; Peshkin et al., 1999), most modern approaches leverage93
parameterized deep neural networks (Goodfellow et al., 2016) to learn memory functions. One94
popular class of neural network memory functions are recurrent neural networks (RNNs) (Amari,95
1972; Mozer, 1995), powerful function approximators that can be optimized with truncated back-96
propagation through time (Jaeger, 2002). Another state-of-the-art class of memory functions are97
transformers (Vaswani et al., 2017), which is not recurrent, and looks at a �xed context-length win-98
dow of previous inputs in order to learn memory. For reinforcement learning in partial observability,99
one can use standard gradient-based reinforcement learning algorithms to learn a neural network100
memory function capable of summarizing history to mitigate partial observability. The algorithm101
we use throughout this work for optimization is the popular proximal policy optimization algorithm102
(PPO) (Schulman et al., 2017). We use this algorithm due to its strong performance in select partially103
observable environments with RNNs (Ni et al., 2022) and transformers (Ni et al., 2023). We also104
test on the� -discrepancy algorithm (Allen et al., 2024), an extension to the recurrent PPO algorithm105
speci�cally made for mitigating partial observability.106

There have been many forms of benchmark tasks for partial observability. Partially observable tasks107
were formulated to solve the POMDP planning problem (Zhang et al., 2012), the most well-known108
instance being the Tiger problem (Kaelbling et al., 1998). In most cases, the scale of these problems109
are too small and are easily approximated with modern neural networks (Allen et al., 2024). The110
few exceptions to this rule are benchmarks from POMDP planning algorithms designed to scale up111
to large state spaces (Silver & Veness, 2010), which we include in our study. Modern deep rein-112
forcement learning algorithms have been tested on a number of dif�cult and large domains, includ-113
ing single-frame Atari (Hausknecht & Stone, 2015), masked (Han et al., 2020) and visual(Todorov114
et al., 2012; Ortiz et al., 2024) continuous control, and multiagent systems (Rutherford et al., 2023;115
Bettini et al., 2024; Lanctot et al., 2019). While there have been benchmarks speci�cally designed116
for partial observability (Morad et al., 2023; Osband et al., 2020), these benchmarks tend to have a117
narrow range of partially observable tasks.118

3 Confounding Factors in Assessing Partial Observability Mitigation119

The objective of any benchmark is to give researchers a reasonable signal for progress on a class of120
problems. If the goal of an algorithm is to effectively mitigate partial observability, then progress121
measured in a benchmark should be from an agent effectively mitigating partial observability, as122
opposed to other factors. While this may seem obvious, isolating performance increases is a chal-123
lenging task in practice, considering how many factors affect deep reinforcement learning perfor-124
mance (Henderson et al., 2018). We begin by investigating some potential confounding factors in125
partially observable reinforcement learning.126

There are confounding factors in existing partially observable benchmarks that obfuscate the ef-127
fects of partial observability. In the Atari benchmark (Bellemare et al., 2013), a single frame is128
partially observable, whereas four stacked consecutive frames is usually assumed to be fully observ-129
able (Mnih et al., 2015). We would expect an agent imbued with state information to outperform an130
agent that receives only single frames and must do the extra work of resolving partial observability.131
In reality, results are much more complicated (Hausknecht & Stone, 2015) and different algorithms132
make gains in different environments. In masked continuous control (Han et al., 2020) one might133
expect an agent with full state features to perform better than one where certain features are masked134

3

Under review for RLC 2025, to be published in RLJ 2025

Figure 1: Masked continuous control online undiscounted returns for observations only (gray), full
state (green), and an RNN agent (purple) over 30 seeds. Function approximation types play a large
role in performance. Full experiment details are presented in Appendix B.4.

Figure 2: (Left) Image of the DMLab Minigrid maze environment formaze_id = 01 . (Middle,
right) Online discounted returns in this environment comparing performance of using 64 vs 256
parallel environments. Experiments were conducted over 5 seeds.

out. In Figure 1 we show that more often than not, the opposite is true; RNNs under partial ob-135
servability outperform memoryless agents with fully observable features, as with position-only Ant136
and Walker. It seems for most of these tasks, agents struggle with other factors besides a lack of137
information in the state representation.138

Other confounding factors such as the choices of hyperparameters or function approximators often139
impact performance in partial observability benchmarks. An important question to consider is:140
how much of the improvement is from mitigating partial observability and how much is from other141
factors? Next, we study the effects of a few important general factors on performance for memory-142
learning tasks.143

3.1 Number of Parallel Environments144

Modifying the number of parallel copies of environments can drastically change the performance of145
a given featurization and algorithm. Reinforcement learning algorithms will use parallel copies of146
an environment to make uncorrelated minibatches of experience for more stable gradient updates.147
Figure 2 shows an ablation study on the number of parallel environments in the DeepMind Lab148
Minigrid domain introduced in Section 6.1. Note that the total number of environment steps used for149
training remains the same. The difference is in the size of the minibatch for each gradient update. As150
the number of parallel environments increases, the size of each minibatch increases, but the number151
of total updates decreases. We generally see improved performance with an increase in the number152
of parallel environments. Full details of this ablation study are in Appendix B.8. The trade-off for153
increasing the number of parallel environments is increased memory usage, making experiments less154

4

Benchmarking Partial Observability in RL with a Suite of Memory-Improvable Domains

Figure 3: Online undiscounted returns comparing network hidden sizes 32, 64 and 256 (left to right)
on velocity-only Walker.

scalable with more parallel environments. To ameliorate this variance, the benchmark we introduce155
includes recommendations for the number of parallel environments required for each task such that156
our baseline and skyline agents both learn.157

3.2 Network Width158

Network width is another general hyperparameter for deep reinforcement learning agents with a159
sizable but diminishing effect as width increases. The network width is the number of neurons160
in a neural network's hidden layers, also called its hidden size. In Figure 3 investigate the effect of161
network width for the velocity-only Walker environment from the masked continuous control bench-162
mark. As network width increases, we see consistent but diminishing improvements in performance.163
The trade off with increased network width is again a large computational and memory overhead, re-164
quiring more resources per experiment. Our benchmark also includes default recommended network165
widths for each environment. All details of this ablation study are shown in Appendix B.8.166

We advocate for choosing general hyperparameter settings for each environment and �xing these167
settings across all algorithms to ensure a fair comparison between algorithms. Ideally, these settings168
should also be swept for each algorithm; but with computational resource constraints, sweeping169
many settings is untenable. As an alternative, our proposed benchmark provides recommended170
settings for general hyperparameters, including the two studied in this section. This is not to say171
practitioners should stop sweeping more algorithm-dependent hyperparameters like learning rate.172
Instead we advocate for a reasonable middle ground for computational feasibility and experimental173
rigor. Beyond these two hyperparameter settings, many other factors can affect deep reinforcement174
learning performance. Input featurization and neural network normalization are just a few factors175
important for performance that we do not investigate in this work. Fixing these confounding factors,176
we now consider properties that make for a good partially observable benchmark.177

4 Memory Improvability178

Controlling for confounding factors is not enough to isolate performance gains from mitigating par-179
tial observability. We argue that the most important characteristic of an environment is its memory180
improvability: an indication that performance gains are likely from mitigating partial observability.181
An environment is memory-improvable if there exists a gap between the performance of agents with182
less or more state information. If this gap exists, assuming most other factors are equal (e.g. learn-183
ing algorithm, network size), then gains from a memory-learning algorithm will likely come from184
mitigating partial observability.185

Environments should therefore admit multiple state representations that contain differing amounts of186
state information such that merely adapting the agent to the new input space is suf�cient to achieve187
a performance improvement with minimal algorithmic changes. Consider the forms of observability188
in a version of the gameBattleship(Silver & Veness, 2010) in Figure 4. In this game, players must189

5

Under review for RLC 2025, to be published in RLJ 2025

Figure 4: Different levels of observability in5 � 5 Battleship. (Left) Observations in this version
of Battleship are whether or not the previous action hit. (Middle) “Perfect memory” observability,
where observations include all previous position hit and missed. Grayed out grids are unobservable.
(Right) Full observability, where ship positions are also included in observations.

select coordinates on a grid to �re at in order to sink ships. We show three examples of observability190
here: �rst is the least observable version, where observations only include whether or not the last191
shot hit. This poses a particularly hard challenge, since in addition to learning the dynamics of192
Battleship, the agent must also remember previous shot locations. The second agent has “perfect193
memory” where the observation is Markov (since no additional information can be gleaned from194
previous observations) and all previous hits and misses are tabulated in a grid. Lastly, we have the195
full state observation that also includes ship positions. An agent that learns memory should be able196
to attain performance matching an agent with perfect memory, whereas optimal performance with197
full observability is an upper-bound for performance, oftentimes unachievable. Performance with198
base memoryless observations gives a �oor to the performance of an agent, whereas performance199
with either perfect memory or full state observations gives a ceiling. If a gap exists between the200
performance of these agents, then an environment is memory improvable. Conversely, it is also201
possible to create a memory improvability gap by further reducing the amount of information in202
already-partially-observable state features; for example, features in Battleship that only reveal hits203
but not misses in Battleship.204

With other factors held constant, performance gains by a partial-observability-mitigating algorithm205
in a memory-improvable environment are more likely due to mitigating partial observability. From206
Section 3 we know that without memory improvability, performance gains on a partially observable207
domain could be due to other confounding factors. When the biggest difference between agents is208
the information in the input features, the gains above the agent with less information are from an209
agent better mitigating partial observability.210

Now that we have described how we intend to evaluate agents with our benchmark, we can assess211
which environments would make for a good evaluation for mitigating partial observability.212

5 Categorizing Partial Observability213

To choose representative environments for benchmarking partial observability, we �rst must de�ne214
categories of interest that partially observable environments fall into. In the following list, we focus215
on the different forms that partial observability can take, as opposed to categorization with solution216
methods in mind. We de�ne eight categories popular in partial observability and example problems217
for each. Note that environments may fall into multiple categories of partial observability. We218
emphasize that this is not an exhaustive list of the archetypes of partial observability, but merely219
popular forms seen throughout reinforcement learning literature.220

Noisy state features State features with additive noise. The most popular option for additive noise221
is to add Gaussian noise to continuous state features:� (x (s)) := x (s)+ � , where� is sampled noise222
from a multivariate Gaussian with zero mean. Modeling partial observability as additive Gaussian223
noise is a popular technique in robotics (Thrun et al., 2005). An example of this is noisy Cartpole224
and Pendulum environments (Morad et al., 2023), where baseline observation-only agents already225

6

Benchmarking Partial Observability in RL with a Suite of Memory-Improvable Domains

perform well. Additive state features may not provide the best signal for algorithmic progress in226
partial observability.227

Visual occlusion A portion of the environment's visibility is occluded by other parts of the en-228
vironment or distance. Visual occlusion is one of the most popular sources of partial observability229
in both robotics and reinforcement learning, with visual locomotion (Todorov et al., 2012) and oc-230
cluded maze navigation (Beattie et al., 2016; Chevalier-Boisvert et al., 2023) as popular and chal-231
lenging existing benchmarks.232

Object uncertainty & tracking The state of objects in the environment are unknown, requiring233
an agent to reason about each object and potentially track it. The classic POMDP benchmark Rock-234
Sample (Smith & Simmons, 2004) is an apt example, since an agent must test and remember the235
parity of each rock. Games such as Crafter (Hafner, 2021) contain objects and enemies that may236
leave the screen which an agent should track or act to observe.237

Spatial uncertainty Environments where the agent is required to localize and potentially map its238
environment. This form of partial observability is a classic task in robotics (Thrun et al., 2005). In239
reinforcement learning, the aforementioned maze navigation (Beattie et al., 2016) and �rst-person240
grid world environments (Chevalier-Boisvert et al., 2023; Pignatelli et al., 2024) are popular exam-241
ples.242

Moment features Environments where state representation is characterized by moments. In con-243
tinuous control domains (Todorov et al., 2012), position and velocity (�rst and second moments)244
of the agent's joints characterize the full state of the system. Environments can be made partially245
observable by obscuring position or velocity information (Han et al., 2020).246

Unknown opposition In multiagent systems, an agent is unaware of the opponent's policy, making247
the world partially observable. Adding more agents, each with their own policy, exponentially248
increases the size of the system. Multiagent reinforcement learning is a large �eld of study with249
many existing benchmarks (Rutherford et al., 2023; Bettini et al., 2024; Lanctot et al., 2019). Due250
to the scope of this category, we leave this form of partial observability to these benchmarks.251

Episode nonstationarity Tasks where aspects of the environment change over episodes. Maze252
environments from DeepMind Lab (Beattie et al., 2016) are a classic example of this, where the253
start and goal positions are randomized at every step for each maze con�guration. ProcGen (Cobbe254
et al., 2019) is an extreme example of this, the environment is partially observable and each episode255
also instantiates in a randomly generated level of each game.256

Needle in a haystack These dif�cult environments test an agent's ability to memorize a random257
sequence of events, oftentimes unrelated to one another. An example of this is the diagnostic Au-258
toencode task (Morad et al., 2023), where an agent must repeat back a shuf�ed deck of 52 cards259
backwards. In this setting, the only sequence of observations that holds any information about re-260
wards is the sequence of cards shown to the agent—there is no accumulation of information, only261
a single sequence of actions among exponentially many possibilities of sequences that will result in262
a reward. We leave out environments of this form because they are diagnostic and purely meant to263
test memory length, as opposed to partial observability of interest.264

Together with memory improvability in Section 4, we are now ready to establish a benchmark for265
mitigating partial observability.266

7

Under review for RLC 2025, to be published in RLJ 2025

(a) Visual Mujoco (b) No-inventory Crafter

Figure 5: Pixel-based environments in POBAX. (Left) Ant and HalfCheetah in visual continuous
control. Images are rendered with full JAX support in the Madrona MJX rendering engine (Shack-
lett, 2024), with the dark coloration due artifacts of the new framework. (Right) Observations in
no-inventory Crafter have the agent's inventory cropped out, requiring the agent to remember its
items and stats.

6 POBAX: A Fast, Memory-Improvable Benchmark for Reinforcement267

Learning Under Partial Observability268

Partially Observable Benchmarks in JAX (POBAX) is a new suite of reinforcement learning envi-269
ronments for benchmarking partial observability. It includes partially observable environments with270
hard-to-learn memory functions. These environments cover the categories of partial observability of271
interest in Section 5, and are all memory improvable with the provided recommended hyperparam-272
eter settings. POBAX is also written entirely in JAX (Bradbury et al., 2018) which allows for fast273
GPU-scalable experimentation.274

6.1 Environments275

We brie�y summarize each environment before testing them on a set of popular reinforcement learn-276
ing algorithms made for mitigating partial observability. Environment identi�cation strings (for the277
get_env function) are given after their names. Full details of all environments are in Appendix B.278

T-Maze (tmaze_{ nlength }) A small diagnostic benchmark for partial observability and memory279
length (Bakker, 2001). At the beginning of an episode, the agent is told whether the reward at the end280
of a hallway is up or down, and the agent must remember this by the time it gets to the T-junction.281
We recommend using this environment as a sanity check for memory learning algorithms, since282
the optimal policy's return will always be4 �
 n length+1 , wherenlength is the length of the hallway.283
Category:object uncertainty & tracking284

RockSample (rocksample_11_11 and rocksample_15_15) A classic medium-sized285
problem in POMDP literature (Smith & Simmons, 2004). InRockSample(11, 11)andRockSam-286
ple(15, 15), the agent needs to sample good rocks throughout its environment and exit. Partial287
observability comes from the need to test each rock with its distance-dependent stochastic sensor.288
This environment is extendable to the general RockSample(ngrid, k) problem, wherengrid is the289
size of thengrid � ngrid grid, andk is the number of randomly dispersed rocks in the environment.290
Category:object uncertainty291

Battleship (battleship_10) Another medium-sized problem based on the board game, also292
from POMDP planning literature (Silver & Veness, 2010). An agent must hit all 4 ships in a10� 10293
grid, and sees onlyHIT or MISS at every step. This environment is extendable to anyngrid �294

8

