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Abstract

Dual encoder architectures like Clip models map two types of inputs into a shared em-
bedding space and predict similarities between them. Despite their wide application, it is,
however, not understood how these models compare their two inputs. Common first-order
feature-attribution methods explain importances of individual features and can, thus, only
provide limited insights into dual encoders, whose predictions depend on interactions be-
tween features.
In this paper, we first derive a second-order method enabling the attribution of predictions
by any differentiable dual encoder onto feature-interactions between its inputs. Second, we
apply our method to Clip models and show that they learn fine-grained correspondences
between parts of captions and regions in images. They match objects across input modes
and also account for mismatches. This intrinsic visual-linguistic grounding ability, however,
varies heavily between object classes, exhibits pronounced out-of-domain effects and we can
identify individual errors as well as systematic failure categories.

1 Introduction

Dual encoder models use independent modules to represent two types of inputs in a common embedding space
and are optimized to predict a scalar similarity measure for them. The training objective is typically a triplet
or contrastive loss (Sohn, 2016; van den Oord et al., 2019). Popular examples include Siamese transformers for
text-text pairs (SBERT) (Reimers & Gurevych, 2019) and Contrastive Language-Image Pre-Training (Clip)
models (Radford et al., 2021; Jia et al., 2021) for text-image pairs. The learned representations have proven
to be highly informative for downstream applications, such as image classification (Zhang et al., 2022a),
visual question answering (Antol et al., 2015; Tilli & Vu, 2025), image captioning and visual entailment
(Shen et al., 2021), as well as text or image generation (Chen et al., 2023a; Yu et al., 2022; Rombach et al.,
2022). In (multi-modal) information retrieval, dual encoders can be applied to perform efficient semantic
search (Baldrati et al., 2022; Zhu et al., 2024). Their independent processing of the two inputs allows for
the pre-computation and storage of representations in vector-databases enabling sub-linear search times
via approximate nearest neighbor algorithms (Xiong et al., 2021; Johnson et al., 2019), which can serve
Retrieval-Augmented Generation (RAG) Gao et al. (2023).

Despite the wiede-spread application of dual encoder models, an open question remains how these models
compare the features of their two inputs. Ostensibly, common attribution methods can provide insights into
such feature importances. However, different from single-input models, dual encoder predictions depend
on feature interactions between two inputs, rather than on individual features. This is due to the final
comparison of the two inputs’ embeddings through a cosine-similarity or dot-product, resulting in all terms
contributing to the output similairty score to contain multiplicative dependencies between the two inputs.
In such multiplicative terms, a change in one involved feature affects the contribution of others. Therefore,
we speak of feature interaction.
First-order feature attribution methods, like Shapley values (Lundberg & Lee, 2017) or integrated gradients
(Sundararajan et al., 2017) cannot account for feature interactions because they can only attribute predic-
tions to individual features (Zheng et al., 2020; Ramamurthy et al., 2022; Janizek et al., 2021; Sundararajan
et al., 2020). Only few works have studied interactions of features in symmetric Siamese encoders (Eberle
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Figure 1: (Left column) Our second-order attributions can point out interactions between arbitrary spans in
captions and regions in images. We can visualize them by slicing (yellow selection) our 3d attribution tensor
with image dimensions (H, W ) and caption dimension S (details in Section 3). A selection can be projected
onto the image (top-left) or the caption (bottom-left) by summation (green arrows). Heatmaps for these
projected attributions are in shades of red/blue for positive/negative values. (Right column) In contrast,
first-order attributions can only attribute the overall similarity between captions and images onto either
the image (top-right) or the caption (bottom-right). They cannot assess underlying interactions. Figure 21
provides an alternative illustration of the 3d aspect of our interaction attributions.

et al., 2020; Möller et al., 2023; 2024; Vasileiou & Eberle, 2024) and, to the best of our knowledge, they are
yet to be explored in non-symmetric models like vision-language dual encoders such as Clip.
In this work, we address this research gap and aim at a means to analyze which aspects in two given inputs
dual encoders compare to predict a similarity for them. Our contributions are the following:
(1) Motivated by the theory behind integrated gradients Sundararajan et al. (2017), we derive a general
second-order feature attribution method that can explain interactions between inputs of any differentiable
dual encoder model. The method does not rely on any modification of the trained model, nor on additional
optimization. Required changes to the original code are minimal and easily transferable to different archi-
tectures (implementation details in Appendix H). We will make our code available.
(2) We apply the method to a range of Clip models and demonstrate that they can capture fine-grained
interactions between corresponding parts of captions and regions in images. They identify matching ob-
jects across the input modes and also penalize mismatches. Using image-captioning datasets with object
bounding-box annotations, we evaluate the extent and limitations of this intrinsic visual-linguistic grounding
ability in a wide range of Clip models. We find large variation for different object classes and pronounced
out-of-domain effects. An error analysis reveals typical failure categories.

Figure 1 illustrates our interaction attributions and puts them in relation to first-order variants.
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2 Related work

Metric learning refers to the task of producing embeddings reflecting the similarity between inputs (Kaya
& Bilge, 2019). Applications include face identification (Guillaumin et al., 2009; Wojke & Bewley, 2018) and
image retrieval (Zhai & Wu, 2018; Gao et al., 2014). Siamese networks with cosine similarity of embeddings
were early candidates (Chen & He, 2021). The triplet-loss (Hoffer & Ailon, 2015) involving negative examples
has been proposed as an improvement but requires sampling strategies for the large number of possible triplets
(Roth et al., 2020). Qian et al. (2019) have shown that the triplet-loss can be relaxed to a softmax variant.
Sohn (2016) and van den Oord et al. (2019) have proposed the batch contrastive objective which has been
applied in both unsupervised (Caron et al., 2020) and supervised representation learning (Khosla et al.,
2020). It has lead to highly generalizable semantic text (Reimers & Gurevych, 2019) and image embeddings
(He et al., 2020) and ultimately to the Clip training paradigm Radford et al. (2021).

Vision-language models process both visual and linguistic inputs. Zhang et al. (2022b) were the first
to train a dual-encoder architecture with a contrastive objective on image-text data in the medical domain.
With Clip Radford et al. (2021) have applied this principle to web-scale image captions and the ALIGN
model has achieved similar results with alt-text (Jia et al., 2021). In the following, the basic inter-modal
contrastive loss has been extended by, intra-modal loss terms (Goel et al., 2022; Lee et al., 2022; Yang
et al., 2022a), self-supervision (Mu et al., 2022), non-contrastive objectives (Zhou et al., 2023), incorporating
classification labels (Yang et al., 2022b), textual augmentation (Fan et al., 2023), a unified multi-modal
encoder architecture (Mustafa et al., 2022) and retrieval augmentation (Xie et al., 2023). Next to more
advanced training objectives, other works have identified the training data distribution to be crucial for
performance: Gadre et al. (2023) have proposed the DataComp benchmark focusing on dataset curration
while fixing model architecture and training procedure, Xu et al. (2024) have balanced metadata distributions
and Fang et al. (2024) have introduced data filtering networks for the purpose. The strictly separated dual-
encoder architecture has been extended to include cross-encoder dependencies (Li et al., 2022a; Pramanick
et al., 2023), and multi-modal encoders have been combined with generative decoders (Chen et al., 2023a;
Lu et al., 2023; Li et al., 2021; Koh et al., 2023; Alayrac et al., 2022). The CoCa model combines contrastive
learning on uni-modal vision- and text-representations with a text generative cross-modal decoder (Yu et al.,
2022).

Local feature attribution methods aim at explaining a given prediction by assigning contributions to
individual input features (Murdoch et al., 2019; Doshi-Velez & Kim, 2017; Lipton, 2018; Atanasova et al.,
2020). First-order gradients can approximate a prediction’s sensitivity to such features (Li et al., 2016)
and gradient×input saliencies can approximate feature importances (Simonyan et al., 2014). In transformer
architectures, attention weights were proposed as an explanation for model behavior (Abnar & Zuidema,
2020); however, subsequent works have contested this view, arguing that attention weights represent only
one aspect of the model’s reasoning (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Bastings & Filippova,
2020). Layer-wise relevance propagation (LRP) defines layer-specific rules to back-propagate attributions to
individual features (Montavon et al., 2019; Bach et al., 2015). In contrast, shapley values (Lundberg & Lee,
2017) and Integrated Gradients (IG) (Sundararajan et al., 2017) treat models holistically and can provide
a form of theoretical guaranty for correctness. This has recently been challenged by Bilodeau et al. (2024)
who prove fundamental limitations of attribution methods. A widely used attribution method in the vision
domain is Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017), which Chefer
et al. (2021) and Bousselham et al. (2024) extend to transformer architectures.
Assigning importances to individual features, first-order attribution methods cannot capture dependencies
on feature interactions. Tsang et al. (2018) have proposed to detect such interactions from weight matrices in
feed-forward neural networks, Cui et al. (2020) investigated them in Bayesian networks. The Shapley value
has been extended to the Shapley (Taylor) Interaction Index (Grabisch & Roubens, 1999; Sundararajan
et al., 2020; Fumagalli et al., 2024) and Janizek et al. (2021) have generalized IG to integrated Hessians.
Dual and Siamese encoders represent a special case, as their predictions only depend on feature interactions
due to their multiplicative cosine or dot-product comparison of the two inputs’ embeddings (cf. Equation 1
below). Plummer et al. (2020) and Zheng et al. (2020) have assessed similarities in Siamese image encoders.
Eberle et al. (2020) extended LRP for this class of models (Vasileiou & Eberle, 2024), while Möller et al.

3



Under review as submission to TMLR

(2023; 2024) extended IG to Siamese language encoders. In this work, we further generalize this method to
multi-modal dual encoders.

CLIP explainability. Several works have previously pursued the goal of better understanding Clip mod-
els and contrastive image encoders. Wang et al. (2023) and Kazmierczak et al. (2024) have proposed infor-
mation bottleneck approaches. Bhalla et al. (2025) identified interpretable sparse concepts in the embedding
space. Rasekh et al. (2024) predict human-understandable rationales for images. Quantmeyer et al. (2024)
localized where the text encoder processes negation. Giulivi & Boracchi (2024) create saliency maps for
WordNet concepts. Chen et al. (2022) propose an improved CAM variant and analyze which objects the
model looks at. Materzyńska et al. (2022) are interested in the entaglement of image representations. Gan-
delsman et al. (2023) identified the roles of individual attention heads in Clip’s image encoder and later
investivated second-order effects of neurons (Gandelsman et al., 2025). Lewis et al. (2024) analyzed whether
Clip models adequately handle compositional concepts. Sam et al. (2024) investigate the model’s reasoning
ability about differences in images. Tu et al. (2024) examined safety objectives in Clip models and May-
ilvahanan et al. (2024) investigated their out-of-domain generalization. Zhao et al. (2024) explored a wide
range of first-order methods to attribute similarity scores to images and captions independently and Li et al.
(2023) proposed the CLIPSurgery method. Sammani et al. (2023) and Lerman et al. (2021) independently
introduced a second-order variant of gradCAM that can assess feature interactions. It can be applied to
Clip; in Appendix F, we show that it is a special case of our method. Most closely related to our work,
Interaction Local Interpretable Model-Agnostic Explanations (InteractionLIME) (Joukovsky et al., 2023)
pioneered the attribution of interactions between captions and images in Clip models. However, relying
on a local bilinear approximation of Clip, it does not explain the original model and requires additional
optimization and hyper-parameter tuning (cf. Appendix G). Last, the Image-Text Similarity Map (ITSM)
by Li et al. (2022c) and the method by Black et al. (2022) are forward-facing saliency methods that compute
importance values through pair-wise embedding multiplication. We compare these approaches against ours
in Section 4.1.

Visual-linguistic grounding is the identification of fine-grained relations between text phrases and corre-
sponding image parts (Chen et al., 2023b). Specialized models predict regions over images for a corresponding
input phrase (Sadhu et al., 2019; Ye et al., 2019). This objective has been combined with contrastive caption
matching (Li et al., 2022b; Datta et al., 2019), and caption generation (Yang et al., 2022c). The Vision-
Language Transformer with weakly-supervised local-feature Alignment (VoLTA) model internally matches
latent image-region and text-span representations (Pramanick et al., 2023). In multi-modal text generative
models, grounding has been included as an additional pretraining task (Li et al., 2020; Su et al., 2019; Chen
et al., 2020); alternatively grounding abilities can be unlocked with visual prompt learning (Dorkenwald
et al., 2024). At the intersect of grounding and explainability, Hendricks et al. (2016) have generated textual
explanations for vision models and have grounded them to input images (Hendricks et al., 2018; Park et al.,
2018). In this paper, we do not optimize models to explicitly ground predictions, but aim at analyzing to
which extent purely contrastively trained dual encoders already acquire this ability intrinsically.

3 Method

In the following, we derive general second-order attributions for dual encoder predictions enabling the as-
sessment of feature-interactions between their two inputs.

Derivation of interaction attributions. Let

s = f(a, b) = g(a)⊤h(b) (1)

be a differentiable dual-encoder model, with two vector-valued encoders g and h, respective inputs a and b
and a scalar output s. For our purpose, g will be an image encoder with an image input a and h will be a
text encoder with a text representation b as input. To attribute the prediction s onto features of the two
inputs a and b, we also define two uninformative reference inputs ra, the black image, and rb, a sequence of
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fixed length padding tokens. We then rigorously start from the following expression:

f(a, b) − f(ra, b) − f(a, rb) + f(ra, rb) (2)

Our derivation first proceeds by showing the equality of this initial starting-point to Eq. 10. We then reduce
this equality to our final attributions in Eq. 11 using the approximations discussed below. At this point,
we are also discussing an intuitive interpretation of the final result. As a first step, however, we proceed
rigorously, see f as an anti-derivative and can turn the above expression into an integral over the derivative
of f : [

f(a, b) − f(ra, b)
]

−
[
f(a, rb) − f(ra, rb)

]
=

∫ b

rb

∂

∂yj

[
f(a, y) − f(ra, y)

]
dyj =

∫ b

rb

∫ a

ra

∂2

∂xi∂yj
f (x, y) dxi dyj

(3)

Here, x and y are integration variables for the two inputs. We use component-wise notation with indices i
and j for the input dimensions and omit sums over double indices for clarity. We plug in the model definition
from Equation 1: ∫ a

ra

∫ b

rb

∂2

∂xi∂yj
gk(x) hk(y) dxi dyj (4)

Again, we use component-wise notation for the dot-product between the two embeddings g(x) and h(y) and
index output dimensions with k. Since neither embedding depends on the other integration variable, we can
separate the integrals: ∫ a

ra

∂gk(x)
∂xi

dxi

∫ b

rb

∂hk(y)
∂yj

dyj (5)

This step makes explicit use of the strict independence of the two encoders. Cross-encoder architectures
would introduce dependencies between them. Both terms are line integrals from the references to the actual
inputs in the respective input representation spaces; ∂gk(x)/∂xi and ∂hk(y)/∂yj are the Jacobians of the
two encoders. To proceed with these integrals, we define integration paths and solve by substitution. We
follow Sundararajan et al. (2017), and use the straight lines between both references and inputs,

x(α) = ra + α(a − ra), (6)
y(β) = rb + β(b − rb), (7)

parameterized by α and β. For the integral over encoder g substituting the path x(α) yields an integral over
the the scalar integration variable α:∫ 1

0

∂gk (x(α))
∂xi

∂xi(α)
∂α

dα = (a − ra)i

∫ 1

0

∂gk (x(α))
∂xi

dα (8)

Since ∂x(α)/∂α = (a − ra) is a constant w.r.t α, we can pull it out of the integral. We then define the
integrated Jacobian,

Ja
ki =

∫ 1

0

∂gk (x(α))
∂xi

dα ≈ 1
N

N∑
n=1

∂gk(x(αn))
∂xi

, (9)

as the analogon to integrated gradients for vector-valued models. The integral over encoder h can be
processed in the same way by substituting y(β) to obtain Jb

kj . In practice, these integrals are calculated
numerically by sums over N steps, with αn = n/N . This introduces an approximation error which must,
however, converge to zero for large N by definition of the Riemann integral. We plug the results from
Equation 8 and the definitions of the integrated Jacobians into Equation 5:

(a − ra)i Ja
ikJb

kj (b − rb)j =: Aij (10)

After computing the sum over the output embedding dimensions k, this provides a matrix of interactions
between feature-pairs (i, j) in input a and b, respectively, which we call the attribution matrix Aij . This
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final result is the product between the integrated Jaobians of the two encoders, thus, reducing the initial
second-order derivative from Eq. 3 to a product of two first-order derivatives.
Note that except for the numerical integration, the equality to Equation 2 still holds. Hence, the sum over
all feature-interaction attributions in A is an exact reformulation of our starting-point. If the references ra

and rb are uninformative, i.e. f(ra, b) ≈ 0, f(a, rb) ≈ 0, f(ra, rb) ≈ 0, we can reduce the equality between
Equations 2 and 10 to the following approximation:

f(a, b) ≈
∑

ij

Aij . (11)

Intuitively, this provides an approximate decomposition of the model prediction s = f(a, b) into additive
contributions of feature-pair interactions between the two inputs.
It can be thought of as the natural extension of integrated gradients (Sundararajan et al., 2017) to dual
encoder models that compute similarities between two inputs based on the distance of their embeddings.
Throughout this paper, we evaluate the attribution matrix A. Below, we describe which form it takes in
Clip models and how we proceed to visualize it.

Inter-modal attributions. In the derivation above, we treat image and text representations as vectors.
In transformer-based encoders, text inputs are represented as S ×Db dimensional tensors, where S is the
length of the token sequence. Image representations are of shape H ×W ×Da, with H and W being height
and width of the image representation; in vision-transformers both equal the number of patches P . Da and
Db are the encoders’ embedding dimensionalities. Our pair-wise image-text interaction attributions thus
have the dimensions H ×W ×Db ×S ×Da, which quickly becomes intractably large. Fortunately, the sum
over dimensions in Equation 11 enables the additive combination of attributions in A. We sum over the
embedding dimensions of both encoders Da and Db and obtain a H×W ×S dimensional attribution tensor,
which estimates for each pair of a text token and an image patch how much their combination contributes
to the overall prediction. These attributions are still three-dimensional and thus not straightforward to
visualize. However, again we can use their additivity, slice the 3d attribution tensor along text or image
dimensions and project onto the remaining dimensions by summation. This projection is demonstrated in
Figure 1 schematically and with examples, both for a selection over a token range in the caption (top) and
a selection over a bounding-box in the image (bottom). Importantly, all three examples per caption-image
pair come from the same 3d attribution tensor.

Intra-modal attributions. Albeit vision-language dual-encoders are typically trained to match images
against captions, we can compute attributions for image-image or text-text pairs as well by applying the
same encoder to both inputs. For text-text attributions, after summation over embedding dimensions, this
yields an S1 ×S2 dimensional attribution tensor, with S1 and S2 being token sequence lengths of the two
texts. Analogous to above, in Figure 2 (left) we attribute the yellow selected slice in the top caption onto
the bottom caption. For image-image similarities, attribution tensors become four dimensional taking the
shape (H ×W )1 ×(H ×W )2 and containing a contribution for every pair of two patches from either image.
In Figure 2 (right), we attribute the slice of the yellow bounding-box in the left image onto the image to its
right. Appendix A includes additional examples.

4 Experiments

In our experiments, we apply our feature-interaction attributions to Clip models. We focus on evaluating the
interactions between mentioned objects in captions and corresponding regions in images by selecting token-
ranges in captions and analyzing their interactions with image patches. In the first series of experiments, we
compare our attributions against baselines (Section 4.1). The second series in Section 4.2 then utilizes our
method and analyzes Clip models.

Datasets. We base this evaluation on three image-caption datasets that additionally contain object
bounding-box annotations in images, Microsoft’s Common Objects in Context (Coco) (Lin et al., 2014),
the Flickr30k collection (Young et al., 2014; Plummer et al., 2015), and the Hard Negative Captions (Hnc)
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A hot dog sitting on a table covered in confetti.
Surrounded by glitter, there is a sausage in a bun.

A hot dog sitting on a table covered in confetti.
Surrounded by glitter, there is a sausage in a bun.

Figure 2: (Left) Intra-modal text-text attributions between top and bottom captions (top: selections in
yellow, bottom: corresponding attributions in red/blue for positive/negative). (Right) Intra-modal image-
image attributions between left and right image (left: bounding-box selection in yellow, right: heatmaps as
above). More examples can be found in Figure 10.

dataset by Dönmez et al. (2023). For Hnc, we apply the authors’ approach of generating captions from
scene graphs using templates. Specifically, we use a basic template of the form subject predicate object
to align the generated captions with the domain of the other two datasets. We use Hnc for evaluation only,
on Flickr30k we use the test split, and on Coco we use the validation split as the test split does not contain
captions1.

Models. We analyze Clip dual-encoders (Radford et al., 2021) trained with the standard inter-modal
contrastive objective. We evaluate the original OpenAI models, as well as MetaClip (Xu et al., 2024) and
the OpenClip reimplementations trained on the Laion(Schuhmann et al., 2022), Dfn(Fang et al., 2024),
CommonPool, and DataComp(Gadre et al., 2023) datasets 2.

Fine-tuning. In addition to the unmodified models, we evaluate variants fine-tuned on the Coco and
Flickr30k training splits. We run all tuning for five epochs using AdamW (Loshchilov & Hutter, 2018),
starting with an initial learning rate of 1 × 10−7 that exponentially increases to 1 × 10−5. We set the weight
decay to 1 × 10−4 and use a batch size of 64 on a single 50GB NVIDIA A6000.

4.1 Attribution evaluation

In the first series of experiments, we compare our attributions against baselines. Figure 1 shows a qualitative
comparison of our second-order feature-interaction attributions against first-order variants, demonstrating
how our method can point out correspondence between image regions and spans in a caption, while the
latter can only attribute the overall similarity onto parts of the image or the caption. A detailed comparison
between first-order methods has been presented by Zhao et al. (2024). We closely follow their evaluation
protocol and extend it to second-order methods. Unless stated otherwise, we attribute to the second-last
hidden representation in the models’ image and text encoders and use N =50 integration steps with a black
image as the image reference and a padding token sequence as the text reference. In Appendix C, we include
additional experiments on the accuracy of our attributions as a function of N , as well as different reference
choices.

Baselines. We compare our method against four baselines, namely Interaction Class Activation Mapping
(Interaction-CAM), InteractionLIME, ITSM and a variant of it. Interaction-CAM (Sammani et al., 2023)
is also gradient-based and can be seen as a special case of our approach as shown in Appendix F. Interac-
tionLIME is a bilinear extension of LIME for dual-encoder models (Joukovsky et al., 2023). Code is not
available, therefore, we reimplement it; details are in Appendix G. ITSM (Sammani et al., 2023) follows the
simple approach of pair-wise multiplication of token and image patch embeddings after applying Clip’s final
projection layer to the individual embeddings. Originally, it is applied to output representations and we refer
to this variant as ITSMout. We also apply it to the same hidden representations that our method attributes

1https://www.kaggle.com/datasets/shtvkumar/karpathy-splits
2CLIP family: https://github.com/openai/CLIP, Open family: https://github.com/mlfoundations/open_clip
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Figure 3: Decline of average similarity scores with
standard deviations as uncertainty intervals between
images and captions for iterative conditional im-
age patch deletions using a model pretrained on
Laion and fine-tuned on Coco. Additional figures
displaying CID, CII, CTD, and CTI can be found in
Fig. 16 and 17.

Ours Icam Itsm-O Itsm-H ILime Random
Laion(tuned)

CID ↓ 65.94 91.39 101.35 88.88 83.43 85.04
CII ↑ 113.35 80.21 69.01 87.53 86.48 85.18
CTD ↓ 4.32 7.86 6.28 7.41 4.05 7.52
CTI ↑ 9.26 7.77 7.82 6.72 9.89 7.47

OpenAI
CID ↓ 16.33 21.04 23.97 20.91 20.25 20.47
CII ↑ 24.43 20.47 16.24 20.60 20.58 20.47
CTD ↓ 1.06 1.35 1.15 1.30 1.07 1.31
CTI ↑ 1.06 0.95 0.99 0.92 1.04 0.96

Table 1: The AUC for CID, CII, CTD, and CTI,
on Coco for the fine-tuned Laion and the original
OpenAI model. ↓: lower is better; ↑: higher is bet-
ter. Corresponding plots in Fig. 16.

to and refer to this variant as ITSMhidden. A qualitative comparison between all methods is included in
Figure 11.

Input perturbation. Following Sammani et al. (2023), we perform conditional perturbation experiments
by iteratively removing or inserting the most attributed features in one input while keeping the other input
unmodified. Figure 3 plots the decrease in similarity score for conditional image patch deletion (CID). Our
method produces the steepest score decline as a function of the number of patches removed, indicating its
ability to identify the most relevant interactions. Next to CID, we also evaluate conditional image patch
insertion (CII) as well as conditional text token deletion (CTD) and conditional text token insertion (CTI).
All plots are shown in Figures 16 and 17. Table 1 provides a summary and reports the area under the
curve (AUC) for the four variants. With the exception of InteractionLIME on the text side, our method
consistently results in the highest AUC values for the insertion experiments and the lowest for deletion. While
InteractionLIME performs good on conditional text attribution, interestingly, its image attributions are not
competitive. We discuss this in Appendix G. Insertion and deletion experiments have been criticized for
producing out-of-domain inputs Hooker et al. (2019). Therefore, we also construct in-domain perturbations
in the form of hard negative captions (Hnc) and evaluate their effect on the model in Section 4.2.

Object localization. To systematically assess the visual-linguistic grounding abilities of the analyzed dual
encoders, we evaluate the models’ localization ability of objects in images that are also mentioned in a given
caption. For this experiment, we include all object annotations that correspond to a single instance of its
class in the image, and whose bounding-box is larger than one patch. For Coco, we identify class occurrences
in the caption through a dictionary based synonym matching. For Hnc, classes exactly match sub-strings in
captions and in Flickr30k, respective spans are already annotated. This results in 3.5k image-caption pairs
from Coco, 8k pairs from Flickr30k, and 500 pairs from Hnc. We compute attributions between the token
span to a class mention in the caption and the image. Following Zhao et al. (2024), we then employ the
Point Game (PG) framework by Zhang et al. (2018) to evaluate how well attributions correspond to human
bounding-box annotations. It defines Point Game Accuracy (PGA) as the fraction of cases where the most
attributed patch falls within the objects’ bounding-box, and Point Game Energy (PGE) as the fraction of
positive attributions within the bounding-box relative to the total attribution across the entire image (Zhao
& Chan, 2023; Wang et al., 2020). For the latter we compare both full distributions (Figure 4 (right))
and median values (mPGE). The PG-framework is particularly suitable to evaluate the agreement between
attributions and bounding-box annotations because it does not require any thresholding and post-processing
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Point Game Energy (PGE)

A dog sitting inside
the cab of a truck.

(PGE=0.1, PGA=0)

A woman holding her
tennis racket.

(PGE=0.4, PGA=1)

A guy feeding an
elephant over a fence.
(PGE=0.9, PGA=1)

Figure 4: (Left) Examples for attributions between selected objects in the caption (yellow) and the image
together with corresponding Coco bounding-boxes (red), PGE and PGA values as described in Section 4.1.
(Right) Cumulative PGE distributions for the OpenClip models on Coco before (dashed) and after (solid)
in-domain fine-tuning.

Coco Flickr30k
Training Method mPGE PGA mPGE PGA

OpenAI

Itsmout 18.1 21.4 19.5 23.3
Itsmhidden 29.8 38.1 29.5 37.4
Ilime 27.9 34.9 25.8 33.1
Icam 38.6 54.6 33.5 51.4
Ours 72.3 79.0 64.4 72.1

Laion (tuned)

Itsmout 22.8 30.3 24.5 28.7
Itsmhidden 30.5 34.6 28.8 36.6
Ilime 28.8 37.8 25.8 34.5
Icam 32.5 58.4 33.5 51.4
Ours 71.1 83.2 54.3 61.8

(a) PG-based comparison of our attributions against the
ITSM method and Interaction-CAM (ICAM) for the
OpenAI and Laion model.

Coco Hnc Flickr30k
Train Tuning mPGE PGA mPGE PGA mPGE PGA

OpenAI No 72.3 79.0 57.0 65.0 64.4 72.1
Yes 78.0 82.9 - - 73.4 79.0

Laion No 49.4 63.3 40.0 51.6 38.2 52.0
Yes 71.1 83.2 - - 54.6 61.8

(b) Results for the Point Game-based vision-language
grounding evaluation for the ViT-B-16 models trained
by OpenAI and on Laion. Tuning indicates whether a
model was fine-tuned on the train split of a dataset. Im-
provement upon fine-tuning are in bold.

Table 2: PGA: Point Game Accuracy, mPGE: median Point Game Energy. Extensive results for Table 2a
including additional models are shown in Table 5. Full results of Table 2b can be found in Tables 3 and 4.

to construct bounding-box estimates that are then compared to annotations by means of intersection over
union or similar metrics.
Figure 4 shows examples from different PGE-ranges and the corresponding cumulative distributions over
the Coco dataset for the OpenClip models. Very high or low values, unambiguously indicate object
correspondence or clear failure cases, respectively. However, intermediate values often result from attributions
extending beyond the bounding box to contextual elements, such as the tennis court in the second example.

Table 2a compares our method against Interaction-CAM and ITSM for the OpenAI and Laion model.
Results for DataComp and Dfn are included in Table 5. Our attributions outperform the baselines by
large margins. Figure 15 includes cumulative PGE-distributions for our attributions and the baselines, eval-
uated on a selection of models using the Coco test split. Based on these distributions, we test whether the
improvement of our method over the baselines is statistically significant using the framework for stochas-
tic order proposed by Dror et al. (2019) (details in Appendix E). At the strict criterion of p < 0.001 and
ϵ = 0.01, our method clearly results in significantly better PGE-statistics. This shows that neither a sim-
plified gradient-based approach (Interaction-CAM), nor pair-wise embedding multiplication (ITSM) or the
optimization of a local surrogate model (InteractionLIME) can capture caption-image interactions in Clip
models as well as our method.
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A clock in the intersect of two streets.

A surfer riding a wave on a yellow surfboard.

unmodified fine-tuned

Figure 5: Class-wise average Point Game Energy (PGE) and its standard deviation (error bars) of the
OpenClip Laion model before and after in-domain fine-tuning on the Coco train split. On the right are
two explicit examples of how the model’s grounding ability changes upon tuning. The corresponding classes
are emphasized with red arrows.

4.2 Model analysis

We now turn to applying our method to gain insights into how Clip models match images and captions.

Out-of-domain effects. The tested models are trained on large web-based captioning datasets but have
(presumably) not been tuned on the Flickr30k and Coco train splits. To assess domain effects of the mod-
els’ grounding ability, we fine-tune them on the respective train splits. We emphasize that all fine-tuning
is conducted within the standard contrastive framework, neither modifying model architectures nor training
objectives to explicitly perform grounding. Table 2b presents the median PGE and PGA for the Ope-
nAI model and its OpenClip Laion counterpart, before and after fine-tuning. Figure 4 shows cumulative
PGE distributions before and after fine-tuning for the OpenClip models on the Coco dataset. The results
for all tested OpenAI and OpenClip models on all datasets are provided in Appendix B. To compare
the grounding ability of unmodified models and their fine-tuned counterparts, again we test whether one
PGE-distribution is stochastically larger than the other (cf. Appendix E), assuming p<0.001 and ϵ=0.01.

For both OpenAI and OpenClip models, fine-tuning increases grounding abilities by a large margin. These
improvements are consistently significant. While the unmodified Clip ViT-B/16 model already demonstrates
strong grounding abilities on Coco and Flickr30k, the off-the-shelf OpenClip counterparts perform notably
worse on these datasets. However, their improvement after in-domain fine-tuning is remarkable, which is
apparent in the examples in Figure 5. The off-the-shelf model fails to identify the clock and even assigns
a negative attribution to the surfboard, whereas the fine-tuned version clearly identifies both. This large
improvement in the models’ grounding abilities indicates limitations in the original models’ abilities to
generalize beyond the initial training domain.

Class-wise evaluation. To examine the models’ understanding of individual visual-linguistic concepts on
a more fine-grained level and how it evolves upon in-domain tuning, we break the above analysis down to
individual classes. Figure 5 shows the average PGE-values and their standard deviations for Coco classes
in the OpenClip Laion model. The classes are ordered from left to right based on their average grounding
ability in the unmodified model (blue). PGE values range from 0.92 ± 0.08 for sheep to 0.07 ± 0.07 for
snowboard. The model effectively identifies the leftmost classes sheep, bear, elephant, while grounding is
notably weaker for the rightmost classes like snowboard, cell phone, baseball bat. Upon fine-tuning (orange),
most classes show improvements. Using the standardized mean difference of the two PGE values as a measure
for effect size, we observe the largest improvements for the classes horse, bench, giraffe, airplane and clock.
This shows that standard contrastive fine-tuning sharpens the fine-grained visual-linguistic correspondence
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A giraffe and a
zebra checking
each other out.

A desk with
a cellphone

and pocket change.

A long bridge with
a train going
underneath.

A couple
sitting on a bench
looking at the sea.

Figure 6: Attributions between selected parts of a caption (yellow) and a corresponding image. Other
objects that also appear in the image and are mentioned in the caption (underlined) but are not selected
for attribution often receive negative attributions (blue). The histogram on the right shows the distribution
over the sign of such cross-attributions as described in the parageraph Object Discrimination.

of individual concepts in Clip models. In Appendix B (Figure 18), we replicate this experiment for Dfn and
CommonPool, yielding similar results.

Object Discrimination. We frequently observe that attributions between a given object in the text and
a non-matching one in the image – or vice versa – are not only neutral but negative. Figure 6 includes four
explicit examples. To systematically evaluate this effect, we sample instances from Coco that include at
least two distinct object classes, each appearing exactly once in the image. We then compute attributions
between the two corresponding bounding-boxes and text spans and also across them, which we refer to as
cross-attribution. Attribution to the actual object’s bounding-box is positive in nearly all cases (97.1%),
while cross-attributions to the other object are negative in 65.6% of instances – rising to 70.1% in the Coco
fine-tuned model (cf. Figure 6 (right)). This implies that the models do not only match corresponding objects
across the input modes but can also actively penalize mismatches by assigning them negative contributions.

Hard negative captions. On the text side, it is straightforward to produce in-domain perturbations. We
create hard negative captions that replace a single object in a positive caption with a reasonable but differ-
ent object to receive a negative counterpart. To this end, we leverage the automatic procedure by (Dönmez
et al., 2023) together with our simplified template (cf. Section 4) and additionally create a second resource
from Coco by manually annotating a small yet high-quality evaluation sample of 100 image-caption pairs.
We check whether our negative captions actually result in a decrease of the predicted similarity score com-
pared with their positive counterparts and define the difference as δS . It is negative in 95.2% (89.1%) of
the Coco (Hnc) pairs. We then compute attributions between the token range of the original or replaced
object and the object bounding-box in the image and define the attribution difference between the negative
and the positive caption as δA. It is also negative in 95.2% (74.1%) of the Coco (Hnc) examples. Full
histograms for δS and δA as well as an example for a change in attributions is included in Figure 8. These
results show that the model mostly reacts correctly to mistakes in the caption and decreases the attribution
to the corresponding image region.

Qualitative failure analysis. To identify cases where the models’ grounding abilities are systematically
weak, we extract objects with PGE < 0.2 from the Coco validation set and categorize them qualitatively.
For the Laion, OpenAI , and Dfn models, this results in approximately 200 image-caption pairs each.
We can identify five major categories: (1) Visually correlated scenes like baseball courts, bathrooms, offices,
etc., (2) attributions locally exceeding bounding boxes, (3) coverage or partial visibility of objects, (4) actual
object misidentifications, and (5) difficult or unusual scenes. Figure 7 shows the distribution among these
categories and an example for each. More examples are included in Figure 12. Category (1), correlated
scenes, accounts for approximately half of all failures in all three models, indicating that one of weaknesses
of Clip models is to differentiate between objects that frequently appear together.
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A bathroom with
sink and toilet.

Someone on a surf-
board belly down.

A waiting person
behind a bicyle.

A baby with a
spoon and cupcake.

A guy holidng
up a toothbrush.

correlation locally exceeding coverage misidentification unusual

Figure 7: Examples for the five failure categories that we can identify (left) and their relative occurrence in
three models (right). More examples for all categories are in included in Figure 12.

A man holding a
slice of pizza.

A man holding a
cup of coffee.

Figure 8: (Left) Histograms for score (δS) and attribution (δA) changes in hard negative captions. (Right)
An example attributions for a hard negative caption, with the true object marked in yellow, and the replaced
negative one in magenta. Coco bounding-boxes in red. Details are described in the paragraph Hard negative
captions.

5 Discussion

Interpretation of results. The fact that the model’s intrinsic grounding ability, as measured by our
attributions, can be poor on data outside the initial training domain and largely improves upon in-domain
tuning points out limitations in the generalization capabilities of Clip models. Despite the billion scale
pre-training, the models seem to require explicit exposure to some object classes to establish a solid corre-
spondence between the vision and language mode for the underlying concepts.
An interesting finding is that Clip models do not only positively match objects but also penalize mismatches
by assigning negative contributions. However, this is not consistently the case and we frequently observe
positive cross-attributions between mismatching objects in correlated scenes like tennis courts, bathrooms,
kitchens, streets, etc. This suggests that Clip models may struggle to differentiate between objects that
commonly appear together. The contrastive objective may not provide sufficient supervision to learn to tell
them apart. Future work should establish a better understanding of this phenomenon.
A solution may be to augment the training data with hard negatives specifically targeting such correlations
(Yuksekgonul et al., 2023), potentially making use of synthetic data generation (Patel et al., 2024). Among
the failure categories that we have identified, attributions locally exceeding bounding-boxes only imply slight
disagreement with human annotations. Wrong attributions due to coverage, actual misidentification, and
unusual scenes only account for a small fraction of failures; yet, they may call for more challenging datasets.
Our baseline experiments showed that analyzing interactions in Clip models is not trivial. Neither simplified
gradient-based approaches nor pair-wise embedding multiplication is sufficient for the purpose. Interaction-
LIME successfully fits text-side dependencies but cannot reliably capture interactions with image features. In
contrast, our approach performs consistently, and requires no optimization or hyper-parameter tuning. Nev-
ertheless, it may be possible to further enhancing our interaction-attributions by incorporating improvements
that have been proposed for first-order integrated gradients, including discretization of text representations
(Sanyal & Ren, 2021), non-uniform interpolations (Bhat & Raychowdhury, 2023) or integration along non-
linear paths (Kapishnikov et al., 2021; Zhuo & Ge, 2024).
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Limitations. As stated explicitly in Equation 11, our interaction attributions are an approximation.
Throughout this work, we attribute to intermediate representations of inputs, which is both efficient and in-
formative. Attribution to input representations is possible, yet computationally very expensive (Möller et al.,
2024). In transformers, intermediate representations have undergone multiple contextualization steps and
are technically not strictly tied to input features at a given position. Finally, recently proven fundamental
limitations of attribution methods urge caution in their interpretation, especially regarding counterfactual
conclusions about the importance of individual features (Bilodeau et al., 2024). Despite these considera-
tions, our empirical evaluations demonstrate that our attributions can effectively point out correspondences
between images and captions. Although they should not be regarded as guaranteed robust and faithful
explanations, we argue that they offer valuable insights into dual encoder models and have the potential to
enhance their development further.

6 Conclusion

In this paper, we derived general feature-pair attributions for dual-encoder architectures, enabling the attri-
bution of similarity predictions onto interactions between input features. Our method is easily applicable to
any differentiable dual-encoder architecture and requires no modifications of the initial model. We believe
it can provide valuable insights in applications such as (multi-modal) information retrieval and retrieval-
augmented generation, helping to identify biases and errors in these models to improve them further.

Applying our method to Clip models provides clear evidence for them capturing fine-grained interactions be-
tween corresponding visual and linguistic concepts despite their coarser contrastive objective. Mis-matching
objects are often not only ignored but contribute negatively to image-caption similarities. At the same time,
we also find pronounced out-of-domain effects, and can identify knowledge gaps about specific object classes
in individual models. In-domain fine-tuning can reduce these gaps by large margins, which points out limi-
tations in the initial models’ generalization capabilities and complements the recent results by Mayilvahanan
et al. (2024). Finally, an error analysis revealed that Clip models can struggle with covered or partially
visible objects, unusual scenes, and correlated contexts like kitchens, offices, or sports courts.

By enabling the analysis of interactions between caption and image features, our approach contributes to
an emerging interest in understanding higher-order dependencies in Clip models (Gandelsman et al., 2025;
Joukovsky et al., 2023), reaching beyond well-understood first-order effects (Zhao et al., 2024).
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(a) A couple sitting on a
bench looking at the sea.

(b) A couple sitting on a
bench looking at the sea.

(c) A dog is jumping for a
frisbee.

(d) A dog is jumping for a
frisbee.

Figure 9: Additional examples for inter-modal attributions of token-range selection with image projections
(left) and bounding-box selection with caption projection (right). The visualization is identical to Figure 1.

Figure 10: Image-image attributions between the yellow bounding-box in the left image and the one to its
right as described in Section 3. Visualisation is identical to Figure 2 (right)

A Additional Examples

Figure 9 shows two more examples for inter-modal attributions, one for text-span selection and image
projection and one for bounding-box selection and caption projection.

Figure 10 includes two more examples for image-image attributions as described in Section 3 under intra-
modal attributions.

Figure 11 shows a qualitative comparison between our attributions and the baselines described in Section
4.1.

Figure 12 shows five examples for each of the five failure categories that we identified in Section 4.2 under
Qualitative failure analysis.

B Extended results

Table 3 shows full results for our Point-Game evaluation on different OpenAI models. Next to the ViT-B-16
architecture, we also evaluate the RN50 and ViT-B-32 variants. Table 4 includes the full evaluation for all
OpenClip models. In addtion to the median PGE (mPGE), in these tables we also report cumulative PGE
densitites for the 80th percentile (PGE>0.8). Full cumulative PGE-histograms for additional models are
included in Figures 13 and 14.

Table 5 presents full results of our Point-Game baseline experiments extending Section 4.1. Corresponding
cumulative densities of the PGE-metric are shown in Figure 15. Figures 16 and 17 show the plots of the con-
ditional insertion and deletion experiments for the OpenClip Laion model and the original OpenAI model,
respectively. The corresponding AUC values are contained in Table 1.
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A guy with a hat and a frisbee in front of a car by a lake
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A woman on the phone with an umbrella sitting on a bench in a street
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Figure 11: Qualitative comparison between our attributions, the InteractionCAM (ICAM), InteractionLIME
(ILIME) and both ITSM variants. Heatmaps over images in a given column are for the marked parts of the
captions in yellow below. 23
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A baseball player
swinging a bat.

A living room with
a vase with flowers.

An office with desk,
chair and laptop.

Bathroom area, tub,
toilet and sink.

Kitchen with stove,
fan and refrigerator.

A man riding a
skateboard up a ramp.

A person on skies
flies through the air.

An airline status
board with a clock.

A person holds a
pizza on a peel.

Two people sitting on
a small boat floating.

A child in bed looking
at a picutre book.

A dog next to a cat
lying on a bed.

A man drinking
from a red bottle.

A person feeding
sheep behind a fence.

A man sitting in a chair
eating a banana.

A baby with a spoon
looking at a cupcake.

A living room with a
couch and a rug.

A parking meter
decorated with a house.

A plate of food next to
a cup of pepsi.

A woman with a knife
about to cut some cake.

A closeup of a fork
holding some broccoli.

A tan teddy bear
wearing a bow tie.

Someone holding an
umbrella on a sidewalk.

Cars and a bus
stopped for a train.

A dog that is
sniffing a baseball bat .

Figure 12: Five examples for each of the five identified failure categories as described in Section 4.2.
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Coco HNC Flickr30k
Model Tuning mPGE PGE>0.8 PGA mPGE PGE>0.8 PGA mPGE PGE>0.8 PGA

RN50 No 66.3 28.8 76.9 50.1 22.6 61.8 60.1 25.5 71.2
ViT-B/32 No 63.5 33.3 69.1 52.8 28.5 58.5 50.4 23.4 58.1
ViT-B/16 No 72.3 35.7 79.0 57.0 31.7 65.0 64.4 28.4 72.1
ViT-B-16 Yes 78.0 48.4 82.9 - - - 73.4 40.7 79.0

Table 3: Summary of Point-Game evaluation for different Clip models by OpenAI as described in Sec-
tion 4.1. Model refers to the investigated architecture, Tuning is whether the model was fine-tuned on the
train split of the respective dataset. Best overall results are in bold, best results of unmodified models are
underlined.

COCO Flickr30k
Training Tuning mPGE PGE>0.8 PGA mPGE PGE>0.8 PGA

Laion No 49.4 22.0 63.3 38.2 15.9 52.0
Yes 71.1 47.3 83.2 54.6 30.6 61.8

CommonPool No 43.0 18.2 58.8 36.7 15.5 53.0
Yes 57.7 28.7 67.1 44.6 20.8 56.2

DataComp No 38.5 14.6 56.0 32.8 11.8 48.9
Yes 72.4 50.0 75.1 50.7 27.3 56.0

DFN No 46.5 19.6 54.3 35.4 12.3 43.3
Yes 71.4 53.3 74.6 53.1 33.5 58.3

Meta-Clip No 44.2 16.8 52.3 37.0 14.5 46.4
Yes 57.5 49.8 77.1 49.2 24.1 57.2

Table 4: Summary of the Point-Game evaluation for all OpenClip models on Coco and Flickr30k. The
Training column refers to the dataset the model was initially trained on, Tuning is whether the model was
additionally fine-tuned on the train-split of the respective evaluation dataset. All models implement the
ViT-B-16 architecture except Meta-Clip that uses quickgelu activations. Best overall results are in bold,
best results for unmodified models are underlined.
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Figure 13: Cumulative PGE-distribution plots of the OpenAI models for the Coco (left) and Flickr30k
(right) dataset as described in Section 4.1.

Figure 18 extends the class-wise PGE-evaluation from Section 4.2 to the OpenClip Dfn and Data-
Comp models.
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Coco Flickr30k
Training Method mPGE PGA mPGE PGA

OpenAI

ITSMout 18.1 21.4 19.5 23.3
ITSMhidden 29.8 38.1 29.5 37.4
ILIME 27.9 34.9 25.8 33.1
ICAM 38.6 54.6 33.5 51.4
Ours 72.3 79.0 64.4 72.1

Laion (tuned)

ITSMout 22.8 30.3 24.5 28.7
ITSMhidden 30.5 34.6 28.8 36.6
ILIME 28.8 37.8 25.8 34.5
ICAM 32.5 58.4 33.5 51.4
Ours 71.2 83.2 56.3 63.6

Dfn (tuned)

ITSMout 24.2 34.5 25.1 31.4
ITSMhidden 27.4 23.0 27.7 36.5
ILIME 27.9 39.2 25.7 33.5
ICAM 33.3 46.5 24.2 42.2
Ours 71.4 74.6 53.1 58.3

DataComp (tuned)

ITSMout 25.5 38.7 26.5 33.9
ITSMhidden 35.0 42.3 22.6 28.4
ILIME 28.4 39.3 25.7 34.1
ICAM 36.9 49.5 23.2 37.3
Ours 72.4 75.1 50.7 60.0

Table 5: PGE-evaluation results of our method compared against the ITSM and InteractionCAM (ICAM)
baselines for different models as described in Section 4.1 under Object localization. Best results for every
model are in bold.
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Figure 14: Cumulative PGE-distribution plots for the OpenAI models on HNC (left) and the Open-
Clip models on Flickr30k (right) as described in Section 4.1.
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Figure 15: Cumulative PGE-distributions for our baseline experiment in Section 4.1. Our method is in solid,
InteractionCAM is dashed and ITSMout is dotted. ITSMhidden is excluded for an uncluttered visualization.

C Additional Experiments

Approximation Error. In Section 3, we have shown the equality between Eq. 2 and Eq. 10. The only
approximation affecting this equality is the numerical integration in Eq. 9 to calculate the two integrated
Jacobians Ja and Jb by a sum over N bins. We can evaluate how good this approximation is by explicitly
calculating the four similarity predictions between the references and inputs f(a, b), f(ra, b), f(a, rb) and
f(ra, rb), as well as the attribution matrix A. The approximation error can then be defined as the absolute
difference between Eq. 2 and Eq. 10. In Figure 19, we plot this error as a function of different magnitudes
for N . For larger N , it converges as expected due to the Riemann definition of the integral.

Choice of references. The choice of the references ra and rb is ambiguous as long as they are uninforma-
tive. We try different options and evaluate their approximation errors as defined above. For the image input,
we use a black image and zero-centered gaussian noise. For the text input, we use a sequence of padding
tokens and the empty sequence consisting only of the CLS and EOS tokens. Figure 19 includes approximation
errors for all four combinations of these references as a function of N . Combinations with gaussian noise for
the image reference appear to converge slightly faster than the black image.
For different references, attributions can vary slightly. However, these differences are small, even for large
objects like the cow in Figure 20 (left), for which attributions tend to spread out. The absolute difference
of attributions between any two combinations of references is on the order of 10−5 and tends to decrease for
larger N . The plot in Figure 20 (right) shows this for the difference between a black-padding and gaussian-
empty reference combination.
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(a) Conditional Image Insertion.
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(b) Conditional Text Insertion.

0 25 50 75 100 125 150 175
Deleted Patches

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
Si

m
ila

rit
y

Ours
ICAM
ITSM-O
ITSM-H
ILIME
Random

(c) Conditional Image Deletion.
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(d) Conditional Text Deletion.

Figure 16: Average change in similarity score upon conditional insertion and deletion performed on either
the caption or the image using a ViT-B-16 model pretrained on Laion. Confidence intervals are standard
deviations over the evaluation dataset. Table 1 summarizes the AUC of these plots.

D Alternative Figure 1

E Stochastic Dominance

Stochastic dominance defines an order relation between probability distributions based on their cumulatives.
del Barrio et al. (2018) have proposed a significance test building on the principle and Dror et al. (2019)
have identified it as being particularly suitable to compare deep neural models. The test’s ϵ-parameter is the
maximal percentile range where the inferior distribution is allowed to dominate the superior one and Dror
et al. suggest to set it to ϵ < 0.4. The smaller ϵ, the stricter the criterion. α is the significance level.

F Relation to interactionCAM

Here, we first discuss the relation of integrated gradients Sundararajan et al. (2017) and GradCam and then
show how our method can be reduced to the Interaction-CAM baseline through simplification. We start by
deriving IG for a model f(a) = s with a vector-valued input a and a scalar prediction s, which might e.g. be
a classification score. We define the reference input r, begin from the difference between the two predictions
and reformulate it as an integral over the integration variable x:

f(a) − f(r) =
∫ a

r

∂f(x)
∂xi

dxi (12)
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(a) Conditional Image Insertion.
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(b) Conditional Text Insertion.
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(c) Conditional Image Deletion.

0 2 4 6 8 10
Deleted Tokens

0.00

0.05

0.10

0.15

Co
sin

e 
Si

m
ila

rit
y

Ours
ICAM
ITSM-O
ITSM-H
ILIME
Random

(d) Conditional Text Deletion.

Figure 17: Conditional insertion and deletion performed on either the caption or the image using the original
ViT-B-16 model by OpenAI without any fine-tuning.

Again we do not write out sums over double indices. To solve the resulting line integral, we substitute with
the straight line x(α) = r + α(a − r) and pull its derivative dx(α)/dα = (a − r) out of the integral:

∫ 1

α=0

∂f(x(α))
∂xi(α)

∂xi(α)
∂α

dα = (a − r)i

∫ 1

α=1
∇if(x(α)) dα (13)

In practice, we approximate the integral by a sum over N steps. If the reference is uninformative, so that
f(r) ≈ 0, the equality between Eq. 12 and Eq. 13 can be reduced to the final approximation of IG:

f(a) ≈ (a − r)i
1
N

N∑
n=1

∇if(x(αn)), (14)

which decomposes the model prediction f(a) into contributions of individual feature i in a. We can now
reduce these feature attributions further by setting N = 1 and r = 0, to obtain

ai∇if(a), (15)

which is often referred to as gradient×input and is the basic form of GradCam. The method typically
attributes to deep image representations in CNNs, so that a has the dimensions C×H ×W , the number of
channels, height and width of the representation. To reduce attributions to a two-dimensional map, it sums
over the channel dimension and applies a relu-activation to the outcome. The original version also average
pools the gradients over the spacial dimensions, however, this is technically not necessary.

29



Under review as submission to TMLR

sh
ee

p
co

w
gi

ra
ffe

te
dd

y 
be

ar
m

icr
ow

av
e

sa
nd

wi
ch

ze
br

a
bo

wl
tru

ck
el

ep
ha

nt
be

ar
ba

na
na be
d

ca
t

pi
zz

a
m

ot
or

cy
cle

ov
en do
g

ca
ke

ch
ai

r
ca

r
bu

s
re

fri
ge

ra
to

r
tra

in
re

m
ot

e
ho

rs
e

ai
rp

la
ne

um
br

el
la

ho
t d

og
bi

cy
cle

su
itc

as
e

to
ile

t
co

uc
h

be
nc

h
sc

iss
or

s
bi

rd
la

pt
op

pe
rs

on
pa

rk
in

g 
m

et
er

fir
e 

hy
dr

an
t

clo
ck

te
nn

is 
ra

ck
et

or
an

ge tie ki
te

ke
yb

oa
rd

va
se

st
op

 si
gn

bo
ok tv

sp
oo

n
bo

at
fo

rk
su

rfb
oa

rd
fri

sb
ee

sk
at

eb
oa

rd
sk

is
ce

ll 
ph

on
e

sin
k

bo
ttl

e
kn

ife
sn

ow
bo

ar
d

ba
se

ba
ll 

ba
t

to
ot

hb
ru

sh

CoCo object classes

0.0

0.2

0.4

0.6

0.8

1.0
Gr

ou
nd

in
g 

ab
ilit

y 
(

)
unmodified model
fine-tuned model

sh
ee

p
bo

wl
ba

na
na

ze
br

a
sa

nd
wi

ch
m

icr
ow

av
e

ov
en

te
dd

y 
be

ar
el

ep
ha

nt
be

d
co

w
tru

ck
be

ar ca
r

re
fri

ge
ra

to
r

pi
zz

a
gi

ra
ffe

ai
rp

la
ne

um
br

el
la

sc
iss

or
s

bu
s

m
ot

or
cy

cle
ca

ke
ch

ai
r

la
pt

op
or

an
ge

clo
ck

re
m

ot
e

su
itc

as
e

ho
t d

og
co

uc
h

to
ile

t
do

g
pa

rk
in

g 
m

et
er

tra
in

fir
e 

hy
dr

an
t

ho
rs

e tv
be

nc
h

pe
rs

on bi
rd

te
nn

is 
ra

ck
et

bo
ttl

e tie
ke

yb
oa

rd
st

op
 si

gn ca
t

bo
ok

bi
cy

cle
va

se
sk

at
eb

oa
rd ki
te

sp
oo

n
bo

at
ce

ll 
ph

on
e

su
rfb

oa
rd

fo
rk

kn
ife sk
is

fri
sb

ee sin
k

ba
se

ba
ll 

ba
t

sn
ow

bo
ar

d
to

ot
hb

ru
sh

CoCo object classes

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ou

nd
in

g 
ab

ilit
y 

(
)

unmodified model
fine-tuned model

Figure 18: Class-wise PGE-evaluation for the OpenClip Laion (top) and DataComp (bottom) models
before and after in-domain fine-tuning as discussed in Section 4.1.

As discussed earlier, neither integrated gradients nor GradCam can explain dual encoder predictions. Fol-
lowing the logic from above we can, however, reduce our feature-interaction attributions from Eq. 10 by
setting N = 1 in the computation of the integrated Jacobians in Eq. 9 and using ra = rb = 0. For our
attribution matrix from Equation 10 we then receive the simplified version

ai
∂gk

∂ai

∂hk

∂bj
bj . (16)

This simplification could be termed Jacobians×inputs and is equivalent to the Interaction-CAM by Sammani
et al. (2023). Note, however, that setting N = 1 is the worst possible approximation to the integrated Jaco-
bians. Therefore, it is not surprising that empirically this version performs worse than our full attributions.

G Interaction LIME

We reimplement the InteractionLIME method proposed by Joukovsky et al. (2023) that extends the principle
of LIME Ribeiro et al. (2016) to dual encoder models with two inputs.
The core idea of LIME is to locally approximate the actual model f around a given input with an interpretable
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Figure 19: Approximation errors for different reference choices as a function of the number of integration steps
N . The image references are abbreviated as ’gaussian’ for gaussian noise and ’black’ for the black image.
Text references are ’padding’ and ’empty’ for a padding sequence and the empty sequence, respectively.
Exemplatory standard deviations over the evaluation sample are shown as shades of the respective plots.

Bird sitting atop cattle on snow covered field.

black-padding black-empty gaussian-padding gaussian-empty

Figure 20: (Left) Attribution differences for all four combinations of references as indicated above the images
for the yellow selection in the caption below. (Right) The mean absolute attribution difference between a
black-padding and a gaussian-empty reference combination as a function of the number of approximation
steps N and its standard deviation over the evaluation smaple (blue shade).
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Figure 21: Alternative illustration of the three dimensional character of our interaction attributions (left
column) vs. first-order feature attributions (right column). Our attributions are a 3d volume with the
image dimensions (H, W) and the sequential text dimension S. Every entry in this volume corresponds
to the interaction between the given token and image patch at this position. We make a selection over a
slice of this volumn (yellow boxes) and project it onto one of the input modes by summation along the
other dimensions (green arrows). This either results in heatmaps over the image dimensions for a text-span
selection (top-left) or a heatmap over the text dimension (bottom-left) for a selection of an image region.

surrogate model φ. The local neighborhood of the input is approximated by a sample of perturbations. The
surrogate model is typically linear and operates on latent representations of the input. Further, there needs
to be a mapping from latent representations to input representations, so that we can generate corresponding
inputs that the actual model can process.
In the image domain latent representations za are typically binary variables indicating the presence or
absence of super pixels in the input. To enable a direct comparison to our method and the other baselines,
we use the vision transformer’s patches as super pixels. Analogously, in the text input we define latent
representations zb as binary variables indicating the presence of input tokens. Disabled image patches are
replaced with the mean over the image, disabled tokes are replaced with the padding token.
The local neighborhood of a given input pair (a, b) is approximated by sampling N such latent representations
(za

i , zb
i ) from two Bernoulli distributions. For the corresponding input perturbations (ai, bi), we then compute

the Clip scores si = f(ai, bi) and fit the surrogate model to reproduce these predictions.
To account for interactions between the two inputs in dual encoder models, Joukovsky et al. (2023) propose
to use a bilinear form as surrogate model:

φ(za, zb) = za⊤Wzb + c, (17)
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with a weight matrix W and a scalar bias c, which is then optimized according to the following MSE
objective:

min
W,c

N∑
i=1

π(a, ai, b, bi)
(

f(ai, bi) − φ(za
i , zb

i ; W, c)
)2

(18)

Here, π is a function that weights individual neighborhood samples (ai, bi) according to their similarity to
the original input (a, b). We use the cosine similarities between perturbed and original captions and image
inputs, respectively, and following Joukovsky et al. (2023), define the total similarity weight as the average
of the caption and image similarity:

π(a, ai, b, bi) = 1
2

(
g⊤(a) g(ai) + h⊤(b) h(bi)

)
(19)

To fit φ, we use stochastic gradient descent with a learning rate of 10−2 and weight-decay of 10−3 over N =
1000 samples with a Bernoulli drop-put probabilities of p = 0.3 for both caption and image representations.
These parameters closely align with Joukovsky et al. (2023). Additionally, we find that scaling the latent
representations za and zb with the square root of the numbers of tokens

√
S and image patches

√
H × W ,

respectively, helps to stabilize convergence.

Finally, the fitted weight matrix W models interactions between image patches and caption tokens. There-
fore, we can evaluate and visualize it in the same way as our attribution matrices A.

In Section 4.1 we found that InteractionLIME performs good – and even slightly better than our method –
on conditional caption attribution. At the same time its conditional image attributions are not competitive.
Consequently, its grounding ability as evaluated by the PG-metrics is also weak (cf. Table 2a). We speculate
that the reason for this imbalance of attribution quality may be due to the different magnitudes in the number
of caption tokens and image patches. While captions typically have ∼ 10 tokens, image representations in
ViT-B-32 architectures consist of ∼200 patches. Therefore, the ratio of the number of samples N and tokens
is much better than for image patches and the surrogate model φ might be able estimate their importances
better.

Overall, we find that the optimization of InteractionLIME is quite sensitive to hyper-parameter choices and
requires extensive tuning to find a setting that leads to stable convergence. In contrast, our method does not
require additional optimization and involves no hyper-parameters except the number of integration steps N ,
whose increase must, however, improve attributions due to Equation 9.

H Implementation Details

For the implement of our method, we make use of the auto-differentiation framework in the PyTorch package.
For a give input x(αn), g(x(αn)) is the forward pass through the encoder g, and the Jacobian ∂gk(x(αn))/∂xi

is the corresponding backward pass. For an efficient computation of all N interpolation steps in Eq. 9, we
can batch forward and backward passes since individual interpolations are independent of another.
In practice, we attribute to intermediate representations, thus, the interpolations in Eq. 6 are between latent
representations of the references and inputs. We use PyTorch hooks to compute these interpolations during
the forward pass. Algorithm 1 sketches PyTorch-like pseudo-code of the implementation.

The application of our method to a different model or architecture only requires the implementation of a
single forward hook. Registering hooks into models is a standard feature in auto-differentiation frameworks
and does not require any modification of the given model’s original code. The remaining steps to generate our
attributions are differentiation through standard backpropagation and, finally, simple matrix multiplication
to compute Eq. 10.
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I Computational Complexity

Since the computation of the interpolated inputs x(αn) can be performed in parallel, N is a constant with
regard to time complexity. To build the full Jacobians of the encoders, however, we need to compute a
separate backward pass for each output dimension, because auto-differentiation can only compute backward
passes for scalar-valued outputs. Time complexity is dominated by this aspect and is thus on the order of
O(D), with D being the embedding dimensionality of the output. The intergrated_jacobian method in
Algorithm 1 sketches this computation.
Due to the fact that we typically attribute to intermediate representations, however, we do not require
computation of full backward passes. Backpropagation can be stopped once it reaches the representation we
attribute to, which results in this operation to be cheaper the deeper the representation of interest is. I.e.
attributing to layer eleven is cheaper than attributing to layer five.
After building the Jacobians, the final attributions are computed through the matrix multiplications in Eq.
10, which is outlined at the bottom of Algorithm 1. Its computation time is negligible when calculated on
GPU, but can substantially add to the total time when performed on CPU.

Space-wise, our method requires storing two Jacobians with the dimensions D×(D×S), and D×(D×H×W ),
since input/intermediate representations are still sequential (S) on the text side and patch-based (H × W )
on the image side. Thus, memory consumption scales quadratically on the order of O(D2), and we require
large VRAM to handle the computation efficiently on GPU.

In contrast, first-order methods only require backpropagation of a single scalar output value, i.e. the simi-
larity score, whose result is a gradient vector as opposed to a Jacobian matrix. Hence, the cost of obtaining
our second-order interaction attribution is the computation and handling of these Jacobians, which is sub-
stantially more expensive but enables a different level of insight into models that is not accessible through
first-order methods.
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Algorithm 1 PyTorch-like pseudocode sketching the computation of our attributions. The syntax is simpli-
fied and not logically consistent. For a fully functional implementation, please refer to our GitHub repository.
Comments in the pseudocode refer to the corresponding equations in Section 3.

from torch import Tensor, arange, stack, autograd
import ExplainableCLIP, image_preparation, tokenize

model = ExplainableCLIP(...)
image_input = image_preparation(load_image("path/to/image.png"))
caption_input = tokenize("some caption describing the image")

# Equations 6 and 7
def interpoloate(x: Tensor, ref: Tensor, n_steps: int):

'''
Compute n_steps linear interpolations between a reference ref and input x.
'''
step = 1 / n_steps
alphas = arange(1, 0, step) # interpolation coefficients
x_interp = ref + alphas * (x - ref) # interpolated representations
return x_interp

# Equation 9
def integrated_jacobian(embedding: Tensor, intermediate: Tensor):

'''
Compute the integrated Jacobian for an embedding w.r.t. an
intermediate representation.
'''
gradients = []
for dim in range(embedding.size(0)):

grad_d = autograd.grad(embedding[dim], intermediate)
gradients.append(grad_d)

jacobians = stack(gradients)
# Integration over interpolations stacked along the first dimension
int_jacobian = jacobians.sum(dim=0)
return int_jacobian

# place hooks in the model to compute interpolations (not actual hook syntax)
image_hook = model.register_hook(interpolate, image_layer, image_reference, n_steps)
caption_hook = model.register_hook(interpolate, text_layer, caption_reference, n_steps)

# Compute embeddings and retrieve intermediate representations from hooks
image_embedding = model.encode_image(image_input)
caption_embedding = model.encode_caption(caption_input)
image_inter, image_ref_inter = image_hook.get_intermediate_representation()
caption_inter, caption_ref_inter = caption_hook.get_intermediate_representation()

# Equation 10
image_jacobian = integrated_jacobian(image_embedding, image_inter)
caption_jacobian = integrated_jacobian(caption_embedding, caption_inter)
# Matrix multiplication
JJ = caption_jacobian.T @ image_jacobian
image_delta = image_inter - image_ref_inter
caption_delta = caption_inter - caption_ref_inter
# Element-wise multiplication with broadcasting
attributions = caption_delta * JJ * image_delta
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