
FALCON: An ML Framework for Fully Automated
Layout-Constrained Analog Circuit Design

Asal Mehradfar1 Xuzhe Zhao2 Yilun Huang2 Emir Ceyani1
Yankai Yang2 Shihao Han2 Hamidreza Aghasi2 Salman Avestimehr1

1University of Southern California 2University of California, Irvine
mehradfa@usc.edu

Abstract

Designing analog circuits from performance specifications is a complex, multi-stage
process encompassing topology selection, parameter inference, and layout feasibil-
ity. We introduce FALCON, a unified machine learning framework that enables
fully automated, specification-driven analog circuit synthesis through topology se-
lection and layout-constrained optimization. Given a target performance, FALCON
first selects an appropriate circuit topology using a performance-driven classifier
guided by human design heuristics. Next, it employs a custom, edge-centric graph
neural network trained to map circuit topology and parameters to performance,
enabling gradient-based parameter inference through the learned forward model.
This inference is guided by a differentiable layout cost, derived from analytical
equations capturing parasitic and frequency-dependent effects, and constrained by
design rules. We train and evaluate FALCON on a large-scale custom dataset of 1M
analog mm-wave circuits, generated and simulated using Cadence Spectre across 20
expert-designed topologies. Through this evaluation, FALCON demonstrates >99%
accuracy in topology inference, <10% relative error in performance prediction,
and efficient layout-aware design that completes in under 1 second per instance.
Together, these results position FALCON as a practical and extensible foundation
model for end-to-end analog circuit design automation. Our code and dataset are
publicly available at https://github.com/AsalMehradfar/FALCON.

1 Introduction

Analog radio frequency (RF) and millimeter-wave (mm-wave) circuits are essential to modern
electronics, powering critical applications in signal processing [1], wireless communication [2],
sensing [3], radar [4], and wireless power transfer systems [5]. Despite their importance, the design
of analog circuits remains largely manual, iterative, and dependent on expert heuristics [6–8]. This
inefficiency stems from several challenges: a vast and continuous design space that is difficult to
explore systematically; tightly coupled performance metrics (e.g. gain, noise, bandwidth, and power)
that create complex trade-offs; and physical and layout-dependent interactions that complicate design
decisions. As demand grows for customized, high-performance analog blocks, this slow, expert-driven
design cycle has become a critical bottleneck. While machine learning (ML) has revolutionized
digital design automation, analog and RF circuits still lack scalable frameworks for automating the
full pipeline from specification to layout.

While recent ML approaches have made progress in analog circuit design, they typically target
isolated sub-tasks such as topology generation or component sizing [9, 10] at the schematic level,
without addressing the full synthesis pipeline. Many efforts assume fixed topologies [11–14], limiting
adaptability to new specifications or circuit families. Optimization strategies often rely on black-box
methods that do not scale well to large, continuous design spaces [15]. Some methods predict

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/AsalMehradfar/FALCON

Figure 1: Our AI-based circuit design pipeline. Given a target performance specification, FALCON
first selects a suitable topology, then generates design parameters through layout-aware gradient-based
reasoning with GNN model. Then, the synthesized circuit is validated using Cadence simulations.

performance metrics directly from netlists [16], but do not support inverse design, i.e., generating
circuit parameters from target specifications. Furthermore, layout awareness is typically handled
as a separate post-processing step [17], missing the opportunity to guide optimization with layout
constraints. Finally, many available benchmarks are built on symbolic or synthetic simulations [18],
lacking the fidelity and realism of the process of commercial grade design flows. As a result, current
ML pipelines do not allow fully generalizable, layout-aware, and end-to-end analog circuit design.

We propose FALCON (Fully Automated Layout-Constrained analOg circuit desigN), a scalable
and modular machine learning framework for end-to-end analog and RF circuit design. Built on a
dataset of over one million Cadence-simulated circuits, FALCON comprises three core components
(Figure 1): (1) a lightweight multilayer perceptron (MLP) selects the most appropriate topology
given a target performance specification; (2) a generalizable graph neural network (GNN) maps
circuit topology and element-level parameters to performance metrics, operating on a native graph
representation derived from Cadence netlists; and (3) gradient-based optimization over the forward
GNN model recovers design parameters that meet the target specification, guided by a differentiable
layout-aware loss that encodes parasitic effects and physical constraints. Notably, the GNN model in
FALCON generalizes effectively to unseen topologies, enabling inverse design across diverse circuit
families, even in low-data regimes, with optional fine-tuning for improved accuracy. By integrating
layout modeling directly into the optimization process, FALCON unifies schematic and physical
considerations within a single differentiable learning framework.

Our main contributions are as follows:

• We construct a large-scale analog/RF circuit dataset comprising over one million Cadence-
simulated datapoints across 20 expert-designed topologies and five circuit types.

• We introduce a native netlist-to-graph representation that preserves both structural and
parametric fidelity, enabling accurate learning over physical circuit topologies.

• We design a generalizable GNN capable of accurate performance prediction and parameter
inference across both seen and unseen topologies, with optional fine-tuning.

• We develop a modular ML framework for end-to-end inverse design, incorporating
performance-driven topology selection and layout-aware gradient-based optimization, with
a differentiable loss that enforces area constraints, design-rule compliance, and frequency-
dependent modeling of passive components.

• We show that FALCON enables fast, reliable inverse design under layout and physical
constraints, generating high-quality circuits in under one second per instance on CPU.

2 Related Work

While recent ML-based approaches have advanced analog and RF circuit design, they typically target
isolated stages of the design flow—such as topology generation, parameter sizing, or schematic-level
performance prediction—without supporting unified, end-to-end synthesis. FALCON bridges this
gap by jointly addressing aforementioned stages within a single framework.

Topology generation methods aim to select or synthesize candidate circuit structures [9, 19, 20],
often using discrete optimization or generative models to explore the circuit graph space. However,
these approaches typically target low-frequency or simplified designs [9] and may produce physically
invalid or non-manufacturable topologies. In contrast, FALCON leverages a curated set of netlists,
ensuring manufacturable validity and eliminating the need to rediscover fundamental circuit structures.

2

Parameter sizing and performance prediction have been explored through various learning
paradigms. Reinforcement learning [10, 21] and Bayesian optimization [15, 22] optimize parameters
via trial-and-error, often requiring large simulation budgets. Supervised learning methods [23, 24, 11]
regress parameter values from performance targets under fixed topologies. Graph-based models [16]
incorporate topology-aware representations to predict performance metrics from netlists. However,
these approaches focus on forward prediction or black-box sizing and do not support inverse design
across varied topologies. In contrast, FALCON unifies forward modeling and parameter inference in
a single differentiable architecture that generalizes to unseen netlists.

Layout-aware sizing and parasitic modeling have been explored to mitigate schematic-to-layout
mismatch. Parasitic-aware methods [25] integrate pre-trained parasitic estimators into Bayesian
optimization loops for fixed schematics. While effective for estimation, these approaches rely on
time-consuming black-box search and lack inverse design capabilities. Other methods, such as
ALIGN [26] and LayoutCopilot [27], generate layouts from fully sized netlists using ML-based
constraint extraction or scripted interactions, but assume fixed parameters and do not support co-
optimization or differentiable inverse design. In contrast, FALCON embeds layout objectives
directly into the learning loss, enabling joint optimization of sizing and layout without relying on
external parasitic models. For mm-wave circuits, our layout-aware loss captures frequency-sensitive
constraints via simplified models that implicitly reflect DRC rules, EM coupling, and performance-
critical factors such as quality factor and self-resonance frequency.

Datasets for analog design are often limited to symbolic SPICE simulations or small-scale testbeds
that do not reflect real-world design flows. AnalogGym [18] and AutoCkt [13] rely on synthetic
circuits and symbolic simulators, lacking the process fidelity, noise characteristics, and layout-
dependent behavior of foundry-calibrated flows. In contrast, FALCON is trained on a large-scale
dataset constructed from over one million Cadence-simulated circuits across 20 topologies and five
circuit categories, offering a substantially more realistic foundation for ML-driven analog design.

To the best of our knowledge, FALCON is the first framework to unify topology selection, parameter
inference, and layout-aware optimization in a single end-to-end pipeline, validated at scale using
industrial-grade Cadence simulations for mm-wave analog circuits. A qualitative comparison with
representative prior work is provided in Appendix A.

3 A Large-Scale Dataset and Inverse Design Problem Formulation

3.1 Dataset Overview

We construct a large-scale dataset of analog and RF circuits simulated using industry-grade Cadence
tools [28] with a 45nm CMOS process design kit (PDK). The dataset spans five widely used mm-wave
circuit types for wireless applications [29, 30]: low-noise amplifiers (LNAs) [31–34], mixers [35–38],
power amplifiers (PAs) [39–43], voltage amplifiers (VAs) [44–48], and voltage-controlled oscillators
(VCOs) [49–53]. Each circuit type is instantiated in four distinct topologies, resulting in a total of 20
expert-designed architectures.

For each topology, expert-designed schematics were implemented in Cadence Virtuoso, and key
design parameters were manually identified based on their functional relevance. Parameter ranges
were specified by domain experts and systematically swept using Cadence ADE XL, enabling
parallelized Spectre simulations across the design space. For each configuration, performance
metrics—such as gain, bandwidth, and oscillation frequency—were extracted and recorded. Each
datapoint therefore includes the full parameter vector, the corresponding Cadence netlist, and the
simulated performance metrics. The resulting dataset comprises over one million datapoints, capturing
a wide range of circuit behaviors and design trade-offs across diverse topologies. This large-scale,
high-fidelity dataset forms the foundation for training and evaluating our inverse design pipeline.
Detailed metric definitions and per-topology parameter ranges appear in Appendix B.

3.2 Graph-Based Circuit Representation

To enable flexible and topology-agnostic learning, we represent each analog circuit as a graph
extracted from its corresponding Cadence netlist. Nodes correspond to voltage nets (i.e., electrical
connection points), and edges represent circuit elements such as transistors, resistors, capacitors,
or sources. Multi-terminal devices—such as transistors and baluns—are decomposed into multiple

3

V2V0

L5C2

L4

C1

L1

L0

N3_DG

N3_GS

N3_DSN2_DS

N2_DG

N2_GS

N0_DGL3

N0_DS

N1_DG

L2

N1_DS

N1_GS

C0

N0_GS

GND

VDD
Vcont

Vout-

Vout+

net9

net7

net15

net8

Components
nmos
capacitor
vsource
inductor

(a) IFVCO

N0
_D

GR0

N0_GS

R4

C0

N0_DS

V0

P0_DS

P0
_G

S

L2

PO
RT

0

P0_DG

R3

C6
PORT1

L0

R5

C1

net7

VDD

net2

GND

net1

net4
net3

net5

Vin

Components
nmos
pmos
resistor
capacitor
vsource
port
inductor

(b) ClassBPA

Figure 2: Graph representations of two analog circuit topologies from our dataset: (a) IFVCO and
(b) ClassBPA. Nodes represent electrical nets, and colored edges denote circuit components such
as transistors, capacitors, inductors, and sources. Each component type is visually distinguished by
color and labeled with its name and terminal role (e.g., N2_GS, V0). For transistors, labels such as
GS, DS, and DG denote source-to-gate, drain-to-source, and drain-to-gate connections, respectively.
These graphs serve as input to our GNN-based performance modeling and inverse design pipeline.

edges, and multiple components may connect the same node pair, resulting in heterogeneous,
multi-edged graphs that preserve structural and functional diversity.

Recent works such as DICE [54] have explored transistor-level circuit-to-graph conversions for
self-supervised learning, highlighting the challenges of faithfully capturing device structure and
connectivity. In contrast, our approach maintains a native representation aligned with foundry-
compatible netlists. Rather than flattening or reinterpreting device abstractions, we preserve symbolic
parameters, multi-edge connections, and device-specific edge decomposition directly from the
schematic source, enabling scalable learning across diverse analog circuit families.

To support learning over such structured graphs, each edge is annotated with a rich set of attributes:
(i) a categorical device type, specifying the component and connected terminal pair (e.g., NMOS
drain–gate, resistor); (ii) numeric attributes, such as channel length or port resistance, fixed by
the schematic; (iii) parametric attributes, defined symbolically in the netlist (e.g., W1, R3) and
resolved numerically during preprocessing; (iv) one-hot categorical features, such as source type
(DC, AC, or none); and (v) computational attributes, such as diffusion areas (Ad, As) derived from
sizing. This rule-based graph construction generalizes across circuit families without task-specific
customization. Graphs in the FALCON dataset range from 4–40 nodes and 7–70 edges, reflecting the
variability of practical analog designs. Figure 2 shows two representative graph examples from our
dataset—IFVCO and ClassBPA.

3.3 Inverse Design Problem Definition

In analog and RF circuit design, the traditional modeling process involves selecting a topology T and
parameter vector x, then evaluating circuit behavior via simulation to obtain performance metrics
y = f(T, x). This forward workflow depends heavily on designer intuition, manual tuning, and
exhaustive parameter sweeps. Engineers typically simulate many candidate (T, x) pairs and select
the one that best satisfies the target specification—a slow, costly, and unguided process.

In contrast, our goal is to perform inverse design: given a target performance specification ytarget,
we aim to directly infer a topology and parameter configuration (T, x) such that f(T, x) ≈ ytarget,
without enumerating the full design space. This inverse problem is ill-posed and the search space is
constrained by both device-level rules and layout-aware objectives.

4

Formally, the task is to find the optimal topology T ∗ ∈ T and the optimal parameters x∗ ∈ Rp

such that f(T ∗, x∗) ≈ ytarget where f : T × Rp → Rd the true performance function implemented
by expensive Cadence simulations. In practice, f is nonlinear and non-invertible, making direct
inversion intractable. FALCON addresses this challenge through a modular, three-stage pipeline:

Stage 1: Topology Selection. We frame topology selection as a classification problem over a curated
set of K candidate topologies {T1, . . . , TK}. Given a target specification ytarget, a lightweight MLP
selects the topology T ∗ ∈ T most likely to satisfy it, reducing the need for exhaustive search.

Stage 2: Performance Prediction. Given a topology T and parameter vector x, we train a GNN fθ
to predict the corresponding performance ŷ = fθ(T, x). This model emulates the forward behavior
of the simulator f , learning a continuous approximation of circuit performance across both seen and
unseen topologies. By capturing the topology-conditioned mapping from parameters to performance,
fθ serves as a differentiable surrogate that enables gradient-based inference in the next stage.

Stage 3: Layout-Aware Gradient Reasoning. Given ytarget and a selected topology T ∗, we infer a
parameter vector x∗ by minimizing a loss over the learned forward model fθ. Specifically, we solve:

x∗ = argmin
x

Lperf(fθ(T
∗, x), ytarget) + λLlayout(x), (1)

where Lperf measures prediction error, and Llayout encodes differentiable layout-related constraints
such as estimated area and soft design-rule penalties. Optimization is performed via gradient descent,
allowing layout constraints to guide the search through a physically realistic parameter space.

4 Stage 1: Performance-Driven Topology Selection

Task Setup. We formulate topology selection as a supervised classification task over a fixed library
of 20 expert-designed circuit topologies T = {T1, T2, . . . , T20}. Rather than generating netlists
from scratch—which often leads to invalid or impractical circuits—we select from a vetted set of
designer-verified topologies. This ensures that all candidates are functionally correct, layout-feasible,
and manufacturable. While expanding the topology set requires retraining, our lightweight MLP
classifier enables rapid updates, making the approach scalable. This formulation also aligns with
practical design workflows, where quickly identifying a viable initial topology is critical.

Each datapoint is represented by a 16-dimensional performance vector of key analog/RF metrics1. We
normalize features using z-scores computed from the training set. Missing metrics (e.g., oscillation
frequency for amplifiers) are imputed with zeros, yielding zero-centered, fixed-length vectors that
retain task-relevant variation. Dataset splits are stratified to preserve class balance across training,
validation, and test sets. We assume each target vector is realizable by at least one topology in T ,
though the library can be extended with new designs.

Figure 3: In Stage 1, an MLP classifier selects the most
suitable circuit topology from a library of human-designed
netlists, conditioned on the target performance specification.

Table 1: Classification
performance on topology selection.

Metric Score (%)
Accuracy 99.57
Balanced Accuracy 99.33
Macro Precision 99.27
Macro Recall 99.33
Macro F1 99.30
Micro F1 99.57

Model Architecture and Training. We train a 5-layer MLP with hidden size 256 and ReLU
activations for this problem. The model takes the normalized performance vector ytarget ∈ R16 as
input and outputs a probability distribution over 20 candidate topologies. The predicted topology is
selected as T ∗ = argmaxTk∈T MLP(ytarget)k. We train the model using a cross-entropy loss and
the Adam optimizer [55], with a batch size of 256. An overview of this process is shown in Figure 3.

1DC power consumption (DCP), voltage gain (VGain), power gain (PGain), conversion gain (CGain), S11,
S22, noise figure (NF), bandwidth (BW), oscillation frequency (OscF), tuning range (TR), output power (OutP),
PSAT, drain efficiency (DE), power-added efficiency (PAE), phase noise (PN), voltage swing (VSwg).

5

(a) t-SNE of performance vectors

CGLN
A

DLN
A

DBPM
ixe

r

SB
PM

ixe
r

CGVA
CSV

A
CVA

IFV
CO

RV
CO

Predicted Topology

CGLNA

DLNA

DBPMixer

SBPMixer

CGVA

CSVA

CVA

IFVCO

RVCO

Tr
ue

 To
po

lo
gy

99.31 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.14 98.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 99.95 0.05 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.02 99.98 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 95.01 4.99 0.00 0.00 0.00

0.00 0.00 0.00 0.00 5.57 93.85 0.58 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.77 0.23

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 99.93 0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

(b) Confusion matrix (errors only)

CGLN
A

CLN
A

CSLN
A

DLN
A

DBAMixe
r

DBPM
ixe

r

SB
AMixe

r

SB
PM

ixe
r

Clas
sB

PA

Clas
sEP

A
Doh

PA DPA
CGVA

CSV
A

CVA
SF

VA
IFV

CO
CCVCO

ColV
CO

RV
CO

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

99.3% 100.0% 100.0% 98.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 95.0% 93.9% 100.0% 100.0% 99.8% 100.0% 100.0% 99.9%

(c) Per-class accuracy across circuit topologies

Figure 4: Topology selection results. (a) Performance vectors form well-separated clusters in t-SNE
space, showing that circuit functionality is semantically predictive of topology. (b) Misclassifications
primarily occur among voltage amplifier variants with overlapping gain-bandwidth tradeoffs. (c)
Per-class test accuracy exceeds 93% across all 20 circuit topologies.2

Evaluation. We begin by assessing the quality of the input representation used for topology classifi-
cation. Normalized performance vectors encode rich semantic information about circuit behavior.
To validate this, we project them into a two-dimensional t-SNE space [56] (Figure 4(a)). The re-
sulting clusters align closely with topology labels, indicating that performance specifications reflect
underlying schematic structure and are effective inputs for supervised classification.

We assess classification performance using accuracy, balanced accuracy, macro precision, macro
recall, macro F1, and micro F1 scores on the test set. As summarized in Table 1, the classifier achieves
an overall accuracy of 99.57%, with macro F1 of 99.30% and balanced accuracy of 99.33%, demon-
strating strong generalization across all 20 circuit topologies. Micro F1 (identical to accuracy in the
multiclass setting) reaches 99.57%, while macro metrics—averaged equally across classes—highlight
robustness to class imbalance. Seed-averaged results with 95% confidence intervals are provided in
Appendix C. These trends are reinforced by the per-class accuracy plot in Figure 4(c), where most
topologies reach 100% accuracy.

The confusion matrix in Figure 4(b) visualizes only the misclassified instances, as most classes
achieve perfect accuracy. The few observed errors are primarily concentrated among the two voltage
amplifier topologies—common-gate (CGVA) and common-source (CSVA). These circuits operate
near the gain-bandwidth limit of the transistor, and when the main amplifier transistor size is held
constant, performance metrics such as power consumption, gain, and bandwidth can converge across
these architectures. This occasional overlap in the performance space introduces ambiguity in
classification for a small subset of instances. For other circuit categories, no significant confusion
is expected or observed. These results validate our hypothesis that performance vectors contain
sufficient semantic structure for accurate, scalable topology classification.

2The 20 circuit topologies—listed in the same order as the numerical labels in Figure 4(a)—are: CGLNA
(Common Gate), CLNA (Cascode), CSLNA (Common Source), DLNA (Differential), DBAMixer (Double-
Balanced Active), DBPMixer (Double-Balanced Passive), SBAMixer (Single-Balanced Active), SBPMixer
(Single-Balanced Passive), ClassBPA (Class-B), ClassEPA (Class-E), DohPA (Doherty), DPA (Differential),
CGVA (Common Gate), CSVA (Common Source), CVA (Cascode), SFVA (Source Follower), IFVCO (Inductive-
Feedback), CCVCO (Cross-Coupled), ColVCO (Colpitts), RVCO (Ring).

6

5 Stage 2: Generalizable Forward Modeling for Performance Prediction

Task Setup. The goal of Stage 2 is to learn a differentiable approximation of the circuit simulator that
maps a topology T and parameter vector x to a performance prediction ŷ = fθ(T, x), where ŷ ∈ R16.
Unlike black-box simulators, this learned forward model enables efficient performance estimation
and supports gradient-based parameter inference in Stage 3. The model is trained to generalize across
circuit families and can be reused on unseen topologies with minimal fine-tuning.

Each datapoint consists of a graph-structured Cadence netlist annotated with resolved parameter
values and the corresponding performance metrics. We frame the learning task as a supervised
regression problem. Since not all performance metrics apply to every topology (e.g., oscillation
frequency is undefined for amplifiers), we train the model using a masked mean squared error loss:

Lmasked =
1∑
i mi

d∑
i=1

mi · (ŷi − yi)
2, (2)

where mi = 1 if the i-th metric is defined for the current sample, and 0 otherwise.

Model Architecture and Training. Each cir-
cuit is represented as an undirected multi-
edge graph with voltage nets as nodes and cir-
cuit components as edges. All circuit parame-
ters—both fixed and sweepable—are assigned
to edges, along with categorical device types
and one-hot encoded indicators. For each edge
e, these attributes are concatenated to form a
unified feature vector xe. The feature set is con-
sistent within each component type but varies
across types (e.g., NMOS vs. inductor), reflect-
ing the structure defined in Section 3.2.

Figure 5: In Stage 2, a custom edge-centric GNN
maps an undirected multi-edge graph constructed
from the circuit netlist to a performance vector.

To account for component heterogeneity, we apply type-specific MLP encoders ϕ(te)
enc to the raw

features xe of each edge e, producing edge embeddings ze = ϕ
(te)
enc (xe), where te denotes the

component type of edge e. Node features are initialized as scalar dummy values and mapped to a
hidden dimension via a shared linear layer. We then apply a 4-layer edge-centric message-passing
GNN with residual connections. At each layer ℓ, every node u receives messages from all incident
edges e ∈ Eu, where Eu denotes the set of edges connected to u. Messages are computed using a
shared function ϕMSG, which takes the hidden state of the neighboring node src(e) and the associated
edge embedding. Node states are then updated via a learnable function ϕUPD, followed by a residual
connection and nonlinearity:

m(ℓ)
u =

∑
e∈Eu

ϕMSG

(
h
(ℓ)
src(e), ze

)
, h(ℓ+1)

u = ReLU
(
ϕUPD

(
m(ℓ)

u

)
+ h(ℓ)

u

)
where ze ∈ Rd is the learned embedding of edge e, and h

(ℓ)
src(e) ∈ Rd is the hidden state of the node at

the other end of edge e from u at layer ℓ. The update function ϕUPD is a shared linear transformation
applied to all nodes. After L = 4 GNN layers, node embeddings are aggregated using global mean
pooling to obtain a fixed-size graph representation:

zgraph =
1

|V |
∑
u∈V

h(L)
u ,

where V is the set of all nodes in the graph. The resulting vector is then passed through a fully
connected MLP (output_mlp) to predict the 16-dimensional performance vector ŷ ∈ R16. An
overview of this GNN-based forward prediction pipeline is shown in Figure 5.

To stabilize training, physical parameters are rescaled by their expected units (e.g. resistance by
103), and performance targets are normalized to z-scores using training statistics. We train the model
using the Adam optimizer (learning rate 10−3, batch size 256) and a ReduceLROnPlateau scheduler.
Xavier uniform initialization is used for all layers, and early stopping is based on validation loss. We
adopt the same splits as in Section 4 for consistency in evaluation.

7

Evaluation. We evaluate the accuracy of the GNN forward model fθ on a test set drawn from 19 of
the 20 topologies. One topology—RVCO—is entirely excluded from training, validation, and test
splits to assess generalization to unseen architectures. Prediction quality is measured using standard
regression metrics: coefficient of determination (R2), root mean squared error (RMSE), and mean
absolute error (MAE), computed independently for each of the 16 performance metrics. We also
report the mean relative error per metric, computed as the average across all test samples where each
metric is defined. As summarized in Table 2, the model achieves high accuracy across all dimensions,
with an average R2 of 0.972.

Table 2: Prediction accuracy of the forward GNN on all 16 circuit performance metrics.

Metric DCP VGain PGain CGain S11 S22 NF BW OscF TR OutP PSAT DE PAE PN VSwg
Unit mW dB dB dB dB dB dB GHz GHz GHz dBm dBm % % dBc/Hz mV

R² 1.0 1.0 0.99 1.0 0.93 1.0 0.99 0.98 0.97 0.83 0.97 1.0 1.0 1.0 0.89 1.0
RMSE 0.27 0.101 0.536 0.833 1.515 0.21 0.534 0.972 0.723 0.293 0.91 0.095 0.226 0.143 2.536 0.071
MAE 0.198 0.072 0.208 0.188 0.554 0.12 0.2 0.376 0.184 0.097 0.238 0.066 0.163 0.105 1.159 0.046
Rel. Err. 11.2% 2.6% 19.0% 6.1% 11.4% 1.9% 4.5% 6.5% 0.6% 6.5% 4.6% 4.4% 4.6% 11.0% 1.3% 1.4%

To evaluate end-to-end prediction accuracy at the
sample level, we compute the mean relative error
per instance, defined as the average relative error
across all valid (non-masked) performance metrics
for each test sample. Figure 6 shows the distribu-
tion of this quantity across the test set (trimmed at
the 95th percentile to reduce the impact of outliers).
The distribution is sharply concentrated, indicating
that most predictions closely match their corre-
sponding target vectors. Without percentile trim-
ming, the overall mean relative error across the full
test set is 9.09%. Seed-averaged results with 95%
confidence intervals are provided in Appendix C.

0 5 10 15 20 25 30 35
Relative Error (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
en

si
ty

Mean: 3.76%
Median: 1.66%
Mode: 1.40%

Figure 6: Distribution of relative error (%) across
the test set for the GNN forward model. Plot is
trimmed at the 95th percentile.

Generalizing to Unseen Topologies via Fine-Tuning. To assess the generalization ability of our
pretrained GNN, we evaluate it on the held-out RVCO topology, which was entirely excluded from
the Stage 2 training, validation, and test splits. Notably, the RVCO training partition used here
matches that of the Stage 1 experiments (Section 4), enabling consistent cross-stage evaluation.

We fine-tune the GNN by freezing all encoder and message-passing layers and updating only the
final output head (output_mlp). Fine-tuning is performed on the RVCO training set, which contains
approximately 30,000 instances, and completes in under 30 minutes on a MacBook CPU.

Even in the zero-shot setting—where the model
has never seen RVCO topologies—the pretrained
GNN achieves a nontrivial mean relative error of
30.4%, highlighting its strong cross-topology gen-
eralization. Fine-tuning reduces this error to just
0.9%, demonstrating that the structural and para-
metric priors learned during pretraining are highly
transferable. Table 3 reports detailed performance
across five key metrics of RVCO, confirming that
the pretrained GNN can be rapidly adapted to
novel circuit families with minimal supervision.

Table 3: Fine-tuning results on the held-out
RVCO topology. Only the output head is up-
dated using RVCO samples.

Metric DCP OscF TR OutP PN
Unit W GHz GHz dBm dBc/Hz

R² 1.0 1.0 1.0 0.97 0.98
RMSE 0.643 0.324 0.026 0.099 0.953
MAE 0.508 0.256 0.02 0.077 0.619
Rel. Err. 0.75% 0.85% 1.63% 0.69% 0.73%

6 Stage 3: Layout-Aware Parameter Inference via Gradient Reasoning

Task Setup. Given a target performance vector ytarget and a selected topology T ∗, the goal of Stage
3 is to recover a parameter vector x∗ that minimizes a total loss combining performance error and
layout-aware penalties, using the learned forward model fθ from Stage 2. This formulation enables
instance-wise inverse design without requiring circuit-level simulation.

8

Figure 7: In Stage 3, gradient reasoning iteratively updates parameters to minimize a loss combining
performance error and layout cost, computed via a differentiable analytical model.

To initialize optimization, we perturb domain-specific scale factors (e.g., 10−12 for capacitors) to
sample a plausible starting point x0. Parameters are iteratively updated via gradient descent, guided
by both functional and physical objectives. Topology-specific constants are held fixed, and parameter
values are clipped to remain within valid domain bounds throughout the process.

Loss Function. The total loss follows the structure defined in Eqn 1, jointly minimizing performance
mismatch and layout cost:

Ltotal = Lperf + λarea · Llayout · g(Lperf), (3)
where Lperf is the masked mean squared error (see Eqn 2) between predicted and target performance
vectors, and Llayout is a normalized area penalty derived from analytical layout equations. To prioritize
functionality, layout loss is softly gated by a sigmoid function:

g(Lperf) = 1− σ (γ(Lperf − τ)) ,

where σ(·) denotes the sigmoid function, and γ, τ are fixed scalars controlling the sharpness and center
of the gating. This gating attenuates layout penalties when performance error exceeds a threshold τ ,
encouraging the model to first achieve functionality before optimizing for layout compactness.

We set τ = 0.05, γ = 50, and normalize layout area by 1mm2 to stabilize gradients. The layout
weight λarea = 0.02 is chosen empirically to balance performance accuracy and physical realism
without dominating the loss. This gated formulation supports manufacturable parameter recovery and
reflects the broader paradigm of physics-informed learning [57]. Further discussion on user-defined
objectives is provided in Appendix D.

Differentiable Layout Modeling. In mm-wave analog design, layout is not a downstream concern
but a critical determinant of circuit performance—particularly for passive components. Substrate
coupling, proximity effects, and DRC-imposed geometries directly affect key metrics such as reso-
nance frequency, quality factor, and impedance matching. To incorporate these effects, we introduce
a differentiable layout model that computes total physical area analytically from circuit parameters.
This enables layout constraints to directly guide parameter optimization during inverse design. By
minimizing the layout area in distributed mm-wave circuits [58], unwanted signal loss [59] is reduced,
the self-resonance frequency of passives can increase [60], and phase and amplitude mismatches
across signal paths [61] can be reduced.

The layout model is deterministic and non-learned. It estimates area contributions from passive
components—capacitors, inductors, and resistors—as these dominate total area and exhibit layout-
sensitive behavior. Active devices (e.g., MOSFETs) are excluded since their geometries are fixed by
the PDK and are negligible [62]. For a given parameter vector x, the total layout loss is computed as:
Llayout(x) =

∑
e∈Epassive

Ae(x), where Epassive is the set of passive elements, and Ae(x) is the area of
the created layout for the passive component based on analytical physics-based equations. The area
of element e is estimated based on its 2D dimensions (e.g., A = W · L for resistors and capacitors).
This area is normalized and used as a differentiable penalty in the optimization objective (see Eqn 3).
Further implementation details are provided in Appendix E.

Gradient Reasoning Procedure. Starting from the initialized parameter vector x0, we iteratively
update parameters via gradient reasoning. At each step, the frozen forward model fθ predicts the
performance ŷ = fθ(T, x), and the total loss Ltotal is evaluated. Gradients are backpropagated with
respect to x, and updates are applied using the Adam optimizer. Optimization proceeds for a fixed
number of steps, with early stopping triggered if the loss fails to improve over a predefined window.

9

(a) Designed DohPA schematic (b) Layout of designed DohPA

Figure 8: Stage 3 results for a synthesized DohPA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.4% compared to the target performance.

To handle varying circuit difficulty and initialization quality, we employ an adaptive learning rate
strategy. Each instance begins with a moderate learning rate (10−6), refined during optimization via
a ReduceLROnPlateau scheduler. If the solution fails to meet thresholds on performance error or
layout area, optimization restarts with a more exploratory learning rate. This adjustment balances
exploration and fine-tuning, enabling rapid convergence to physically valid solutions, typically within
milliseconds to under one second per instance. An overview is shown in Figure 7.

Evaluation. We evaluate Stage 3 on 9,500 test instances (500 per topology) using our gradient-based
optimization pipeline. A design is considered converged if it meets both: (i) a predicted mean relative
error below 10%, and (ii) a layout area under a topology-specific bound—1 mm2 for most circuits and
1.5 mm2 for DLNA, DohPA, and ClassBPA. The 10% error threshold reflects the forward model’s
∼ 9% average prediction error (Section 5). A design is deemed successful if its final Cadence-
simulated performance deviates from the target by less than 20%, confirming real-world viability.
Our method achieves a success rate of 78.5% and a mean relative error of 17.7% across converged
designs, with average inference time under 1 second on a MacBook CPU. Notably, success rate is
coupled with the convergence threshold: tighter error bounds yield higher accuracy but require more
iterations—critical for large-scale design tasks.

To illustrate the effectiveness of our pipeline, Figure 8 shows a representative result for the DohPA
topology: the synthesized schematic is shown on the left, and the corresponding layout is on the right.
These results confirm that the recovered parameters are both functionally accurate and physically
realizable. Together, they demonstrate that FALCON enables layout-aware inverse design within a
single differentiable pipeline—a capability not supported by existing analog design frameworks.

7 Conclusion and Future Work

We presented FALCON, a modular framework for end-to-end analog and RF circuit design that
unifies topology selection, performance prediction, and layout-aware parameter optimization. Trained
on over one million Cadence-simulated mm-wave circuits, FALCON combines a lightweight MLP, a
generalizable GNN, and differentiable gradient reasoning to synthesize circuits from specification
to layout-constrained parameters. FALCON achieves >99% topology selection accuracy, <10%
prediction error, and efficient inverse design—all within sub-second inference. In addition, the GNN
forward model generalizes to unseen topologies with minimal fine-tuning, supporting broad practical
deployment. Further discussion of training and inference efficiency, as well as practical limitations, is
provided in Appendix F.

In future work, we aim to expand the topology library and support hierarchical macroblocks for
scalable design beyond the cell level. We also plan to extend the dataset to cover multiple operating
frequencies, enabling validation across diverse bands, and to enhance the layout-aware optimization
with learned parasitic models, EM-informed constraints, and electromigration considerations for
more accurate post-layout estimation. Finally, integrating reinforcement learning or diffusion-based
models for generative topology synthesis represents a promising step toward general-purpose analog
design automation.

10

Acknowledgments and Disclosure of Funding

We thank Andrea Villasenor and Tanqin He for their assistance with circuit data generation. We also
thank Mohammad Shahab Sepehri for his insightful discussions and thoughtful feedback during the
development of this work.

References
[1] Vilem Kledrowetz, Roman Prokop, Lukas Fujcik, and Jiri Haze. A fully differential analog front-end for

signal processing from emg sensor in 28 nm fdsoi technology. Sensors, 23(7), 2023.

[2] Wei Hong, Zhi Hao Jiang, Chao Yu, Debin Hou, Haiming Wang, Chong Guo, Yun Hu, Le Kuai, Yingrui
Yu, Zhengbo Jiang, Zhe Chen, Jixin Chen, Zhiqiang Yu, Jianfeng Zhai, Nianzu Zhang, Ling Tian, Fan Wu,
Guangqi Yang, Zhang-Cheng Hao, and Jian Yi Zhou. The role of millimeter-wave technologies in 5g/6g
wireless communications. IEEE Journal of Microwaves, 1(1):101–122, 2021.

[3] Yingying Chi, Haifeng Zhang, Zhe Zheng, Rui Liu, Lei Qiao, and Wenpeng Cui. Analog front-end
circuit design for wireless sensor system-on-chip. In 2020 IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), volume 1, pages 38–42, 2020.

[4] Xuyang Liu, Md. Hedayatullah Maktoomi, Mahdi Alesheikh, Payam Heydari, and Hamidreza Aghasi. A
cmos 49–63-ghz phase-locked stepped-chirp fmcw radar transceiver. IEEE Journal of Solid-State Circuits,
pages 1–15, 2025.

[5] Med Nariman, Farid Shirinfar, Anna Papió Toda, Sudhakar Pamarti, Ahmadreza Rofougaran, and Franco
De Flaviis. A compact 60-ghz wireless power transfer system. IEEE Transactions on Microwave Theory
and Techniques, 64(8):2664–2677, 2016.

[6] Phillip E Allen and Douglas R Holberg. CMOS analog circuit design. Elsevier, 2011.

[7] Willy M. C. Sansen. analog design essentials. SpringerLink, 2011.

[8] Shady A Abdelaal, Ahmed Hussein, and Hassan Mostafa. A bayesian optimization framework for analog
circuits optimization. In 2020 15th International Conference on Computer Engineering and Systems
(ICCES), pages 1–4. IEEE, 2020.

[9] Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. CktGNN: Circuit
graph neural network for electronic design automation. In The Eleventh International Conference on
Learning Representations, 2023.

[10] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song Han. Gcn-rl
circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning. In
2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020.

[11] Dmitrii Krylov, Pooya Khajeh, Junhan Ouyang, Thomas Reeves, Tongkai Liu, Hiba Ajmal, Hamidreza
Aghasi, and Roy Fox. Learning to design analog circuits to meet threshold specifications. In Proceedings
of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[12] Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. Learning to design circuits. arXiv preprint
arXiv:1812.02734, 2018.

[13] Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, and Borivoje Nikolic. Autockt:
deep reinforcement learning of analog circuit designs. In Proceedings of the 23rd Conference on Design,
Automation and Test in Europe, DATE ’20, page 490–495, San Jose, CA, USA, 2020. EDA Consortium.

[14] Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Sachin Sapatnekar, Ramesh Harjani,
and Jiang Hu. A circuit attention network-based actor-critic learning approach to robust analog transistor
sizing. In 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pages 1–6, 2021.

[15] Wenlong Lyu, Pan Xue, Fan Yang, Changhao Yan, Zhiliang Hong, Xuan Zeng, and Dian Zhou. An efficient
bayesian optimization approach for automated optimization of analog circuits. IEEE Transactions on
Circuits and Systems I: Regular Papers, 65(6):1954–1967, 2017.

[16] Kourosh Hakhamaneshi, Marcel Nassar, Mariano Phielipp, Pieter Abbeel, and Vladimir Stojanovic.
Pretraining graph neural networks for few-shot analog circuit modeling and design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 42(7):2163–2173, 2022.

11

[17] Morteza Fayazi, Morteza Tavakoli Taba, Ehsan Afshari, and Ronald Dreslinski. Angel: Fully-automated
analog circuit generator using a neural network assisted semi-supervised learning approach. IEEE Transac-
tions on Circuits and Systems I: Regular Papers, 2023.

[18] Jintao Li, Haochang Zhi, Ruiyu Lyu, Wangzhen Li, Zhaori Bi, Keren Zhu, Yanhan Zeng, Weiwei Shan,
Changhao Yan, Fan Yang, Yun Li, and Xuan Zeng. Analoggym: An open and practical testing suite for
analog circuit synthesis. In International Conference on Computer Aided Design, 2024.

[19] Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and Xin
Zhang. Lamagic: Language-model-based topology generation for analog integrated circuits. arXiv preprint
arXiv:2407.18269, 2024.

[20] Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo.
Analogcoder: Analog circuit design via training-free code generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 379–387, 2025.

[21] Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-based automated
analog circuit design with deep reinforcement learning. arXiv preprint arXiv:2202.13185, 2022.

[22] Ahmet Faruk Budak, Miguel Gandara, Wei Shi, David Z. Pan, Nan Sun, and Bo Liu. An efficient analog
circuit sizing method based on machine learning assisted global optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 41(5):1209–1221, 2022.

[23] Asal Mehradfar, Xuzhe Zhao, Yue Niu, Sara Babakniya, Mahdi Alesheikh, Hamidreza Aghasi, and Salman
Avestimehr. AICircuit: A Multi-Level Dataset and Benchmark for AI-Driven Analog Integrated Circuit
Design. Machine Learning and the Physical Sciences Workshop @ NeurIPS, 2024.

[24] Asal Mehradfar, Xuzhe Zhao, Yue Niu, Sara Babakniya, Mahdi Alesheikh, Hamidreza Aghasi, and Salman
Avestimehr. Supervised learning for analog and rf circuit design: Benchmarks and comparative insights.
arXiv preprint arXiv:2501.11839, 2025.

[25] Mingjie Liu, Walker J. Turner, George F. Kokai, Brucek Khailany, David Z. Pan, and Haoxing Ren.
Parasitic-aware analog circuit sizing with graph neural networks and bayesian optimization. In 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1372–1377, 2021.

[26] Tonmoy Dhar, Kishor Kunal, Yaguang Li, Meghna Madhusudan, Jitesh Poojary, Arvind K Sharma, Wenbin
Xu, Steven M Burns, Ramesh Harjani, Jiang Hu, et al. Align: A system for automating analog layout.
IEEE Design & Test, 38(2):8–18, 2020.

[27] Bingyang Liu, Haoyi Zhang, Xiaohan Gao, Zichen Kong, Xiyuan Tang, Yibo Lin, Runsheng Wang, and
Ru Huang. Layoutcopilot: An llm-powered multi-agent collaborative framework for interactive analog
layout design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025.

[28] Antonio J Lopez Martin. Cadence design environment. New Mexico State University, Tutorial paper, 35,
2002.

[29] Sorin Voinigescu. High-frequency integrated circuits. Cambridge University Press, 2013.

[30] Behzad Razavi. RF microelectronics, volume 2. Prentice hall New York, 2012.

[31] Thomas H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press,
2nd edition, 2004.

[32] John R. Long and Michael A. Copeland. The design of low-noise cmos rf amplifiers. IEEE Journal of
Solid-State Circuits, 32(2):292–302, 1997.

[33] Ali M. Niknejad. mm-Wave Silicon Technology: 60 GHz and Beyond. Springer, 2008.

[34] Xiaohua Fan, Heng Zhang, and Edgar SÁnchez-Sinencio. A noise reduction and linearity improvement
technique for a differential cascode lna. IEEE Journal of Solid-State Circuits, 43(3):588–599, 2008.

[35] B. Henderson and E. Camargo. Microwave Mixer Technology and Applications. Microwave & RF. Artech
House, 2013.

[36] B. Gilbert. A precise four-quadrant multiplier with subnanosecond response. IEEE Journal of Solid-State
Circuits, 3(4):365–373, 1968.

[37] Krenar Komoni, Sameer Sonkusale, and Geoff Dawe. Fundamental performance limits and scaling of
a cmos passive double-balanced mixer. In 2008 Joint 6th International IEEE Northeast Workshop on
Circuits and Systems and TAISA Conference, pages 297–300, 2008.

12

[38] S. Chehrazi, R. Bagheri, and A.A. Abidi. Noise in passive fet mixers: a simple physical model. In
Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), pages
375–378, 2004.

[39] Hua Wang, Peter M. Asbeck, and Christian Fager. Millimeter-wave power amplifier integrated circuits for
high dynamic range signals. IEEE Journal of Microwaves, 1(1):299–316, 2021.

[40] M.K. Kazimierczuk. RF Power Amplifiers. Wiley, 2014.

[41] F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O. Sokal.
Power amplifiers and transmitters for rf and microwave. IEEE Transactions on Microwave Theory and
Techniques, 50(3):814–826, 2002.

[42] Narek Rostomyan, Mustafa Özen, and Peter Asbeck. 28 ghz doherty power amplifier in cmos soi with 28
IEEE Microwave and Wireless Components Letters, 28(5):446–448, 2018.

[43] Morteza Abbasi, Torgil Kjellberg, Anton de Graauw, Edwin van der Heijden, Raf Roovers, and Herbert
Zirath. A broadband differential cascode power amplifier in 45 nm cmos for high-speed 60 ghz system-on-
chip. In 2010 IEEE Radio Frequency Integrated Circuits Symposium, pages 533–536, 2010.

[44] Behzad Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill Education, 2016.

[45] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E.K.F. Lee. Low-voltage analog circuit design based
on biased inverting opamp configuration. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 47(3):176–184, 2000.

[46] Tae Wook Kim. A common-gate amplifier with transconductance nonlinearity cancellation and its high-
frequency analysis using the volterra series. IEEE Transactions on Microwave Theory and Techniques, 57
(6):1461–1469, 2009.

[47] T. Lehmann and M. Cassia. 1-v power supply cmos cascode amplifier. IEEE Journal of Solid-State Circuits,
36(7):1082–1086, 2001.

[48] H.-J. Song and C.-K. Kim. An mos four-quadrant analog multiplier using simple two-input squaring
circuits with source followers. IEEE Journal of Solid-State Circuits, 25(3):841–848, 1990.

[49] N. R. Sivaraaj and K. K. Abdul Majeed. A comparative study of ring vco and lc-vco: Design, performance
analysis, and future trends. IEEE Access, 11:127987–128017, 2023.

[50] Cao Wan, Taotao Xu, Xiang Yi, and Quan Xue. A current-reused vco with inductive-transformer feedback
technique. IEEE Transactions on Microwave Theory and Techniques, 70(5):2680–2689, 2022.

[51] Tuan Thanh Ta, Suguru Kameda, Tadashi Takagi, and Kazuo Tsubouchi. A 5ghz band low noise and wide
tuning range si-cmos vco. In 2009 IEEE Radio Frequency Integrated Circuits Symposium, pages 571–574,
2009.

[52] R. Aparicio and A. Hajimiri. A noise-shifting differential colpitts vco. IEEE Journal of Solid-State Circuits,
37(12):1728–1736, 2002.

[53] Shruti Suman, K. G. Sharma, and P. K. Ghosh. Analysis and design of current starved ring vco. In
2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pages
3222–3227, 2016.

[54] Sungyoung Lee, Ziyi Wang, Seunggeun Kim, Taekyun Lee, and David Z Pan. Self-supervised graph
contrastive pretraining for device-level integrated circuits. arXiv preprint arXiv:2502.08949, 2025.

[55] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[56] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[57] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

[58] A. Dounavis, R. Achar, and M.S. Nakhla. Efficient passive circuit models for distributed networks with
frequency-dependent parameters. IEEE Transactions on Advanced Packaging, 23(3):382–392, 2000.

13

[59] Shen Wang, M.A. de Rooij, W.G. Odendaal, J.D. van Wyk, and D. Boroyevich. Reduction of high-
frequency conduction losses using a planar litz structure. IEEE Transactions on Power Electronics, 20(2):
261–267, 2005.

[60] Tejinder Singh and Raafat R Mansour. Miniaturized 6-bit phase-change capacitor bank with improved
self-resonance frequency and q. In 2022 52nd European Microwave Conference (EuMC), pages 572–575.
IEEE, 2022.

[61] Chenxi Zhao, Xing Zeng, Lin Zhang, Huihua Liu, Yiming Yu, Yunqiu Wu, and Kai Kang. A 37–40-ghz
low-phase-imbalance cmos attenuator with tail-capacitor compensation technique. IEEE Transactions on
Circuits and Systems I: Regular Papers, 67(10):3400–3409, 2020.

[62] Michele Spasaro and Domenico Zito. Millimeter-wave integrated silicon devices: Active versus pas-
sive—the eternal struggle between good and evil. In 2019 International Semiconductor Conference (CAS),
pages 11–20. IEEE, 2019.

14

A Qualitative Comparison with Prior Work

To contextualize FALCON within the broader landscape of analog circuit design automation, we
provide a qualitative comparison against representative prior works in Table 4. This comparison
spans key capabilities including topology selection, parameter inference, performance prediction,
layout awareness, and simulator fidelity. We additionally assess reproducibility via dataset and code
availability, and introduce a new axis—RF/mm-wave support—to highlight methods evaluated on
high-frequency circuit blocks such as LNAs, mixers, and VCOs. Compared to existing approaches,
FALCON is the only framework that unifies all these dimensions while maintaining foundry-grade
fidelity and open-source accessibility. Definitions for each comparison axis are provided in Table 5.

Table 4: Qualitative comparison of FALCON with prior works across key capabilities in analog
circuit design automation.

Method Topology
Selection

Parameter
Inference

Performance
Prediction

Layout
Awareness

Foundry
Grade

RF/
mm-Wave

Public
Dataset

Public
Code

CktGNN [9] ✔ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

LaMAGIC [19] ✔ ✘ ✘ ✘ ✘ (SPICE) ✘ ✘ ✘

AnalogCoder [20] ✔ ✘ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

GCN-RL [10] ✘ ✔ ✘ ✘ ✔ (SPICE/Cadence) ✘ ✘ ✘ (incomplete)
Cao et al. [21] ✘ ✔ ✘ ✘ ✔ (ADS/Cadence) ✘ ✘ ✘

BO-SPGP [15] ✘ ✔ ✔ ✘ ✔ (Cadence) ✘ ✘ ✘

ESSAB [22] ✘ ✔ ✔ ✘ ✔ (Cadence) ✘ ✘ ✘

AICircuit [23, 24] ✘ ✔ ✘ ✘ ✔ (Cadence) ✔ ✔ ✔

Krylov et al. [11] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

Deep-GEN [16] ✘ ✘ ✔ ✘ ✘ (SPICE) ✘ ✔ ✔

Liu et al. [25] ✘ ✘ ✘ ✔ ✘ (SPICE + Parasitic Model) ✔ ✘ ✘

ALIGN [26] ✘ ✘ ✘ ✔ ✔ (Cadence) ✔ ✔ ✔

LayoutCopilot [27] ✘ ✘ ✘ ✔ ✔ (Cadence) ✘ ✘ ✘

AnalogGym [18] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✔ ✔

AutoCkt [13] ✘ ✔ ✘ ✘ ✔ (Cadence) ✘ ✘ ✘ (incomplete)
L2DC [12] ✘ ✔ ✘ ✘ ✘ (SPICE) ✘ ✘ ✘

CAN-RL [14] ✘ ✔ ✘ ✔ ✔ (Cadence) ✘ ✘ ✘

AnGeL. [17] ✔ ✔ ✔ ✘ ✘ (SPICE) ✘ ✘ ✘

FALCON (This work) ✔ ✔ ✔ ✔ ✔ (Cadence) ✔ ✔ ✔

Table 5: Definitions of each comparison axis in Table 4.

Column Definition

Topology Selection Does the method automatically select or predict circuit topology given a target specification?
Parameter Inference Does the method infer element-level parameters (e.g., transistor sizes, component values) as part of design generation?
Performance Prediction Can the method predict circuit performance metrics (e.g., gain, bandwidth, noise) from topology and parameters?
Layout Awareness Is layout considered during optimization or training (e.g., via area constraints, parasitics, or layout-informed loss)?
Dataset Fidelity Does the dataset reflect realistic circuit behavior (e.g., SPICE/Cadence simulations, PDK models)?
RF/mm-Wave Is the method evaluated on at least one RF or mm-wave circuit type that reflects high-frequency design challenges?
Public Dataset Is the dataset used in the work publicly released for reproducibility and benchmarking?
Public Code Is the implementation code publicly available and documented for reproducibility?

B Dataset Details and Performance Metric Definitions

During dataset generation, each simulated circuit instance is annotated with a set of performance
metrics that capture its functional characteristics. All simulations are performed at a fixed frequency
of 30 GHz, ensuring consistency across circuit types and relevance to mm-wave design. A total of 16
metrics are defined across all circuits—spanning gain, efficiency, impedance matching, noise, and
frequency-domain behavior—though the specific metrics used vary by topology. For example, phase
noise is only applicable to oscillators. An overview of all performance metrics is provided in Table 6.

B.1 Low-Noise Amplifiers (LNAs)

Low-noise amplifiers (LNAs) are critical components in receiver front-ends, responsible for amplify-
ing weak antenna signals while introducing minimal additional noise. Their performance directly
influences downstream blocks such as mixers and analog-to-digital converters (ADCs), ultimately de-
termining system-level fidelity [31]. To capture the architectural diversity of practical radio-frequency
(RF) designs, we include four widely used LNA topologies in this study—common-source LNA
(CSLNA), common-gate LNA (CGLNA), cascode LNA (CLNA), and differential LNA (DLNA)—as
shown in Figure 9.

15

Table 6: Overview of 16 performance metrics used during dataset generation.

Performance Name Description

DC Power Consumption (DCP) Total power drawn from the DC supply indicating energy consumption of the circuit
Voltage Gain (VGain) Ratio of output voltage amplitude to input voltage amplitude
Power Gain (PGain) Ratio of output power to input power
Conversion Gain (CGain) Ratio of output power at the desired frequency to input power at the original frequency
S11 Input reflection coefficient indicating impedance matching at the input terminal
S22 Output reflection coefficient indicating impedance matching at the output terminal
Noise Figure (NF) Ratio of input signal-to-noise ratio to output signal-to-noise ratio
Bandwidth (BW) Frequency span over which the circuit maintains specified performance characteristics
Oscillation Frequency (OscF) Steady-state frequency at which the oscillator generates a periodic signal
Tuning Range (TR) Range of achievable oscillation frequencies through variation of control voltages
Output Power (OutP) Power delivered to the load
PSAT Maximum output power level beyond which gain compression begins to occur
Drain Efficiency (DE) Ratio of RF output power to DC power consumption.
Power-Added Efficiency (PAE) Ratio of the difference between output power and input power to DC power consumption
Phase Noise (PN) Measure of oscillator stability represented in the frequency domain at a specified offset
Voltage Swing (VSwg) Maximum peak voltage level achievable at the output node

The CSLNA is valued for its simplicity and favorable gain–noise trade-off, especially when paired
with inductive source degeneration [30]. The CGLNA, often used in ultra-wideband systems, enables
broadband input matching but typically suffers from a higher noise figure [32]. The CLNA improves
gain–bandwidth product and reverse isolation, making it ideal for high-frequency, high-linearity
applications [33]. The DLNA exploits circuit symmetry to enhance linearity and reject common-mode
noise, and is commonly found in high-performance RF front-end designs [34]. The design parameters
and performance metrics associated with these topologies are summarized in Table 7.

(a) CSLNA
(b) CGLNA (c) CLNA (d) DLNA

Figure 9: Schematic diagrams of the four LNA topologies.

Table 7: LNA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

LNA

CGLNA (0) 52k

C1 [100–600] fF

DCP (W)

PGain (dB)

S11 (dB)

NF (dB)

BW (Hz)

C2 [50–300] fF
Cb [250–750] fF
Ld [80–580] pH
Ls [0.5–5.5] nH

WN [12–23] µm

CLNA (1) 62k

C1, C2 [50–250] fF
Ld [140–300] pH
Lg [0.4–2] nH
Ls [50–250] pH

WN1 [3–5] µm
WN2 [7–9] µm

CSLNA (2) 39k

C [100–300] fF
Lg [4–6] nH
Ls [100–200] pH

WN [2.5–4] µm
Vgs [0.5–0.9] V

DLNA (3) 92k

C1 [100–190] fF
C2 [130–220] fF
Ld [100–250] pH
Lg [600–900] pH
Ls [50–80] pH

WN1 [4–9.4] µm
WN2 [5–14] µm

16

B.2 Mixers

Mixers are fundamental nonlinear components in RF systems, responsible for frequency translation
by combining two input signals to produce outputs at the sum and difference of their frequencies. This
functionality is essential for transferring signals across frequency domains and is widely used in both
transmission and reception paths [35]. To capture diverse mixer architectures, we implement four
representative topologies in this work—double-balanced active mixer (DBAMixer), double-balanced
passive mixer (DBPMixer), single-balanced active mixer (SBAMixer), and single-balanced passive
mixer (SBPMixer)—as shown in Figure 10.

The DBAMixer integrates amplification and differential switching to achieve conversion gain and
high port-to-port isolation. Despite its elevated power consumption and design complexity, it is well
suited for systems requiring robust performance over varying conditions [36]. The DBPMixer features
a fully differential structure that suppresses signal leakage and improves isolation, at the cost of signal
loss and a strong local oscillator drive requirement [37]. The SBAMixer includes an amplification
stage preceding the switching core to enhance signal strength and reduce noise, offering a balanced
performance trade-off with increased power consumption and limited spurious rejection [30]. The
SBPMixer employs a minimalist switching structure to perform frequency translation without active
gain, enabling low power operation in applications with relaxed performance demands [38]. The
parameters and performance metrics for these mixer topologies are listed in Table 8.

(a) DBAMixer (b) DBPMixer (c) SBAMixer (d) SBPMixer

Figure 10: Schematic diagrams of the four Mixer topologies.

Table 8: Mixer topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

Mixer

DBAMixer (4) 42k

C [1–10] pF

DCP (W)

CGain (dB)

NF (dB)

VSwg (V)

R [1–10] kΩ
WN1 [10–30] µm
WN2 [5–25] µm

DBPMixer (5) 42k
C [100–500] fF
R [100–600]Ω

WN [10–30] µm

SBAMixer (6) 52k

C [1–15] pF
R [0.7–2.1] kΩ

WN1 [10–30] µm
WN2 [10–20] µm
Itail [3–10] mA

SBPMixer (7) 44k
C [1–30] pF
R [1–30] kΩ

WN [5–29.5] µm

B.3 Power Amplifiers (PAs)

Power amplifiers (PAs) are the most power-intensive components in radio-frequency (RF) systems and
serve as the final interface between transceiver electronics and the antenna. Given their widespread
use and the stringent demands of modern communication standards, PA design requires careful
trade-offs across key performance metrics [39]. Based on the transistor operating mode, PAs are
typically grouped into several canonical classes [40]. In this work, we implement four representative
topologies—Class-B PA (ClassBPA), Class-E PA (ClassEPA), Doherty PA (DohPA), and differential
PA (DPA)—as shown in Figure 11.

17

The ClassBPA employs complementary transistors to deliver high gain with moderate efficiency,
making it suitable for linear amplification scenarios [41]. The ClassEPA uses a single transistor
configured as a switch, paired with a matching network. By minimizing the overlap between drain
voltage and current, this topology enables high-efficiency operation and improved robustness to
component variation [30]. The DohPA combines main and peaking amplifiers using symmetric
two-stack transistors, maintaining consistent gain and efficiency under varying power levels [42].
The DPA features a two-stage cascode structure designed to maximize gain and linearity, offering a
favorable trade-off between output power and power consumption [43]. For this topology, we replace
the transformer with a T-equivalent network to simplify modeling and training of the graph neural
network. Parameter sweeps and performance metrics for these PAs are listed in Table 9.

(a) ClassBPA (b) ClassEPA (c) DohPA

(d) DPA

Figure 11: Schematic diagrams of the four PA topologies.

Table 9: PA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

PA

ClassBPA (8) 35k

C [55–205] fF

DCP (W)

PGain (dB)

S11 (dB)

S22 (dB)

PSAT (dBm)

DE (%)

PAE (%)

L1 [1–1.4] nH
L2 [1–8.5] pH
R [1.5–4] kΩ

WN [10–20] µm
WP [3–8] µm

ClassEPA (9) 46k

C1 [100–200] fF
C2 [500–700] fF
L1 [100–300] pH
L2 [100–150] pH
WN [15–30] µm

DohPA (10) 120k

C1 [2–3] pF
C2 [200–300] fF

C3, C5 [100–200] fF
C4 [300–400] fF

L1, L5 [100–200] pH
L2 [350–450] pH
L3 [500–600] pH
L4 [150–250] pH
L6 [300–400] pH

WN1, WN2 [6–13] µm

DPA (11) 80k

Lip [100–500] pH
Lis [300–700] pH
Lop [0.8–1.2] nH
Los [400–800] pH
Lm [50–250] pH

WN1 [6–31] µm
WN2 [10–35] µm

18

B.4 Voltage Amplifiers (VAs)

Voltage amplifiers (VAs) are fundamental components in analog circuit design, responsible for
increasing signal amplitude while preserving waveform integrity. Effective VA design requires
balancing key performance metrics tailored to both RF and baseband operating conditions [44]. In
this work, we implement four widely used VA topologies—common-source VA (CSVA), common-
gate VA (CGVA), cascode VA (CVA), and source follower VA (SFVA)—as shown in Figure 12.

The CSVA remains the most widely adopted configuration due to its structural simplicity and high
voltage gain. It is frequently used as the first gain stage in various analog systems [45]. The CGVA
is suitable for applications requiring low input impedance and wide bandwidth, such as impedance
transformation or broadband input matching [46]. The CVA, which cascades a common-source stage
with a common-gate transistor, improves the gain–bandwidth product and enhances stability, making
it ideal for applications demanding wide dynamic range and robust gain control [47]. The SFVA, also
known as a common-drain amplifier, provides near-unity voltage gain and low output impedance,
making it well suited for interstage buffering, load driving, and impedance bridging [48]. Parameter
ranges and performance specifications for these VA topologies are listed in Table 10.

(a) CSVA
(b) CGVA

(c) CVA
(d) SFVA

Figure 12: Schematic diagrams of the four VA topologies.

Table 10: VA topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

VA

CGVA (12) 33k

C [0.1–1.5] pF

DCP (W)

VGain (dB)

BW (Hz)

R [0.1–1.5] kΩ
WN1 [5–30] µm
WN2 [5–10] µm

CSVA (13) 21k

R [0.7–1.5] kΩ
WN [3–15] µm
VDD [1–1.8] V
Vgate [0.6–0.9] V

CVA (14) 22k
R [1–3] kΩ

WN1, WN2 [1–10] µm
WN3 [10–15] µm

SFVA (15) 28k

WN1 [40–60] µm
WN2 [2–8] µm
VDD [1.1–1.8] V
Vgate [0.6–1.2] V
Vb [0.5–0.9] V

B.5 Voltage-Controlled Oscillators (VCOs)

Voltage-controlled oscillators (VCOs) are essential building blocks in analog and RF systems,
responsible for generating periodic waveforms with frequencies modulated by a control voltage.
These circuits rely on amplification, feedback, and resonance to sustain stable oscillations. Owing to
their wide tuning range, low power consumption, and ease of integration, VCOs are broadly used in
systems such as phase-locked loops (PLLs), frequency synthesizers, and clock recovery circuits [49].
In this work, we implement four representative VCO topologies—inductive-feedback VCO (IFVCO),
cross-coupled VCO (CCVCO), Colpitts VCO (ColVCO), and ring VCO (RVCO)—as shown in
Figure 13.

19

The IFVCO employs an NMOS differential pair with an inductor-based feedback path to sustain
oscillations. This topology provides favorable noise performance and compact layout, making it well
suited for low-voltage, low-power designs [50]. The CCVCO achieves negative resistance through
cross-coupling, enabling low phase noise and high integration density, and is widely adopted in
frequency synthesizers and PLLs [51]. The ColVCO uses an LC tank and capacitive feedback to
achieve high frequency stability and low phase noise, making it ideal for precision RF communication
and instrumentation [52]. The RVCO consists of cascaded delay stages forming a feedback loop,
offering low power consumption, wide tuning range, and minimal area footprint, though at the
cost of higher phase noise. It is commonly used in on-chip clock generation and low-power sensor
applications [53]. Design parameters and performance metrics for these VCO topologies are presented
in Table 11.

(a) IFVCO (b) CCVCO (c) ColVCO (d) RVCO

Figure 13: Schematic diagrams of the four VCO topologies.

Table 11: VCO topologies with parameter sweep ranges, sample sizes, and performance metrics.

Dataset Type Topology (Code) # of Samples Parameter Sweep Range Performance Metrics (Unit)

VCO

IFVCO (16) 43k

C1 [700–900] fF

DCP (W)

OscF (Hz)

TR (Hz)

OutP (dBm)

PN (dBc/Hz)

C2 [50–250] fF
L1 [400–600] pH
L2 [500–700] pH

WN, Wvar [5–9] µm

CCVCO (17) 54k
L [200–400] pH

WN [10–35] µm
Wvar [5–30] µm

ColVCO (18) 90k

C [80–140] fF
L [250–350] pH

WN [30–50] µm
Wvar [5–15] µm
Vb [0.7–1.2] V
Itail [5–15] mA

RVCO (19) 46k

C [300–700] fF
L1 [300–500] pH
L2 [50–250] pH
WN [20–40] µm
Wvar [5–25] µm

C Robustness Across Random Seeds

To evaluate the robustness of our models to ran-
dom initialization and data shuffling, we repeated
experiments using five distinct random seeds: {42,
123, 777, 2023, 3407}. Reporting across multi-
ple seeds is important for ensuring that observed
results are not artifacts of a specific initialization
or training trajectory, but rather reflect the stable
behavior of the method. For each metric, we com-
pute the mean and 95% confidence interval across
seeds, reporting results in the form µ±∆.

Table 12: Topology selection performance with
mean scores and 95% confidence intervals

across five random seeds.

Metric Mean ± 95% CI (%)
Accuracy 99.57 ± 0.01
Balanced Accuracy 99.34 ± 0.02
Macro Precision 99.27 ± 0.01
Macro Recall 99.34 ± 0.02
Macro F1 99.30 ± 0.01
Micro F1 99.57 ± 0.01

20

For the MLP topology selection model, results are highly stable across random seeds. The accuracy
reaches 99.57 ± 0.01% with balanced accuracy at 99.34 ± 0.02%, while both macro and micro
F1 scores exceed 99.3% with confidence intervals no larger than ±0.02. These narrow intervals
indicate that the MLP’s performance is effectively invariant to random initialization, underscoring its
robustness and reliability in the topology selection stage of the pipeline (Section 4).

For the GNN-based forward performance prediction model, the overall mean relative error across all
metrics is 9.14±0.38% (95% CI). Individual performance predictions, including DC power consump-
tion, gain, bandwidth, and oscillation frequency, exhibit narrow confidence intervals—for example,
noise figure achieves 4.48 ± 0.07% error and oscillation frequency 0.65 ± 0.03%. These results
indicate that the GNN achieves consistently accurate predictions across diverse circuit characteristics.
The tight confidence intervals further demonstrate that the model’s performance is robust to random
initialization, underscoring its reliability as a generalizable forward predictor within the pipeline
(Section 5). The full seed-dependent results for both models are provided in Tables 12 and 13.

Table 13: Prediction accuracy of the forward GNN with mean scores and 95% confidence intervals
across five random seeds.

Metric DCP VGain PGain CGain S11 S22 NF BW OscF TR OutP PSAT DE PAE PN VSwg
Rel. Err.

± 95% CI (%)
11.64
± 1.06

3.10
± 0.42

18.46
± 0.36

5.25
± 0.44

11.49
± 0.09

1.94
± 0.15

4.48
± 0.07

6.28
± 0.43

0.65
± 0.03

6.55
± 0.04

4.86
± 0.59

4.31
± 0.24

4.51
± 0.14

11.58
± 1.72

1.34
± 0.02

1.71
± 0.29

D User-Defined Loss Functions for Gradient Reasoning

Stage 3 of FALCON employs gradient reasoning with the forward GNN fixed, enabling the op-
timization objective to be redefined without retraining or fine-tuning the predictive model. This
design allows users to flexibly adapt the loss function to capture specific trade-offs or constraints. We
illustrate this flexibility with two examples.

Weighted Performance Loss. Rather than treating all performance metrics equally, users can specify
weights αi for each target metric:

Lperf-weighted =
1∑

i miαi

d∑
i=1

miαi (ŷi − ytarget
i)2,

where larger αi prioritize certain specifications (e.g., gain or noise figure). Here, mi = 1 if the i-th
metric is defined for the current sample, and 0 otherwise.

Interval-Constrained Performance Loss. Users may also define acceptable ranges for metrics
rather than fixed targets. Given optional lower and/or upper bounds ylower

i , yupper
i , the interval penalty

is:

Lperf-interval =
1∑
i mi

d∑
i=1

mi

[
1{yupper

i defined} max(0, ŷi−yupper
i)+1{ylower

i defined} max(0, ylower
i − ŷi)

]
,

where the indicator 1{·} indicates whether the corresponding bound is specified. This formulation
naturally handles the cases where only an upper bound, only a lower bound, or both bounds are
provided. As above, mi = 1 if the i-th metric is defined for the current sample, and 0 otherwise.

General Extensibility. More generally, the total loss in Eqn. 3 can be replaced with any user-defined
formulation, allowing both Lperf and Llayout to be substituted with customized objectives. Additional
physical constraints, multi-objective trade-offs, or alternative layout penalties can be incorporated
with only a few lines of code. This extensibility underscores the flexibility of FALCON and enables
the framework to adapt to diverse design objectives.

E Layout Design and DRC Compliance

E.1 Design Rule Enforcement in 45 nm CMOS

We implemented FALCON using a 45 nm CMOS technology node, applying rigorous Design Rule
Checking (DRC) at both the cell and full-chip layout levels. At the cell level, our parameterized
layout generators enforced foundry-specific constraints, including minimum feature width and

21

length, contact and via spacing, and metal enclosure rules. At the circuit level, we incorporated
physical verification to mitigate interconnect coupling, IR drop, and layout-dependent parasitic
mismatches—factors that are especially critical in high-frequency and precision analog design.

DRC plays a vital role in ensuring that layouts comply with process design rules defined by the
semiconductor foundry. Adhering to these rules ensures not only physical manufacturability but
also electrical reliability. Violations may lead to fabrication failures, including yield degradation,
electrical shorts or opens, electromigration-induced issues, and parasitic mismatches. Moreover,
DRC compliance is essential for compatibility with downstream fabrication steps such as photomask
generation, optical lithography, and chemical-mechanical planarization (CMP), safeguarding the
yield and fidelity of the final IC.

Circuit-Level Layout Guidelines. We enforced several topology-aware layout constraints during
full-circuit integration to preserve signal integrity and robustness:

• Inductor-to-inductor spacing: ≥ 35.0µm to mitigate mutual inductive coupling and
magnetic interference.

• Guardring placement: Sensitive analog blocks are enclosed by N-well or deep N-well
guardrings with spacing ≥ 5.0µm to suppress substrate noise coupling.

• Differential pair symmetry: Differential signal paths are layout-matched to ensure ∆L <
0.5µm, minimizing mismatch and preserving phase balance.

DRC Constraints and Layer Definitions. Table 14 summarizes the DRC constraints applied to key
analog components across relevant process layers. Table 15 provides the abbreviations used for metal,
contact, and via layers in the 45 nm CMOS process.

Table 14: Design rule constraints for key analog components in 45 nm CMOS.

Component Layer Physical Constraint Symbol Value Unit

MIM Capacitor (QT, LD, VV, OB)

QT/LD Minimum Cap Width WMIN 6.05 µm
QT/LD Maximum Cap Width WMAX 150.0 µm
QT/LD Cap Length L 6.0 µm
VV VV Square Size VV_SIZE 4.0 µm
VV VV Spacing VV_SPACE 2.0 µm
VV VV to Edge Spacing VV_EDGE_MIN 1.0 µm

Resistor (RX, CA, M1)

RX Minimum Width WMIN 0.462 µm
RX Maximum Width WMAX 5.0 µm
RX Minimum Length LMIN 0.4 µm
RX Maximum Length LMAX 5.0 µm
CA Contact Size CA_SIZE 0.06 µm
CA Contact Spacing CA_SPACE 0.10 µm
CA CA to Edge Spacing CA_EDGE 0.11 µm

Inductor (M3)
M3 Minimum Width M3_W_MIN 2.0 µm
M3 Maximum Width M3_W_MAX 20.0 µm
M3 Minimum Spacing M3_S_MIN 2.0 µm

Grid All Layers Minimum Grid Min_Grid 0.005 µm

Table 15: Process layer abbreviations in the 45 nm CMOS design flow.

Layer Name Description

RX Resistor implant or diffusion layer used to define integrated resistor geometries.
CA Contact layer forming vias between diffusion/poly and the first metal layer (M1).
M1 First metal layer, typically used for local interconnects and resistor terminals.
M3 Third metal layer, used for wider routing tracks and planar inductor layouts.
QT Top metal plate in MIM capacitor structures, providing the upper electrode.
LD Lower metal plate in MIM capacitor structures, acting as the bottom electrode.
VV Via layer connecting different metal layers, especially in capacitor and dense routing regions.
OB Opening/blocking layer used to define restricted zones, often to exclude metal or for CMP mask clarity.

22

(a) MIM capacitor layout (b) Resistor layout (c) Inductor layout

Figure 14: Layout views of passive components. (a) MIM capacitor with metal-insulator-metal stack.
(b) Resistor layout with matching geometry. (c) Spiral inductor with octagonal turns for optimized
area and Q-factor.

E.2 MIM Capacitor Capacitance Model

The total capacitance CN of a metal-insulator-metal (MIM) capacitor is modeled as:

CN = Ca · L ·W + Cp · 2 · (L+W) [fF]

where L and W are the layout length and width in µm, Ca is the area capacitance density, and
Cp is the fringing field contribution per unit length. This model includes both area and perimeter
contributions to more accurately reflect layout-dependent capacitance in IC design (see Figure 14(a)).

1. Area Capacitance Term: Ca · L ·W
Physical Concept: This term represents the primary (parallel-plate) capacitance formed between the
overlapping top and bottom metal layers. It arises from the uniform electric field across the dielectric.

Layer Physics Explanation:

• L ·W corresponds to the overlap area of the plates.
• Ca = 0.335 fF/µm2 is the area capacitance density, derived from:

– Dielectric permittivity ε of the insulating material.
– Dielectric thickness d, with C ∝ ε/d.

2. Perimeter (Fringing) Capacitance Term: Cp · 2 · (L+W)

Physical Concept: This term models fringing fields at the plate edges, contributing additional
capacitance—particularly relevant in small geometries.

Layer Physics Explanation:

• 2 · (L+W) is the physical perimeter of the capacitor.
• Cp = 0.11 fF/µm accounts for the fringing field contribution per unit length.

Summary: This composite model enables accurate estimation of MIM capacitance by capturing
both parallel-plate and fringing effects. The constants Ca and Cp are typically calibrated using
process-specific measurements or electromagnetic simulations.

For a fixed capacitor length L = 20µm and width W ∈ [6.05, 150.0]µm, the layout-aware capaci-
tance is approximated by:

C ≈ 6.92W + 4.4 [fF] (4)

The corresponding bounding area is estimated from the component’s geometric envelope:

Bounding_Area = 22W + 44 [µm2] (5)

E.3 N+ Silicided Polysilicon Resistor Model

The resistance of a layout-defined resistor implemented using the ndslires layer is modeled as:

R = Rs ·
L

W +∆W
+ 2Rend + δ [Ω]

23

Physical Concept: This structure uses heavily doped N+ polysilicon overlaid with a silicide layer
to reduce resistance. Current flows laterally through the poly-silicide film (see Figure 14(b)), and
resistance is shaped by the aspect ratio of the layout as well as process-dependent corrections.

Layer Physics Explanation:

• Rs = 17.6Ω/□ (ohm per square) is the sheet resistance of the silicided poly layer.
• W = 5.0µm is the drawn width; ∆W = 0.048µm accounts for process-induced width

bias.
• L is the drawn resistor length.
• Rend = 1Ω models terminal resistance due to contact diffusion and current crowding.
• δ = 0.917Ω accounts for residual layout-dependent parasitics.

Summary: The empirical layout relation used in parameterized generation is:

R ≈ 3.5007 · L+ 2.917 [Ω] (6)

This model is valid for L ∈ [0.4, 5.0]µm with fixed width W = 5.0µm. The estimated layout area
based on bounding box dimensions is:

Bounding_Area = 5.2L+ 8.362 [µm2] (7)

E.4 Octagon Spiral Inductor Model

Physical Concept: Accurate modeling and layout optimization of planar spiral inductors are critical
in analog circuit design. Inductor performance is highly sensitive to parasitic elements, achievable
quality factor (Q), and layout constraints imposed by process design rules. To support accurate
performance prediction and inform layout choices, we adopt a modified power-law model that
expresses inductance as a function of key geometric parameters. The model is validated against
empirical measurements and shows strong agreement with classical analytical formulations.

Numerous classical formulations relate inductance to geometric factors such as the number of turns,
average diameter, trace width, and inter-turn spacing. Among these, the compact closed-form
expressions in RF Microelectronics textbook [30] are widely adopted for their balance of simplicity
and accuracy. Building on this foundation, we adopt a reparameterized monomial model that better
fits our empirical measurement data:

L = 2.454× 10−4 ·D−1.21
out ·W−0.163 ·D2.836

avg · S−0.049 [nH]

Layer Physics Explanation:

• Dout = 2(R+ W
2) is the outer diameter,

• Din = 2(R− W
2) is the inner diameter,

• Davg = (Dout +Din)/2 = 2R is the aver-
age diameter,

• R is the radius in µm,
• W is the trace width in µm,
• S is the spacing in µm.

Table 16: Measured inductance for one-turn in-
ductors with fixed W = 10 µm and S = 0.0 µm

R (µm) 30 40 50 60

L (nH) 0.123 0.170 0.220 0.276

This expression is calibrated using measured data from a series of one-turn inductors fabricated with
varying radius (R), while keeping the trace width fixed at W = 10 µm and spacing at S = 0.0 µm.
Table 16 summarizes the measured inductance values used for model fitting.

Summary: With W and S fixed, inductance simplifies to:

L ≈ 2.337× 10−3 ·R1.164 [nH] (8)

The bounding area is estimated by:

Bounding_Area = 4R2 + 108R+ 440 [µm2] (9)

24

The performance of on-chip inductors is fundamentally influenced by layout-dependent factors such
as trace width, metal thickness, and inter-turn spacing. Increasing the trace width (Wind) reduces
series resistance by enlarging the conductor’s cross-sectional area, thereby improving the quality
factor, Q = ωL/Rseries. However, wider traces also increase parasitic capacitance to adjacent turns
and the substrate, which lowers the self-resonance frequency.

Metal thickness (Hind) also plays a crucial role in minimizing ohmic losses. At high frequencies,
current is confined near the conductor surface due to the skin effect. For copper at 25GHz, the skin
depth δ is approximately 0.41 µm; thus, using a metal layer thicker than 4δ (i.e., 1.6 µm) ensures
efficient current flow. However, increasing thickness beyond this threshold yields diminishing returns
in Q due to saturation in current penetration.

Turn-to-turn spacing (S) affects both inductance and quality factor (Q). Tighter spacing enhances
magnetic coupling, thereby increasing inductance density. However, it also intensifies capacitive
coupling and dielectric losses—particularly in modern CMOS processes with high-k inter-metal
dielectrics—which can degrade Q. Conversely, excessive spacing reduces inductance without
providing a proportionate benefit in loss reduction. As a result, one-turn spiral inductors are commonly
favored in RF design due to their low series resistance, minimized parasitics, and improved modeling
predictability.

These insights guided our design choices for layout-aware inductor implementation. To balance the
competing demands of Q optimization, parasitic control, and DRC compliance, we implemented
inductors using Metal 3 and set W = 10 µm as the default trace width. This width offers a low-
resistance path that enhances Q while maintaining manageable parasitic capacitance and sufficient
pitch for lithographic reliability. Metal 3 was selected for its favorable trade-off between thickness and
routing density—it is thick enough to mitigate skin-effect losses at high frequencies while offering
sufficient flexibility for compact layout integration.

The implemented spiral inductor geometry is shown in Figure 14(c). Table 17 summarizes the
DRC-compliant tuning ranges, estimated layout areas, and decomposition strategies for single-cell
passive components in our layout library.

Table 17: Single-cell passive component limits based on DRC and associated layout area costs.

Component Tunable Variable Value Range Area Range Decomposition Rule

Resistor Length L 4.32–20.42Ω 10.44–34.36µm2 Series if > max, parallel if < min
Capacitor Width W 46.32–1042.4 fF 176–3344µm2 Parallel if > max, series if < min
Inductor Radius R ≥ 0.1 nH ≥ 5640µm2 Continuous radius scaling

E.5 Layout Examples of Synthesized Circuits

To illustrate the correspondence between schematic and layout representations, we present three
synthesized circuits: DBAMixer, IFVCO, and DLNA, shown in Figures 15, 16, and 17, respectively.

(a) Designed DBAMixer schematic
(b) Layout of designed DBAMixer

Figure 15: Stage 3 results for a synthesized DBAMixer. The schematic (a) reflects optimized
parameters to meet the target specification. The layout (b) is DRC-compliant and physically realizable.
The final design achieves a mean relative error of 0.2% compared to the target performance.

25

(a) Designed IFVCO schematic (b) Layout of designed IFVCO

Figure 16: Stage 3 results for a synthesized IFVCO. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 1.3% compared to the target performance.

(a) Designed DLNA schematic

(b) Layout of designed DLNA

Figure 17: Stage 3 results for a synthesized DLNA. The schematic (a) reflects optimized parameters
to meet the target specification. The layout (b) is DRC-compliant and physically realizable. The final
design achieves a mean relative error of 5.0% compared to the target performance.

In the IFVCO example, the inductor labeled L3 functions as an RF choke and is excluded from the
on-chip layout due to its large area requirement. Instead, it is intended for off-chip implementation at
the PCB level and connected to the die via wire bonding. This external connection is indicated by the
yellow pad in Figure 16(b), which serves as the wire-bonding interface.

Since the current stage of system lacks automated routing, all interconnects in the layout were
manually drawn to ensure accurate correspondence with the schematic connectivity. These examples
demonstrate that synthesized circuit parameters can be successfully translated into DRC-compliant,
physically realizable layouts, bridging the gap between high-level optimization and tapeout-ready
design.

F Practical Considerations and Limitations

F.1 Training and Inference Efficiency

Although our codebase supports GPU acceleration, all experiments in this work—excluding initial
dataset generation—were conducted entirely on a MacBook CPU. This highlights the efficiency
and accessibility of the FALCON pipeline, which can be executed on modest hardware without
specialized infrastructure. Our MLP and GNN models contain 207k and 1.4M trainable parameters,
respectively, with memory footprints of just 831 KB and 5.6 MB.

26

In Stage 1, the MLP classifier trains in approximately 30 minutes with a batch size of 256 and
performs inference in the order of milliseconds per batch. Stage 2’s GNN model takes around 3 days
to train on the full dataset using the same batch size and hardware. Fine-tuning on an unseen topology
(e.g., RVCO) using ∼30,000 samples completes in under 30 minutes.

In Stage 3, the pretrained GNN is used without retraining to perform layout-constrained parameter
inference via gradient-based optimization. Inference is conducted one instance at a time (batch size 1),
with typical runtimes under 1 second per circuit. Runtime varies based on the convergence threshold
and circuit complexity but remains below 2–3 seconds in the worst case across the full test set.

A solution is considered successful if the predicted performance meets the target within a specified
relative error threshold. While tighter thresholds (e.g., 5%) improve accuracy, they require more
optimization steps—particularly over large datasets. As a result, both success rate and inference
time in Stage 3 are directly influenced by this tolerance, which can be tuned based on design fidelity
requirements.

F.2 Limitations

This work focuses on a representative set of 20 curated analog topologies spanning five circuit
families. Consequently, the topology selection stage is limited to suggesting only among the designs
present in the training set and cannot synthesize novel circuits. A natural future direction is to either
extend the training library to a broader set of topologies or replace the classifier with a generative
model capable of directly proposing new netlists conditioned on input specifications. In contrast,
the GNN-based forward modeling stage is designed to operate on arbitrary circuit graphs and has
already demonstrated strong generalization to unseen architectures (e.g., RVCO), indicating that no
modification to this stage is required to support novel circuits.

Beyond topology considerations, the dataset is constructed at a fixed operating frequency of 30 GHz,
which ensures consistency across circuit families but constrains frequency generalization. Although
the framework can, in principle, extend to other operating points—for example, the voltage amplifier
topologies already demonstrate scalability across varying gain–bandwidth trade-offs—systematic
validation across diverse frequency bands is beyond the scope of this work. Extending the dataset to
cover multiple operating frequencies, or incorporating frequency as an explicit conditioning variable
during training, represents an important direction for broadening applicability.

Finally, the differentiable layout model in FALCON captures parasitic effects through analytical
approximations of passive components, which is effective for guiding parameter optimization within
the learning framework. However, this approach does not fully replace electromagnetic (EM)
simulations or post-layout verification, and electromigration constraints are not explicitly incorporated.
Incorporating learned parasitic estimators, EM-informed models, and reliability constraints, therefore,
remains an important extension toward bridging schematic-level optimization and silicon-proven
robustness. In addition, all interconnect routing in the current flow is performed manually to ensure
precise control over parasitic management and DRC compliance. While this provides accuracy for
the studied designs, it limits scalability for more complex circuits, motivating future integration with
automated analog routing tools.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions, including the
three-stage pipeline and dataset. These claims are supported by the methodology and results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

28

Justification: The paper is empirical in nature and does not include theoretical results or
formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full descriptions of the dataset (Appendix B), model architectures,
and training procedures for all three stages. Our publicly available code and pretrained
models use fixed random seeds to ensure full reproducibility of all results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code, pretrained models, and reproducibility instructions—covering all
three stages of the pipeline—are available at FALCON repository. We also include access to
the dataset (with details in Appendix B) and ensure all scripts use fixed seeds for consistent
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all training and evaluation details, including data splits, optimizer
settings, and hyperparameters, in the main paper and appendix. These are also included
alongside the code in the FALCON repository for full transparency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our layout evaluation and circuit simulation are deterministic. For the learned
models, we report average performance along with 95% confidence intervals, computed over
multiple runs with fixed random seeds, as detailed in Appendix C. This ensures statistical
robustness and full reproducibility of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.

30

https://github.com/AsalMehradfar/FALCON
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/AsalMehradfar/FALCON

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Inference time is reported in the main paper (Section 6), while training time
and type of compute used are detailed in the Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and adhered to the NeurIPS Code of Ethics. Our research
does not involve human subjects, sensitive data, or applications with foreseeable harmful
consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

31

https://neurips.cc/public/EthicsGuidelines

Justification: Our work focuses on circuit design automation and does not directly impact
societal applications. We therefore do not anticipate immediate broader impacts, either
positive or negative.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models and dataset focus on analog circuit design automation and do not
pose risks of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all external libraries (e.g., PyTorch) and tools (e.g., Ca-
dence), where applicable. All released assets (code, datasets, and pretrained models) are
developed by the authors and shared under a clear license. Licensing and usage terms are
provided in the FALCON public repository.

32

https://github.com/AsalMehradfar/FALCON

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset along with a structured model pipeline com-
prising two ML models and one layout modeling, all documented and included in the
FALCON repository. Detailed instructions, licensing, and usage guidelines are provided in
the README file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

33

paperswithcode.com/datasets
https://github.com/AsalMehradfar/FALCON
https://github.com/AsalMehradfar/FALCON/blob/main/README.md

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects and therefore does not require IRB
or equivalent ethical review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	A Large-Scale Dataset and Inverse Design Problem Formulation
	Dataset Overview
	Graph-Based Circuit Representation
	Inverse Design Problem Definition

	Stage 1: Performance-Driven Topology Selection
	Stage 2: Generalizable Forward Modeling for Performance Prediction
	Stage 3: Layout-Aware Parameter Inference via Gradient Reasoning
	Conclusion and Future Work
	Qualitative Comparison with Prior Work
	Dataset Details and Performance Metric Definitions
	Low-Noise Amplifiers (LNAs)
	Mixers
	Power Amplifiers (PAs)
	Voltage Amplifiers (VAs)
	Voltage-Controlled Oscillators (VCOs)

	Robustness Across Random Seeds
	User-Defined Loss Functions for Gradient Reasoning
	Layout Design and DRC Compliance
	Design Rule Enforcement in 45 nm CMOS
	MIM Capacitor Capacitance Model
	N+ Silicided Polysilicon Resistor Model
	Octagon Spiral Inductor Model
	Layout Examples of Synthesized Circuits

	Practical Considerations and Limitations
	Training and Inference Efficiency
	Limitations

