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ABSTRACT

Pre-trained vision–language models (VLMs), such as CLIP, fail to realize their
anticipated superiority in the Unified Face Attack Detection (UAD) task. We
attribute this to two task-specific challenges: (1) Categorical ambiguity. UAD
categories such as live and fake pose challenges for semantic alignment in CLIP,
as they are subjectively defined concepts rather than literal meanings. (2) Forgery
diversity. The diversity of forgery cues across physical and digital attacks hinders
the language modality from delineating reliable decision boundaries. To address
these issues, we propose Cross-Modal Prompt Tuning (CMPT), a bidirectional
prompt-transfer framework that realigns vision and language. In the language
branch, Synonym Semantic Augmentation (SSA) retrieves semantically related
neighbors from a frozen vocabulary and integrates them via similarity-weighted
aggregation, enriching category semantics and targeting comprehensive coverage
of category expressions. In the vision branch, a Fourier-based High-Frequency
Amplifier (FHFA) suppresses low frequencies and adaptively strengthens the real
and imaginary components of high-frequency signals with learnable convolutions,
consolidating diverse forgery cues into a shared discriminative space. Within
UAD-CMPT, the resulting semantically augmented categories are sent to the
vision branch, and instance-conditioned visual prompts encoding decision criteria
are returned to the language branch; both act as learnable prompts to achieve
vision–language alignment. Extensive experiments demonstrate that UAD-CMPT
consistently outperforms state-of-the-art methods on multiple UAD benchmarks.

1 INTRODUCTION

A face recognition system encounters two threats: physical presentation attacks, such as printed
photos Zhang et al. (2020b); Guo et al. (2022), video replays Boulkenafet et al. (2017), and 3D
masks Liu et al. (2018a), which occur before the sensor captures the face; and digital deepfake
attacks, including face swapping, attribute editing Yan et al. (2024), and face synthesis, which occur
after capture. The former is addressed by Face Anti-Spoofing (FAS) Yu et al. (2020a); Zhang et al.
(2020a); Zhou et al. (2022c). At the same time, the latter relies on DeepFake Detection (DFD) Bei
et al. (2024); Yan et al. (2023); Li et al. (2024). These tasks are usually treated as separate problems,
which inevitably increases the cost of model deployment and computation. However, since both
physical and digital attacks originate from live faces through different forgery techniques, they share a
common discriminative space that allows them to be categorized under a unified class. This motivates
the Unified Attack Detection (UAD) task Deb et al. (2023); Fang et al. (2024); Liu et al. (2025),
which highlights the possibility and importance of using a single model to jointly defend against
diverse physical and digital forgeries.

Recently, vision–language models (VLMs) Radford et al. (2021) have demonstrated strong general-
ization on diverse downstream classification tasks Zhou et al. (2022a); Khattak et al. (2023); Gao et al.
(2024), yet their performance on UAD Zou et al. (2024); Chen et al. (2025); Li et al. (2025a) remains
unsatisfactory, largely due to two task-specific challenges: (1) categorical ambiguity and (2) forgery
diversity. As illustrated in Fig. 1(a), UAD is cast as a binary problem in which the label live denotes
genuine faces, whereas fake uniformly encompasses physical forgeries such as printed photos, video
replays, and 3D masks, as well as digital forgeries such as face swapping, attribute editing, and face
synthesis. However, as shown in Fig. 1(b), human-defined vision–language mappings are difficult for
VLMs to capture, given their training on generic image–text pairs. Consequently, VLMs often ground
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Figure 1: UAD under a vision-language framework. (a) It labels genuine samples as live and uni-
formly assigns diverse physical and digital forgeries to fake. (b) Categorical ambiguity: The semantics
of human-defined textual labels (live/fake) are ambiguous. Forgery diversity: The diversity and het-
erogeneity of forgery cues make classification criteria difficult to articulate. (c) In UAD-CMPT, SSA
(language→vision) generates semantically augmented category prompts; FHFA (vision→language)
suppresses low frequencies and enhances high-frequency real/imaginary parts to consolidate forgery
cues into a shared discriminative space; the resulting bidirectional prompts achieve alignment.

live in senses like “daily life”, “residence”, or “livestream”, and interpret fake as “hypocritical”,
“plastic surgery”, or “make-up”. Meanwhile, forgery cues are highly diverse, producing heterogeneous
visual characteristics that a single label fake cannot uniformly represent. Taken together, alleviating
categorical ambiguity and strengthening the semantic commonality of forgery cues are pivotal to
making VLMs effective for UAD.

Categorical ambiguity and the difficulty of inducing classification criteria disrupt the pretrained
alignment of VLMs, necessitating UAD-specific realignment. Considering that re-establishing the
mapping between categories and visual features is impractical, supplementing the vision modality
with category prompts and the language modality with visual prompts offers a cost-effective alignment
strategy. Accordingly, we require category prompts in the visual modality to possess two properties:
(1) Semantic synonymy with categories. Expand each fixed textual category into task-aligned
synonym descriptors covering all visual instances, e.g., expand fake to printed photo, video replay,
and face editing. (2) Induce category-discriminative cues from all visual tokens. The prompt should
interact with all visual tokens and summarize category-relevant cues; for example, color distortion
in printed photos, screen moiré in video replays, and splicing artifacts in face swapping. For the
visual prompt, we expect it to provide discriminative decision criteria by unifying heterogeneous
forgery cues while remaining separable from genuine samples. This implies that the visual prompt
originates from a discriminative visual feature space and is mapped into the language modality to
assist categories in delineating decision boundaries.

As shown in Fig. 1(c), we first propose Cross-Modal Prompt Tuning (CMPT), a bidirectional prompt-
transfer framework that restores vision–language alignment. Then, along the language-to-vision
direction in UAD-CMPT, we introduce a Synonym Semantic Augmentation (SSA) module. It expands
a fixed textual category into a task-aligned set of synonymized descriptors by retrieving semantically
related neighbors from a frozen vocabulary and integrating them with similarity-weighted aggregation.
The resulting semantically augmented category copies act as category prompts for the vision branch
to induce category-relevant cues. Meanwhile, along the vision-to-language direction, we introduce a
Fourier-based High-Frequency Amplifier (FHFA) that suppresses low frequencies and adaptively
amplifies the real and imaginary parts of high-frequency signals with learnable convolutions. FHFA
consolidates heterogeneous forgery cues into a shared discriminative space and produces instance-
conditioned visual prompts separable from genuine samples, which are mapped to the language
modality to assist category boundary delineation. Finally, SSA and FHFA instantiate UAD-CMPT’s
bidirectional prompt transfer to restore pretrained vision-language alignment in the UAD space.
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2 RELATED WORK

Face Anti-Spoofing (FAS). FAS was initially designed to counter physical attacks such as printed
photos, video replays, and 3D masks. Early CNN-based approaches Liu et al. (2018b); Yu et al.
(2020b) achieved strong performance on seen domains but suffered sharp degradation under domain
shifts, exposing poor domain generalization (DG). To address this, domain DG FAS methods Liu et al.
(2024b); Cai et al. (2024); Hu et al. (2024); Wang et al. (2024) aim to remain effective on unseen
domains. With the rise of multimodal models and contrastive learning, recent works demonstrate that
textual descriptions can guide visual feature weighting and improve generalization Srivatsan et al.
(2023); Liu et al. (2024a). For example, FLIP Srivatsan et al. (2023) aligns image and text features
through contrastive pre-training to enhance cross-domain robustness, while CFPL-FAS Liu et al.
(2024a) generates semantic prompts from content and style features to dynamically modulate vision
features. Compared with static tokens, S-CPTL Guo et al. (2024) further introduces dynamic prompts
that adaptively capture instance-specific cues and increase diversity, thereby reducing overfitting.

DeepFake Detection (DFD). The primary goal of DFD is to counter digital attacks such as face
swapping and expression manipulation, thereby safeguarding content authenticity. Early studies
mainly exploited spatial-domain cues: some modeled global representations with CNNs, while
others emphasized local receptive fields to detect forged patches Haliassos et al. (2021); Chai
et al. (2020). To improve robustness, gradient-based features Ojha et al. (2023); Tan et al. (2023),
adversarial training He et al. (2021), and regularization techniques Chen et al. (2022) have been
explored. Frequency artifacts have also proven highly effective Frank et al. (2020); Durall et al.
(2020), motivating approaches that leverage color space transformations, spectral discrepancies, or
universal high-frequency modeling to boost cross-domain generalization Masi et al. (2020); Qian
et al. (2020); Luo et al. (2021). More recently, with the advance of multimodal models and contrastive
learning, prompt-based fine-tuning strategies have been proposed to exploit multimodal priors for
deepfake detection Guo et al. (2025); Tan et al. (2025); Lin et al. (2025); Cui et al. (2025); Miao et al.
(2025). In parallel, interpretability studies seek to uncover model reasoning, mitigate bias, and ensure
ethical, regulation-compliant decisions Lo et al. (2025); Xu et al. (2024); Huang et al. (2025); Jia
et al. (2024).

Unified Face Attack Detection (UAD). UAD seeks a universal model capable of handling both
spoofing and deepfake attacks Yu et al. (2024); Deb et al. (2023); Fang et al. (2024); Chen et al.
(2025); Liu et al. (2025). On the data side, JFSFDB Yu et al. (2024) integrates FAS and DFD
datasets into the first joint benchmark, while UniAttackData Fang et al. (2024) introduces identity-
consistent face-swapping samples to reduce domain noise. UniAttackData+ Liu et al. (2025) further
incorporates diffusion-based attacks, enhancing diversity and difficulty. On the algorithmic side,
JFSFDB employs a dual-branch physiological network, UniAttackData leverages a vision–language
model with teacher–student prompting, MoAE-CR Chen et al. (2025) applies mixture-of-experts
and distillation, and HiPTune Liu et al. (2025) adaptively integrates semantic cues through dynamic
interactions. Motivated by these studies, we build upon CLIP and address classification ambiguity
and spoofing diversity through a fine-tuning strategy tailored for UAD.

3 PRELIMINARIES: CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING (CLIP)

CLIP (Radford et al., 2021) is a vision–language model pretrained on large-scale image–text pairs to
produce a unified representation for an input image I∈RH×W×3 and its textual description.

In the vision branch, the image I is first split into n fixed-size patches and linearly projected to the
initial patch embeddingsE0 ∈ Rn×dv , where dv=768 denotes the visual token embedding dimension.
Let the i-th vision transformer block be Vi(·), where i ∈ {1, 2, ...,K}, and a learnable class token
ci−1∈Rdv is prepended at the patch embeddings Ei−1 to form the i-th layer visual input embedding
tokens Zi−1

v = [ci−1,Ei−1]. The layer-wise update is formulated as Zi
v = [ci,Ei] = Vi(Zi−1

v ).
The class token cK of the last layer is projected to the shared V–L embedding space by an image
projection layer to obtain the final visual representation v = ImageProj(cK) ∈ Rdvt , where
dvt = 512 denotes the dimensionality of the shared V–L embedding space.

In the language branch, the template words are tokenized into the initial word embeddings W0 =
[w1

0,w
2
0, . . . ,w

m
0 ] ∈ Rm×dt , where m is the length of text tokens and dt=512 is the text embedding

dimension. Let the i-th text transformer block be Ti(·), where i ∈ {1, 2, ...,K}, and the layer-wise
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update is denoted asWi = Ti(Wi−1). The text representation is taken from the last token at the final
layer and projected to the shared space by a text projection layer: t = TextProj(wm

K) ∈ Rdvt .

During training (fine-tuning), the model employs a set of linear classifiers corresponding to different
class labels y ∈ {1, 2, ..., C}, where C is the total number of categories, and the template prompts
are formed as “a photo of a 〈CLASS〉”. For the image I with the label ŷ in downstream data D, the
model is optimized by minimizing the cross-entropy loss:

Lce = min
Θ

E(I,ŷ)∼D

[
− log

exp
(
sim(v, tŷ)/τ

)∑
y∈C exp

(
sim(v, ty)/τ

)] , (1)

where Θ denotes the learnable model parameters, ty presents the text representation of the class y,
and τ is a temperature parameter.

4 METHODS

4.1 CROSS-MODAL PROMPT TUNING (CMPT)

To align the language and vision representations, Khattak et al. (2023) proposes Multimodal Prompt
Tuning (MaPLe) to enhance CLIP by injecting a set of learnable tokens into the text branch at every
transformer block and mapping these tokens into the vision branch as visual prompts. Concretely, the
input embeddings tokens of text transformer block i+ 1 are extended with learnable tokens Pt,i =

{pji}aj=1, where a is the length of learnable tokens. In the language branch, the input text embedding
tokens are described as Zt,i = [Pt,i,Wt,i] = [p1

i ,p
2
i , . . . ,p

a
i ,w

a+1
i ,wa+2

i , . . . ,wm
i ] ∈ Rm×dt ,

and the output of the i-th text transformer block is updated asZt,i+1 = Ti(Zt,i). In the vision branch,
a coupling function E(·) is utilized to inject categorical semantics distilled from learnable tokens to
strengthen image representation. The visual input embedding tokens of the i-th vision transformer
block are augmented asZv,i = [ci,Ei,Pv,i] ∈ R(1+n+b)×dv , where Pv,i = Ei(Pt,i) ∈ Rb×dv is the
visual prompts and b denotes the length of prompt tokens. The output of the i-th vision transformer
block is updated as Zv,i+1 = Vi(Zv,i).

However, the supervisory signal in MaPLe is unidirectional (from text to vision): the textual represen-
tations are not grounded or updated based on visual evidence. Consequently, the inherent modality
gaps between language and vision representations persist. To resolve this issue, we propose Cross-
Modal Prompt Tuning (CMPT) to enable bidirectional, layer-wise alignment by inserting a pair of
cross-modal prompts at every transformer block. Briefly, we establish two distinct coupling functions
Ev,i(·) and Et,i(·) to generate cross-modal prompts for vision and language branches, respectively.
The function Ev,i (Sec. 4.2) fuses semantically related word embeddings for each class label and
projects them as visual prompts, while Et,i (Sec. 4.3) extracts fine-grained facial attack cues from
patch embeddings to enhance the learnable tokens in the language branch. For the input of the i-th
layer, the vision input embeddings are augmented as Zv,i = [ci,Ei, Ev,i(wm

i )] ∈ R(1+n+b)×dv , and
the text input embeddings are denoted as Zt,i = [Pt,i + Et,i(Ei),Wi] ∈ Rm×dt .

4.2 SYNONYM SEMANTIC AUGMENTATION (SSA)

Due to the textual representation of labels being semantically coarse, SSA is introduced to enrich each
category with context-adaptive synonym copies. Specifically, we generate a visual prompt for each
class and concatenate them with the original visual embeddings to enhance the visual representation.
For a given label y, we extract the last embedding token wm

i,y from the text embeddings Zy
t,i, and

augment it by incorporating similar word embeddings retrieved from the vocabulary X ∈ Re×dt ,
where e denotes the vocabulary size. We first construct a query vector qi,y = ψi

1(wm
i,y) ∈ Rdt , where

ψi
1(·) is a lightweight MLP transformation. The query vector is then compared against the vocabulary

embeddings using cosine similarity, and the top h most semantically similar tokens are selected. The
similarity score is formulated as Si

y = softmax(toph(qiy · X>)) = {si1,y, si2,y, . . . , sih,y} ∈ Rh, and
X i

h = {xi
1,x

i
2, . . . ,x

i
h} ∈ Rh×dt stacks the top-h synonym embeddings selected from vocabulary at

i-th layer, where each sij,y corresponds to the softmax weight assigned to the j-th synonym candidate,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the proposed CMPT. The language branch employs SSA to retrieve top-h
semantic neighbors from a frozen vocabulary and aggregate them into semantically augmented cate-
gory copies, which are projected (t2v) and injected as category prompts into the vision encoder. The
vision branch uses an FHFA to suppress low frequencies and enhance high-frequency real/imaginary
components via learnable convolutions, producing instance-conditioned visual prompts that are
projected (v2t) into the language encoder. Bidirectional prompt transfer realigns vision and language
while encoders remain frozen; only SSA/FHFA and projection layers are learnable.

and xi
j denotes the synonym embedding. The augmented embedding token is defined as:

ŵm
i,y = wm

i,y +

h∑
j=1

(sij,y · xi
j). (2)

Finally, the augmented embedding token ŵm
i,y ∈ Rdt is projected into the vision space to obtain the

class-specific visual prompt P y
v,i = Projit2v(ŵm

i,y) ∈ Rb×dv , where Projit2v(·) is the i-th learnable
linear projection layer, and the coupling function for visual prompts generation is defined as P y

v,i =

Ev,i(wm
i,y). Notably, the visual prompts in the first visual transformer layer are derived from the

input text template. Since the UAD task involves only two labels y ∈ {live, fake}, the complete
visual input embeddings of the i-th vision transformer block consist solely of the corresponding
label-specific visual prompts P l

v,i and P f
v,i. Formally, the visual input embeddings are defined as

Zv,i = [ci,Ei,P
l
v,i,P

f
v,i] ∈ R(1+n+2b)×dv .

4.3 FOURIER-BASED HIGH-FREQUENCY AMPLIFIER (FHFA)

To explore a unified discriminative space for both physical and digital attacks inspired by FreqNet (Tan
et al., 2024), we employ a high-frequency filter to extract high-frequency cues and map them into
learnable tokens as cross-modal biases that adaptively refine the text embeddings. Specifically, at the
i-th layer, the FHFA module extracts the high-frequency components from the patch tokens Ei. The
extraction mask is defined as:

M =

{
1, if |u| > αU, |v| > αV,

0, otherwise,
(3)

whereM ∈ RU×V is the high-frequency mask having the same spatial size as the patch tokens,
U and V denote the height and width, and α is the ratio controlling the proportion of preserved
high-frequency information. The masked frequency features are split into amplitude and phase
spectra, denoted by fam and fph, respectively, such that

fam + fphi = (M · F(Ei)), (4)

where F(·) denotes the Fourier Frequency transform. To capture discriminative patterns, the extracted
high-frequency features are processed through multiple convolutional blocks, and the final enhanced
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patch tokens Êi ∈ Rn×dv are computed as:

Êi = φi3
(
F−1

(
φi1(fam) + φi2(fph)

))
, (5)

where F−1(·) is the inverse Fourier Frequency transform, and φi1, φ
i
2, φ

i
3 denote CNN blocks in

i-th layer responsible for amplitude refinement, phase refinement, and final feature integration,
respectively. The enhanced high-frequency tokens Êi are then projected into the text space via the
i-th projection layer Projiv2t(·) to produce cross-modal biases πi = Projiv2t(Êi) ∈ Rdt . At the i-th
layer, the overall cross-modal bias injection can be formulated as πi = Et,i(Ei). It is worth noting
that for the first layer, the patch tokens are derived from the original patch tokens as input.

Since the UAD task requires discriminating both real faces and attack types in the same feature
space, we apply these biases to refine the attack-agnostic text embeddings. Specifically, the live text
embeddings Zl

t,i and unified fake text embeddings Zf
t,i are updated as:

Zl
t,i = [Pt,i + πi,W

l
i ] ∈ Rm×dt , Zf

t,i = [Pt,i + πi,W
f
i ] ∈ Rm×dt . (6)

Here, the cross-modal bias serves as an auxiliary signal to guide the text branch toward capturing
subtle forgery traces from the visual domain. By adaptively refining the learnable tokens, FHFA allows
the text branch to adjust its decision boundaries according to the high-frequency cues extracted from
the image, thereby strengthening the semantic alignment between the visual and textual modalities.

4.4 LOSS FUNCTIONS

Synonym Uniformity Loss. To prevent the synonym selection from collapsing onto a single candi-
date, we regularize the distribution of the synonym scores Si

y at each layer by enforcing it to be close
to a uniform distribution over the top-h neighbors. Formally,

Lsu =
1

|C|
∑
y∈C

K∑
i=1

DKL(Si
y ‖ Uh), (7)

where Uh = [ 1
h , . . . ,

1
h ] ∈ Rh denotes the uniform distribution over the top-h synonyms, and K is

the number of transformer layers. Minimizing this loss is equivalent to maximizing the entropy of
Si
y , thereby encouraging a more diverse and robust utilization of synonym candidates.

Neighbor Diversity Loss. To encourage the model to explore a diverse set of synonym candidates
rather than selecting highly redundant neighbors, we introduce a neighbor diversity loss. Specifically,
let the top-h synonym embeddings selected at the i-th transformer layer be denoted as X i

h ∈ Rh×dt ,
where xi

j denotes the synonym embedding. The neighbor diversity loss is then defined as the mean
of the pairwise similarities among the selected synonyms:

Lnd =
1

K

K∑
i=1

1

h2

h∑
j=1

h∑
j′=1

〈xi
j ,x

i
j′〉. (8)

Minimizing Lnd penalizes excessive similarity among the selected synonyms, thereby encouraging
the model to select more diverse neighbors. This promotes richer semantic representations and
reduces redundancy in the synonym space.

Total Loss. In this paper, we adopt the cross-entropy loss Lce (defined in Eq. 1) as our primary
objective. In addition, we introduce two auxiliary losses: the synonym uniformity loss Lsu, which
prevents synonym scores from collapsing onto a single neighbor; and the neighbor diversity loss Lnd,
which discourages overly redundant neighbors. The total loss with the hyperparameters λ1 and λ2 is
therefore formulated as

Ltotal = Lce + λ1Lsu + λ2Lnd. (9)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets, Protocols, and Evaluation Metrics. We evaluate UAD-CMPT on two UAD benchmarks:
JFSFDB (Yu et al., 2024) and UniAttackData (Fang et al., 2024). On JFSFDB, we conduct cross-
domain evaluation under two settings: (i) separate training for FAS or DFD and (ii) joint training
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Table 1: The results (%) of JFSFDB datasets. ↓/↑ represents that the smaller/larger value, the better
performance. Best results are in bold.

Methods FAS DFD Uni-Attack Average
EER(%↓) AUC(%↑) EER(%) AUC(%) EER(%) AUC(%) EER(%) AUC(%)

MesoNet (WIFS’18) 38.18 65.97 42.47 59.91 42.11 61.10 40.92 62.33
DeepPixel (IJCB’19) 30.12 77.55 29.82 76.53 28.64 78.00 29.53 77.36

CDCN++ (TPAMI’20) 35.86 69.02 36.47 67.50 36.64 70.04 36.32 68.85
MultiAtten (CVPR’21) 37.87 66.25 40.10 63.86 35.21 69.36 37.73 66.49

CLIP (ICML’21) 18.07 89.70 25.15 82.74 22.35 85.32 21.86 85.92
CoOp (IJCV’22) 18.34 83.43 40.31 63.25 27.43 79.58 28.69 75.42

ViT-shared8 (TDSC’24) - - - - 22.26 85.26 22.26 85.26
UAD-CMPT(Ours) 10.02 95.60 21.27 86.98 20.57 87.78 17.29 90.12

for UAD. In the separate setting, FAS is trained on 3DMAD (Erdogmus & Marcel, 2014), SiW (Liu
et al., 2018b), HKBU (Liu et al., 2016) and tested on 3DMask (Yu et al., 2020a), MSU (Wen et al.,
2015), ROSE (Li et al., 2018), while DFD is trained on FF++ (Rossler et al., 2019) and tested on
DFDC (Dolhansky et al., 2019), CelebDFv2 (Li et al., 2020); in the joint setting UAD, a single
model is trained on SiW, 3DMAD, HKBU, FF++ and evaluated on MSU, 3DMask, ROSE, DFDC,
CelebDFv2. For UniAttackData, Protocol 1 (P1) evaluates unified detection with all attack types
present in both training and testing. Protocol 2 (P2) adopts a leave-one-type-out scheme to assess
generalization to unseen attacks. We also report additional protocols: Protocol 1.1 (P1.1) and Protocol
1.2 (P1.2) exclude deepfake and adversarial attacks during training/validation and evaluate on disjoint
identities, whereas Protocol 1.3 (P1.3) includes all digital subtypes under the standard distribution.
We also evaluate on the DG benchmark for FAS, comprising four datasets, MSU-MFSD (M) (Wen
et al., 2015), CASIA-FASD (C) (Zhang et al., 2012), Idiap Replay-Attack (I) (Chingovska et al.,
2012), OULU-NPU (O) (Boulkenafet et al., 2017), treating each dataset as a distinct domain. We
follow a DG protocol, where A&B→C denotes training on the union of A and B as source domains
and evaluating on C as the unseen target.

We assess performance with three measures: (1) Average Classification Error Rate (ACER), computed
as the mean of the false rejection rate (FRR) and false acceptance rate (FAR); (2) Area Under the
Curve (AUC), a threshold-free summary of discriminability; (3) Equal Error Rate (EER), the error
rate at the operating point where FRR equals FAR.

Implementation Details. Our UAD-CMPT is built on the CLIP (Radford et al., 2021), where the
image encoder V(·) is a ViT-B/16 and text encoder T (·) is a Transformer, with dv = 768, dt = 512,
and dvt = 512. In our approach, SSA, FHFA, and two coupling functions of each layer, Projt2v and
Projv2t, are trainable, while the remaining parameters are frozen. Unless otherwise stated, we set
the number of top-h in SSA to 10. Based on a large number of experimental summaries, we set λ1

and λ2 to be 0.01. Following FreqNet (Tan et al., 2024), we set α = 0.25 to control the preserved
high-frequency ratio. All models are trained with SGD optimizer for 100 epochs (each epoch only
accesses one frame from a video) with a batch size of 1 and an initial learning rate of 0.02, which
is decayed by the cosine annealing scheduler. Training stops after 100 epochs or earlier if the loss
plateaus.

5.2 UNIFIED FACE ATTACK DETECTION RESULTS

On the JFSFDB (Yu et al., 2024) benchmark, we evaluate high-performing classical DFD methods
MesoNet (Afchar et al., 2018), MultiAtten (Zhao et al., 2021) and FAS methods DeepPixel George
& Marcel (2019), CDCNN++ (Yu et al., 2020a), multimodal methods CLIP (Radford et al., 2021),
CoOp (Zhou et al., 2022b), and the SOTA UAD method ViT-shared8 (Yu et al., 2024). From Tab. 1,
we observe two conclusions: (1) Our UAD-CMPT surpasses all competing methods under the settings
of FAS and DFD. In terms of EER, it outperforms the runner-up method, CLIP, by 8.05% and
3.88%, respectively. UAD-CMPT surpasses CLIP chiefly by suppressing low-frequency content and
amplifying high-frequency magnitude and phase. Forgery traces that are hard to perceive in raw
images become salient in the high-frequency domain. By centering decisions on these shared high-
frequency cues, UAD-CMPT forms a cross-domain decision space for authenticity, yielding more
stable cross-dataset performance and less degradation in EER and AUC. (2) Under the UAD setting,
UAD-CMPT surpasses ViT-shared8 by 1.69% and ultimately achieves an average EER of 17.29%.
CMPT’s gains over ViT-shared8 chiefly stem from SSA. Because live and fake are semantically
ambiguous for VLMs, SSA retrieves semantically related tokens from a frozen vocabulary and
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Table 2: The results (%) of UniAttackData datasets. Avg. represents the average ACER of P1, P1.1,
P1.2, and P1.3. Best results are in bold.

Methods P1 P1.1 P1.2 P1.3 Avg. P2
ACER AUC ACER AUC ACER AUC ACER AUC ACER AUC

CDCN++ (TPAMI’20) 1.40 99.52 12.32 93.89 16.34 93.34 4.41 97.68 8.62 34.33 77.46
CLIP (ICML’21) 1.02 99.47 14.81 86.74 5.36 99.17 2.45 97.92 5.91 24.26 87.34

UniAttackD (IJCAI’24) 0.52 99.96 11.73 98.81 1.70 99.85 4.67 99.13 4.66 22.42 91.97
MoAE-CR (AAAI’25) 0.37 99.97 - - - - - - - 15.13 92.07

FA3-CLIP (TIFS’25) 0.36 99.75 9.57 97.78 1.43 99.85 2.30 99.19 3.42 18.81 88.59
UAD-CMPT (Ours) 0.34 99.97 5.23 98.88 3.11 99.45 2.15 99.59 2.71 14.63 89.28

Table 3: The results (%) of Protocol 1 on M, C, I, and O datasets. A & B → C denotes training on the
union of A and B as source domains and evaluating on C as the unseen target.

Methods O&C&I→M O&M&I→C O&C&M→I I&C&M→O Avg.

HTER ↓ AUC ↑ HTER AUC HTER AUC HTER AUC HTER

UDG-FAS (ICCV’ 23) 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36 9.26
IADG (CVPR’ 23) 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14 8.39
HPDR (CVPR’ 24) 4.58 96.02 11.30 94.42 11.26 92.49 9.93 95.26 9.26

TTDG-V (CVPR’ 24) 4.16 98.48 7.59 98.18 9.62 98.18 10.00 96.15 7.84
CA-MoEiT (IJCV’ 24) 2.88 98.76 7.89 97.70 6.18 98.94 9.72 96.22 6.67
GAC-FAS (CVPR’ 24) 5.00 97.56 8.20 95.16 4.29 98.87 8.60 97.16 6.52

ViT-S-Adapter (TIFS’ 24) 2.90 99.48 7.37 97.63 8.54 97.17 8.20 97.69 6.74
CFPL-FAS (CVPR’ 24) 3.09 99.45 2.56 99.10 5.43 98.41 3.33 99.05 3.60

DCRN (TIFS’ 25) 4.05 99.12 7.38 97.57 6.17 98.22 8.33 98.17 6.48
AG-FAS (TPAMI’ 25) 5.71 98.03 5.44 98.55 6.71 98.23 9.43 96.62 6.82

FSFM (CVPR’ 25) 3.78 99.15 3.16 99.41 4.63 99.03 7.68 97.11 4.81
OTA (CVPR’ 25) 2.38 99.42 2.67 99.49 5.19 98.56 3.03 99.45 2.91

UAD-CMPT (Ours) 0.71 99.81 1.66 98.96 4.28 99.19 2.22 99.65 2.21

aggregates them to enrich class prompts, aligning language representations with diverse physical and
digital forgeries. This reduces categorical ambiguity and strengthens unified attack detection.

On the UniAttackData (Fang et al., 2024) benchmark, we select CDCNN++, CLIP, and three recently
proposed UAD algorithms, UniAttackD (Fang et al., 2024), MoAE-CR (Chen et al., 2025), and FA3-
CLIP (Li et al., 2025a) for experiments. Except for P1.2, UAD-CMPT achieves the best performance
across all other protocols, with particularly significant gains on protocol P1.1 and P2, where its ACER
substantially surpasses that of the second-best algorithm FA3-CLIP (9.57% vs. 5.23% for P1.1 and
18.81% vs. 14.63% for P2). According to the definitions, P1.2 excludes adversarial attacks from
training and evaluates on disjoint identities. Without adversarial samples, UAD-CMPT’s frequency-
centric bias is disadvantaged: adversarial perturbations are subtle and only weakly represented in the
high-frequency spectrum, so the model’s high-frequency emphasis yields less benefit.

5.3 DOMAIN GENERALIZATION RESULTS

We also compare UAD-CMPT with some of the currently optimal DG algorithms, including vision-
only modal algorithms (i.e., AG-FAS (Long et al., 2024), OTA (Li et al., 2025b) and FSFM (Wang
et al., 2025)), multimodal algorithms (i.e., CFPL-FAS (Liu et al., 2024a)). As shown in Tab. 3,
UAD-CMPT consistently achieves the lowest HTER across all cross-domain settings. In particular, it
records only 0.71% on O&C&I→M and 2.22% on I&C&M→O, significantly outperforming previous
best methods such as OTA, FSFM and CFPL-FAS. On average, UAD-CMPT attains an HTER of
2.21%, establishing a new state-of-the-art and demonstrating superior cross-domain generalization.
These results validate that the proposed bidirectional prompt-transfer design not only benefits unified
attack detection but also substantially enhances domain generalization performance.

5.4 ABLATION STUDY

Contribution of Each Component. To investigate the contribution of each improvement in UAD-
CMPT, such as SSA and FHFA, we gradually introduce them on the baseline IVLP (Khattak et al.,
2023) and report the ACER results of UniAttackData (Fang et al., 2024) in Tab. 4. Starting from the
naive baseline IVLP (Khattak et al., 2023), which simply combines vision and language prompts, we
observe clear performance gains when introducing SSA and FHFA. Specifically, SSA enriches the
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Table 4: The effect of SSA and FHFA. ↓ repre-
sents the performance benefit compared to IVLP.

Methods P1 P1.1 P1.2 P1.3 Avg.IVLP SSA FHFA
3 7 7 0.88 8.06 7.89 2.94 4.94
3 3 7 0.48 5.66 3.25 2.28 2.91
3 7 3 0.65 5.88 5.34 2.63 3.62

3 3 3
0.34 5.23 3.11 2.15 2.71

(↓0.54) (↓2.83) (↓4.78) (↓0.79) (↓2.23)

Table 5: Effect of Lce, Lsu, and Lnd. ↓ repre-
sents the performance benefit compared to Lce.

Methods P1 P1.1 P1.2 P1.3 Avg.Lce Lsu Lnd

3 7 7 0.65 7.38 4.49 3.64 4.04
3 3 7 0.60 7.12 3.25 3.25 3.55
3 7 3 0.41 6.36 3.11 2.77 3.16

3 3 3
0.34 5.23 3.11 2.15 2.71

(↓0.31) (↓2.15) (↓1.38) (↓1.49) (↓1.33)

Figure 3: The UMAP (McInnes et al., 2018) projection of UAD-CMPT’s penultimate layer on
UniAttackData. Points are colored by attack subtype; markers denote class (◦ live, + fake).

class descriptions by aggregating semantically related tokens, thereby alleviating the ambiguity of
the live/fake labels and providing more precise semantic guidance for distinguishing diverse physical
and digital forgeries. In parallel, FHFA highlights high-frequency amplitude and phase cues while
suppressing low-frequency content, enabling the model to focus on forgery artifacts that are more
stable across attack types. When integrated, SSA and FHFA complement each other and yield the
best overall results, reducing the average ACER from 4.94% to 2.71%.

Contribution of Each Constraint. Tab. 5 presents the ablation study on different loss configurations.
Using only the cross-entropy loss Lce yields the weakest performance, with an average ACER of
4.04%. Introducing the uniformity lossLsu improves the results to 3.55%, indicating that encouraging
a more balanced distribution of retrieved synonyms prevents the model from collapsing onto a few
dominant prompts. Replacing Lsu with the neighbor diversity loss Lnd further reduces the average
ACER to 3.16%, showing the benefit of enforcing diversity among neighboring prompts. When
combining all three objectives, the model achieves the best overall performance with an average
ACER of 2.71%, a relative reduction of 1.33% compared to the baseline. These results highlight
that Lsu and Lnd play complementary roles: the former regularizes the distribution of semantic
augmentations, while the latter enhances their diversity, and together they yield more robust and
discriminative representations.

5.5 VISUALIZATION AND ANALYSIS

As shown in Fig. 3, for Protocols P1, P1.1, and P1.3, our UAD-CMPT separates live faces from all
forgery types with clear margins. However, under P1.2, the live–fake decision boundary becomes no-
ticeably less distinct. We attribute this to FHFA biasing the model toward spectral cues that are weak
or absent for several attack types. Adversarial perturbations are designed to be imperceptible and sel-
dom yield strong high-frequency signatures, while structural signals, such as printed-photo or screen
borders and global quality variations, are predominantly low-frequency and global; consequently,
suppressing low frequencies can remove the very evidence needed to detect these attacks.

6 CONCLUSION

In this work, we introduced UAD-CMPT, a cross-modal prompt-tuning framework that addresses
categorical ambiguity and forgery diversity in unified face attack detection. By integrating SSA
for enriched semantic prompts and FHFA for robust spectral cues, UAD-CMPT effectively restores
vision–language alignment and establishes a shared discriminative space.
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REPRODUCIBILITY STATEMENT

We provide model details, training setup, and data preprocessing in the main text, and will release
anonymized source code with scripts for data downloading/preparation, training, and evaluation.
Exact configuration files, environment specifications, fixed random seeds, dataset splits, and metric
definitions are included to enable step-by-step replication. For SSA and FHFA we adopt stable
defaults: top-h = 10 and α = 0.25, while acknowledging that these hyperparameters materially
influence performance and are not universally optimal across benchmarks and protocols with different
forgery types and visual characteristics. To support both exact reproduction and adaptation, we
provide per-benchmark configuration files and short sweep scripts, and recommend limited retuning
within small ranges (e.g., top-h ∈ {5, 10, 15} and α ∈ {0.15, 0.25, 0.35}).
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