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Abstract

Seq2seq language generation models are
trained with multiple domains in a continue
learning manner, where data from each domain
being observed in an online fashion. However,
continual learning studies often suffer from
catastrophic forgetting, a persistent challenge
for lifelong learning. To handle this problem,
existing work has leveraged experience replay
or dynamic architecture to consolidate the past
knowledge, which however results in incremen-
tal memory space or high computational cost.

In this work, we propose an innovative frame-
work PNLLL that remedies catastrophic forget-
ting with a power normalization on NLP trans-
former models. Specifically, PNLLL leverages
power norm to achieve a better balance between
past experience rehearsal and new knowledge
acquisition. These designs enable the knowl-
edge transfer to new tasks while memorizing
the experience of past ones. Our experiments
on, paraphrase generation, show that PNLLL
outperforms SOTA models by a considerable
margin and remedy the forgetting greatly.

1 Introduction

Seq2seq language generation is the essential frame-
work for many tasks such as machine translation,
summarization, paraphrase, question answering,
dialog response generation. In these applications,
models are typically trained offline using annotated
data from a fixed set of domains. However, in real-
world applications, it is desirable for the system to
expand its knowledge to new domains and function-
alities, i.e., continuously inquiring new knowledges
without forgetting the previously learned skills,
which is called lifelong learning (LLL) (Ring et al.,
1994; Chaudhry et al., 2019).

Neural networks struggle to learn continuously
and experience catastrophic forgetting (CF) when
optimized on a sequence of learning problems (Mc-
Closkey and Cohen, 1989; French, 1999). Some
past works in LLL demonstrated that discriminative

models can be incrementally learnt for a sequence
of tasks (Chen et al., 2020; Kirkpatrick et al., 2017).
In contrast, under generative settings such as lan-
guage generation, there has been limited research.
Recent works in this area include Mi et al. (2020)
and Madotto et al. (2020).

Existing work in LLL adopts the replay based
methods (Pellegrini et al., 2019), such as Latent
Replay, or regularization based methods (Huszér,
2018), such as Elastic Weight Consolidation
(EWCQC) (Kirkpatrick et al., 2017). Although they
can rectify CF in several scenarios, they have some
limitations. The replay-based methods require stor-
ing samples from previous tasks, and regularization
methods often view all the model parameters as
equally important and regularize them to the same
extent. In addition, those approaches do not explic-
itly address the data distribution shift that causes
the CF problem. The semantic gap between the em-
bedding spaces of two domains is a leading reason
of CF (Wang et al., 2021b).

In this work, we propose a novel method, power
norm based lifelong learning (PNLLL) to allevi-
ate CF in continuous seq2seq language generation.
Essentially, power norm, proposed by Shen et al.
(2020) is a variant of layer norm (Ba et al., 2016) or
batch normalization (Ioffe, 2017). It is proposed to
overcome problems of batch normalization, where
large distances between batch statistics leads to
large fluctuations among batches and thus poor per-
formances in inferences and layer normalization,
where running statistics is calculated at batch level,
leading large number of outliers being weighted
long sentence. In contrast, power normalization
overcomes problems of both batch and layer nor-
malization by enforcing unit quadratic mean for
the activations and incorporating running statis-
tics for the quadratic mean of the signal in the
process of continual learning. Such designing and
incorporation strengthen the connection between
tasks, enable lifelong learning to improve general-
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Figure 1: Overview of PNLLL for LLL Seq2seq Language Generation. Figure best viewed in color.

ization performances, maintaining a better balance
between stability and plasticity.
In summary, our main contributions are:

* We design an innovative algorithm based on
power norm to store distributions of previous
tasks while training for the current task for
LLL seq2seq generation.

* Our experiments on seq2seq generation bench-
mark datasets show that our model achieves
SOTA in current task learning and reduces
forgetting rates for previous tasks.

2 Proposed Method

In this section, we introduce our proposed frame-
work power norm based lifelong learning (PNLLL).
In LLL scenario, models are trained for a sequence
of domains or tasks. The model of the first task
is trained using pretrained models. Starting from
the second model, the network is initialized with
parameters of its previous model.

2.1 System Architecture

As shown in Figure 1, input data of taskl with
source and target pairs are passed into transformer-
based encoder and decoder for training (BART is
the encoder and decoder in our context). Power nor-
malization is employed to get running statistics of
quadratic means rather than the usual batch means
and variances. They are updated with a new types
of back propagation for better estimate distributions
of each layer’s parameters. Trained models’ param-
eters are deployed as initialization of later models.

2.2 Power Normalization

Power normalization (PN), mentioned in Introduc-
tion, enforces unit quadratic mean for the activation
to avoid fluctuations brought by using batch nor-
malization in tasks involving small batches (seen of-
ten in NLP) (Shen et al., 2018). It has been proven

effective in both machine translation and language
modeling. In this work, we make revisions so as to
integrate it into our life-long learning framework.
Firstly, we still follow Shen et al. (2018) to en-
force quadratic mean for the activations rather than
enforce unit variance in order to overcome large
variations in the mean. In addition, we pass through
running statistics for the quadratic mean during
model initialization from past tasks to next ones to
facilitate knowledge transfer among related tasks.
The above modifications aim to seeking a robust
model training process against outlier and noise,
meanwhile maintaining stability in parameter up-
dating and consistency of two continuous models.

2.3 Replacing batch mean and variance with
unit quadratic mean

Technically, for both batch normalization and layer
normalization, in their forward inference, a batch
norm (BN) (Xie et al., 2020) layer is added to cal-
culate mean and variances batch by batch as fol-
lowing,
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where B refers to batch, x;, X and y;, Y refer
to input and output of BN, respectively. The BN
layer enforces zero mean and unit variance and
then performs an affine transformation by scaling
X with ~ and .

In the PN framework, the feature embedding is
scaled by quadratic means of the batch and the
operation of PN is formally defined as
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where 92 refers to quadratic mean. Compared with
BN, there are two modifications in PN: 1) the
means of the batch pp are removed from the nor-
malization operation; 2) the variance of the batch
op is replaced by the quadratic mean of batch ¥ p.
This is becaue enforcing zero-mean and variance in
BN may result in instability due to a large variation
of the mean in the NLP data (Shen et al., 2020).
Thus, PN performs more stable on the NLP tasks.

In our lifelong learning setting, we address the
catastrophic forgetting via balancing the learned pa-
rameters on previous tasks and new ones. Besides
updating running statistics within current tasks, we
update running statistics of model training based on
those of previous tasks as well. Formally, we pro-
pose an adaptive forward pass for passing through
running statistics in the sequential tasks,
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where ¢ refers to current task and ¢ — 1 refers to
previous task, a € (0,1) is a moving average co-
efficient. When o ~ 0, the equation reduces to
per-batch power normalization, while o ~ 1, the
PN on current tasks relies much on the previous
experiences. Similarly, since forward pass evolves
running statistics, the backward propagation can-
not be accurately computed. We resort to similar
strategies to do the gradient approximation in the
backward propagation as following,
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imation in Eq. (1) is proved to be bounded by a
constant (see Theorem 4 in Shen et al. (2020)),
which facilitates the robust training process.

. Note that the gradient approx-

3 Experiments on Paraphrase
Generations

We apply PNLLL to the paraphrase generation task.

3.1 Experimental Setups

For paraphrase generation, we use three existing
paraphrase datasets, Quora, Twitter and Wiki_data,
in a sequential fashion, that is, the model is first
trained on the Quora data, then Twitter, then
Wiki_data. We name this experimental setting as

Quora  Twitter Wiki_Data total
train 111,947 85,970 78,392 276,309
valid 8,000 1,000 8,154 17,154
test 37,316 3,000 9,324 49,640

Table 1: Dataset stats for QTW

QTW. Statistics of the data are provided in Table 1
and data details are put in appendix.

We use a current SOTA generation model, BART,
as the seq2seq backbone in our LLL framework,
as well as the other methods. We compare our ap-
proach with the following baselines.

* Finetune-BN: for each task, each model is
initialized with the model obtained until the
last task, and then fine-tuned with the data of
the current task where batch norm is utilized.

¢ Finetune-LN: for each task, each model is
initialized with the model obtained until the
last task, and then fine-tuned with the data of
the current task where batch norm is utilized

* Full: we train a model using all three datasets.

e EWC: the model is trained with the base
EWC model on the data from the current task
with the initialization of the previous model.

See Appendix for details on the implementation.
For evaluation metrics, we use Bleu4, RougeL. and
Meteor for the generation task. To measure the for-
getting rates of different methods, we apply models
trained using new data to past data.

3.2 Results

Evaluating on the Current Task

For QTW setting, Table 2 shows results for
models evaluated on the data for the current task.
The first three lines are results from independent
models, that is, the BART models are trained on
only one of datasets in QTW. As expected, mod-
els trained on the matched domain achieve higher
performance than otherwise. There is a large per-
formance drop when using models trained from
mismatched domains. This is mostly because of
the different writing styles of the three datasets.
Wiki is the most formal one, and Twitter is the
most informal one.

In the fourth and fifth row, the BART model
are trained in finetune-BN and finetune-LN mode
respectively in QTW order. The models are initial-
ized with that trained in the previous domains and



Quora Test Twitter Test Wiki Test
Models bleu4 rougel. meteor | bleud rougel meteor | bleud rougel. meteor
Quora-trained 30.11 5585 57.17 | 2.12 6.13 5.49 451 1121 12.13
Twitter-trained 3.18 11.46 9.01 | 3547 5749 5457 | 4.60 9.76 7.50
Wiki_data-trained | 22.38 4344 4623 | 932 1793 21.03 | 4212 7386 73.10
Finetune-BN 28.33  51.65 5234 | 3254 5225 5137 | 3934 69.78 71.01
Finetune-LN 30.11 55.85 57.17 | 35.79 5632 5493 | 4212 7386 73.10
EWC 30.25 56.16 5798 | 33,52 5441 5421 | 4215 7353 7359
PNLLLs 31.20 58.89 6033 | 3462 5817 56.17 | 43.98 74.69  73.65
Full 3399 59.56  61.67 | 38.56 58776  56.89 | 46.86 7659 75091

Table 2: Results of model evaluations on QTW setting

Quora test with Model trained with Twitter

Models bleu4 rougel. meteor
Quora-trained | 30.11  55.85 57.17
Finetune-BN | 12.54  43.27 43.54
Finetune-LN | 15.80  46.59 47.31
EWC 15.63 41.53 46.03
PNLLL 17.58 47.88  49.20

Quora test with Model trained with Wiki_data

Models bleu4 rougeL meteor
Quora-trained | 30.11  55.85 57.17
Finetune-BN | 15.21 48.53 52.34
Finetune-LN | 19.07 51.76 55.95
EWC 19.63  49.35 53.02
PNLLL 20.34  52.59 56.06

Twitter test with Model trained with Wiki_data

Models bleu4 rougel meteor
Twitter-based | 35.79  56.32 54.93
Finetune-BN | 11.98  33.87 42.92
Finetune-LN | 14.09 37.97 45.89
EWC 14.84  38.65 46.33
PNLLL 16.49 39.93 49.28

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

fine tuned using the subsequent domains. We can
see that results on only Twitter test data are slightly
lower than those when models are trained directly
on the corresponding training data. Again, this sug-
gests pretraining the model with mismatched data is
not beneficial. The results from the EWC baseline
are not consistently better than the finetune method,
showing the limited effectiveness of EWC regular-
ization. In contrast, our proposed approaches obtain
better results than Finetune. In particular, Finetune-
BN yields poorer results than both Finetune-LN
and PNLLL. Even for the first task, Quora, we ob-
serve around 1% better results for all three metrics.
This demonstrates that even for pretrained models,
regularization shows positive effect. For the later

tasks, PNLLL achieves 3-4% increase on twitter
and wiki data respectively. The last row is the re-
sults of Full. Since the model has seen all the data,
it is not surprising that results for both Twitter and
Wiki_data are better than our models, and it may
be partly due to similarity in Quora and Wiki data.

Evaluating on Previous Tasks

Table 3 shows the results when models trained
on new domains are evaluated on data from past do-
mains. Since we are using the order of QTW, results
are presented for evaluating on Quora and Twitter
data. For the Quora test set, we show results after
training with Twitter data, and then subsequently
Wiki_data. The first row of each sub-table is the
result of the BART model trained on the only cor-
responding data. The second row uses the baseline
fine tuning fashion.

Each of them yields better results than the fine-
tune or EWC baselines, with much less drop rates.
This shows each module can reduce forgetting rates.
In addition, after the model is trained on Wiki_data,
forgetting rates for Quora Test (the first dataset)
are even lower than the model trained on Twitter.
This again indicates Wiki_data and Quora are more
similar in style than Twitter.

4 Conclusion

In this work, we introduce PNLLL, a generic LLL
framework for addressing forgetting in seq2seq
language generation learning. Our experimental
results have shown that it outperformed SOTA in
paraphrase generation, a neural seq2seq language
generation task. Future work includes applying PN-
LLL to diverse generation tasks and generation
network structures. In addition, improvements of
domain shift estimation can be made with the in-
troduction of topic similarity. In order to make the
model more discriminative against domain differ-
ences, we may add contrastive learning loss func-



tion to our current label smoothing cross entropy
loss as in Gunel et al. (2020).
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5 Appendix
5.1 Datasets

* Quora-S: is the Quora question pair dataset con-
tains 140K parallel paraphrases. Quora-S is the
version used by supervised methods. We follow
the same setting in Li et al. (2018); Kazemnejad
et al. (2020) and randomly sample 100K, 30K,
3K parallel instances for training, test, and vali-
dation, respectively.

» Twitter: is the twitter URL paraphrasing corpus
built by Lan et al. (2017). Following the setting
in Li et al. (2018); Kazemnejad et al. (2020),
we sample 110K instances from automatically
labeled data as our training set and two non-
overlapping subsets of 5K and 1K instances from
the human-annotated data for the test and valida-
tion sets, respectively.

» Wiki_data: is a paraphrase corpus built by linked
wiki text2 !

5.2 Metrics Details

Throughout the paper, we use those evaluation met-
rics that have been widely used in the previous
work to measure the quality of the paraphrases.
In general, BLEU measures how much the words
(and/or n-grams) in the machine generated sum-
maries appeared in the human reference summaries.
Rouge measures how much the words (and/or n-
grams) in the human reference summaries appeared
in the machine generated summaries. Specifically,
we use the library? from HuggingFace to compute
BLEU scores and py-rouge> to compute ROUGE
scores. As BLEU and ROUGE could not measure
the diversity between the generated and the original
sentences, we follow unsupervised paraphrasing
methods and adopt meteor to measure the diver-
sity of expression in the generated paraphrases by
penalizing copying words from input sentences.

5.3 Implementation Details

Implementation of PNLLL. The proposed model
PNLLL is trained by distributed training across 8,

"https://metamind.readme.io/research/the-wikitext-long-
term-dependency-language-modeling-dataset/

“https://huggingface.co/metrics/sacrebleu

3https://pypi.org/project/py-rouge/
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Figure 2: Illustration of Domain Shift: (a) Data with three relevant topic/cluster in the embedding space after model
trained on task 1. (b) Data with previous topics in the embedding space after the model trained on task 2, the arrow

indicates the domain shift between two tasks.

32GB NVIDIA V100 GPUs and inference can be
run on one GPU. and tested on eight 32 GB Tesla
V100 GPUs. The batch size is set to be 32 for all
the datasets. We use the BART from fairseq (Lewis
et al., 2019; Tang et al., 2021; Wang et al., 2021a)
to build our lifelong learning pipeline, with 12-
layer transformer blocks, 1024-dimension hidden
state, 12 attention heads and total 110M parameters.
We use the pre-trained BART-Large. For training
stage, we use Adam (Kingma and Ba, 2014) for
fine-tuning with 8 as 0.9, 8 as 0.999. The max
sequence length of BERT input is set to 64.

We grid search for the learning rate in {0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}, L2 regular-
ization in {1076, 1075, 1074, 103, 1072, 10~!}
and the dropout rate in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7}. The optimal values are selected when the
model achieves the highest accuracy for the valida-
tion samples.

Packages Used for Implementation. The rel-
evant packages that we use in the imple-
mentation and their corresponding versions
are as following: python==3.6.6, fairseq==1.0,
torch==1.4.0, cuda==10.2, tensorboard==1.10.0,
numpy==1.14.5, scipy==1.1.0, NLTK==3.4.5 and
scikit-learn==0.21.3.

5.4 Related Work

5.4.1 life-long Learning (LLL)

life-long learning has been studied from a few per-
spectives, including data buffering, regularization
and prototype keeping. Replay based methods can
be used in data buffering or prototype keeping.
It usually keeps a small amount of real samples
from old tasks or distills the knowledge from old

data and recreates pseduo-data of old tasks for later
training. Using these sampled data or pseudo data
can prevent weights from deviating from previous
status (Rolnick et al., 2019; Wang et al., 2020;
Lopez-Paz and Ranzato, 2017). The main idea
of this approach is to assign a dedicated capac-
ity inside a model for each task. After a task is
completed, the weights are frozen as one proto-
type (Wang et al., 2021b; d’ Autume et al., 2019).
Both data buffering and prototype keeping need
storage of either data samples or model weights,
i.e., they require extra memory to memorize impor-
tant information of previous tasks. Another LLL
method is regularization based, which adds a regu-
larization term to weights when learning them for
a new task in order to minimize deviation from
previously trained weights. Most regularization
based methods estimate the importance of each
parameter and add them as a constraint to the loss
function. Different algorithms have been designed
to achieve this goal. For example, elastic weight
consolidation (EWC) calculates a Fisher informa-
tion matrix to estimate the sensitivity of param-
eters (Kirkpatrick et al., 2017); memory aware
synapses (MAS) (Aljundi et al., 2018) uses the
gradients of the model outputs; and episodic mem-
ory or gradient episodic memory (GEM) (Li et al.,
2017; Lopez-Paz and Ranzato, 2017) allows posi-
tive backward transfer and prevents the loss on past
tasks from increasing. These methods all attempt
to slow down the learning of parameters that are
important for previous tasks.



5.5 LLL in Seq2seq Language Generation

In Seq2seq language generation, not much work
has been done in LLL. The most relevant work
is from Mi et al. (2020) where a framework of
sequential learning is designed for task-oriented
dialogues. Specifically, they replay prioritized ex-
emplars together with an adaptive regularization
technique based on EWC. They store representa-
tive utterances from previous data (exemplars), and
replay them to the Seq2seq language generation
model each time it needs to be trained on new data.
They achieved good results on the MultiWoZ-2.0
dataset. Nonetheless, their work requires to store
data from previous tasks, which leads to poor scal-
ability on large-scale datasets. In addition, their
system is specifically designed for the MultiWoz
task and lacks generalization to other tasks. In con-
trast, our proposed PNLLL method aims to fit dif-
ferent seq2seq language generation applications,
therefore it is easy to be integrated to tasks such
as summarization, translation, paraphrases, dialog
response generation.

5.5.1 Illustrations of Semantic Drift

As illustrated in Figure 2, each data point and their
cluster centers trained in Task 1 are shifted after
training for Task 2. Yu et al. (2020) proposed to
compensate this gap without using any exemplars
via domain shift. Nonetheless, these studies mainly
focused on classification tasks, which limited their
application on language generation model.

5.6 More Experiments with Domain Order
Permutation

* Datasets composed of Quora, Twitter and
Wiki_data:
Besides QTW setting, we also had run other two
combinations including TQW and QWT setting.
The results are basically consistent with QTW
setting and can reach similar conclusion. The
detail results are in Table 4 and Table 5.

5.7 Case Studies

In Table 6, we show some generated samples from
QTW setting using the baseline Finetune-LN model
and our PNLLL model. All examples are results
generated by model; on data;—1. Among the five
examples, the first one is from Quora, the last one
from Wik _data and the other two from Twitter.
The reason that we select more samples from Twit-
ter is that we find Twitter is the most informal in

style with quite many fragments. Hence, it is the
hardest for the generation task and has lowest met-
rics and lower forgetting reduction rates. In the
four samples, the italicised parts are the key words.
From the table, we can observe that compared to
Finetune-LN, PNLLL has better performances on
all of the three datasets. The Finetune-LN model
misses quite many key words while PNLLL catches
most of them. In contrast PNLLL succeeds in all
cases without forgetting the previously learned pat-
terns.



Twitter Test Quora Test Wiki Test
Finetune-BN | 32.25 53.54 49.63 | 29.33 51.34 5243 | 41.23 69.73 71.54
Finetune-LN | 35.75 54.53 53.37 | 30.24 53.48 54.39 | 43.37 72773 7343
EWC 34.68 56.16 54.98 | 29.86 54.41 54.21 | 42.15 73.53 73.59
PNLLL 3695 58.87 56.24 | 31.83 5745 60.78 | 44.24 73.64 74.13
Full 38.56 58.76 56.89 | 33.99 59.56 61.67 | 46.86 76.59 7591
Table 4: Results of model evaluations on TQW setting
Quora Test Wiki Test Twitter Test
Finetune-BN | 28.33 51.65 52.34 | 3995 71.53 68.23 | 31.24 51.83 51.13
Finetune-LN | 30.11 55.85 57.17 | 4279 73.92 71.39 | 32.92 53.69 53.02
EWC 30.25 56.16 57.98 | 4322 74.04 70.22 | 33.53 53.49 5299
PNLLLs 31.20 58.89 60.33 | 45.64 75.72 72.54 | 35.73 5547 54.31
Full 33.99 59.56 61.67 | 46.86 76.59 7591 | 38.56 58.76 56.89
Table 5: Results of model evaluations on QWT setting
SOURCE Finetune-LN PNLLL TARGET

Why is German Shepherd/Great
Pyrenees mix coveted

Why is German Shepherd/Great
Pyrenees mix coveted

Why is German Shepherd/Great
Pyrenees mix coveted

Why is German Shepherd/Great

Pyrenees mix coveted

What is the biggest
in
your life to date
if you look back once now

if you look back once now

What is the biggest

in

your life to date

What is your

death toll in 6.5 -
magnitude earthquake in
indonesia’s

increase to at least 52

a 6.5 earthquake in kills
at least 26 people @cnn

death toll in 6.5 -
magnitude earthquake

in

increase to at least 52

powerfull quake kills dozens
at least 25 people were
killed in an earthquake

that struck indonesia’s aceh province

pipeline 150 miles from
dakota access protests
gallons of oil

the new york times pipeline
150 miles from dakota
access pipeline .

pipeline 150 miles from dakota
gallons of oil

access

of oil, or gallons, have
leaked from the pipeline

Table 6: Examples of the generated paraphrases by BART and PNLLL on QTW data setting.




