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Abstract
Seq2seq language generation models are001
trained with multiple domains in a continue002
learning manner, where data from each domain003
being observed in an online fashion. However,004
continual learning studies often suffer from005
catastrophic forgetting, a persistent challenge006
for lifelong learning. To handle this problem,007
existing work has leveraged experience replay008
or dynamic architecture to consolidate the past009
knowledge, which however results in incremen-010
tal memory space or high computational cost.011

In this work, we propose an innovative frame-012
work PNLLL that remedies catastrophic forget-013
ting with a power normalization on NLP trans-014
former models. Specifically, PNLLL leverages015
power norm to achieve a better balance between016
past experience rehearsal and new knowledge017
acquisition. These designs enable the knowl-018
edge transfer to new tasks while memorizing019
the experience of past ones. Our experiments020
on, paraphrase generation, show that PNLLL021
outperforms SOTA models by a considerable022
margin and remedy the forgetting greatly.023

1 Introduction024

Seq2seq language generation is the essential frame-025

work for many tasks such as machine translation,026

summarization, paraphrase, question answering,027

dialog response generation. In these applications,028

models are typically trained offline using annotated029

data from a fixed set of domains. However, in real-030

world applications, it is desirable for the system to031

expand its knowledge to new domains and function-032

alities, i.e., continuously inquiring new knowledges033

without forgetting the previously learned skills,034

which is called lifelong learning (LLL) (Ring et al.,035

1994; Chaudhry et al., 2019).036

Neural networks struggle to learn continuously037

and experience catastrophic forgetting (CF) when038

optimized on a sequence of learning problems (Mc-039

Closkey and Cohen, 1989; French, 1999). Some040

past works in LLL demonstrated that discriminative041

models can be incrementally learnt for a sequence 042

of tasks (Chen et al., 2020; Kirkpatrick et al., 2017). 043

In contrast, under generative settings such as lan- 044

guage generation, there has been limited research. 045

Recent works in this area include Mi et al. (2020) 046

and Madotto et al. (2020). 047

Existing work in LLL adopts the replay based 048

methods (Pellegrini et al., 2019), such as Latent 049

Replay, or regularization based methods (Huszár, 050

2018), such as Elastic Weight Consolidation 051

(EWC) (Kirkpatrick et al., 2017). Although they 052

can rectify CF in several scenarios, they have some 053

limitations. The replay-based methods require stor- 054

ing samples from previous tasks, and regularization 055

methods often view all the model parameters as 056

equally important and regularize them to the same 057

extent. In addition, those approaches do not explic- 058

itly address the data distribution shift that causes 059

the CF problem. The semantic gap between the em- 060

bedding spaces of two domains is a leading reason 061

of CF (Wang et al., 2021b). 062

In this work, we propose a novel method, power 063

norm based lifelong learning (PNLLL) to allevi- 064

ate CF in continuous seq2seq language generation. 065

Essentially, power norm, proposed by Shen et al. 066

(2020) is a variant of layer norm (Ba et al., 2016) or 067

batch normalization (Ioffe, 2017). It is proposed to 068

overcome problems of batch normalization, where 069

large distances between batch statistics leads to 070

large fluctuations among batches and thus poor per- 071

formances in inferences and layer normalization, 072

where running statistics is calculated at batch level, 073

leading large number of outliers being weighted 074

long sentence. In contrast, power normalization 075

overcomes problems of both batch and layer nor- 076

malization by enforcing unit quadratic mean for 077

the activations and incorporating running statis- 078

tics for the quadratic mean of the signal in the 079

process of continual learning. Such designing and 080

incorporation strengthen the connection between 081

tasks, enable lifelong learning to improve general- 082
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Figure 1: Overview of PNLLL for LLL Seq2seq Language Generation. Figure best viewed in color.

ization performances, maintaining a better balance083

between stability and plasticity.084

In summary, our main contributions are:085

• We design an innovative algorithm based on086

power norm to store distributions of previous087

tasks while training for the current task for088

LLL seq2seq generation.089

• Our experiments on seq2seq generation bench-090

mark datasets show that our model achieves091

SOTA in current task learning and reduces092

forgetting rates for previous tasks.093

2 Proposed Method094

In this section, we introduce our proposed frame-095

work power norm based lifelong learning (PNLLL).096

In LLL scenario, models are trained for a sequence097

of domains or tasks. The model of the first task098

is trained using pretrained models. Starting from099

the second model, the network is initialized with100

parameters of its previous model.101

2.1 System Architecture102

As shown in Figure 1, input data of task1 with103

source and target pairs are passed into transformer-104

based encoder and decoder for training (BART is105

the encoder and decoder in our context). Power nor-106

malization is employed to get running statistics of107

quadratic means rather than the usual batch means108

and variances. They are updated with a new types109

of back propagation for better estimate distributions110

of each layer’s parameters. Trained models’ param-111

eters are deployed as initialization of later models.112

2.2 Power Normalization113

Power normalization (PN), mentioned in Introduc-114

tion, enforces unit quadratic mean for the activation115

to avoid fluctuations brought by using batch nor-116

malization in tasks involving small batches (seen of-117

ten in NLP) (Shen et al., 2018). It has been proven118

effective in both machine translation and language 119

modeling. In this work, we make revisions so as to 120

integrate it into our life-long learning framework. 121

Firstly, we still follow Shen et al. (2018) to en- 122

force quadratic mean for the activations rather than 123

enforce unit variance in order to overcome large 124

variations in the mean. In addition, we pass through 125

running statistics for the quadratic mean during 126

model initialization from past tasks to next ones to 127

facilitate knowledge transfer among related tasks. 128

The above modifications aim to seeking a robust 129

model training process against outlier and noise, 130

meanwhile maintaining stability in parameter up- 131

dating and consistency of two continuous models. 132

2.3 Replacing batch mean and variance with 133

unit quadratic mean 134

Technically, for both batch normalization and layer 135

normalization, in their forward inference, a batch 136

norm (BN) (Xie et al., 2020) layer is added to cal- 137

culate mean and variances batch by batch as fol- 138

lowing, 139

X̂ =
X− µB
σB

, Y = γ ⊙ X̂+ β 140

s.t. µB =
1

B

B∑
i=1

xi, σ2B =
1

B

B∑
i=1

(xi − µB)
2 141

where B refers to batch, xi, X and yi, Y refer 142

to input and output of BN, respectively. The BN 143

layer enforces zero mean and unit variance and 144

then performs an affine transformation by scaling 145

X̂ with γ and β. 146

In the PN framework, the feature embedding is 147

scaled by quadratic means of the batch and the 148

operation of PN is formally defined as 149

X̂ =
X
ψB

, Y = γ ⊙ X̂+ β, s.t. ψ2
B =

1

B

B∑
i=1

x2i 150
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where ψ2 refers to quadratic mean. Compared with151

BN, there are two modifications in PN: 1) the152

means of the batch µB are removed from the nor-153

malization operation; 2) the variance of the batch154

σB is replaced by the quadratic mean of batch ψB .155

This is becaue enforcing zero-mean and variance in156

BN may result in instability due to a large variation157

of the mean in the NLP data (Shen et al., 2020).158

Thus, PN performs more stable on the NLP tasks.159

In our lifelong learning setting, we address the160

catastrophic forgetting via balancing the learned pa-161

rameters on previous tasks and new ones. Besides162

updating running statistics within current tasks, we163

update running statistics of model training based on164

those of previous tasks as well. Formally, we pro-165

pose an adaptive forward pass for passing through166

running statistics in the sequential tasks,167

X̂ =
X

ψ(t−1)
Y(t) = γ ⊙ X̂(t) + β168

s.t. (ψ(t))2 = (ψ(t−1))2 + (1− α)(ψ2
B − (ψ(t−1))2)169

where t refers to current task and t − 1 refers to170

previous task, α ∈ (0, 1) is a moving average co-171

efficient. When α ≈ 0, the equation reduces to172

per-batch power normalization, while α ≈ 1, the173

PN on current tasks relies much on the previous174

experiences. Similarly, since forward pass evolves175

running statistics, the backward propagation can-176

not be accurately computed. We resort to similar177

strategies to do the gradient approximation in the178

backward propagation as following,179

ν = νt−1(1− (1− α)Γt) + (1− α)Λ(t) (1)180

where Γt = 1
B

∑B
i=1 x̂

(t)
i x̂

(t)
i and Λt =181

1
B

∑B
i=1

∂L
∂x̂

(t)
i

x̂
(t)
i . Note that the gradient approx-182

imation in Eq. (1) is proved to be bounded by a183

constant (see Theorem 4 in Shen et al. (2020)),184

which facilitates the robust training process.185

3 Experiments on Paraphrase186

Generations187

We apply PNLLL to the paraphrase generation task.188

3.1 Experimental Setups189

For paraphrase generation, we use three existing190

paraphrase datasets, Quora, Twitter and Wiki_data,191

in a sequential fashion, that is, the model is first192

trained on the Quora data, then Twitter, then193

Wiki_data. We name this experimental setting as194

Quora Twitter Wiki_Data total
train 111,947 85,970 78,392 276,309
valid 8,000 1,000 8,154 17,154
test 37,316 3,000 9,324 49,640

Table 1: Dataset stats for QTW

QTW. Statistics of the data are provided in Table 1 195

and data details are put in appendix. 196

We use a current SOTA generation model, BART, 197

as the seq2seq backbone in our LLL framework, 198

as well as the other methods. We compare our ap- 199

proach with the following baselines. 200

• Finetune-BN: for each task, each model is 201

initialized with the model obtained until the 202

last task, and then fine-tuned with the data of 203

the current task where batch norm is utilized. 204

• Finetune-LN: for each task, each model is 205

initialized with the model obtained until the 206

last task, and then fine-tuned with the data of 207

the current task where batch norm is utilized 208

• Full: we train a model using all three datasets. 209

• EWC: the model is trained with the base 210

EWC model on the data from the current task 211

with the initialization of the previous model. 212

See Appendix for details on the implementation. 213

For evaluation metrics, we use Bleu4, RougeL and 214

Meteor for the generation task. To measure the for- 215

getting rates of different methods, we apply models 216

trained using new data to past data. 217

3.2 Results 218

Evaluating on the Current Task 219

For QTW setting, Table 2 shows results for 220

models evaluated on the data for the current task. 221

The first three lines are results from independent 222

models, that is, the BART models are trained on 223

only one of datasets in QTW. As expected, mod- 224

els trained on the matched domain achieve higher 225

performance than otherwise. There is a large per- 226

formance drop when using models trained from 227

mismatched domains. This is mostly because of 228

the different writing styles of the three datasets. 229

Wiki is the most formal one, and Twitter is the 230

most informal one. 231

In the fourth and fifth row, the BART model 232

are trained in finetune-BN and finetune-LN mode 233

respectively in QTW order. The models are initial- 234

ized with that trained in the previous domains and 235
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Quora Test Twitter Test Wiki Test
Models bleu4 rougeL meteor bleu4 rougeL meteor bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 35.47 57.49 54.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 42.12 73.86 73.10
Finetune-BN 28.33 51.65 52.34 32.54 52.25 51.37 39.34 69.78 71.01
Finetune-LN 30.11 55.85 57.17 35.79 56.32 54.93 42.12 73.86 73.10
EWC 30.25 56.16 57.98 33.52 54.41 54.21 42.15 73.53 73.59
PNLLLs 31.20 58.89 60.33 34.62 58.17 56.17 43.98 74.69 73.65
Full 33.99 59.56 61.67 38.56 58.76 56.89 46.86 76.59 75.91

Table 2: Results of model evaluations on QTW setting

Quora test with Model trained with Twitter
Models bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune-BN 12.54 43.27 43.54
Finetune-LN 15.80 46.59 47.31
EWC 15.63 41.53 46.03
PNLLL 17.58 47.88 49.20

Quora test with Model trained with Wiki_data
Models bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune-BN 15.21 48.53 52.34
Finetune-LN 19.07 51.76 55.95
EWC 19.63 49.35 53.02
PNLLL 20.34 52.59 56.06

Twitter test with Model trained with Wiki_data
Models bleu4 rougeL meteor
Twitter-based 35.79 56.32 54.93
Finetune-BN 11.98 33.87 42.92
Finetune-LN 14.09 37.97 45.89
EWC 14.84 38.65 46.33
PNLLL 16.49 39.93 49.28

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

fine tuned using the subsequent domains. We can236

see that results on only Twitter test data are slightly237

lower than those when models are trained directly238

on the corresponding training data. Again, this sug-239

gests pretraining the model with mismatched data is240

not beneficial. The results from the EWC baseline241

are not consistently better than the finetune method,242

showing the limited effectiveness of EWC regular-243

ization. In contrast, our proposed approaches obtain244

better results than Finetune. In particular, Finetune-245

BN yields poorer results than both Finetune-LN246

and PNLLL. Even for the first task, Quora, we ob-247

serve around 1% better results for all three metrics.248

This demonstrates that even for pretrained models,249

regularization shows positive effect. For the later250

tasks, PNLLL achieves 3-4% increase on twitter 251

and wiki data respectively. The last row is the re- 252

sults of Full. Since the model has seen all the data, 253

it is not surprising that results for both Twitter and 254

Wiki_data are better than our models, and it may 255

be partly due to similarity in Quora and Wiki data. 256

Evaluating on Previous Tasks 257

Table 3 shows the results when models trained 258

on new domains are evaluated on data from past do- 259

mains. Since we are using the order of QTW, results 260

are presented for evaluating on Quora and Twitter 261

data. For the Quora test set, we show results after 262

training with Twitter data, and then subsequently 263

Wiki_data. The first row of each sub-table is the 264

result of the BART model trained on the only cor- 265

responding data. The second row uses the baseline 266

fine tuning fashion. 267

Each of them yields better results than the fine- 268

tune or EWC baselines, with much less drop rates. 269

This shows each module can reduce forgetting rates. 270

In addition, after the model is trained on Wiki_data, 271

forgetting rates for Quora Test (the first dataset) 272

are even lower than the model trained on Twitter. 273

This again indicates Wiki_data and Quora are more 274

similar in style than Twitter. 275

4 Conclusion 276

In this work, we introduce PNLLL, a generic LLL 277

framework for addressing forgetting in seq2seq 278

language generation learning. Our experimental 279

results have shown that it outperformed SOTA in 280

paraphrase generation, a neural seq2seq language 281

generation task. Future work includes applying PN- 282

LLL to diverse generation tasks and generation 283

network structures. In addition, improvements of 284

domain shift estimation can be made with the in- 285

troduction of topic similarity. In order to make the 286

model more discriminative against domain differ- 287

ences, we may add contrastive learning loss func- 288
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tion to our current label smoothing cross entropy289

loss as in Gunel et al. (2020).290
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5 Appendix 458

5.1 Datasets 459

• Quora-S: is the Quora question pair dataset con- 460

tains 140K parallel paraphrases. Quora-S is the 461

version used by supervised methods. We follow 462

the same setting in Li et al. (2018); Kazemnejad 463

et al. (2020) and randomly sample 100K, 30K, 464

3K parallel instances for training, test, and vali- 465

dation, respectively. 466

• Twitter: is the twitter URL paraphrasing corpus 467

built by Lan et al. (2017). Following the setting 468

in Li et al. (2018); Kazemnejad et al. (2020), 469

we sample 110K instances from automatically 470

labeled data as our training set and two non- 471

overlapping subsets of 5K and 1K instances from 472

the human-annotated data for the test and valida- 473

tion sets, respectively. 474

• Wiki_data: is a paraphrase corpus built by linked 475

wiki text2 1 476

5.2 Metrics Details 477

Throughout the paper, we use those evaluation met- 478

rics that have been widely used in the previous 479

work to measure the quality of the paraphrases. 480

In general, BLEU measures how much the words 481

(and/or n-grams) in the machine generated sum- 482

maries appeared in the human reference summaries. 483

Rouge measures how much the words (and/or n- 484

grams) in the human reference summaries appeared 485

in the machine generated summaries. Specifically, 486

we use the library2 from HuggingFace to compute 487

BLEU scores and py-rouge3 to compute ROUGE 488

scores. As BLEU and ROUGE could not measure 489

the diversity between the generated and the original 490

sentences, we follow unsupervised paraphrasing 491

methods and adopt meteor to measure the diver- 492

sity of expression in the generated paraphrases by 493

penalizing copying words from input sentences. 494

5.3 Implementation Details 495

Implementation of PNLLL. The proposed model 496

PNLLL is trained by distributed training across 8, 497

1https://metamind.readme.io/research/the-wikitext-long-
term-dependency-language-modeling-dataset/

2https://huggingface.co/metrics/sacrebleu
3https://pypi.org/project/py-rouge/
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Figure 2: Illustration of Domain Shift: (a) Data with three relevant topic/cluster in the embedding space after model
trained on task 1. (b) Data with previous topics in the embedding space after the model trained on task 2, the arrow
indicates the domain shift between two tasks.

32GB NVIDIA V100 GPUs and inference can be498

run on one GPU. and tested on eight 32 GB Tesla499

V100 GPUs. The batch size is set to be 32 for all500

the datasets. We use the BART from fairseq (Lewis501

et al., 2019; Tang et al., 2021; Wang et al., 2021a)502

to build our lifelong learning pipeline, with 12-503

layer transformer blocks, 1024-dimension hidden504

state, 12 attention heads and total 110M parameters.505

We use the pre-trained BART-Large. For training506

stage, we use Adam (Kingma and Ba, 2014) for507

fine-tuning with β as 0.9, β as 0.999. The max508

sequence length of BERT input is set to 64.509

We grid search for the learning rate in {0.0001,510

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}, L2 regular-511

ization in {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}512

and the dropout rate in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,513

0.7}. The optimal values are selected when the514

model achieves the highest accuracy for the valida-515

tion samples.516

Packages Used for Implementation. The rel-517

evant packages that we use in the imple-518

mentation and their corresponding versions519

are as following: python==3.6.6, fairseq==1.0,520

torch==1.4.0, cuda==10.2, tensorboard==1.10.0,521

numpy==1.14.5, scipy==1.1.0, NLTK==3.4.5 and522

scikit-learn==0.21.3.523

5.4 Related Work524

5.4.1 life-long Learning (LLL)525

life-long learning has been studied from a few per-526

spectives, including data buffering, regularization527

and prototype keeping. Replay based methods can528

be used in data buffering or prototype keeping.529

It usually keeps a small amount of real samples530

from old tasks or distills the knowledge from old531

data and recreates pseduo-data of old tasks for later 532

training. Using these sampled data or pseudo data 533

can prevent weights from deviating from previous 534

status (Rolnick et al., 2019; Wang et al., 2020; 535

Lopez-Paz and Ranzato, 2017). The main idea 536

of this approach is to assign a dedicated capac- 537

ity inside a model for each task. After a task is 538

completed, the weights are frozen as one proto- 539

type (Wang et al., 2021b; d’Autume et al., 2019). 540

Both data buffering and prototype keeping need 541

storage of either data samples or model weights, 542

i.e., they require extra memory to memorize impor- 543

tant information of previous tasks. Another LLL 544

method is regularization based, which adds a regu- 545

larization term to weights when learning them for 546

a new task in order to minimize deviation from 547

previously trained weights. Most regularization 548

based methods estimate the importance of each 549

parameter and add them as a constraint to the loss 550

function. Different algorithms have been designed 551

to achieve this goal. For example, elastic weight 552

consolidation (EWC) calculates a Fisher informa- 553

tion matrix to estimate the sensitivity of param- 554

eters (Kirkpatrick et al., 2017); memory aware 555

synapses (MAS) (Aljundi et al., 2018) uses the 556

gradients of the model outputs; and episodic mem- 557

ory or gradient episodic memory (GEM) (Li et al., 558

2017; Lopez-Paz and Ranzato, 2017) allows posi- 559

tive backward transfer and prevents the loss on past 560

tasks from increasing. These methods all attempt 561

to slow down the learning of parameters that are 562

important for previous tasks. 563
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5.5 LLL in Seq2seq Language Generation564

In Seq2seq language generation, not much work565

has been done in LLL. The most relevant work566

is from Mi et al. (2020) where a framework of567

sequential learning is designed for task-oriented568

dialogues. Specifically, they replay prioritized ex-569

emplars together with an adaptive regularization570

technique based on EWC. They store representa-571

tive utterances from previous data (exemplars), and572

replay them to the Seq2seq language generation573

model each time it needs to be trained on new data.574

They achieved good results on the MultiWoZ-2.0575

dataset. Nonetheless, their work requires to store576

data from previous tasks, which leads to poor scal-577

ability on large-scale datasets. In addition, their578

system is specifically designed for the MultiWoz579

task and lacks generalization to other tasks. In con-580

trast, our proposed PNLLL method aims to fit dif-581

ferent seq2seq language generation applications,582

therefore it is easy to be integrated to tasks such583

as summarization, translation, paraphrases, dialog584

response generation.585

5.5.1 Illustrations of Semantic Drift586

As illustrated in Figure 2, each data point and their587

cluster centers trained in Task 1 are shifted after588

training for Task 2. Yu et al. (2020) proposed to589

compensate this gap without using any exemplars590

via domain shift. Nonetheless, these studies mainly591

focused on classification tasks, which limited their592

application on language generation model.593

5.6 More Experiments with Domain Order594

Permutation595

• Datasets composed of Quora, Twitter and596

Wiki_data:597

Besides QTW setting, we also had run other two598

combinations including TQW and QWT setting.599

The results are basically consistent with QTW600

setting and can reach similar conclusion. The601

detail results are in Table 4 and Table 5.602

5.7 Case Studies603

In Table 6, we show some generated samples from604

QTW setting using the baseline Finetune-LN model605

and our PNLLL model. All examples are results606

generated by modelt on datat−1. Among the five607

examples, the first one is from Quora, the last one608

from Wik_data and the other two from Twitter.609

The reason that we select more samples from Twit-610

ter is that we find Twitter is the most informal in611

style with quite many fragments. Hence, it is the 612

hardest for the generation task and has lowest met- 613

rics and lower forgetting reduction rates. In the 614

four samples, the italicised parts are the key words. 615

From the table, we can observe that compared to 616

Finetune-LN, PNLLL has better performances on 617

all of the three datasets. The Finetune-LN model 618

misses quite many key words while PNLLL catches 619

most of them. In contrast PNLLL succeeds in all 620

cases without forgetting the previously learned pat- 621

terns. 622

8



Twitter Test Quora Test Wiki Test
Finetune-BN 32.25 53.54 49.63 29.33 51.34 52.43 41.23 69.73 71.54
Finetune-LN 35.75 54.53 53.37 30.24 53.48 54.39 43.37 72.73 73.43
EWC 34.68 56.16 54.98 29.86 54.41 54.21 42.15 73.53 73.59
PNLLL 36.95 58.87 56.24 31.83 57.45 60.78 44.24 73.64 74.13
Full 38.56 58.76 56.89 33.99 59.56 61.67 46.86 76.59 75.91

Table 4: Results of model evaluations on TQW setting

Quora Test Wiki Test Twitter Test
Finetune-BN 28.33 51.65 52.34 39.95 71.53 68.23 31.24 51.83 51.13
Finetune-LN 30.11 55.85 57.17 42.79 73.92 71.39 32.92 53.69 53.02
EWC 30.25 56.16 57.98 43.22 74.04 70.22 33.53 53.49 52.99
PNLLLs 31.20 58.89 60.33 45.64 75.72 72.54 35.73 55.47 54.31
Full 33.99 59.56 61.67 46.86 76.59 75.91 38.56 58.76 56.89

Table 5: Results of model evaluations on QWT setting

SOURCE Finetune-LN PNLLL TARGET

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
from browns?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

What is the biggest
turning point in
your life to date
if you look back once now

if you look back once now
What is the biggest
turning point in
your life to date

What is your turning point

death toll in 6.5 -
magnitude earthquake in
indonesia’s aceh province
increase to at least 52

a 6.5 earthquake in kills
at least 26 people @cnn

death toll in 6.5 -
magnitude earthquake
in aceh province increase to at least 52

powerfull quake kills dozens
at least 25 people were
killed in an earthquake
that struck indonesia’s aceh province

pipeline 150 miles from
dakota access protests
leaks gallons of oil

the new york times pipeline
150 miles from dakota
access pipeline .

pipeline 150 miles from dakota
access leaks gallons of oil

of oil, or gallons, have
leaked from the pipeline

Table 6: Examples of the generated paraphrases by BART and PNLLL on QTW data setting.
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