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Abstract

While recent work on multilingual language
models has demonstrated their capacity for
cross-lingual zero-shot transfer, there is a lack
of consensus in the community as to what
shared properties between languages enable
transfer on downstream tasks. Analyses in-
volving pairs of natural languages are often in-
conclusive and contradictory since languages
simultaneously differ in many linguistic as-
pects. In this paper, we perform a large-scale
empirical study to isolate the effects of var-
ious linguistic properties by measuring zero-
shot transfer between four diverse natural lan-
guages and their counterparts constructed by
modifying aspects such as the script, word or-
der, and syntax. Among other things, our ex-
periments show that the absence of sub-word
overlap significantly affects zero-shot transfer
when languages differ in their word order, and
there is a strong correlation between transfer
performance and word embedding alignment
between languages (e.g., ρs = 0.94 on the task
of NLI). Our results call for focus in multilin-
gual models on explicitly improving word em-
bedding alignment between languages rather
than relying on its implicit emergence.1

1 Introduction

Multilingual language models like XLM (Con-
neau et al., 2020a) and Multilingual-BERT (Devlin,
2019) are trained with masked-language modeling
(MLM) objective on a combination of raw text from
multiple languages. Surprisingly, these models ex-
hibit decent cross-lingual zero-shot transfer, where
fine-tuning on a task in a source language trans-
lates to good performance for a different language
(target).

Requirements for zero-shot transfer Recent
studies have provided inconsistent explanations for
properties required for zero-shot transfer (hereon,

1Code is available at https://github.com/
princeton-nlp/MultilingualAnalysis

transfer). For example, while Wu and Dredze
(2019) conclude that sub-word overlap is vital for
transfer, K et al. (2020) demonstrate that it is not
crucial, although they consider only English as the
source language. While Pires et al. (2019) suggest
that typological similarity (e.g., similar SVO or-
der) is essential for transfer, other works (Kakwani
et al., 2020; Conneau et al., 2020a) successfully
build multilingual models for dissimilar languages.

Need for systematic analysis A major cause of
these discrepancies is a large number of varying
properties (e.g., syntax, script, and vocabulary size)
between languages, which make isolating crucial
ingredients for transfer difficult. Some studies al-
leviate this issue by creating synthetic languages
which differ from natural ones only in specific lin-
guistic properties like script (K et al., 2020; Dufter
and Schütze, 2020). However, their focus is only
on English as a source language, and the scale of
their experiments is small (in number of tasks or
pre-training corpora size), thus limiting the scope
of their findings to their settings alone.

Our approach We perform a systematic study of
cross-lingual transfer on bilingual language mod-
els trained on a natural language and a systemati-
cally derived counterpart. We choose four diverse
natural languages (English, French, Arabic, and
Hindi) and create derived variants using four differ-
ent transformations on structural properties such as
inverting or permuting word order, altering scripts,
or varying syntax (Section 3.2). We train mod-
els on each of the resulting sixteen language pairs,
and evaluate zero-shot transfer on four downstream
tasks – natural language inference (NLI), named-
entity recognition (NER), part-of-speech tagging
(POS), and question-answering (QA).

Our experiments reveal the following:

1. Contrary to previous belief, the absence of sub-
word overlap degrades transfer when languages

https://github.com/princeton-nlp/MultilingualAnalysis
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differ in their word order (e.g., by more than 40
F1 points on POS tagging, (§ 4.1)).

2. There is a strong correlation between token em-
bedding alignment and zero-shot transfer across
different tasks (e.g., ρs = 0.94, p < .005 for
XNLI, Fig 4).

3. Using pre-training corpora from similar sources
for different languages (e.g., Wikipedia) boosts
transfer when compared to corpora from differ-
ent sources (e.g., 17 F1 points on NER, Fig 3).

To our knowledge, we are the first study to quan-
titatively show that zero-shot transfer between lan-
guages is strongly correlated with token embedding
alignment (ρs = 0.94 for NLI). We also show that
the current multilingual pre-training methods (Dod-
dapaneni et al., 2021) fall short of aligning em-
beddings even between simple natural and derived
language pairs, leading to failure in zero-shot trans-
fer. Our results call for training objectives that ex-
plicitly improve alignment using either supervised
(e.g., parallel corpora or bilingual dictionaries) or
unsupervised data.

2 Related work

Multilingual pre-training for Transformers
The success of monolingual Transformer lan-
guage models (Devlin et al., 2019; Radford et al.,
2018) has driven studies that learn a multilin-
gual language-model (LM) on several languages.
Multilingual-BERT (M-BERT) (Devlin, 2019) is a
single neural network pre-trained using the masked
language-modeling (MLM) objective on a corpus
of text from 104 languages. XLM (Conneau and
Lample, 2019) introduced translation language-
modeling, which performs MLM on pairs of par-
allel sentences, thus encouraging alignment be-
tween their representations. These models exhibit
surprising zero-shot cross-lingual transfer perfor-
mance (Conneau and Lample, 2019; K et al., 2020),
a setup where the model is fine-tuned on a source
language and evaluated on a different target lan-
guage.

Analysis of cross-lingual transfer While Pires
et al. (2019), Conneau et al. (2020b), and K et al.
(2020) showed that transfer works even without
a shared vocabulary between languages, Wu and
Dredze (2019) discovered a correlation between
sub-word overlap and zero-shot performance. Con-
neau et al. (2020b) and Artetxe et al. (2020a)
showed that shared parameters for languages with

different scripts were crucial for transfer. Pires et al.
(2019) and (Wu and Dredze, 2019) observed that
transfer for NER and POS tagging works better
between typologically similar languages. However,
a study conducted by Lin et al. (2019) showed
that there is no simple rule of thumb to gauge
when transfer works between languages. Hsu et al.
(2019) observed that changing the syntax (SOV)
order of the source to match that of the target does
not improve performance.

Transfer between real and synthetic Languages
K et al. (2020) create a synthetic language by
changing English’s script and find that transfer be-
tween it and Spanish works even without common
sub-words. However, they use only English as their
source language, test only on two tasks, and use
a single natural-synthetic language pair. Dufter
and Schütze (2020) study transfer between English
and synthetic English obtained by changing the
script, word order, or model delimiters. However,
they use a small corpus (228K words) compared to
current standards (we use 3 orders more) and mea-
sure only embedding similarity and not zero-shot
transfer. A contemporary work (Wu et al., 2022)
uses synthetic transformations to modify the GLUE
dataset (Wang et al., 2018) and analyze properties
required for good zero-shot transfer, but they per-
form their experiments only on English and do not
perform token embedding alignment analysis. We
show that the latter is crucial for good transfer.

3 Approach

We first provide some background on bilingual lan-
guage models (Section 3.1), followed by descrip-
tions of our transformations (Section 3.2), and our
training and evaluation setup (Section 3.3).

3.1 Background
Bilingual pre-training The standard setup (Con-
neau and Lample, 2019) trains a bilingual language
model (Bi-LM) on raw text corpora from two lan-
guages simultaneously. Bi-LM uses the masked
language-modeling loss (LMLM) on the corpora
from the two languages (C1, C2) separately with
no explicit cross-lingual signal:

LθBi-LM(C1 + C2) = LθMLM(C1) + LθMLM (C2)

A shared byte pair encoding tokenizer (Sennrich
et al., 2015) is trained on C1 + C2. A single batch
contains instances from both languages, but each
instance belongs to a single language.



Transformation Instance (s) Transformed instance (T (s))

Inversion (Tinv) Welcome to NAACL at Seattle Seattle at NAACL to Welcome
Permutation (Tperm) This is a conference a This conference is
Transliteration (Ttrans) I am Sam . I am ♣(I) ♥(am) ♦(Sam) ♠(.) ♣(I) ♥(am)

Syntax (Tsyn)
Sara (S) ate (V) apples (O) Sara (S) apples (O) ate (V)

Une table (N) ronde (A) Une ronde (A) table (N)

Table 1: Examples of our transformations applied to different sentences (without sub-word tokenization). Inversion
inverts the tokens, Permutation samples a random reordering, and Transliteration changes the script. We use
symbols (♣) to denote words in the new script and mention the corresponding original word in brackets. Syntax
stochastically modifies the syntactic structure. In the first example for Syntax, the sentence in Subject-Verb-Object
(SVO) order gets transformed to SOV order, and in the second, the sentence in Noun-Adjective (NA) order gets
transformed to the AN order. The examples are high probability re-orderings and other ones might be sampled too.

Zero-shot transfer evaluation Consider a bilin-
gual model (Bi-LM) pre-trained on two languages,
source and target. Zero-shot transfer involves fine-
tuning Bi-LM on downstream task data from source
and evaluating on test data from target. This is con-
sidered zero-shot because Bi-LM is not fine-tuned
on any data belonging to target.

3.2 Generating language variants with
systematic transformations

Natural languages typically differ in several ways,
like the script, word order, and syntax. To isolate
the affect of these properties on zero-shot transfer,
we obtain derived language corpora (hereon, de-
rived corpora) from original (natural) language cor-
pora by performing sentence level transformations
(T ) which change particular properties. For exam-
ple, an “inversion” transformation could be used
to invert each sentence in the corpus (Welcome1
to2 NAACL3⇒ NAACL3 to2 Welcome1). Since the
transformation (T ) is applied on each sentence of
the original corpus, the size of the original and
the derived corpus is the same. In the following
sections, we will use the following notation:

Corig ≡ Original corpus

= {si | i = 1 : N, si = sentence}
T ≡ Sentence-level transformation

Cderiv ≡ Derived corpus

= {T (sent) | ∀ sent ∈ Corig}

Types of transformations We consider four
transformations which modify different aspects of
sentences (examples in Table 1):

1. Inversion (Tinv): Invert the order of tokens
in the sentence, like in Dufter and Schütze

(2020). The first token becomes the last, and
vice versa.

2. Permutation (Tperm): Permute the order of
tokens in a sentence uniformly at random. For
a sentence of n tokens, we sample a random
ordering with probability 1

n! .
3. Transliteration (Ttrans): Change the script

of all tokens other than the special tokens
(like [CLS]). This creates a derived vocab-
ulary (Vderiv) with a one-to-one correspon-
dence with the original vocabulary (Vorig).

4. Syntax (Tsyn): Modify a sentence to match
the syntactic properties of a different natu-
ral language by re-ordering the dependents
of nouns and verbs in the dependency parse.
These transformations are stochastic because
of the errors in parsing and sampling over pos-
sible re-orderings (Wang and Eisner, 2016).

These transformations allow us to systematically
evaluate the effect of corresponding properties on
zero-shot transfer. We also consider composed
transformations (§4.2) which consecutively apply
two transformations. We note that while real lan-
guages typically differ in more than one or two
properties considered in our transformations, our
methodology remains useful in isolating crucial
properties that enable good transfer and can be ex-
tended to more transformations.

Transformations for downstream tasks We ob-
tain the downstream corpus in the derived language
(Dderiv) by applying the same transformation (T )
used during pre-training on the original down-
stream corpus (Dorig). Unlike pre-training corpora
which contain raw sentences, instances in down-
stream tasks contain one or more sentences with
annotated labels. For text classification tasks like



(a) Pre-training

(b) Fine-tuning

Figure 1: (a) During pre-training, we 1 obtain the derived language corpus (Cderiv) by transforming the original
language corpus (Corig). 2 The two corpora are combined and, 3 a bilingual model (Bi-LM) is learned using
the MLM objective. (b) During fine-tuning, we 1 obtain the derived dev dataset (Ddev

deriv) by transforming the
original dev dataset (Ddev

orig ). 2 Bi-LM is fine-tuned on the original train dataset (Dtrain
orig ), and 3 evaluated on

Ddev
deriv, which is the standard zero-shot cross lingual setup.

Evaluation Corpus source

Pre-train Fine-tune (train) Fine-tune (dev)

BZ Corig + Cderiv Dorig Dderiv

BS Corig + Cderiv Dderiv Dderiv

MZ Corig Dorig Dderiv

∆(BZ−BS) =
(

BZ − BS
)

∆(MZ−BS) =
(

MZ − BS
)

Table 2: Summary of evaluation metrics defined in
§ 3.3. C and D denote the pre-training and downstream
corpus respectively, and their subscript indicates their
source (original or derived). BZ and MZ represent
bilingual and monolingual zero-shot transfer scores,
and BS is the supervised learning baseline on derived.
The differences in the setting of BZ and other scores
are typeset in blue. We use ∆(BZ−BS) and ∆(MZ−BS)
(defined in the last two rows) throughout our paper.

NLI, we apply the transformation on each sentence
in every dataset instance. For token classification
tasks (e.g., NER, POS), any transformation which
changes the order of the tokens also changes the
order of the labels. We present the mathematical
specification in Appendix A.

3.3 Model Training and Evaluation
We now describe our pre-training and zero-shot
transfer evaluation setup. Figure 1 provides an
overview of pre-training and fine-tuning, and Ta-
ble 2 summarizes the evaluation metrics we use.

Pre-training Let Corig and Cderiv be the origi-
nal and derived language pre-training corpora. We
train two models for each original-derived pair:

1. Bilingual Model (Bi-LM): A bilingual model
pre-trained on the combined corpus (Corig+

Cderiv) (Figure 1a).
2. Monolingual Model (Mono-LM): A mono-

lingual model trained only on Corig for the
same number of steps as Bi-LM’s. Mono-
LM is used as a baseline to measure zero-shot
transfer of a model not pre-trained on derived.

Evaluation Let Dtrain
orig and Ddev

orig be the origi-
nal language training and development sets for a
downstream task, and Dtrain

deriv and Ddev
deriv be the

corresponding derived language datasets. For eval-
uation, we first fine-tune the pre-trained models on
a downstream training set and evaluate the resulting
model on a development set (Figure 1b). Since our
goal is to investigate the extent of zero-shot transfer,
we require appropriate lower and upper bounds to
make informed conclusions. To this end, we com-
pute three metrics, all on the same development set
(summarized in Table 2):

• Bilingual zero-shot transfer (BZ): This is
the standard zero-shot transfer score (Conneau
and Lample, 2019) which measures how well
a bilingual model fine-tuned on Dtrain

orig zero-
shot transfers to the other language (Ddev

deriv).
• Bilingual supervised synthetic (BS): This is

the supervised learning performance on the
derived language obtained by fine-tuning Bi-
LM on Dtrain

deriv and evaluating it on Ddev
deriv.

• Monolingual zero-shot transfer (MZ): This
measures the zero-shot performance of the
baseline Mono-LM, which is not pre-trained
on the derived language, by fine-tuning Mono-
LM on Dtrain

orig and evaluating it on Ddev
deriv.

BS uses fine-tuning train data from the derived lan-
guage and serves as an upper-bound on BZ and MZ



which don’t use it. MZ doesn’t pre-train on the de-
rived language and serves as a lower-bound on BZ
which does pre-train on it. For easier comparison
of BZ and MZ with BS (upper-bound), we report
the following score differences (Table 2), which
are both negative in our experiments.

∆(BZ−BS) = (BZ− BS) (1)

∆(MZ−BS) = (MZ− BS) (2)

BZ alone cannot capture the quality of the zero-
shot transfer. A large and negative ∆(BZ−BS) im-
plies that bilingual zero-shot transfer is much worse
than supervised fine-tuning on derived. Concur-
rently, ∆(BZ−BS) ≈ ∆(MZ−BS) implies that Bi-LM
transfers as poorly as Mono-LM. Thus, good zero-
shot transfer is characterized by ∆(BZ−BS) ≈ 0
and ∆(BZ−BS)� ∆(MZ−BS).

3.4 Experimental Setup
Languages We choose four diverse natural lan-
guages: English (Indo-European, Germanic),
French (Indo-European, Romance), Hindi (Indo-
European, Indo-Iranian), and Arabic (Afro-Asiatic,
Semitic), which are represented in the multilingual
XTREME benchmark (Hu et al., 2020). For each
language, we consider four transformations (Sec-
tion 3.2) to create derived counterparts, giving us
16 different original-derived pairs in total. For the
Syntax transformation, we use Qi et al. (2020) for
parsing. We modify the syntax of FR, HI, and AR

to that of EN, and the syntax of EN to that of FR.

Datasets For the pre-training corpus (Corig), we
use a 500MB (uncompressed) subset of Wikipedia
(≈ 100M tokens) for each language. This matches
the size of WikiText-103 (Merity et al., 2016), a
standard language-modeling dataset. For down-
stream evaluation, we choose four tasks from the
XTREME benchmark (Hu et al., 2020). Table 4
lists all the datasets and their evaluation metrics.

Implementation Details We use a variant of
RoBERTa (Liu et al., 2019) which has 8 layers,
8 heads, and a hidden dimensionality of 512. We
train each model on 500K steps, a batch size of 128,
and a learning rate of 1e-4 with a linear warmup
of 10K steps. We use an original language vocab-
ulary size of 40000 for all the models and train
on 8 Cloud TPU v3 cores for 32-48 hours. For
fine-tuning, we use standard hyperparameters (Ap-
pendix F) from the XTREME benchmark and re-
port our scores on the development sets.

4 Results

Our experiments reveal several interesting findings
for bilingual models including the situational im-
portance of sub-word overlap for zero-shot transfer
(§ 4.1, 4.2), the effect of domain mismatch between
languages (§ 4.3), and correlation of zero-shot per-
formance with embedding alignment (§ 4.4). We
connect our findings to zero-shot transfer results
between natural languages in Section 4.5.

4.1 Sub-word overlap is not strictly necessary
for strong zero-shot transfer

Sub-word overlap is the number of common tokens
between two different language corpora. If E1 and
E2 are sets of tokens which appear in the two cor-
pora, then: Sub-word overlap = |E1 ∩ E2|/|E1 ∪
E2| (Pires et al., 2019). The Transliteration transfor-
mation (Ttrans) creates original-derived language
pairs that have 0% sub-word overlap (equivalently,
different scripts), but follow the same word order.

Table 3 displays ∆(BZ−BS) scores for Ttrans, av-
eraged over four languages (Appendix B contains
a breakdown). We observe that ∆(BZ−BS)≈ 0 for
all tasks while ∆(MZ−BS) is highly negative, im-
plying that zero-shot transfer is strong and on par
with supervised learning. This result indicates that
zero-shot transfer is possible even when languages
with different scripts have similar word orders (in
line with K et al. (2020)). However, it is unrealistic
for natural languages to differ only in their script
and not other properties (e.g., word order).

4.2 Absence of sub-word overlap significantly
hurts zero-shot performance when
languages differ in their word-orders

To simulate a more realistic scenario, we create
original and derived language pairs which differ
both in their scripts (0% sub-word overlap) and in
word order. We achieve this by composing two
transformations on the original language corpus,
one of which is Transliteration (Ttrans). We exper-
iment with three different compositions, (a) Ttrans
◦ Tinv, (b) Ttrans ◦ Tperm, and (c) Ttrans ◦ Tsyn.
Here, α ◦ β means that transformation β is applied
before α. A composed transformation (Ttrans ◦

4XQuAD is a question-answering task where the correct
answer is a contiguous span. We do not report scores on
XQuAD for Tperm and Tsyn because they can potentially
reorder individual words in the contiguous answer, thus dis-
tributing them throughout the transformed sentence and mak-
ing the question unanswerable. On the other hand, Tinv and
Ttrans do not have this issue because they maintain the spans.



Task Inversion (Tinv) Permutation (Tperm) Syntax (Tsyn) Transliteration (Ttrans)

∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ

XNLI -10.2 -13.0 58.4 -3.6 -8.6 62.6 -0.9 ? -1.1 67.8 -1.0 ? -36.7 69.3

NER -49.1 -46.7 37.9 -26.3 -35.4 47.3 -14.6 -16.6 62.9 -1.9 ? -82.6 83.7

POS -30.2 -36.2 64.2 -11.2 -25.2 73.6 -4.4 -7.6 89.4 -0.4 ? -95.0 95.4

XQuAD4 -32.8 -31.0 22.8 —4 — — —4 — — 0.0 ? -55.9 61.2

Table 3: (1) Evaluation: We report ∆(BZ−BS) and ∆(MZ−BS) (§ 3.3 and Table 2) for transformations on dif-
ferent tasks, averaged over four languages (EN, FR, HI, AR). We report the breakdown for different languages in
Appendix B. BZ, the bilingual zero-shot performance, is reported for reference. (2) Interpreting scores: Smaller
(more negative) ∆(BZ−BS) implies worse bilingual zero-shot transfer, whereas ∆(BZ−BS)≈ 0 implies strong trans-
fer. ∆(BZ−BS)�∆(MZ−BS) implies that bilingual pre-training is extremely useful. Scores are highlighted based on
their value (lower scores have a higher intensity of red ). Cases with strong zero-shot transfer (∆(BZ−BS)≈ 0) are
marked with an asterisk. (3) Trends: Ttrans exhibits strong transfer on all tasks and languages (high ∆(BZ−BS)
scores), and bilingual pre-training is extremely useful (∆(BZ−BS) � ∆(MZ−BS)), implying that zero-shot transfer
is possible between languages with different scripts but the same word order. Tinv and Tperm suffer on all tasks
(small ∆(BZ−BS) scores) whereas Tsyn suffers significantly lesser, which provides evidence that local changes to
the word order made by Syntax (Tsyn) hurts zero-shot transfer significantly lesser than global changes made by
Inversion (Tinv) and Permutation (Tperm).

Dataset Task Metric

XNLI (Conneau et al., 2018) NLI Accuracy
Wikiann (Pan et al., 2017) NER F1

UD v2.5 (Nivre et al., 2018) POS F1
XQuAD (Artetxe et al., 2020b) QA F1

Table 4: XTREME benchmark datasets used for zero-
shot transfer evaluation. NLI=Natural Language Infer-
ence, NER=Named-entity recognition, POS=Part-of-
speech tagging, QA=Question-Answering.

β) differs from its second constituent (β) in that
the former produces a derived language which has
0% sub-word overlap with the original language
whereas the latter has a 100% sub-word overlap.

Results Our results (Figure 2, breakdown in Ap-
pendix C) show that zero-shot performance is sig-
nificantly hurt for composed transformations when
compared to its constituents. |∆(BZ−BS)| is much
larger for Ttrans ◦ Tinv when compared to Ttrans
or Tinv individually. For example, for XNLI,
|∆(BZ−BS)| = 19 for the composed transformation
and just 2 and 3 for Ttrans and Tinv individually.
Ttrans ◦ Tperm is worse by ≈ 20 points on XNLI
and NER, and over 40 points on POS when com-
pared to Tperm. Ttrans ◦ Tsyn suffers lesser than
the other two composed transformations, but it is
still worse than Tsyn by 3, 6, and 1 point on XNLI,
NER, and POS. In conclusion, the absence of sub-
word overlap significantly degrades zero-shot per-

formance in the realistic case of languages with
different word orders.

4.3 Data from the same domain boosts
bilingual performance

Previously, we considered transformations (T ) that
modified the original pre-training corpus to get a
parallel corpus, Cderiv = T (Corig), such that there
is a one-to-one correspondence between sentences
in Corig and Cderiv (we call this setting parallel).
Since procuring large parallel corpora is expensive
in practice, we consider two other settings which
use different corpora for original and derived.

Setup Consider two text corpora of the same size,
C1orig and C2orig. We compare two settings: (1)
The parallel setting pre-trains a bilingual model
on C1orig + T (C1orig), whereas the (2) non-parallel
corpus setting uses C1orig + T (C2orig). We con-
sider two variants of non-parallel, (1) non-parallel
(same) which uses different splits of Wikipedia
data (hence, same domain), and (2) non-parallel
(diff) which uses Wikipedia data for the original
and common crawl data (web text) for the derived
language (hence, diff erent domain). We use the
Transliteration transformation (Ttrans) to generate
the derived language corpus and report |∆(BZ−BS)|
averaged over all languages in Figure 3.

Results We observe consistently on all tasks that
the parallel setting (blue bar) performs better than
both the non-parallel settings. Non-parallel (same)
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Figure 2: |∆(BZ−BS)| for composed transformations (§ 4.2) applied on EN as the original language. Larger scores
imply worse zero-shot transfer. Ttrans = Transliteration, Tinv = Inversion, Tperm = Permutation, and Tsyn =
Syntax. Sub-word overlap between the original and derived language is 0% when composed transformations
are used (e.g. Ttrans ◦ Tinv) and 100% when the second constituent is used (here, Tinv). We observe that the
composed transformations (green bars) do significantly worse than their constituents (blue and orange), showing
that Ttrans ◦ Tinv is worse than Tinv by over 16 points on XNLI and 42 points on POS, with similar trends for
Ttrans ◦ Tperm. Ttrans ◦ Tsyn doesn’t suffer as much, but its performance degradation when compared to Syntax
is still large (ranges between 1 point on POS to 6 points on NER). absence of sub-word overlap significantly
hurts performance when languages differ in their word orders.

performs better than non-parallel (diff), with gains
ranging between 2 points on XQuAD to 17 points
on NER. This result shows that even for original
and derived language pairs which differ only in
their script, having parallel pre-training corpora
leads to the best zero-shot transfer. Since large-
scale parallel unsupervised data is hard to procure,
the best alternative is to use corpora from simi-
lar domains (Wikipedia) rather than different ones
(Wikipedia v.s. web text).

4.4 Zero-shot performance is strongly
correlated with embedding alignment

Our previous results (§ 4.2, 4.3) showed cases
where zero-shot transfer between languages is poor
when there is no sub-word overlap. To investigate
this further, we analyze the static word embeddings
learned by bilingual models and find that zero-shot
transfer between languages is strongly correlated
with the alignment between word embeddings for
the original and derived languages.

Setup The original and the derived languages
have a one-to-one correspondence between their
sub-word vocabularies when we use transliteration
(Ttrans). For a token embedding in the original-
language embedding matrix, its alignment score is
100% if it retrieves the corresponding token em-
bedding in the derived language when a nearest-
neighbor search is performed, and 0% otherwise.

We average the alignment score over all the tokens
and call it alignment.

Results We measure the alignment of bilin-
gual models pre-trained on different original-
derived language pairs created using translitera-
tion, namely the composed transformations (§ 4.2),
parallel, and non-parallel (§ 4.3). We plot the
alignment along with the corresponding ∆(BZ−BS)
scores for XNLI in Figure 4. Results for other tasks
are in Appendix E.

We observe that higher alignment is associ-
ated with lower ∆(BZ−BS), implying better zero-
shot transfer. Alignment is lower for composed
transformations like Ttrans ◦ Tinv and Ttrans ◦
Tperm which have large and negative ∆(BZ−BS).
Alignment also explains the results in Section 4.3,
with non-parallel variants having lower alignment
scores than parallel, which is in line with their
lower ∆(BZ−BS). Overall, we find a strong and
significant Spearman’s rank correlation between
alignment and ∆(BZ−BS), with ρ = 0.94, p < .005
for XNLI, ρ = 0.93, p < .005 for NER, and
ρ = 0.89, p < .01 for POS, indicating that increas-
ing the embedding alignment between languages
helps improve zero-shot transfer.
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Figure 3: |∆(BZ−BS)| for Ttrans under different condi-
tions on the source of original and derived language
pre-training corpora (hereon, corpora) (§ 4.3), aver-
aged over four languages. Larger values imply worse
zero-shot transfer. The breakdown of scores for differ-
ent languages is in Appendix D. (1) Non-parallel (diff)
(green bar), which uses corpora from different domains
is worse than (2) Non-parallel (same) (orange bar),
which uses different sets of sentences sampled from the
same domain, which is in turn worse than (3) Parallel,
which uses the same sentences. Having pre-training
corpora from the same domain like Wikipedia (Non-
parallel (same)) gives performance boosts between 2
points for QA to 17 points for NER when compared to
Non-parallel (diff).

4.5 Connections to results on natural
language pairs

Effect of sub-word overlap In § 4.2, we showed
that when languages have different scripts (0% sub-
word overlap), zero-shot transfer significantly de-
grades when they additionally have different word
orders. However, the zero-shot transfer is good
when languages differ only in the script and have
similar or the same word order. This is in line with
anecdotal evidence in Pires et al. (2019), where
zero-shot transfer works well between English
and Bulgarian (different script but same subject-
verb-object order – SVO), but is poor between
English and Japanese (different script and word
order – SVO v.s. SOV). Our result also corrobo-
rates findings in Conneau et al. (2020b) that artifi-
cially increasing sub-word overlap between natural
languages (which have different word orders) im-
proves performance (e.g., 3 points on XNLI).

Effect of token embedding alignment In § 4.4,
we showed that zero-shot transfer is strongly corre-
lated with word embedding alignment between lan-
guages. This explains the usefulness of recent stud-
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Figure 4: ∆(BZ−BS) for Transliteration (Ttrans) vari-
ants on XNLI. Larger values (less negative) imply bet-
ter zero-shot transfer. We see that alignment (§ 4.4)
between token embeddings of different languages is
correlated with ∆(BZ−BS), and hence with better zero-
shot transfer. For example, Ttrans ◦ Tinv (bottom left)
which has poor zero-shot transfer also has lower align-
ment, whereas Parallel (top right) which has strong
transfer is accompanied with higher alignment. We find
a strong and statistically significant Spearman’s correla-
tion of ρs = 0.94, p < .005 on XNLI, ρs = 0.93, p <
.005 on NER, and ρs = 0.89, p < .01 on POS. Plots
for other tasks are in Appendix E.

ies which try to improve multilingual pre-training
with the help of auxiliary objectives, which im-
prove word or sentence embedding alignment.

DICT-MLM (Chaudhary et al., 2020) and Re-
lateLM (Khemchandani et al., 2021) require the
model to predict cross-lingual synonyms as an aux-
iliary objective, thus indirectly improving word-
embedding alignment and the zero-shot perfor-
mance on multiple tasks. Hu et al. (2021) add
an auxiliary objective that implicitly improves
word embedding alignment and show that they
can achieve performance similar to larger mod-
els. Cao et al. (2019) explicitly improve contextual
word embedding alignment with the help of word-
level alignment information in machine-translated
cross-lingual sentence pairs. Since they apply this
post hoc and not during pre-training, the improve-
ment, albeit significant, is small (2 points on XNLI).
While these studies do not fully utilize word and
sentence embedding alignment information, our re-
sults lead us to posit that they are a step in the right
direction and that baking alignment information
more explicitly into pre-training will be beneficial.



5 Conclusion

Through a systematic study of zero-shot transfer
between four diverse natural languages and their
counterparts created by modifying specific prop-
erties like the script, word order, and syntax, we
showed that (1) absence of sub-word overlap hurts
zero-shot performance when languages differ in
their word order, and (2) zero-shot performance
is strongly correlated with word embedding align-
ment between languages. Some recent studies have
implicitly or unknowingly attempted to improve
alignment and have shown slight improvements
in zero-shot transfer performance. However, our
results lead us to posit that explicitly improving
word embedding alignment during pre-training by
using either supervised (e.g., parallel sentences and
translation dictionaries) or unsupervised data will
significantly improve zero-shot transfer. Although
real languages typically differ in more ways than
the set of properties considered in our transforma-
tions, our methodology is still useful to help isolate
crucial properties for transfer. Future work can ex-
periment with more sophisticated transformations
and investigate closer connections with human lan-
guage pairs.
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Appendices

A Mathematical Specification for
Transformation of Downstream
Datasets

Text classification Text classification tasks like
news classification or sentiment analysis typically
have instances which contain a single sentence and
a label. Instances in other classification tasks like
natural language inference (NLI) (Bowman et al.,
2015) contain two sentences and one label. For
such tasks, we apply the transformation (T ) on
each sentence within every instance, and leave the
annotated label as is. Therefore, for a dataset of
size n which containsm sentences per instance, we
have:

Dorig = {(si1, . . . , sim, yi) | i = 1 : N}
Dderiv = {(T (si1), . . . , T (sim), yi) | i = 1 : N}

Token-classification tasks Tasks like named-
entity recognition (NER) and part-of-speech tag-
ging (POS tagging) have labels associated with
each token in the sentence. For these datasets, we
ensure that any transformation (T ) that changes the
order of the tokens also changes the order of the
corresponding labels.

We define a few quantities to express the trans-
formation mathematically. Let si = (wi1, . . . , wik)
be a sentence comprised of k tokens and yi =
(yi1, . . . , yik) be labels corresponding to the tokens
in the sentence. We define a new transformation
(Taug) which operates on the label augmented sen-
tence, saugi = ((wi1, yi1) , . . . , (wik, yik)). Let
saugi [j] correspond to the jth element in the se-
quence, and saugi [j][word] and saugi [j][label]
correspond to the word and label of the jth ele-
ment. Let Taug(saugi )[j][orig] denote the index
of the jth element in the transformed sequence
with respect to the original sequence saugi . Then,
the new transformation Taug is such that,

Taug(saugi )[j][orig] = T (si)[j][orig]

Let orig_j = Taug(saugi )[j][orig]

Taug(saugi )[j][label] = saugi [orig_j][label]

We transform the dataset using Taug:

Dorig = {saugi | i = 1 : N}
Dderiv = {Taug(saugi ) | i = 1 : N}

B Zero-shot transfer results for different
transformations

Table 5 in the appendix is the extended version
of Table 3 in the main paper with a breakdown
for all languages. It reports ∆(BZ−BS), ∆(MZ−BS),
and BZ for different languages and transformations
considered.

C Composed Transformations

Table 6 in the appendix presents the breakdown
of results in Figure 2 of the main paper. It reports
∆(BZ−BS) scores for composed transformations and
their constituents.

D Comparing different sources for
original and derived language corpora

Table 8 in the appendix contains the breakdown
of results in Figure 3 of the main paper. It reports
∆(BZ−BS) for different languages on different tasks
for the settings mentioned in Section 4.3.

E Alignment Correlation

We present alignment results (Section 4.4) for all
XNLI, NER, and POS in Figure 5. We observe
strong correlations between alignment and zero-
shot transfer, with ρs = 0.94, p < .005 on XNLI,
ρs = 0.93, p < .005 on NER, and ρs = 0.89, p <
.01 on POS. We present the raw scores in Table 7.

F Hyperparameters for XTREME

• XNLI: Learning rate – 2e-5, maximum se-
quence length – 128, epochs – 5, batch size –
32.

• NER: Learning rate – 2e-5, maximum se-
quence length – 128, epochs – 10, batch size –
32.

• POS: Learning rate – 2e-5, maximum se-
quence length – 128, epochs – 10, batch size –
32.

• Tatoeba: Maximum sequence length – 128,
pooling strategy – representations from the
middle layer

(
n
2

)
of the model.

• XQuAD: Learning rate – 3e-5, maximum
sequence length – 384, epochs – 2, document
stride – 128, warmup steps – 500, batch size –
16, weight decay – 0.0001.



Task Language Inversion Permutation Syntax Transliteration

BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS)

XNLI

English 73.2 -3.4 -14.9 68.6 -5 -7.7 74.1 -1.8 -1.5 74.1 -1.7 -42.5
French 62.5 -9.5 -8.8 68.4 -1 -7.6 69.6 -2.2 -1.4 71.6 -1.6 -39.9
Hindi 43.9 -15.7 -15.8 51.2 -6.2 -13.1 61.6 -0.3 -1.6 63.4 -0.1 -29.4
Arabic 54 -12.3 -12.5 62.1 -2.3 -6 65.9 0.7 0.3 68 -0.4 -35.1

Avg. 58.4 -10.2 -13 62.6 -3.6 -8.6 67.8 -0.9 -1.1 69.3 -1.0 -36.7

NER

English 39.8 -44.5 -35.9 40.2 -28.5 -33.2 61.1 -7.8 -10.3 78 -2.1 -70.2
French 54.5 -34.4 -51.3 44.4 -36.0 -39.8 59.6 -21.9 -25.9 84.3 -3.1 -87.4
Hindi 19.4 -63.9 -63.2 38.5 -21.9 -37.4 64.8 -8.4 -7.3 84.4 -0.5 -82.9
Arabic 37.8 -53.6 -36.3 66.2 -18.8 -31.1 66.1 -20.1 -23 88 -1.9 -89.9

Avg. 37.9 -49.1 -46.7 47.3 -26.3 -35.4 62.9 -14.6 -16.6 83.7 -1.9 -82.6

POS

English 94.4 -0.7 -24.3 78.3 -11.9 -17.6 92.9 -0.9 -2.2 94.6 -0.5 -95.1
French 74.3 -22.7 -22.9 82 -12.2 -20.9 93.5 -3.2 -5.2 97.2 -0.2 -97.4
Hindi 19 -74.5 -74.5 51 -14 -41.8 91.6 -3.3 -11.3 96.5 -0.1 -96.6
Arabic 69.2 -23 -23 83.1 -6.5 -20.6 79.4 -10 -11.5 93.2 -0.8 -90.9

Avg. 64.2 -30.2 -36.2 73.6 -11.2 -25.2 89.4 -4.4 -7.6 95.4 -0.4 -95.0

XQuAD

English 30.4 -43.2 -35.5 - - - - - - 72.4 -4 -73
French 25.2 -29.5 -29.6 - - - - - - 60.9 -1 -55.5
Hindi 14.5 -27.3 -27.3 - - - - - - 57.3 10.6 -43.5
Arabic 21 -31.2 -31.4 - - - - - - 54 -0.5 -51.7

Avg. 22.8 -32.8 -31.0 61.2 1.3 -55.9

Table 5: This table is an extended version of Table 3 in the main paper. Smaller (more negative) ∆(BZ−BS) implies
worse bilingual zero-shot transfer, whereas ∆(BZ−BS)≈ 0 implies strong transfer. ∆(BZ−BS) � ∆(MZ−BS) implies
that bilingual pre-training is extremely useful. Scores are highlighted based on their value (lower scores have a
higher intensity of red ). (1) Discussing ∆(BZ−BS): Ttrans exhibits strong transfer on all tasks and languages (high
∆(BZ−BS) scores), and bilingual pre-training is extremely useful (∆(BZ−BS)�∆(MZ−BS)), implying that zero-shot
transfer is possible between languages with different scripts but the same word order. Tinv and Tperm suffer on all
tasks (small ∆(BZ−BS) scores) whereas Tsyn suffers significantly lesser, which provides evidence that local changes
to the word order made by Syntax (Tsyn) hurts zero-shot transfer significantly lesser than global changes made by
Inversion (Tinv) and Permutation (Tperm). (1) Discussing ∆(MZ−BS): ∆(BZ−BS) is much larger than ∆(MZ−BS)
for Ttrans, implying that bilingual pre-training (hereon, pre-training) is extremely useful. ∆(BZ−BS) and ∆(MZ−BS)
are similar for Tinv and Tsyn, implying that pre-training is not beneficial for these transformations. ∆(BZ−BS) is
slightly larger than ∆(MZ−BS) for Tperm, which means that pre-training is moderately useful.

T XNLI NER POS

BZ ∆(BZ−BS) BZ ∆(BZ−BS) BZ ∆(BZ−BS)

Ttrans 74.1 -2.1 78 -2.3 94.6 -0.5

Tinv 73.2 -3.4 39.8 -44.5 94.4 -0.7
Ttrans ◦ Tinv 55.7 -19.2 32.5 -51.5 52.2 -42.7

Tperm 68.6 -5 40.2 -28.5 78.3 -11.9
Ttrans ◦ Tperm 44 -27.7 17.1 -46.3 29.5 -59

Tsyn 74.1 -1.8 61.1 -7.8 92.9 -0.9
Ttrans ◦ Tsyn 69.8 -5.7 53.5 -14.2 91.5 -2

Table 6: Breakdown of results in Figure 2 of the main
paper. BZ is the zero-shot performance. ∆(BZ−BS),
∆(MZ−BS), and BZ are described in Section 3.3 and
Table 2. Composing transformations always hurts
∆(BZ−BS) when compared to individual transforma-
tions.

Transliteration ∆(BZ−BS) (↑) Alignment (↑)
Variant XNLI NER POS

Parallel -2.1 -2.3 -0.5 90.0

Trans ◦ Syntax -5.7 -14.2 -2 57.3

Non-parallel
-3.8 -4.1 -0.7 43.0(Same)

Non-parallel
-5.7 -14.3 -1.5 11.8(Diff)

Trans ◦ Inv -19.2 -51.5 -42.7 0.16

Trans ◦ Perm -27.7 -46.3 -59 0.01

Table 7: ∆(BZ−BS) and alignment scores for different
Transliteration variants. The table contains raw scores
for results in Section 4.4 of the main paper. Rows are
sorted in descending order based on alignment. We ob-
serve strong correlations between alignment and zero-
shot transfer, with ρs = 0.94, p < .005 on XNLI,
ρs = 0.93, p < .005 on NER, and ρs = 0.89, p < .01
on POS.



Task Language XNLI NER POS XQuAD

∆(BZ−BS) ∆(BZ−BS) ∆(BZ−BS) ∆(BZ−BS)

Parallel

English -1.7 -2.1 -0.5 -4
French -1.6 -3.1 -0.2 -1
Hindi -0.1 -0.5 -0.1 10.6
Arabic -0.4 -1.9 -0.8 -0.5

Avg. -1.0 -1.9 -0.4 1.3

Non-parallel (Same)

English -3.8 -4.1 -0.7 -6.9
French -1 -6.3 -0.5 -0.9
Hindi -0.4 -3.1 -0.2 4.5
Arabic -2 -6.1 -1.5 0.7

Avg. -1.8 -4.9 -0.7 -0.6

Non-parallel (Diff)

English -5.7 -14.3 -1.5 -9.3
French -10.9 -30.3 -10.5 -5.2
Hindi -0.5 -8.6 -1 5
Arabic -6.3 -34.7 -3.7 -1.9

Avg. -5.9 -22.0 -4.2 -2.9

Table 8: |∆(BZ−BS)| for Ttrans under different conditions on the source of original and derived language pre-
training corpora (§ 4.3). Larger values imply worse zero-shot transfer. For all languages: (1) Non-parallel (diff),
which uses corpora from different domains is worse than (2) Non-parallel (same), which uses different sets of
sentences sampled from the same domain, which is in turn worse than (3) Parallel, which uses the same sentences.
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Figure 5: Alignment v.s. ∆(BZ−BS) plots for XNLI, NER, and POS. We observe strong correlations between
alignment and zero-shot transfer, with ρs = 0.94, p < .005 on XNLI, ρs = 0.93, p < .005 on NER, and ρs =
0.89, p < .01 on POS.


