
Under review as a conference paper at ICLR 2021

TRANSNAS-BENCH-101: IMPROVING TRANSFERRA-
BILITY AND GENERALIZABILITY OF CROSS-TASK
NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent breakthroughs of Neural Architecture Search (NAS) are extending the
field’s research scope towards a broader range of vision tasks and more diversified
search spaces. While existing NAS methods mostly design architectures on one
single task, algorithms that look beyond single-task search are surging to pursue a
more efficient and universal solution across various tasks. Many of them leverage
transfer learning and seek to preserve, reuse, and refine network design knowledge
to achieve higher efficiency in future tasks. However, the huge computational cost
and experiment complexity of cross-task NAS are imposing barriers for valuable
research in this direction. Existing transferrable NAS algorithms are also based
on different settings, e.g., datasets and search spaces, which raises concerns on
performance comparability. Although existing NAS benchmarks provided some
solutions, they all focus on one single type of vision task, i.e., classification. In
this work, we propose TransNAS-Bench-101, a benchmark containing network
performance across 7 tasks, covering classification, regression, pixel-level predic-
tion, and self-supervised tasks. This diversity provides opportunities to transfer
NAS methods among the tasks, and allows for more complex transfer schemes to
evolve. We explore two fundamentally different types of search spaces: cell-level
search space and macro-level search space. With 7,352 backbones evaluated on
7 tasks, 51,464 trained models with detailed training information are provided.
Generating this benchmark takes about 193,760 GPU hours, which is equivalent
to 22.12 years of computation on a single Nvidia V100 GPU. Analysis of 4 bench-
mark transfer schemes highlights that: (1) Direct deployment of both architectures
and policies can easily lead to negative transfer unless guided by carefully de-
signed mechanisms. (2) Evolutionary methods’ role in transferrable NAS might
be overlooked in the past. (3) It is a valid challenge for NAS algorithms to perform
well across tasks and search spaces consistently. We also provide our suggestions
for future research along with the analysis. With TransNAS-Bench-101, we hope
to encourage the advent of exceptional NAS algorithms that raise cross-task search
efficiency and generalizability to the next level.

1 INTRODUCTION

In recent years, networks found by Neural Architecture Search (NAS) methods are surpassing
human-designed ones, setting state-of-the-art performance on various tasks (Tan & Le, 2019; Real
et al., 2019). Ultimately, NAS is calling for algorithmic solutions that can discover near-optimal
models for any task within any search spaces under moderate computational budgets. To pursue this
goal, recent research in NAS quickly expanded its scope into broader vision domains such as object
detection (Xu et al., 2019) and semantic segmentation (Chen et al., 2018). Many works have also
started to investigate more general network design, such as choosing an optimal macro skeleton of a
network (Yao et al., 2019; Xu et al., 2019).

Although many algorithms have successfully shortened NAS’s search time from months to hours
(Liu et al., 2018; Dong & Yang, 2019b), some research have shown their reliance on specific search
spaces and datasets (Yang et al., 2019). There are also questions on these algorithms’ efficiency
when dealing with a large number of tasks (Chen et al., 2020). To look for solutions that work well

1

Under review as a conference paper at ICLR 2021

@ 3rd Module

Cell-level Search Space

Cell
OP2

OP1

OP6

OP5

OP4

OP3

Operation (OP)
Candidates
• Zeroize
• Skip-connection
• 1x1 conv
• 3x3 conv

Image Searched
Backbone

Task-specific
Decoder

Stage 3

Downsampling

Doubling Channels

@ 2nd Module @ 4th Module

@ 4th Module

Stage 2Stage 1

Macro-level Search Space

Object Classification
Scene Classification
Room Layout
Jigsaw
AutoEncoder
Surface Normal
Semantic Segmentation

Various TasksTransfer-NAS Search Spaces

Re
sid

ua
l B

lo
ck

Re
sid

ua
l B

lo
ck

Module 1

Re
sid

ua
l B

lo
ck

Re
sid

ua
l B

lo
ck

Module 2

Re
sid

ua
l B

lo
ck

Re
sid

ua
l B

lo
ck

Module 3

Re
sid

ua
l B

lo
ck

Re
sid

ua
l B

lo
ck

Module 4

Figure 1: Our cell-level and macro-level search space in TransNAS-Bench-101. We design: a) A
cell-level search space that treats each cell as a DAG; and b) A macro-level search space that allows
flexible macro skeleton network design.

across multiple tasks, Transferrable NAS is a rising research direction. It is surging with exceptional
algorithms leveraging tools in the transfer/meta learning paradigm (Pasunuru & Bansal, 2019; Wong
et al., 2018; Shaw et al., 2019; Lian et al., 2020; Guo et al.). Chen et al. (2020) explores meta
learning to transfer network design knowledge from small tasks to larger tasks, surpassing many
efficient solutions based on parameter sharing. Cai et al. (2020) proposes a highly memory-efficient
and effective transfer solution that does not require back-propagation for adaptation. While these
algorithms each show compelling results, they are evaluated under different settings raises concerns
on performance comparability. To avoid confusions, throughout this paper, we use the word task to
distinguish NAS problems where the dataset or the vision domain is different (e.g., detection and
segmentation).

In the meantime, NAS is prohibitively costly. The computational intensity of single-task NAS can
be discouraging for many researchers, not to mention cross-task NAS experiments. To solve the
computation and the aforementioned comparability problem, NAS-Bench-101 (Ying et al., 2019),
and NAS-Bench-201(Dong & Yang, 2019a) were proposed. These benchmarks have offered great
values for the NAS community, but we believe the research scope of NAS can be further enlarged
beyond classification problems and cell-based search space.

The goal of finding universal solutions across tasks and search spaces, the comparability problem,
and the computation barriers of transferrable NAS research lead to our proposal of TransNAS-
Bench-101, which studies networks over 7 distinctive vision tasks: object classification, scene classi-
fication, semantic segmentation, autoencoding, room layout, surface normal, and jigsaw. Two types
of search spaces are provided: One is the macro skeleton search space based on residual blocks,
where the network depth and block operations (e.g., when to raise the channel or downsample the
resolution) are decided. Another one is the widely-studied cell-based search space, where each cell
can be treated as a directed acyclic graph (DAG). The macro-level and cell-level search space con-
tains 3256 and 4096 networks, respectively. The 7,352 backbones are evaluated on all 7 tasks, and
we provide detailed diagnostic information for all models. We also evaluated 4 transfer schemes
compatible with both search spaces to serve as benchmarks for future research.

Our key contribution is a benchmark with networks fully evaluated on 7 tasks across two search
spaces. Generating the whole benchmark takes 193,760 GPU hours, i.e., 22.12 years of compu-
tation on one NVIDIA V100 GPU. Still, it significantly lowers the cost of further research into
cross-task neural architecture search. We also highlight problems and provide suggestions for fu-
ture NAS research: (1) To extend NAS into different vision domains, it is important to look beyond
cell-based search spaces, as we found that network macro structures have a larger impact on per-
formance than cell structures on certain tasks. (2) The extent to which an algorithm can surpass
random search in the same search space can be a crucial performance indicator. (3) Investigations of
evolutionary-based transfer strategies, along with effective mechanisms to tweak transferred archi-
tectures and policies, are two promising directions for future transferrable NAS research. With the
diversified settings in TransNAS-Bench-101, we hope to encourage the emergence of exceptional
NAS algorithms that not only prevail in a few selected datasets, but also across a wide range of tasks
and search spaces.

2

Under review as a conference paper at ICLR 2021

• Home theater
• Entertainment

center
• Day bed
• Sofa

• Living Room
• Television

Room

Raw Image Room LayoutScene
Classification

Object
Classification

Jigsaw Puzzle Autoencoding Surface Normal Semantic Segm.

Figure 2: Vision tasks considered in our benchmarks. We carefully select those 7 tasks above to
ensure both diversity and similarity across tasks from Taskonomy (Zamir et al., 2018).

2 THE TRANSNAS-BENCH-101 DATASET

2.1 SEARCH SPACES AND ARCHITECTURES

To plug in different networks for various tasks, our search space is focused on evolving the backbone,
i.e. the common component of all the tasks considered. We provide two search spaces: a) A macro-
level search space that designs the skeleton of a network, which was previously studied towards
NAS in object detection and semantic segmentation; b) A cell-level search space following the
widely studied cell-based search space, which applies to most weight-sharing NAS methods.

Macro-level Search Space. Most NAS methods follow a fixed macro skeleton with a searched cell.
However, the macro-level structure of the backbone can be crucial for final performance. Early-
stage feature maps in a backbone have larger sizes as they capture texture details, whereas feature
maps at later stages are smaller, and usually are more discriminative (Li et al., 2018). The allocation
of computations over different stages is important for a backbone (Liang et al., 2020). Therefore,
this search space contains networks with different depth (the total number of blocks), locations to
down-sample the feature maps, and locations to raise the channels. As is illustrated in Figure 1, we
group two residual blocks (He et al., 2016) into a module, and the networks are stacked with 4 to 6
modules. The module positions can be chosen to downsample the feature map for 1 to 4 times, and
each time the spatial size will shrink by a factor of 2. The network can double its channels for 1 to
3 times at chosen locations. This search space thus consists of 3265 unique architectures.

Cell-level Search Space. We follow NAS-Bench-201(Dong & Yang, 2019a) to design our cell-level
search space. It consists of 4096 densely connected DAGs, which enables the evaluation of some
weight-sharing NAS methods such as DARTS (Liu et al., 2018) and ProxylessNAS (Cai et al., 2019).
As is shown in Figure 1, our cell-level search space is obtained by assigning different operations
(as edges) transforming the feature map from the source node to the target node. The predefined
operation set has L = 4 representative operations: zeroize, skip connection, 1x1 convolution, and 3x3
convolution. The convolution in our setting represents an operation sequence of ReLU, convolution
and batch normalization. Each DAG consists of 4 nodes and 6 edges, including basic residual block-
like cell designs. The macro-level skeleton is fixed, which contains 5 modules with doubling channel
and down-sampling feature map operations lying at the 1st, 3rd, 5th modules.

Adding up the 3265 and 4096 networks from the macro-level search space and the cell-level search
space, we have 7352 unique architectures in total. All the architectures in both search spaces are
carefully trained and evaluated across all the selected tasks. Thus a wide range of NAS algorithms
can be examined and compared not only on a single task, but also across multiple tasks.

2.2 DATASETS

Unlike most NAS benchmarks that focus on classification tasks only, TransNAS-Bench-101 encour-
ages the evaluation of algorithms across different tasks. This makes the selection of proper datasets
challenging, since ideally, the datasets should have some commonalities while providing annotations
for different tasks. Thanks to the great previous work Taskonomy (Zamir et al., 2018), which care-
fully studies the relationship between different visual tasks, we can follow their definitions of tasks
and the released dataset. The original dataset consists of 4.5M images of indoor scenes from about
600 buildings. To control the computational budget, we randomly select 24 buildings containing
120K images from the original dataset and split the subset into 80K train / 20K val / 20K test set.

To ensure both diversity and similarity of the tasks, we carefully selected 7 tasks. As is shown in
Figure 2, the selected tasks include a) image classification tasks: Object Classification (75 classes
selected) and Scene Classification (47 classes selected); b) pixel-level prediction tasks: Surface

3

Under review as a conference paper at ICLR 2021

Table 1: Training hyperparameters and details of each tasks considered in this benchmark. All the
architectures in the search space have been fully trained. We provide multiple metrics for evaluation
on the train/val/test set. Each task requires a backbone-decoder network structure with task-specific
decoder and loss function. GAP denotes global average pooling. CE denotes the cross entropy loss.

Tasks Epochs Decoder LR Optimizer Output dim. Loss Eval. Metrics

Object Class. 25 GAP + Linear 0.1 SGD 75 Softmax+CE Loss, Acc

Scene Class. 25 GAP + Linear 0.1 SGD 47 Softmax+CE Loss, Acc

Room Layout 25 GAP + Linear 0.1 SGD 9 MSE loss Loss

Jigsaw 10 GAP + Linear 0.1 SGD 1000 Softmax+CE Loss, Acc

Autoencoding 30 14 Conv & Deconv 0.0005 Adam 256x256 GAN loss + L1 Loss, SSIM

Surface Normal 30 14 Conv & Deconv 0.0001 Adam 256x256 GAN loss + L1 Loss, L1, SSIM

Sem. Segment. 30 8 Conv & Deconv 0.1 SGD 256x256 Softmax+CE Loss, Acc, mIoU

Normal and Semantic Segmentation; c) self-supervised task: Jigsaw Puzzle and Autoencoding; d)
Regression task: Room Layout.

2.3 TRAINING DETAILS

In TransNAS-Bench-101, the seven different tasks require different network structures and loss func-
tions. To train the networks on a given task, we define a default backbone-decoder network structure
first, then iterate through the search space and change its backbone architecture. For pixel-level
prediction tasks and autoencoding, the decoders’ input channels and resolutions will change flexibly
but minimally according to different representation shapes generated by the backbone. Since the
original paper’s implementation is based on an outdated version of Tensorflow, we reimplemented
both the training and testing script with PyTorch for reproducibility. We mostly follow the Taskon-
omy paper to set up the hyper-parameters and training strategies, which is shown in Table 1. For all
the tasks, the batch size is 128, and the input resolution is resized to 256 × 256. For all the archi-
tectures, we record multiple evaluation metrics for each epoch, as is listed in Table 1. The average
training+evaluation time for one architecture varies from 1 GPU hours to 7 GPU hours for different
tasks. Since we train every architecture in our search space for all the 7 tasks (i.e. 7352×7 ≈ 5×104

arch), the total computation cost is 193,760 GPU hours on V100 to generate the whole TransNAS-
Bench-101. Users can use our API to conveniently query each architecture’s information across
tasks without additional computation costs. In this way, researchers could significantly speed up
their research and focus solely on improving the algorithms.

3 RELATED WORK

To foster reproducibility and fair comparisons among algorithms, there are several existing NAS
benchmarks. NAS-Bench-101 is the earliest work, which contains 423k unique architectures eval-
uated on the CIFAR-10 dataset. The networks are designed with a cell-based structure, where each
cell is treated as a DAG. However, since NAS-Bench-101 only provides a portion of the networks
within its search space, it is only applicable to a few selected algorithms, such as those based on
parameter sharing (Liu et al., 2018; Pham et al., 2018; Han et al., 2020).

As an extension of NAS-Bench-101, NAS-Bench-201 was proposed to accommodate the growing
needs. It provides training information of 15k networks, forming a complete search space. Similar
to NAS-Bench-101, the networks are designed under a cell-based structure, but it could support
many more algorithms with detailed diagnostic information. With training results over three datasets

Table 2: Comparisons of TransNAS-Bench-101 with previous benchmarks. Although TransNAS-
Bench-101 has a smaller search space, it contains more datasets, domains, and search space types.

Data- # Task # Search Space Search Space
sets Domains Size Type

NAS-Bench-101 1 1 510M Cell
NAS-Bench-201 3 1 15.6K Cell

TransNAS-Bench-101 7 4 7.3K Cell & Macro

4

Under review as a conference paper at ICLR 2021

CLS_OBJ-V

CLS_SCE-V
JIGSAW-V

LAYOUT-V AE-V

NORMAL-V

SEG_SEM-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.76 0.591 0.588 0.783 0.704 0.784

0.76 1 0.738 0.752 0.568 0.817 0.796

0.591 0.738 1 0.692 0.433 0.64 0.723

0.588 0.752 0.692 1 0.429 0.576 0.693

0.783 0.568 0.433 0.429 1 0.602 0.691

0.704 0.817 0.64 0.576 0.602 1 0.697

0.784 0.796 0.723 0.693 0.691 0.697 1
0.5

0.6

0.7

0.8

0.9

1.0

(a) Macro (100%)

CLS_OBJ-V

CLS_SCE-V
JIGSAW-V

LAYOUT-V AE-V

NORMAL-V

SEG_SEM-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.809 0.815 0.802 0.454 0.768 0.677

0.809 1 0.763 0.634 0.251 0.866 0.844

0.815 0.763 1 0.806 0.445 0.736 0.666

0.802 0.634 0.806 1 0.483 0.632 0.531

0.454 0.251 0.445 0.483 1 0.256 0.0961

0.768 0.866 0.736 0.632 0.256 1 0.806

0.677 0.844 0.666 0.531 0.0961 0.806 1
0.2

0.4

0.6

0.8

1.0

(b) Cell (100%)

CLS_OBJ-V

CLS_SCE-V
JIGSAW-V

LAYOUT-V AE-V

NORMAL-V

SEG_SEM-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.331 0.196 -0.0339 0.528 0.37 0.467

0.331 1 0.486 0.463 0.00343 0.569 0.338

0.196 0.486 1 0.353 0.0545 0.39 0.408

-0.0339 0.463 0.353 1 -0.241 0.132 0.133

0.528 0.00343 0.0545 -0.241 1 0.281 0.506

0.37 0.569 0.39 0.132 0.281 1 0.337

0.467 0.338 0.408 0.133 0.506 0.337 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Macro (50%)

CLS_OBJ-V

CLS_SCE-V
JIGSAW-V

LAYOUT-V AE-V

NORMAL-V

SEG_SEM-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.217 0.0951 0.202 0.328 0.113 -0.118

0.217 1 0.007 -0.397 -0.241 0.55 0.531

0.0951 0.007 1 0.196 0.175 -0.0287 -0.132

0.202 -0.397 0.196 1 0.479 -0.319 -0.594

0.328 -0.241 0.175 0.479 1 -0.216 -0.544

0.113 0.55 -0.0287 -0.319 -0.216 1 0.384

-0.118 0.531 -0.132 -0.594 -0.544 0.384 1
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) Cell (50%)

Figure 4: The Spearman rank correlations among tasks. Networks in the cell-level search space has
higher correlations than the macro-level search space. The correlations shrinks quickly if we sample
top 50% of the networks.

provided, it first enabled transfer learning across tasks. Ten benchmark algorithms are evaluated with
extensive experiments in addition to network information.

TransNAS-Bench-101’s commonalities with previous benchmarks mainly lie in: (1) It offers de-
tailed network training information with all the networks in a complete search space. (2) It also
adopts the cell-based search space, treating each cell as a DAG. However, TransNAS-Bench-101
evaluates its networks across a much more diversified set of tasks. It is also the first benchmark that
provides a thorough analysis of the macro skeleton search space.

4 ANALYSIS OF TRANSNAS-BENCH-101

10 1 100 101

Feature Extractor GFLOPs
0

500

1000

1500

2000

2500

3000

Av
g

Ra
nk

in
g

ac
ro

ss
 7

 T
as

ks

101

3 × 100

4 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(a) Macro-level

10 2 10 1 100

Feature Extractor GFLOPs
0

500

1000

1500

2000

2500

3000

3500
Av

g
Ra

nk
in

g
ac

ro
ss

 7
 T

as
ks

3 × 100

4 × 100

5 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(b) Cell-level

Figure 3: The Architecture performance ranking, FLOPs,
and training time in both search spaces. The longest single
network training time is 18h on one Nvidia V100 GPU.

Overview of architectures. The
architectures’ performance ranking,
FLOPs, and training time are pre-
sented in Figure 3. We obtain rakings
of each architecture’s validation per-
formance on all 7 tasks first, then plot
the average ranking. A higher num-
ber means better performance rank-
ing. We also provide each architec-
ture’s FLOPs and training time as a
reference.

The pattern shows that a network
with more FLOPs and longer train-
ing time tends to perform better on
the given tasks within a reasonable
range, but it does not include some of
the search space’s largest networks. Figure 3 also reveals some distinctive characteristics of both
search spaces. The macro-level search space has its networks more evenly spread out in terms of
FLOPs, whereas networks in the cell-level search space are more concentrated at certain numbers.
The macro-level search space’s network FLOPs vary across a wider range from 108 to 1011, while
the cell-level search space’s architectures range across 108 to 1010, which is a magnitude smaller.
It can take up to 18 hours to train a network in the macro-level search space, which is three times
the GPU hour needed to train the most computationally demanding network on the cell-level search
space.

Correlations among tasks. We analyze cross-task correlations by calculating the Spearman Rank
Correlation Scores among the tasks, and present the results in Figure 4. Although object classifica-
tion and scene classification are both classification tasks, scene classification has higher correlations
with surface normal and semantic segmentation tasks on both search spaces than object classifica-
tion. This phenomenon shows that tasks within the same domain, even though they are based on
essentially the same images, might not necessarily be closer in terms of architectural performance.
We visualize the network performance of tasks with the highest (0.817) and lowest (0.429) correla-
tions on the macro-level search space in Figure 5.

5

Under review as a conference paper at ICLR 2021

46 48 50 52 54 56 58
Scene Classification Accuracy

20

22

24

26

28

30

Se
m

an
tic

 S
eg

m
en

ta
tio

n
m

Io
U

(a) Highest correlation

0.75 0.70 0.65 0.60
Room Layout Negative MSE

0.3

0.4

0.5

0.6

0.7

Au
to

en
co

de
r S

SI
M

(b) Lowest correlation

Figure 5: Tasks with the highest and lowest correlations on
the macro-level search space.

The Autoencoding task has very dis-
tinctive behaviors under two search
spaces. Similar to semantic segmen-
tation and surface normal, it is an
image translation task that outputs
256x256 images. With networks in
the macro-level search space, the au-
toencoding task has moderate corre-
lations with semantic segmentation
(0.691) and surface normal (0.602).
However, under the cell-level search
space, it has almost no correlations
with semantic segmentation (0.0961),
and very weak correlation with sur-

face normal (0.256). This huge discrepancy shows that the selection of search space can significantly
impact certain tasks. Some search spaces can dramatically lower the difficulty of NAS transfer, and
some might have inherent disadvantages. It again highlights the importance of validating an algo-
rithm’s performance on multiple search spaces to obtain unbiased evaluations.

The correlations among tasks shrink quickly if we plot the graphs with only the top 50% networks’
performance information. Some tasks still have relatively strong correlations, but others rapidly drop
to below zero. This shows that the direct transfer strategy of architectures might not always yield
good results, and robustly transferrable algorithms should be wary of it to avoid negative transfer.

5 BENCHMARK ALGORITHMS

0 100 200 300 400 500
Trials

2000

2200

2400

2600

2800

3000

3200

Ne
tw

or
k

Ra
nk

in
g

(a) Macro-level

0 100 200 300 400 500
Trials

2600

2800

3000

3200

3400

3600

3800

4000

RS
RSDT_class_object
RSDT_class_scene
RSDT_room_layout
RSDT_autoencoder
RSDT_jigsaw
Global Max

(b) Cell-level

Figure 6: Comparison of random search and direct architec-
ture transfer. RSDT stands for Random Search from Direct
Architecture Transfer from a specific source task.

In this section, we evaluate 4 transfer
schemes of different types: (1) Ran-
dom Search (RS) (Bergstra & Ben-
gio, 2012); (2) Direct transfer of
top architectures proposed by random
search (RSDT); (3) Direct policy
transfer of reinforcement learning-
based algorithm, e.g., Proximal Pol-
icy Optimization (PPO) (Schulman
et al., 2017); (4) Meta-learning based
algorithm, e.g., CATCH (Chen et al.,
2020); (5) Evolution algorithms with
transferred population initialization,
e.g., Regularized Evolution Algo-
rithm (REA) (Real et al., 2019). Each selected algorithm represents a distinctive type of transfer
scheme, and they are compatible with both search spaces. Although many current weight-sharing
algorithms have shown promising results, most of them operate on cell-based search spaces only,
and it would take non-trivial modifications to the algorithms for them to search on the macro-level
search space. Therefore, we do not include them in our initial benchmark.

0 10 20 30 40 50
Trials

3000

3050

3100

3150

3200

3250

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
Global Max

(a) Macro-level

0 10 20 30 40 50
Trials

3750

3800

3850

3900

3950

4000

4050

4100

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
Global Max

(b) Cell-level

0 10 20 30 40 50
Trials

3100

3120

3140

3160

3180

3200

3220

3240

3260

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
global_max

(c) REA on Room Layout.

Figure 7: Comparison of the transfer and train-from-scratch (tfs) results of REA. REA-transfer has
slight but stable improvements across all tasks.

6

Under review as a conference paper at ICLR 2021

0 10 20 30 40 50
Trials

3100

3125

3150

3175

3200

3225

3250

3275

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
Global Max

(a) Macro-level

0 10 20 30 40 50
Trials

3800

3850

3900

3950

4000

4050

4100

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
Global Max

(b) Cell-level

0 10 20 30 40 50
Trials

3100
3120
3140
3160
3180
3200
3220
3240
3260

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
global_max

(c) CATCH on Object Class.

Figure 8: Comparison of PPO and CATCH. CATCH largely improves PPO-transfer’s performance,
and it works exceedingly well on object classification.

Evaluation of direct architecture transfer. Many NAS algorithms have attempted to use archi-
tectures as the central component for transfer (Zoph et al., 2018; Pasunuru & Bansal, 2019), which
inspired us to look into the efficiency of direct transfer of top architectures found by RS. In Figure
6, we present the search result of such a transfer scheme. For each trial, we first run RS on a task for
50 epochs, then take the top performer and transfer it to a target task. We then record the ranking
of the searched network on the target task. This process is repeated for 500 times for each possible
combination of the source task and target task. We sort the transferred architectures’ rankings for
each target task and plot them into curves distinguished by different source tasks. After running
500× 7 trials, each target task has 6 curves, representing the transfer result from a source task. We
then take the average of each curve across all 7 tasks. We also run 500 trials of RS on each task,
and plot the average curves on the ranking of architectures found by it within 50 epochs. Figure 6
shows that direct transfer of architectures found by RS almost always yields worse results than RS
by the same budget. It shows that even if any NAS algorithm can be guaranteed to find the optimal
architecture on a source task given enough time, its direct transfer performance on the target task
can still suffer.

Evaluation of policy transfer. We use a multi-layer perceptron (MLP) as the policy network for
PPO, and pretrain the policy for 50 epochs on a less time-costly source task. The pretrained policy
is then adapted to the target task to search for another 50 epochs. CATCH adopts the same budget
for pretrain and transfer, and repeat each trial for 50 times. Similar to the experiments above, we
plot the search results on each target task first, then take the average of the curves across all tasks.
The result is shown in Figure 8.

Direct transfer of PPO policies shows worse results than its non-transfer version, a phenomenon
commonly referred to as negative transfer. We hypothesize this is due to PPO’s overfitting to the
source task during the pretrain phase. CATCH mediates it with two added components: An encoder
that provides task information that guides its policy, and an evaluator that filters inferior candidates.
From our experiments, these added components do improve the transfer results. As Table 3 indicates,
it shows exceedingly good performance under certain settings such as object classification on the
macro-level search space, but it also struggles on some other tasks, such as room layout on cell-level
search space.

Evaluation of evolution algorithms with transferred population initialization. We reproduced
REA in our benchmark, and the result is presented in Figure 7. During the pretrain phase, we
randomly initialize a population, then set the pretrain budget, i.e., the total number of architecture to
search during the pretrain phase, to be 50. After training on the given budget on a source task, we
take the top 10 architectures in the pretrain history as the initialization of population on the target
task, and search for 50 epochs. Although it does not have significant boosts on certain tasks like
CATCH does, it maintains a relatively stable performance improvement across all examined tasks,
which results in the slight surpass from its train-from-scratch version when the curves are averaged.

Comparison across Transfer NAS Algorithms The average performance of each algorithm is
presented in Table 3. REA-transfer is the top performer among all evaluated algorithms, achieving
46.38 and 51.46 average performance on the cell-level and macro-level search spaces. CATCH
has very close performance on the cell-level search space (0.14), but this difference is enlarged
when the search is conducted on the macro-level search space (0.74). The experiments highlight
that: (1) Direct transfer of architectures performs significantly worse than random search; (2) Direct

7

Under review as a conference paper at ICLR 2021

Table 3: Performance comparison of different transferrable NAS methods. Room layout’s L2 loss
is multiplied by a factor of 100 for better readability. The transferred versions of REA and PPO
are pretrained on the least time-consuming task, Jigsaw. The average scores of all algorithms are
calculated with the remaining 6 tasks.

Tasks Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw avg.
Metric Acc. Acc. SSIM SSIM mIoU L2 loss Acc.

RS 45.16±0.4 54.41±0.3 55.94±0.8 56.85±0.6 25.21±0.4 61.48±0.8 94.47±0.3 46.01
RSDT 43.95±0.5 52.83±0.8 51.74±1.7 55.33±0.5 22.99±0.4 64.57±1.0 92.78±0.9 43.71

REA-tfs 45.39±0.2 54.62±0.2 56.96±0.1 57.22±0.3 25.52±0.3 61.75±0.8 94.62±0.3 46.33
Cell REA-transfer 45.51±0.3 54.61±0.2 56.52±0.6 57.20±0.7 25.46±0.4 61.04±1.0 - 46.38
level PPO-tfs 45.19±0.3 54.37±0.2 55.83±0.7 56.90±0.6 25.24±0.3 61.38±0.7 94.46±0.3 46.02

PPO-transfer 44.81±0.6 54.15±0.5 55.7.0±1.5 56.60±0.7 24.89±0.5 62.01±1.0 - 45.69
CATCH 45.27±0.5 54.38±0.2 56.13±0.7 56.99±0.6 25.38±0.4 60.70±0.7 - 46.24

Global Best 46.32 54.94 57.72 59.62 26.27 59.38 95.37 47.58
RS 46.85±0.3 56.5±0.4 70.06±3.1 60.70±0.9 28.37±0.5 59.35±1.0 96.78±0.2 50.52

RSDT 45.70±0.4 55.06±0.6 59.52±2.4 58.96±0.7 26.69±0.5 62.24±0.7 95.80±0.5 47.28
REA-tfs 47.09±0.4 56.57±0.4 69.98±3.6 60.88±1.0 28.87±0.4 58.73±1.1 96.88±0.2 50.78

Macro REA-transfer 46.98±0.4 56.60±0.3 73.41±2.9 61.02±0.8 28.90±0.5 58.18±1.3 - 51.46
level PPO-tfs 46.84±0.4 56.48±0.3 70.92±3.2 60.82±0.8 28.31±0.5 58.84±1.1 96.76±0.2 50.75

PPO-transfer 46.76±0.5 56.47±0.4 70.54±2.9 60.80±1.3 28.31±0.6 59.17±0.8 - 50.62
CATCH 47.29±0.3 56.49±0.3 70.36±3.0 60.85±0.7 28.71±0.4 59.37±0.6 - 50.72

Global Best 47.96 57.48 76.88 64.35 29.66 56.28 97.02 53.34

policy transfer works better than direct architecture transfer, whereas it often results in negative
transfer; (3) it is possible to improve the policy transfer’s robustness with added mechanisms, such
as CATCH’s encoder and evaluator; (4) Maintaining consistent performance across tasks and search
spaces remains a valid challenge for many NAS algorithms.

6 DISCUSSIONS AND CONCLUSION

Major challenges of transferrable NAS research. After working closely with the benchmark, we
realize that (1) the top networks can be very different across tasks. Therefore, the transfer schemes
should be able to respond quickly if the task nature has significantly changed. However, effectively
detecting and responding to such changes can be difficult. (2) Transfer learning methods usually
do not assume they have knowledge about future tasks, but if the policy is specifically designed for
NAS, it is possible to incorporate certain NAS features to speed up learning. The major challenges
lie in what proper NAS information we can provide and how.

Suggestions for future NAS research: (1) It is important to study efficient NAS strategies that work
beyond cell-level search space, as some network attributes, such as the macro skeleton, might have a
larger impact on performance for some tasks. (2) When comparing algorithms, besides looking into
their final search result, it is also essential to see how much improvements they make upon RS in the
same search space. Table 3’s REA-tfs on autoencoding has a much higher score in the macro-level
search space than algorithms in the cell-level search space, but it performs even worse than RS.
(3) When transferring policies and architectures, including some carefully designed mechanisms
might help tweak the transferred components toward directions favorable by the target task. (4)
Evolutionary methods are not typical strategies studied by the transfer learning literature, but its
performance hints that further research can possibly be a promising direction. Also, there might be
other strategies outside of the pool of conventional transfer methods that can generalize well.

In this paper, we present TransNAS-Bench-101, a benchmark for improving the transferrability and
generalizability of NAS algorithms. We evaluate 7,352 neural networks on 7 image tasks, provide
detailed analysis on the benchmark, then point out challenges and suggestions for future research. It
is difficult for algorithms to maintain its performance when the task nature has shifted robustly, and
experiments show that there is still large room for improvement in NAS methods’ generalizability.
With this work, we hope to make cross-task NAS research more accessible, and encourage more
exceptional algorithms that are both efficient and flexible on multiple tasks and search spaces to
evolve. In the future, we will try to (1) enlarge our search spaces, and (2) evaluate all networks
with more different seeds. We welcome researchers to test their algorithms’ generalizability on
TransNAS-Bench-101, and we are happy to include their results in future versions of our benchmark.

8

Under review as a conference paper at ICLR 2021

REFERENCES

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13(1):281–305, 2012.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In ICLR, 2019.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tiny transfer learning: Towards memory-
efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff,
Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for dense image
prediction. In Advances in neural information processing systems, pp. 8699–8710, 2018.

Xin Chen, Yawen Duan, Zewei Chen, Hang Xu, Zihao Chen, Xiaodan Liang, Tong Zhang, and
Zhenguo Li. Catch: Context-based meta reinforcement learning for transferrable architecture
search. arXiv preprint arXiv:2007.09380, 2020.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2019a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Pro-
ceedings of the IEEE Conference on computer vision and pattern recognition, pp. 1761–1770,
2019b.

Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen, Junzhou Huang, and Mingkui Tan.
Breaking the curse of space explosion: Towards efficient nas with curriculum search.

Shi Han, Pi Renjie, Xu Hang, Li Zhenguo, Kwok James Tin-Yau, and Zhang Tong. Bridging the
gap between sample-based and one-shot neural architecture search with bonas. In NeurIPS, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, and Jian Sun. Detnet: A
backbone network for object detection. In ECCV, 2018.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=r1eowANFvr.

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, and Wanli Ouyang. Compu-
tation reallocation for object detection. In ICLR. OpenReview.net, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Ramakanth Pasunuru and Mohit Bansal. Continual and multi-task architecture search. arXiv preprint
arXiv:1906.05226, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International Conference on Machine Learning, pp. 4095–4104, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai. Meta architecture search. In Advances
in Neural Information Processing Systems, pp. 11227–11237, 2019.

9

https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=r1eowANFvr

Under review as a conference paper at ICLR 2021

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pp. 6105–6114, 2019.

Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with neural
automl. In Advances in Neural Information Processing Systems, pp. 8356–8365, 2018.

Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Auto-fpn: Automatic network
architecture adaptation for object detection beyond classification. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 6649–6658, 2019.

Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard. In
International Conference on Learning Representations, 2019.

Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Sm-nas: Structural-to-modular
neural architecture search for object detection. arXiv preprint arXiv:1911.09929, 2019.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105–7114, 2019.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, pp. 3712–3722, 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

10

	Introduction
	The TransNAS-Bench-101 dataset
	Search Spaces and Architectures
	Datasets
	Training Details

	Related Work
	Analysis of TransNAS-Bench-101
	Benchmark Algorithms
	Discussions and Conclusion

