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ABSTRACT

Federated Learning allows training machine learning models by using the compu-
tation and private data resources of many distributed clients such as smartphones
and IoT devices. Most existing works on Federated Learning (FL) assume the
clients have ground-truth labels. However, in many practical scenarios, clients may
be unable to label task-specific data, e.g., due to a lack of expertise. This work
considers a server that hosts a labeled dataset and wishes to leverage clients with
unlabeled data for supervised learning. We propose a new Federated Learning
framework referred to as SemiFL to address Semi-Supervised Federated Learning
(SSFL). In SemiFL, clients have completely unlabeled data, while the server has a
small amount of labeled data. SemiFL is communication efficient since it separates
the training of server-side supervised data and client-side unsupervised data. We
demonstrate several strategies of SemiFL that enhance efficiency and prediction
and develop intuitions of why they work. In particular, we provide a theoretical
understanding of the use of strong data augmentation for Semi-Supervised Learning
(SSL), which can be interesting in its own right.
Extensive empirical evaluations demonstrate that our communication efficient
method can significantly improve the performance of a labeled server with un-
labeled clients. Moreover, we demonstrate that SemiFL can outperform many
existing SSFL methods, and perform competitively with the state-of-the-art FL
and centralized SSL results. For instance, in standard communication efficient
scenarios, our method can perform 93% accuracy on the CIFAR10 dataset with
only 4000 labeled samples at the server. Such accuracy is only 2% away from
the result trained from 50000 fully labeled data, and it improves about 30% upon
existing SSFL methods in the communication efficient setting.

1 INTRODUCTION

For billions of users around the world, mobile devices and Internet of Things (IoT) devices are
becoming common computing platforms (Lim et al., 2020). These devices produce a large amount of
data that can be used to improve a variety of existing applications (Hard et al., 2018). Consequently, it
has become increasingly appealing to process data and train models locally from privacy and economic
standpoints. To address this, distributed machine learning framework of Federated Learning (FL) has
been proposed (Konečnỳ et al., 2016; McMahan et al., 2017). This method aggregates locally trained
model parameters in order to produce a global inference model without sharing private local data.

Most existing works of FL focus on supervised learning tasks assuming that clients have ground-
truth labels. However, in many practical scenarios, most clients may not be experts in the task of
interest to label their data. In particular, the private data of each client may be completely unlabeled.
For instance, a healthcare system may involve a central hub (“server”) with domain experts and a
limited number of labeled data (such as medical records), together with many rural branches with
non-experts and a massive number of unlabeled data. As another example, an autonomous driving
startup (“server”) may only afford beta-users assistance in labeling a road condition but desires to
improve its modeling quality with the information provided by many decentralized vehicles that are
not beta-users. The above scenarios naturally lead to the following important question. How a server
that hosts a labeled dataset can leverage clients with unlabeled data for a supervised learning task in
the Federated Learning setting?
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Figure 1: An illustration of (a) vanilla extension of FL with SSL and (b) SemiFL. (a) The vanilla
extension trains and aggregates server and clients models in parallel and generates pseudo-labels with
the training models for each batch of unlabeled data. (b) The SemiFL updates the aggregated client
model with labeled data (also named “Fine-tuning”) and generates pseudo-labels only once with the
model received from the server.

In this work, we propose a new Federated Learning framework referred to as SemiFL to address
the problem of Semi-Supervised Federated Learning (SSFL). Our solution is inspired by a series
of recent Federated Learning and Semi-Supervised Learning (SSL) solutions. The key ingredient
that enable SemiFL to utilize decentralized unsupervised data is that we alternate the training of
labeled server and unlabeled clients to ensure that the quality of pseudo-labeling is highly maintained
during the training. We perform extensive empirical experiments to evaluate SemiFL and compare it
with various baselines and the state-of-the-art techniques. The results demonstrate that SemiFL can
outperform existing SSFL methods and perform closely to the state-of-the-art of FL and centralized
SSL results. In particular, we demonstrate the following.

• To the best of our knowledge, SemiFL is the first work that can significantly improve the
performance of a labeled server using unlabeled clients, e.g., from 42% to 88% with 250
labeled data, and from 77% to 93% accuracy with 4000 labeled data on the CIFAR10 dataset.
The latter accuracy is only 2% away from the state-of-the-art result trained from 50000 fully
labeled data.

• SemiFL significantly improves upon earlier centralized semi-supervised learning methods
which fail to improve the performance of a labeled server, e.g, from 63% to 85% with 5000
labeled data and 0.05 active rate of 100 clients (meaning 5% clients participate in each
round) on the CIFAR10 dataset. We provide 20% improvement (in absolute value) over the
existing SSFL methods in the same setting.

• SemiFL performs competitively with the state-of-the-art of FL methods and centralized
semi-supervised learning methods. Our method for 4000 labeled data on the CIFAR10
dataset is only 1% and 2% away from the state-of-the-art FL and centralized SSL results
respectively.

• As a critical component of the proposed semiFL algorithm is the strong data augmentation
technique, we also develop a theoretical understanding of its role in semi-supervised learning,
which is the first in the literature to the best of our knowledge.

The outline of the rest of this paper is given below. In Section 2, we review the related work. In
Section 3, we present the proposed SemiFL solution and some intuitive explanations. As part of
the explanations, we provide a new theoretical analysis on how the strong data augmentation can
significantly improve the classification accuracy. In Section 4, we evaluate the empirical performance
of the SemiFL. We make some concluding remarks in Section 5.

2 RELATED WORK

Federated Learning The goal of Federated Learning is to scale and speed up the training of
distributed models (Bonawitz et al., 2019; He et al., 2020). Communication efficiency, system
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heterogeneity, statistical heterogeneity, and privacy are all major issues in FL (Li et al., 2020b).
To reduce the communication costs in FL, some studies propose using data compression tech-
niques (Konečnỳ et al., 2016; Alistarh et al., 2017; Ivkin et al., 2019), adding regularization terms
for local optimization (Sahu et al., 2018; Acar et al., 2021), and developing FL counterparts of
Batch Normalization (Hsieh et al., 2020; Li et al., 2021; Diao et al., 2021). Moreover, the use of
local momentum and global momentum (Wang et al., 2019a) have been shown to facilitate faster
convergence. In order to address potential system heterogeneity, asynchronous communication and
active client sampling techniques have been developed (Bonawitz et al., 2019; Nishio & Yonetani,
2019). Statistical heterogeneity potentially poses yet another major challenge. Several methods have
been proposed in order to address Non-IID data in FL, such as personalized local models (Liang
et al., 2020), assisted learning (Xian et al., 2020), meta-learning (Jiang et al., 2019; Khodak et al.,
2019), multi-task learning (Smith et al., 2017), transfer learning (Wang et al., 2019b; Mansour et al.,
2020), knowledge distillation (Li & Wang, 2019), lottery ticket hypothesis (Li et al., 2020a), and
masked cross-entropy (Diao et al., 2021) methods.

Semi-Supervised Learning Semi-Supervised Learning (SSL) refers to the general problem of
learning with partially labeled data, especially when the amount of unlabeled data is much larger
than that of the labeled data (Zhou & Li, 2005; Rasmus et al., 2015). The idea of self-training
(namely to obtain artificial labels for unlabeled data from a pre-trained model) can be traced back to
decades ago (Scudder, 1965; McLachlan, 1975), and has been applied to various domains such as
language processing (McClosky et al., 2006), object detection (Rosenberg et al., 2005; Sohn et al.,
2020b), image classification (Lee et al., 2013; Xie et al., 2020), and domain adaptation (Zou et al.,
2018). Pseudo-labeling (Lee et al., 2013), a component of many recent SSL techniques (Miyato et al.,
2018), is a form of entropy minimization (Grandvalet et al., 2005) by converting model predictions
into hard labels. Consistency regularization (Bachman et al., 2014) refers to training models via
minimizing the distance among stochastic outputs (Bachman et al., 2014; Rasmus et al., 2015).
Various stochastic approaches have been proposed, such as exponential moving average of model
parameters (Tarvainen & Valpola, 2017), previous model checkpoints (Laine & Aila, 2016), stochastic
regularization (Srivastava et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016), and adversarial
perturbations (Miyato et al., 2018). A theoretical analysis of consistency regularization was recently
developed in (Wei et al., 2021). More recently, It has been demonstrated that the technique of
strong data augmentation can lead to better outcomes (French et al., 2017; Xie et al., 2019; Berthelot
et al., 2019b;a). Strongly augmented examples are frequently found outside of the training data
distribution, which has been shown to benefit SSL (Dai et al., 2017). Noisy Student (Xie et al., 2020)
has combined these strategies into a self-training framework, demonstrating outstanding performance
on ImageNet with a large quantity of unlabeled data. Our work is based on the aforementioned SSL
works, particularly the FixMatch (Sohn et al., 2020a) and ReMixMatch (Berthelot et al., 2019a).

Semi-Supervised Federated Learning (SSFL) The majority of existing FL works focus on super-
vised learning tasks, with clients having ground-truth labels. However, in many real-world scenarios,
most clients are unlikely to be experts in the task of interest, an issue raised in a recent survey
paper (Jin et al., 2020). In the research line of SSFL, a consistency loss based on the agreement
among clients was developed in (Jeong et al., 2020). The paper (Albaseer et al., 2020) assumes that
part of clients have unsupervised data, and trains a convergent model at the server to label them. The
paper (Itahara et al., 2020) considers using shared unlabeled data for Federated Distillation (Ahn
et al., 2019; Sattler et al., 2020). Another related work (Zhang et al., 2020) trains and aggregates
the model parameters of the labeled server, and unlabeled clients in parallel. Applications of SSFL
to specific applications can be found in, e.g., (Zhao et al., 2020; Yang et al., 2021). In the standard
communication efficient scenario (McMahan et al., 2017) with unlabeled clients, existing methods
fail to perform closely to the state-of-the-art centralized SSL methods (Jeong et al., 2020; Zhang et al.,
2020; Long et al., 2020). This is somewhat surprising given that their underlying methods of training
unlabeled data are similar. We will show that the current SSFL methods cannot outperform training
with only the labeled data. The proposed method (SemiFL) is the first work that performs competi-
tively with the state-of-the-art centralized SSL methods to the best of our knowledge. Moreover, we
demonstrate that SemiFL can outperform some existing FL results trained from fully supervised data.
Moreover, SemiFL provides a large extension of FL to many practical applications where clients
cannot access annotated data.
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3 METHOD

3.1 THE SEMIFL ALGORITHM

In a supervised learning classification task, we are given a dataset D = {xi, yi}Ni=1, where xi is a
feature vector, yi is an one-hot vector representing the class label in a K-class classification problem,
and N is the number of training examples. In a semi-supervised learning classification task, we have
two datasets, namely a supervised dataset S and an unsupervised dataset U . Let S = {xis, yis}

NS
i=1

be a set of NS labeled data observations, and U = {xiu}
NU
i=1 be a set of NU unlabeled observations

(without the corresponding true label yiu). It is often interesting to study the case where NS � NU .

In this work, we focus on Semi-Supervised Federated Learning (SSFL) with unlabeled clients as
illustrated in Figure 1. Assume that there are M clients and let xu,m denote the set of unsupervised
data available at client m = 1, 2, · · · ,M . Similarly, let (xs, ys) denote the set of labeled data
available at the server. The server model is parameterized by model parameters Ws. The client
models are parameterized respectively by model parameters {Wu,1, . . . ,Wu,M}. We assume that all
models share the same model architecture, denoted by f : (x,w) 7→ f(x,w), which maps an input x
and parameters W to a vector on the K-dimensional simplex, for instance using softmax function
applied to model outputs.

We summarize the pseudo-code of the proposed solution in Algorithm 1. At each iteration t, the
server will first update the model with the standard supervised loss Ls for local epochs E with data
batch (xb, yb) of size Bs randomly split from the supervised dataset Ds, using

Ls = `(f(α(xb),Ws), yb), Ws = Ws − η∇WLs,
where α(·) represents a weak data augmentation, such as random horizontal flipping and random
cropping, that maps one image to another one. Subsequently, the server will update the static Batch
Normalization (sBN) statistics (Diao et al., 2021) (as discussed in Subsection 3.4). Next, the server
will distribute server model parameters Ws to a subset of clients. We denote the proportion of active
clients at each communication round t as activity rate Ct ∈ (0, 1]. Without loss of generality, we
assume that Ct = C is a constant over time. After each active local client, say client m, receives the
transmitted Ws, it will generate pseudo-labels yu,m as follows:

Wu,m ←Ws, yu,m = f(α(xu,m),Wu,m).

Each local client will construct a high-confidence dataset Dfix
u,m inspired by FixMatch (Sohn et al.,

2020a) at each iteration t, defined as:

Dfix
u,m = {(xu,m, yu,m) with max (yu,m) ≥ τ}.

for a global confidence threshold 0 < τ < 1 pre-selected by all clients. If for some client m, we have
Dfix
u,m = ∅ then it will stop and refrain from transmission to the server. Otherwise, we will sample

with replacement to construct a dataset inspired by MixMatch (Berthelot et al., 2019b). In other
words,

Dmix
u,m = Sample |Dfix

u,m| with replacement{(xu,m, yu,m)},

where |Dfix
u,m| denotes the number of elements of Dfix

u,m. Thus |Dmix
u,m| = |Dfix

u,m|. Subsequently, client
m trains its local model for E epoch to speed up convergence (McMahan et al., 2017). For each local
training epoch of the client m, it randomly splits local data Dfix

u,m,Dmix
u,m into batches Bfix

u,m,Bmix
u,m of

size Bm. For each batch iteration, as in (Zhang et al., 2017), client m constructs Mixup data from
one particular data batch (xfix

b , y
fix
b ), (xmix

b , ymix
b ) in the following way.

λmix ∼ Beta(a, a), xmix ← λmixx
fix
b + (1− λmix)xmix

b ,

where a is the Mixup hyperparameter. Next, client m defines the “fix” loss Lfix (Sohn et al., 2020a)
and “mix” loss Lmix (Berthelot et al., 2019a) by

Lfix = `(f(A(xfix
b ),Wu,m), yfix

b ),

Lmix = λmix · `(f(α(xmix),Wu,m), yfix
b ) + (1− λmix) · `(f(α(xmix),Wu,m), ymix

b )
)
.

Here, A represents a strong data augmentation mapping, e.g., the RandAugment (Cubuk et al., 2020)
used in our experiments, and ` is often the cross entropy loss for classification tasks. Finally, client m
performs a gradient descent step with

Wu,m = Wu,m − η∇W (Lfix + λ · Lmix),
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Algorithm 1 SemiFL: Semi-Supervised Federated Learning with Unlabeled Clients
Input: Unlabeled data xu,1:M distributed on M local clients, activity rate C, the number of com-

munication rounds T , the number of local training epochs E, server and client respective
batch sizes Bs and Bm, local learning rate η, server model parameterized by Ws client
models parameterized by {Wu,1, . . . ,Wu,M}, weak data augmentation function α(·), strong
data augmentation function A(·), confidence threshold τ , Mixup hyper-parameter a, loss
hyperparameter λ, common model architecture function f(·)

System executes:
for each communication round t = 1, 2, . . . T do

W t
s ← ServerUpdate(xs, ys,W

t
s)

Update the sBN statistics
St ← max(bC ·Mc, 1) active clients uniformly sampled without replacement
for each client m ∈ St in parallel do

Distribute server model parameters to local client m, namely W t
u,m ←W t

s

W t
u,m ← ClientUpdate(xu,m,W

t
u,m)

end
Receive model parameters from Mt clients, and calculate W t

s = M−1
t

∑Mt

m=1W
t
u,m

end
WT
s ← ServerUpdate(xs, ys,W

T
s )

Update the sBN statistics
ServerUpdate (xs, ys,Ws):

Construct supervised dataset Ds = (xs, ys)
for each local epoch e from 1 to E do
Bs ← Randomly split local data Ds into batches of size Bs
for batch (xb, yb) ∈ Bs do

Ls ← `(f(α(xb),Ws), yb)
Ws ←Ws − η∇WLs

end
end
Return Ws

ClientUpdate (xu,m,Wu,m):
Generate pseudo-label with weakly augmented data α(xu,m), namely yu,m = f(α(xu,m),Wu,m)
Construct FixMatch dataset, namely Dfix

u,m = {(xu,m, yu,m) with max (yu,m) ≥ τ}
If Dfix

u,m = ∅ then Stop. Return.
Construct an equal-size MixMatch dataset, namely
Dmix
u,m = Sample |Dfix

u,m| with replacement{(xu,m, yu,m)}
for each local epoch e from 1 to E do
Bfix
u,m,Bmix

u,m ← Randomly split local data Dfix
u,m,Dmix

u,m into batches of size Bfix
m , Bmix

m

for batch (xfix
b , y

fix
b ), (xmix

b , ymix
b ) ∈ Bfix

u,m,Bmix
u,m do

λmix ∼ Beta(a, a)
xmix ← λmixx

fix
b + (1− λmix)xmix

b

Lfix ← `(f(A(xfix
b ),Wu,m), yfix

b )
Lmix ← λmix · `(f(α(xmix),Wu,m), yfix

b ) + (1− λmix) · `(f(α(xmix),Wu,m), ymix
b )
)

Wu,m ←Wu,m − η∇W (Lfix + λ · Lmix)
end

end
Return Wu,m and send it to the server

where λ > 0 is a hyperparameter set to be one in our experiments. After training for E local epochs,
client m transmits Wu,m to the server.

Without loss of generality assume that clients 1, 2, · · · ,Mt have sent their models to the server at
time t. The server then aggregates client model parameters {Wu,1, . . . ,Wu,Mt} by (McMahan et al.,
2017) Ws = M−1

t

∑Mt

m=1Wu,m. This process is then repeated for multiple communication rounds
T . After the training is finished, the server will further fine-tune the aggregated model by additional
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training with the server’s supervised data using its supervised loss Ls. Finally, it will update the sBN
statistics one final time.

3.2 THEORETICAL UNDERSTANDING OF STRONG DATA AUGMENTATION FOR SSL

To provide further insights, we develop a theoretical understanding of the strong data augmentation
(or strong augmentation), which is a critical component of SemiFL and can be interesting in its own
right. Intuitively, strong augmentation is a process that maps a data point (e.g., an image) from high
quality to relatively low grade in a unilateral manner. The low-quality data and their high-confidence
pseudo-labels are then used for training so that there are sufficient “observations” in the data regime
insufficiently covered by labeled data.

Our theory is based on an intuitive “adequate transmission” assumption, which basically means that
the distribution of augmented data from high-confidence unlabeled data can adequately cover the data
regime of interest during prediction. Consequently, reliable information exhibited from unlabeled
data can be “transmitted” to data regimes that may have been insufficiently trained with labeled data,
as illustrated in Figure 6. Instead of studying semi-supervised learning in full generality, we restrict
our attention to a class of nonparametric kernel-based classification learning (Audibert & Tsybakov,
2005; Kohler & Krzyzak, 2007; Devroye et al., 2013) and derive analytically tractable statistical
risk-rate analysis. More detailed background and technical details are included in the Appendix. We
provide a simplified statement as follows.

Theorem (Informal): Under suitable assumptions, an SSL classifier Ĉssl trained from nu unlabeled
data and the strong data augmentation technique has a statistical risk bound at the order ofR(Ĉssl) ∼
n
−q(α+1)/{q(α+3+ρ)+d}
u where d, q, α, ρ are constants that describe the data dimension, smoothness

of the conditional distribution function (Y | X), class separability (or task difficulty), and inadequacy
of transmission, respectively. The smaller ρ, the better risk bound. Moreover, suppose that Ĉ l is the
classifier trained from nl labeled data, where nl ∼ nζu , ζ ∈ (0, 1). It can be verified that the bound of
R(Ĉu) is much smaller than that ofR(Ĉ l) when ζ < q(α+3)+d

q(α+3+ρ)+d . This provides an insight into the
critical region of nu where significant improvement can be made from unlabeled data.

3.3 ALTERNATE TRAINING

The state-of-the-art SSL methods, such as FixMatch and MixMatch, synchronize the training of
supervised and unsupervised data for every data batch (Sohn et al., 2020a; Berthelot et al., 2019b). As
depicted in Figure 1, earlier SSFL works, such as FedMatch and FedRGD, follow a vanilla extension
of SSL methods with FedAvg by training and aggregating model parameters of labeled server and
unlabeled clients in parallel (Jeong et al., 2020; Zhang et al., 2020). In particular, the vanilla method
trains and aggregates the server model trained from labeled data and clients models trained from
unlabeled data at each communication round in parallel. Moreover,it generates pseudo-labels for each
batch of unlabeled data with the local training model. However, existing papers (Jeong et al., 2020;
Zhang et al., 2020) indicate that this vanilla extension fails to perform closely to the state-of-the-art
centralized SSL methods, even if the unlabeled clients are trained with the aforementioned SSL
methods. To understand the bottleneck of this vanilla extension, we need to intuitively clarify the
reason that the centralized SSL methods work.

We can always use a model to generate pseudo-labels for unlabeled data (Lee et al., 2013). However,
the quality (Accuracy) of those pseudo-labels can be low, especially at the beginning of the training.
In this light, several papers (Xie et al., 2019; Sohn et al., 2020a) propose to hard-threshold or sharpen
the pseudo-labels to improve the quantity of accurately labeled pseudo-labels. The problem with hard
thresholding is that the data samples satisfying the confidence threshold have a small training loss.
Therefore, the model cannot be significantly improved as it already performs well on the data above
the threshold. To address this issue, we can use strong data augmentation (Dai et al., 2017; Sohn
et al., 2020a) to generate data samples that have larger training loss. In summary, a successful SSL
method must be able to generate more and more high-quality pseudo-labels during training, while the
corresponding data used for training the model must have a larger loss than that of the original data.

However, in the FL setting, we cannot guarantee an increase in the quantity of accurately labeled
pseudo-labels during training. The aggregation of a server model trained with ground-truth labels and
a subset of client models trained with pseudo-labels does not constantly improve the performance of
the global model over the previous communication round. A poorly aggregated model of the previous
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communication round will result in worse quality pseudo-labels. Subsequently, the performance of
the aggregated model will degrade at the next communication round. In order to improve the quality
of our generated pseudo-labels during training, we propose to train the labeled server and unlabeled
clients alternatively rather than in parallel. In particular, our approach consists of two important
components:

Fine-tuning with labeled data At each round, the server will retrain the aggregated model with the
labeled data. In this way, the server can provide a model which performs better, or at least not worse
than the previous round for the active clients at the next round to generate pseudo-labels. Then, the
quality of generated pseudo-labels will become better and better.

Pseudo-labeling with received model We can label the unlabeled data once the active clients at the
next round immediately receive the model from the server. On the contrary, the vanilla extension
following centralized SSL methods labels every batch of data during training of unlabeled clients.
The quality of generated pseudo-labels will gradually degrade during the training of local clients.

Our proposed approach ensures that the clients can continually generate better quality pseudo-labels
during training. We conduct ablation studies on each component of alternative training and demon-
strate the results in Table 2. Our experimental studies show that the proposed method can significantly
improve the performance of the labeled server and performs competitively even with the state-of-the-
art FL and centralized SSL methods. The limitation of our approach is that we need to update the
aggregated client model with labeled data from the server, which will delay the computation time.

3.4 STATIC BATCH NORMALIZATION

We utilize a recently proposed adaptation of Batch Normalization (BN) named Static Batch Normal-
ization (sBN) (Diao et al., 2021). It was shown that this method greatly accelerates the convergence
and improves the performance of FedAvg (McMahan et al., 2017) compared with other forms of
normalization, including InstanceNorm (Ulyanov et al., 2016), GroupNorm (GN) (Wu & He, 2018),
and LayerNorm (Ba et al., 2016). During the training phase, sBN does not track the running statistics
with momentum as in BN. Instead, it simply standardizes the data batch xb and utilizes batch-wise
statistics µb and σb in the following way.

x̃b =
xb − µb√
σ2
b + ε

· γ + β, µb = E[xb], σ2
b = Var[xb]

In FL training, the affine parameters γ and β can be aggregated as usual. We note that FedAvg with
vanilla BN is not functional because the BN statistics µ and σ used for inference is averaged from
the tracked running BN statistics of local clients during training. For a total of M local clients, sBN
computes the global BN statistics µ and σ for inference by querying each local client one more time
after training is finished, based on

µ =

∑M
m=1Nmµm∑M
m=1Nm

, µm = E[xm], σ2 =

∑M
m=1

[
(Nm − 1)σ2

m +Nm(µm − µ)2
]

(
∑M
m=1Nm)− 1

, σ2
m = Var[xm],

where xm represents the local data of client m (with size Nm).

In the context of SemiFL, we need to generate pseudo-labels at every communication round. Thus,
local clients need to upload BN statistics for every communication round. Fortunately, we can
utilize the server data xs to update the global statistics instead of querying each local client, where
µ = E[xs] and σ2 = Var[xs]. We will provide experimental results of querying the sBN statistics
from all the clients here, and include an ablation study using only the server data in the Appendix.
Our ablation study shows that the alternative way of using the server data to update the global sBN
statistics does not degrade the training performance.

4 EXPERIMENTS

To evaluate our proposed method, we conduct experiments with CIFAR10, SVHN, and CIFAR100
datasets (Netzer et al., 2011; Krizhevsky et al., 2009). Further Details can be found in the Appendix.

Comparison with SSL methods To compare our method with the state-of-the-art centralized SSL
methods, we follow the experimental setup in (Sohn et al., 2020a). We use Wide ResNet28x2
(Zagoruyko & Komodakis, 2016) for CIFAR10 and SVHN datasets and WResNet28x8 for CIFAR100
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(a) 𝑁𝒮 = 250 (b) 𝑁𝒮 = 4000

Figure 2: Experimental results for CIFAR10 dataset with (a) NS = 250 and (b) NS = 4000.

Table 1: Test Accuracy from the CIFAR10, SVHN and CIFAR100 datasets. Our method significantly
outperforms the Partially Supervised case (training with only the labeled data) and performs competi-
tively with centralized SSL methods. All results are obtained with the same model architecture.

Dataset CIFAR10 SVHN CIFAR100

Number of Supervised 250 4000 250 1000 2500 10000

Fully Supervised 95.33(0.12) 97.27(0.04) 79.32(0.12)
Partially Supervised 42.37(1.76) 76.92(0.17) 77.14(2.86) 90.38(0.51) 27.22(0.69) 59.34(0.13)

Π-Model (Rasmus et al., 2015) 45.74(3.97) 85.99(0.38) 81.04(1.92) 92.46(0.36) 42.75(0.48) 62.12(0.11)
Pseudo-Labeling (Tarvainen & Valpola, 2017) 50.22(0.43) 83.91(0.28) 79.79(1.09) 90.06(0.61) 42.62(0.46) 63.79(0.19)

Mean Teacher (Tarvainen & Valpola, 2017) 67.68(2.30) 90.81(0.19) 96.43(0.11) 96.58(0.07) 46.09(0.57) 64.17(0.24)
MixMatch (Berthelot et al., 2019b) 88.95(0.86) 93.58(0.10) 96.02(0.23) 96.50(0.28) 60.06(0.37) 71.69(0.33)

UDA (Xie et al., 2019) 91.18(1.08) 95.12(0.18) 94.31(2.76) 97.54(0.24) 66.87(0.22) 75.50(0.25)
ReMixMatch (Berthelot et al., 2019a) 94.56(0.05) 95.28(0.13) 97.08(0.48) 97.35(0.08) 72.57(0.31) 76.97(0.56)

FixMatch (Sohn et al., 2020a) 94.93(0.65) 95.74(0.05) 97.52(0.38) 97.72(0.11) 71.71(0.11) 77.40(0.12)

SemiFL

Non-IID, K = 2 60.03(0.87) 85.34(0.28) 87.54(1.10) 92.20(0.78) 35.20(0.30) 62.09(0.38)
Non-IID, Dir(0.1) 63.05(0.61) 84.53(0.35) 91.22(0.33) 93.01(0.50) 49.01(1.01) 67.99(0.25)
Non-IID, Dir(0.3) 71.85(1.23) 88.89(0.30) 93.97(0.54) 95.16(0.21) 54.93(1.39) 69.99(0.33)

IID 88.23(0.28) 93.10(0.14) 96.76(0.30) 96.87(0.09) 61.28(1.16) 72.13(0.17)

dataset. The number of labeled data at the server for SVHN, CIFAR10, and CIFAR100 datasets NS
are {250, 4000, 2500} and {100, 2500, 10000} respectively. Similar to (Sohn et al., 2020a), we use
SGD as our optimizer and a cosine learning rate decay as our scheduler (Loshchilov & Hutter, 2016).
We also use the same hyperparameters as (Sohn et al., 2020a), where the local learning rate η = 0.03,
the local momentum βl = 0.9, and the confidence threshold τ = 0.95. The Mixup hyperparameter a
is set to be 0.75 as suggested by (Zhang et al., 2017).

We demonstrate our experimental results in Table 1 and the learning curves of CIFAR10 and CI-
FAR100 datasets in Figure 2 and 4. We also demonstrate the results of Fully Supervised and Partially
Supervised cases, and existing SSL methods for comparison in Table 1. Fully Supervised case refers
to all data are labeled while Partially Supervised case we only train with the partially labeled data.
Our results significantly outperform the Partially Supervised case. In other words, SemiFL can
significantly improve the performance of a labeled server with unlabeled clients in the communication
efficient scenario. For IID data partition, our method performs competitively with the state-of-the-art
SSL methods. Moreover, it is foreseeable that as the clients become more label-skewed for Non-IID
data partition, the performance of our method degrades. However, even the most label-skewed
unlabeled clients can improve the performance of the labeled server using our proposed approach.
One limitation of our work is that as the supervised data size decreases, the performance of SemiFL
degrades more than the centralized SSL methods. We believe it is due to the fact that we cannot train
labeled and unlabeled data simultaneously in one data batch.

Comparison with FL and SSFL methods To compare our method with existing FL and SSFL
methods, we follow the standard communication efficient FL setting, which is originally used in
FedAvg (McMahan et al., 2017) and widely adopted by following works, such as (Liang et al., 2020;
Acar et al., 2021; Diao et al., 2021). We have 100 clients, and the activity rate per communication
round is C = 0.05, 0.1. For IID data partition, we uniformly assign the same number of data
examples to each client. For a balanced Non-IID data partition, we make sure each client has data at
most from K classes, and the sample size of each class is the same. We set K = 2 because it is the
most label-skewed case for classification, and it has been evaluated in (Liang et al., 2020; Acar et al.,
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Table 2: Ablation study on each component of alternative training with CIFAR10 dataset. The combi-
nation of “fine-tuning with labeled data” and “pseudo-labeling with received model” significantly
improve the performance

Method Fine-tuning with
labeled data

Pseudo-labeling with
received model

Accuracy

Non-IID, K = 2 IID

Fully Supervised N/A 95.33
Partially Supervised 76.92

FL+SSL 7 7 41.01 40.26

SemiFL
7 3 48.89 47.03
3 7 80.42 81.70
3 3 85.34 93.10

Table 3: Comparison of SemiFL with the existing FL and SSFL methods on the CIFAR10 dataset.
SemiFL significantly outperforms the existing SSFL methods.

Method Number of Supervised M C T Normalization Model Parameters FLOPs Space (MB) Accuracy

Non-IID
K = 2

IID

Fully Supervised
All 1 1 400 sBN ResNet9 4.9 M 509 M 18.7 94.04
All 1 1 400 sBN ResNet9 4.9 M 509 M 18.7 94.46
All 1 1 400 sBN WResNet28x2 1.5 M 433 M 5.6 95.33

Partially Supervised
5000 1 1 400 GN ResNet9 4.9 M 509 M 18.7 70.81
5000 1 1 400 sBN ResNet9 4.9 M 509 M 18.7 78.78
4000 1 1 400 sBN WResNet28x2 1.5 M 433 M 5.6 76.92

FedAvg (McMahan et al., 2017) All 100 0.1 2000 BN CNN 2.2 M 71 M 8.2 58.99 85.00
LG-FedAvg (Liang et al., 2020) All 100 0.1 1800 BN CNN 2.2 M 71 M 8.2 60.79 69.76

FedDyn (Acar et al., 2021) All 100 0.1 600 BN CNN 2.2 M 71 M 8.2 N/A 84.50

HeteroFL (Diao et al., 2021) All 100 0.1 800 sBN ResNet18 11.2 M 1.1 G 42.6 56.88 91.19
All 100 0.1 800 sBN WResNet28x2 1.5 M 433 M 5.6 58.24 94.13

FedMatch (Jeong et al., 2020) 5000 100 0.05 200 GN ResNet9 4.9 M 509 M 18.7 47.11 46.81
FedRGD (Zhang et al., 2020) 5000 100 0.05 200 GN ResNet9 4.9 M 509 M 18.7 63.24 63.32

SemiFL

5000 100 0.05 200 GN ResNet9 4.9 M 509 M 18.7 73.83 79.16
5000 100 0.05 200 sBN ResNet9 4.9 M 509 M 18.7 82.36 85.43
5000 100 0.1 800 GN ResNet9 4.9 M 509 M 18.7 79.20 87.38
5000 100 0.1 800 sBN ResNet9 4.9 M 509 M 18.7 85.20 89.11
4000 100 0.1 800 sBN WResNet28x2 1.5 M 433 M 5.6 85.34 93.10

2021; Diao et al., 2021). For unbalanced Non-IID data partition, we sample data for each client from
a Dirichlet distribution Dir(α) (Hsu et al., 2019; Acar et al., 2021). As α→∞, this reduces to IID
data partition. We perform experiments with α = {0.1, 0.3}. More details regarding the experimental
setup can be found in the Appendix. We conduct four random experiments for all the datasets with
different seeds, and the standard deviations are shown inside the parentheses for tables and by error
bars in figures.

We compare our results with the state-of-the-art FL and SSFL methods in Table 3 and Table 6. We
demonstrate that SemiFL can perform competitively with many existing FL results trained with
fully supervised data. We also demonstrate that our method significantly outperforms existing SSFL
methods. We note that existing SSFL methods fail to perform closely to the state-of-the-art centralized
SSL methods, even if their underlying SSL methods are the same as shown in Table 5. Moreover,
existing SSFL methods cannot outperform the Partially Supervised case, indicating that they dete-
riorate the performance of the labeled server. To our best knowledge, the proposed SemiFL is the
first SSFL method that actually improves the performance of the labeled server and performs close to
the state-of-the-art FL and SSL methods. We compare the technical novelties of SSFL methods in
Table 5 and demonstrate ablation study of SemiFL in Table 2. Based on our extensive experiments, it
is evident that alternate training is the crucial ingredient of the success of our method.

5 CONCLUSION

In this work, we propose a new Federated Learning framework referred to as SemiFL to address the
problem of Semi-Supervised Federated Learning (SSFL). We propose to alternatively train the labeled
server and unlabeled clients. We utilize several training techniques and establish a strong benchmark
for SSFL. Extensive experimental studies demonstrate that our communication efficient method can
significantly improve the performance of a labeled server with unlabeled clients. Moreover, we
demonstrate that SemiFL can perform competitively with the state-of-the-art FL results trained with
fully supervised data and centralized Semi-Supervised Learning (SSL) methods. Furthermore, we
provide a theoretical understanding of strong data augmentation for SSL, which can be interesting in
its own right. Our study provides a practical FL framework that extends the scope of FL applications.
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Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Yilun Jin, Xiguang Wei, Yang Liu, and Qiang Yang. Towards utilizing unlabeled data in federated
learning: A survey and prospective. arXiv e-prints, pp. arXiv–2002, 2020.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems, pp. 5917–5928, 2019.

Michael Kohler and Adam Krzyzak. On the rate of convergence of local averaging plug-in classifica-
tion rules under a margin condition. IEEE transactions on information theory, 53(5):1735–1742,
2007.
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Appendix for SemiFL

The Appendix contains further experimental details, ablation studies, and technical analyses.

A PERFORMANCE GOAL

We outline the general performance goal of Semi-Supervised Federated Learning. The performance
ceiling is obviously that of the Fully Supervised Learning (FSL) (namely, assuming that all the
server’s and clients’ data are centralized and fully labeled). For our context where clients’ data are
unlabeled, a vanilla approach trains the labeled data only at the server-side, referred to as Partially
Supervised Learning (PSL). Clearly, the PSL performance can serve as a lower bound benchmark for
other approaches that employ additional unlabeled data. When the server contains a small amount of
labeled data and a substantial amount of unlabeled data (centralized), the Semi-Supervised Learning
(SSL) seeks the use of unlabeled data to improve over the PSL. It was shown that state-of-the-art SSL
methods such as FixMatch (Sohn et al., 2020a) could produce similar results as FSL.

Our work focuses on Semi-Supervised Federated Learning (SSFL), where the unlabeled data are
distributed among many clients. The general goal of SSFL is to perform similarly to the state-of-
the-art SSL, and significantly outperform PSL and the existing SSFL methods. In other words, our
performance goal is to achieve FSL & SSL & SSFL� PSL.

B FURTHER EXPERIMENTAL RESULTS

We provide supplementary experimental results below. In Table 4, we give the hyperparameters
used in the experiments. In Figure 3, we show experimental results for the SVHN dataset with
NS = {250, 4000}. In Table 8, we demonstrate the ablation study of the sBN statistics on the
CIFAR10 dataset. Compared with updating the sBN statistics with only the server data, updating the
sBN statistics with both server and clients does not provide significant improvements.

Table 4: Hyperparameters used in our experiments.

Dataset CIFAR10 SVHN CIFAR100

Number of Supervised 250 4000 250 1000 2500 10000

Architecture WResNet28x2 WResNet28x8

Server

Batch size 10 250 10 250 10 250
Epoch 5

Optimizer SGD
Learning rate 3.0E-02
Weight decay 5.0E-04
Momentum 0.9

Nesterov 3

Client

Batch size 10
Epoch 5

Optimizer SGD
Learning rate 3.0E-02
Weight decay 5.0E-04
Momentum 0.9

Nesterov 3

Global
Communiction round 800

Momentum 0.5
Scheduler Cosine Annealing
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(a) 𝑁𝒮 = 250 (b) 𝑁𝒮 = 1000

Figure 3: Experimental results for SVHN dataset with (a) NS = 250 and (b) NS = 1000.

(a) 𝑁𝒮 = 2500 (b) 𝑁𝒮 = 10000

Figure 4: Experimental results for CIFAR100 dataset with (a) NS = 2500 and (b) NS = 10000.

Table 5: Comparison of technical novelties of SSFL methods.
Method Semi-Supervised Learning method Training Normalization

FedMatch (Jeong et al., 2020) FixMatch (Sohn et al., 2020a) Parallel BN (Ioffe & Szegedy, 2015)
FedRGD (Zhang et al., 2020) FixMatch (Sohn et al., 2020a) Parallel GN (Wu & He, 2018)

SemiFL FixMatch, MixMatch (Sohn et al., 2020a; Berthelot et al., 2019b) Alternate sBN (Diao et al., 2021)

Table 6: Comparison between the state-of-the-art FL method and SemiFL with CIFAR10, CIFAR100,
and SVHN datasets. Results are obtained with the same model architecture.

Dataset CIFAR10 SVHN CIFAR100

Non-IID, K = 2 IID Non-IID, K = 2 IID Non-IID, K = 2 IID

Fully Supervised 95.33 97.27 79.32
Partially Supervised 76.92 90.38 59.34

HeteroFL (Diao et al., 2021) 58.24 94.13 80.12 97.55 3.36 77.80
SemiFL 85.34 93.10 92.2 96.87 62.09 72.13



Under review as a conference paper at ICLR 2022

C ABLATION STUDY

We perform an ablation study of the training techniques adopted in our experiments. We study the
efficacy of the number of local training epoch E, the global SGD momentum βg (Wang et al., 2019a),
and the Mixup data augmentation as shown in Table 7. Less local training epoch significantly hurts
the performance due to slow convergence. The Mixup data augmentation has around 2% Accuracy
improvement for CIFAR10 dataset. It demonstrates that it is beneficial to combine strong data
augmentation with Mixup data augmentation for training unlabeled data. The global momentum
marginally improves the result.

(a) IID (b) Non-IID, 𝐾 = 2

Figure 5: Ablation study on the CIFAR10 dataset with 4000 labeled data at the server, for the cases
of (a) IID and (b) Non-IID, K = 2 data partition.

Table 7: Ablation study on the CIFAR10 datasets with 4000 labeled data at the server.

E βg mixup SemiFL

Non-IID, K = 2 IID

1 0.5 3 83.39(0.49) 88.86(0.31)
5 0.5 7 84.17(0.44) 91.27(0.24)
5 0 3 85.41(0.58) 92.43(0.11)
5 0.5 3 85.34(0.28) 93.10(0.14)

Table 8: Ablation study of sBN statistics on the CIFAR10 dataset. The alternative way of using the
server data to update the global sBN statistics does not degrade the training performance.

sBN
statistics

250 4000

Non-IID, K = 2 IID Non-IID, K = 2 IID

server 59.99(0.77) 86.25(0.22) 85.47(0.09) 93.14(0.16)
server and clients 60.03(0.87) 85.34(0.28) 88.23(0.28) 93.10(0.14)

D LOSS FUNCTION

We use the standard supervised loss to train the labeled server. For training the unlabeled clients, the
“fix” loss Lfix (proposed in FixMatch (Sohn et al., 2020a)) leverages the techniques of consistency
regularization and pseudo-labeling simultaneously. Specifically, the pseudo-labels are generated from
weakly augmented data, and the model is trained with strongly augmented data. The “mix” loss
(adapted from MixMatch (Zhang et al., 2017; Berthelot et al., 2019b)) reduces the memorization of
corrupted labels and increases the robustness to adversarial examples. It was also shown to benefit
the SSL (Berthelot et al., 2019a) and FL (Yoon et al., 2021) methods. We have conducted an ablation
study and demonstrated that the mix loss moderately improves performance.
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optimal decision boundary

high-confidence pseudo-label boundary
unlabeled data
augmented data

probability of labeled data 

probability of unlabeled data 

Figure 6: Illustration of the strong data augmentation-based SSL. We pick up an unlabeled point
(X ∼ Pu) with a high-confidence pseudo-label, obtain its hard-thresholded label (Ŷ , which is
believed to be close to the ground-truth), maneuver X into X̃ (which is believed to represent the
test distribution Pl to some extent), and then treat (Ŷ , X̃) as labeled data for training. Consequently,
reliable task-specific information exhibited from unlabeled data can be transmitted to data regimes
that may have been insufficiently trained with labeled data. Note that Pl denotes the labeled data
distribution as well as the out-sample test data distribution (used to evaluate the learning performance).
The above ideas are theoretically formalized in Subsection 3.2 and Appendix E.

E THEORETICAL UNDERSTANDING OF STRONG AUGMENTATION FOR SSL

E.1 BACKGROUND OF CLASSIFICATION

We take the binary classification task as an illustrating example. Let (Y,X) be a random variable
with values in Rd × {1, 0}. For the prediction task, we look for a classifier C : Rd → {1, 0} such
that the risk P(C(X) 6= Y ) is small, where P denotes the probability measure for (Y,X). Let
m(x)

∆
= E(Y = 1 | X = x) denote the conditional probability of Y given X = x. For example, the

standard logistic regression model is in the form of m(x) = 1/(1 + exp(−βTx)) for some β ∈ Rd.

When the underlying m is known, the risk-optimal classifier is known to be

C : x 7→ 1{m(x)− 1/2} (1)

for any given x. When the underlying m is unknown, we need to train a classifier Ĉn from observed
training data (Yi, Xi), i = 1, . . . , n, which are often assumed to be IID random variables following
the same distribution of (Y,X). A general approach is to first learn m̂n : Rd → R and then let
Ĉn(x)

∆
= 1{m̂n(x)− 1/2}. To evaluate the prediction performance of a learned Ĉn, we consider its

gap with the optimal classifer

R(Ĉn)
∆
= P(Y 6= Ĉn(X))− P(Y 6= C(X)) (2)

referred to as the classification risk of Ĉn.

E.2 BACKGROUND OF SEMI-SUPERVISED LEARNING

Suppose that we observe nl IID labeled data of (Y l, X l), denoted by Dl = {(Y l
i , X

l
i)}

nl
i=1, where X l

has probability distribution Pl and E(Y l | X l = x) = m(x). We also observe nu unlabeled data of
(Xu), denoted by {Xu

j}
nu
j=1, where each Xu has probability distribution Pu. Here, Pu may or may not

be the same as Pl. The semi-supervised learning problem of interest concerns the case nu � nl and
solutions that can properly utilize the unlabeled data to boost the performance of a classifier trained
from labeled data. In other words, we look for a classifier Ĉssl

n (x) trained from observations of both
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Figure 7: Example of strong data augmentations based on the RandAugment technique (Cubuk et al.,
2020). As the distortion magnitude increases, the strength of the augmentation increases. Here,
“ShearX” means shearing the image along the horizontal axis, and “AutoConstrast” means maximizing
the image contrast by setting the darkest (respectively lightest) pixel to black (respectively white).

(Y l, X l) and Xu, so that its risk satisfies

R(Ĉssl)� R(Ĉ l)

where Ĉ l is the classifier trained from observations of (Y l, X l) only.

E.3 A NEW PERSPECTIVE OF SEMI-SUPERVISED LEARNING

As we mentioned in Section 2, there has been a lot of empirical success in using new techniques
such as consistency regularization and strong augmentation to improve the classification risk of
classical semi-supervised learning. Recently, the work of (Wei et al., 2020) provides a theoretical
understanding of the consistency regularization in reducing classification risk. Its analysis is based on
an “expansion” assumption that a low-probability subset of data must expand to a large-probability
neighborhood, and there is little overlap between neighborhoods of different classes. To the best of
our knowledge, the existing theories do not explain why the strong augmentation technique works
so well (to achieve state-of-the-art performance) for semi-supervised learning. Intuitively, strong
augmentation is a process that maps a data point (e.g., an image) from high quality to relatively low
quality in a unilateral manner (illustrated in Figure 7). Strong augmentation such as RandAugment
(Cubuk et al., 2020) consists of a set of data augmentation strategies, e.g., rotating the image, shearing
the image, translating the image, adjusting the color balance, and modifying the brightness. The
low-quality data and their high-confidence pseudo-labels are then used for training so that there are
sufficient “observations” near the difficult data regimes (e.g., near the decision boundary).

In line with the above intuition, we develop a theoretical understanding of how and when using
strong augmentation can significantly reduce the classification risk obtained from only labeled data.
Instead of studying semi-supervised learning in full generality, we restrict our attention to a class of
nonparametric kernel-based classification learning and derive analytically tractable statistical risk-rate
analysis. Our theory is based on an intuitive “adequate transmission” assumption, which basically
means that the distribution of augmented data from high-confidence unlabeled data can adequately
cover the data regime of interest during the test. Consequently, reliable information exhibited from
unlabeled data can be “transmitted” to data regimes that may have been insufficiently trained with
labeled data.
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In addition to the notations made in Subsections E.1 and E.2, we will let X̃ denote strongly-augmented
data from Xu, and Ỹ its corresponding label that follows the same conditional distribution, namely
P(Ỹ = 1 | X̃) = m(X̃). Recall that Pu and Pl are the probability measures of unlabeled Xu and
labeled X l, respectively. We suppose that the test data distribution for evaluating the classification
performance also follows Pl. In other words, the probability measure in (2) is the product of PY |X or
PỸ |X̃ (as determined by m(·)) and Pl. Let m̂0 denote an initial estimate of m. For generality, we
will assume m̂0 is learned from all or only part of the available labeled data. To develop theoretical
analyses, we consider the following generic SSL classifier with strong augmentation.

Generic semi-supervised classification learning with strong augmentation
• Step 1. From {Xu

i }
nu
i=1, we pick up those “high-confidence” x satisfying

min{1− m̂0(x), m̂0(x)} ≤ δ (3)

for some δ (to be quantified), and denote the set as X aug.
• Step 2. For each X ∈ X aug, we calculate the pseudo-label Ŷ = 1{m̂0(X) − 1/2};
meanwhile, we generate the strongly augmented data X̃ . Consequently, we obtain a set of
data (Ŷ , X̃) and denote that set as Daug.
• Step 3. Train an estimate of m, denoted by mssl, and the associated classifier Cssl using the
labeled and augmented data Dssl ∆

= Dl ∪Daug.

Note that if m̂0 is learned from data independent with Dl, the data in Dssl are independent but not
necessarily identically distributed (since Pl and Pu may not be the same).

To show how SSL with strong augmentation can potentially enhance classification learning, we
consider a classical nonparametric classifier Ĉ defined in the following way. Let K : Rd → R+

denote the box kernel function that maps u to 1{‖u‖ ≤ 1}, where 1{·} denotes the indicator function.
With n labeled data (Yi, Xi), similarly to (1), we define

Ĉn : x 7→ 1{m̂n(x)− 1/2}, where m̂n(x) =

∑n
i=1K(h−1

n (x−Xi)) · Yi∑n
i=1K(h−1

n (x−Xi))
(4)

if
∑n
i=1K(h−1

n (x − Xi)) 6= 0, and m̂n(x) = 0 otherwise. Here, m̂n is known as the Nadaraya-
Watson kernel estimate (Nadaraya, 1964; Watson, 1964) of the underlying m, and hn > 0 is the
bandwidth.

In our setting, we suppose that n0 > 0 labeled data are used to learn m̂0, and another nl ≥ 0 labeled
data along with nu > 0 unlabeled data to learn m̂ssl and thus the subsequent classifier Ĉssl. Note that
the nl is introduced only for generality. Our technical analysis includes nl = 0 as a special case. In
the main result to be introduced, the risk bound will only involve nu but eliminate nl during technical
derivations since we are interested in the regime of nu � n0 + nl.

Before starting the main result, we make the following additional technical assumptions and provide
the intuitions.

(A1) There exists positive constants c1 and s such that Pu(min{1−m(X),m(X)} ≤ δ) ≥ gs(δ) for
all sufficiently small δ > 0, where gs(δ)

∆
= c1δ

s.

Explanation of (A1): Recall that Pu is the probability measure of unlabeled data. This condition
requires a nontrivial amount of unlabeled data with high confidence (or large margin) in the sense
that m(X) is close to either zero or one. The function gs quantifies the “sufficiency” of data at the
tail part of X . Take logistic regression m(x) = 1/(1 + exp(−βTx)) as an example. It can be easily
verified that

Pu(1−m(X) ≤ δ) ≥ Pu(βTX ≥ − log δ), Pu(m(X) ≤ δ) ≥ Pu(βTX ≤ log δ),

so Pu(min{1−m(X),m(X)} ≤ δ) = Pu(1−m(X) ≤ δ)+Pu(m(X) ≤ δ) ≥ Pu(|βTX| ≥ − log δ)
for all δ ∈ (0, 1/2). For example, if |βTX| follows standard Exponential, we let gs : δ 7→ δ.

(A2) There exists a constant c3 ∈ (0, 1/2) such that the strong augmentation Xu → X̃ satisfies
P(Ỹ = 1 | X̃ = x̃, Xu = x) = m(x) for all x such that min{1− m̂0(x), m̂0(x)} ≤ c3.
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Explanation of (A2): Let us think Xu as a high-confidence image, with m(Xu) close to either zero
or one. Meanwhile, X̃ is a strongly augmented version of Xu, e.g., by random masking or noise
injection, so m(X̃) is closer to 1/2 than m(Xu). The condition of (A2) means that if conditioning on
both images, the label Ỹ has a distribution that is only determined by the high-quality image, which
is quite intuitive. A mathematically equivalent way to describe (A2) is that X̃ → Xu → Ỹ follows a
Markov chain.

(A3) There exist positive constants c2, c4, and a non-negative v such that for every Pl-measurable ball
B ⊆ Rd with Pl(B) ≤ c4, for the strong augmentation Xu → X̃ , we have Pu(X̃ ∈ B | min{1 −
m̂0(Xu), m̂0(Xu)} ≤ δ)/Pl(B) ≥ gv(δ) for all sufficiently small δ > 0, where gv(δ)

∆
= c2δ

v .

Explanation of (A3): The above numerator is the probability of the augmented data X̃ falling into B
conditional on the original unlabeled data (with probability Pu) has high confidence. This assumption
ensures that for every regime of significant interest in evaluating the prediction performance (since Pl
is the measure for test data), there will be a sufficient probability coverage of the augmented data.
This is an intuitive condition since otherwise, the augmented data cannot represent the test data of
interest to boost the test performance. In this assumption, the function gv determines the coverage as
a function of tail probability δ. For example, if v = 0, a sufficiently small δ (or higher confidence)
gives a non-vanishing coverage. The combination of (A2) and (A3) can be interpreted as an “adequate
transmission” condition, under which a small amount of high-confidence unlabeled data can induce
augmented data that can accurately represent the test data regime of interest. Such transmitted data
can be basically approximated as labeled data for supervised training.

(A4) There exist positive constants c6 and α such that Pl(|m(X l)− 1/2| ≤ t) ≤ c6tα for all t > 0.
Moreover, X l ∈ [0, 1]d.

Explanation of (A4): The inequality is a margin condition that has been used in the classical learning
literature (see, e.g., (Devroye et al., 2013; Kohler & Krzyzak, 2007) and the references therein). It
determines the difficulty of the underlying classification task. Intuitively speaking, a larger α means
more separability of the two classes under the probability Pl. The boundedness of X l is for technical
convenience.

(A5) There exist positive constants q and c7 such that |m(x) − m(x′)| ≤ c7‖x − x′‖q for all
x, x′ ∈ [0, 1]d, where ‖ · ‖ denotes the Euclidean norm.

Explanation of (A5): This condition assumes a Lipschitz-type condition of m(·), where q is allowed
to be different from one. Intuitively, it assumes the underlying classifier to learn cannot be too bumpy.
For q ∈ (0, 1], a larger q means more smoothness of m(·).

(A6) There exist positive constants r, c8, and ∆ such that |m̂0(x) − m(x)| ≤ c8n
−r
0 for all x

satisfying min{1− m̂0(x), m̂0(x)} ≤ ∆.

Explanation of (A6): This assumption requires that conditional on X falls into a large-margin area,
the estimation error of the initial function m̂0 is not too large.

(A7) For the constants s, v, α, q, and r defined in the above assumptions, we have

q · s
q · (α+ 3 + v + s) + d

<
1

2
, (5)

n−r0

n
−q/{q(α+3+v+s)+d}
u

→ 0, as min{n0, nu} → ∞. (6)

Explanation of (A7): The two inequalities will be technical conditions used in the proof. A sufficient
condition for (5) to hold is that α ≥ s. Intuitively, this requires that α, which describes the separability
of the decision boundary (the larger, the better), is not smaller than s, which quantifies the sufficiency
of tail samples (the smaller, the better). The inequality (6) means that the initial classifier m̂0 cannot
perform too poorly. This matches our empirical observations that the SSL training in each round has
to immediately follow a preceding round that uses some labeled data. Also, the denominator in (6)
favors relatively small s, d compared with α, v, q.
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E.4 MAIN RESULT

Our main result is provided below.

Theorem 1 Under Assumptions (A1)-(A7), the generic SSL classifier with strong augmentation
(namely the above Steps 1-3) satisfies

R(Ĉssl) ≤ Cn−q(α+1)/{q(α+3+v+s)+d}
u (7)

for some constant C that does not depend on the sample size.

Explanation of Theorem 1: The theorem gives an explicit rate of convergence for the SSL classification
risk using unlabeled data of size nu. It is the informal statement made in the main paper with ρ ∆

= v+s.
We interpret the power

q(α+ 1)

q(α+ 3 + v + s) + d

as follows. If the margin parameter α is large, the classification is relatively easy, and the ratio can go
up to one, namelyR(Ĉssl) ∼ n−1

u . This is reminiscent of an existing result that uses labeled data and
large margin to achieve the n−1

l rate (Audibert & Tsybakov, 2005). If the tail sufficiency parameter s
or the coverage parameter v is large, the ratio becomes approximately (α+ 1)/(v + s). Intuitively, a
larger s or v indicates that there will be fewer high-confidence unlabeled data to be transmitted to
benefit the classification learning (on the evaluation measure Pl of interest), which is inline with a
slower rate of convergence n−(α+1)/(v+s)

u .

On the contrary, consider the other extreme that v = s = 0. Then, the ratio becomes q(α+1)/{q(α+
3) + d}, which matches an existing result in classification learning (Kohler & Krzyzak, 2007). For
comparison, we define the baseline classifier that only uses nl labeled data, based on the kernel
estimation in (4). We denote that classifer as Ĉ l. The risk would beR(Ĉ l) ≤ C ′n−q(α+1)/{q(α+3)+d}

l
for some constant C ′. Comparing this with (7), we can determine the region where employing SSL
can significantly improve supervised learning. To illustrate this point, let us suppose that

nl ∼ nζu
for some constant ζ ∈ (0, 1). It can be verified that the bound ofR(Ĉ l) is much larger than that of
R(Ĉssl) when

q(α+ 1)

q(α+ 3 + v + s) + d
>

ζq(α+ 1)

q(α+ 3) + d
,

or equivalently,

ζ <
q(α+ 3) + d

q(α+ 3 + v + s) + d
. (8)

The inequality (8) provides an insight into the critical region of nu where significant improvement
can be made from unlabeled data, as dependent on constants that describe the underlying function
smoothness (q), data dimension (d), task difficulty (α), and “adequate transmission” parameters (s, v).

E.5 PROOF OF THEOREM 1

We first give a sketch of the proof. We first relate the risk bound ofR(Ĉssl) to the estimation error of
m̂ssl, and then decompose the error into a bias term and a variance term. Each term is then bounded
using concentration inequalities, in a way similar to the techniques used in (Györfi et al., 2002, Ch. 5)
and (Kohler & Krzyzak, 2007). Different from the standard nonparametric analysis of classification
learning with IID data, we will use the aforementioned “adequate transmission” conditions to derive
the rate of convergence from data that are contributed from both labeled and pseudo-labeled data.
The analysis involves a careful choice of the tuning parameters, e.g., the δ in Assumption (A1) and
the kernel bandwidth, so that the biases introduced from pseudo-labeled data have a diminishing
influence on the risk rate. Next, we provide detailed proof.

We let n = nl + nu denote the total size of labeled and unlabeled data available to the SSL training.
For notational clarity, we sometimes put subscript n, e.g., δn instead of δ (in Step 1), to highlight a
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quantity that is designed to vanish at some rate as n becomes large. Recall that Dssl = Dl ∪Daug.
Let nl and naug

u denote the sample sizes of Dl and Daug, respectively. Note that naug
u is random since

the Step 1 depends on n0 labeled data. We first consider the risk conditional on a fixed naug
u , denoted

byRnaug
u

(Ĉssl).

Direct calculations show that

Rnaug
u

(Ĉssl) = El

(
|2m(X)− 1| · 1{Ĉssl(X) 6= C(X)}

)
= T1 + T2, where (9)

T1 = 2El

(
|m(X)− 1/2| · 1

{
|m(X)− 1/2| ≤ tn, Ĉssl(X) 6= C(X)

})
T2 = 2El

(
|m(X)− 1/2| · 1

{
|m(X)− 1/2| > tn, Ĉ

ssl(X) 6= C(X)

})
for an arbitrary tn > 0 to be selected. From Assumption (A4), |m(X)−1/2| ≤ 1/2, and 1{|m(X)−
1/2| > tn, Ĉ

ssl(X) 6= C(X)} ≤ 1{|m(X)− m̂(X)| > tn}, we have

T1 ≤ 2tn · Pl
(
|m(X)− 1/2| ≤ tn

)
≤ 2c6t

1+α
n , T2 ≤ Pl

(
|m(X)− m̂(X)| > tn

)
. (10)

Moreover, by the triangle inequality, we have
T2 ≤ Pl

(
|m(X)− m̄(X)| > tn/2

)
+ Pl

(
|m̄(X)− m̂(X)| > tn/2

)
, (11)

where we define the function m̄ by

m̄(x) =

∑
X∈Dssl K(h−1

n (x−X))m(X)∑
X∈Dssl K(h−1

n (x−X))

if the denominator is nonzero, and m̄(x) = 0 otherwise.

In the sequel, we bound each term in (11). First, we rewrite

Pl
(
|m(X)− m̄(X)| > tn/2

)
=

∫
x∈[0,1]d

P
(
|m(x)− m̄(x)| > tn/2

)
dPl(x), (12)

where P denotes the probability measure induced by Dssl (which is implicitly used to define m̄). For
each x, we define the event

Ex =

{
ω :

∑
X∈Dssl

K(h−1
n (x−X))

}
.

Then, from Assumption (A5) and the definition that K(u) = 1{‖u‖ ≤ 1}, we have

|m(x)− m̄(x)| =
|
∑
X∈Dssl K(h−1

n (x−X))(m(x)−m(X))|∑
X∈Dssl K(h−1

n (x−X))
· 1{Ex}+m(x)(1− 1{Ex})

≤
∑
X∈Dssl K(h−1

n (x−X))|x−X|q∑
X∈Dssl K(h−1

n (x−X))
· 1{Ex}+m(x)(1− 1{Ex})

≤ c7hqn +m(x)(1− 1{Ex}). (13)

Let Bx,h
∆
= {u ∈ Rd : ‖u − x‖ ≤ h} denote the Euclidean ball of center x and radius h. If we

choose
tn/2 > c7h

q
n, (14)

the above inequality (13) implies that

P(|m(x)− m̄(x)| ≥ tn/2) ≤ P
(
m(x)(1− 1{Ex}) ≥ tn/2− c7hqn

)
≤ P

{ ∑
X∈Dssl

K(h−1
n (x−X)) = 0

}

= P
{
‖x−X‖ > hn,∀X ∈ Dssl

}
= (1− Pl(Bx,hn

))nl · (1− Pu(Bx,hn
))n

aug
u (15)

≤ exp{−nlPl(Bx,hn
)} · exp{−naug

u Pu(Bx,hn
)} (16)
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Let c9
∆
= maxv>0 ve

v. Let {zi}Mn
i=1 be a set of points in Rd such that [0, 1]d ⊆ ∪Mn

i=1Bzi,hn/2, with
Mn = c10h

−d
n for some c10. Taking (16) into (12), and invoking Assumption (A3), we obtain

Pl
(
|m(X)− m̄(X)| > tn/2

)
=

∫
x∈[0,1]d

exp{−nlPl(Bx,hn)} · exp{−naug
u Pu(X̃ ∈ Bx,hn | X̃ ∈ Daug)}dPl(x)

≤
∫
x∈[0,1]d

exp{−nlPl(Bx,hn)− gv(δn)naug
u Pl(Bx,hn)}dPl(x)

=

∫
x∈[0,1]d

exp{−ñPl(Bx,hn)}dPl(x)

≤ c9
∫
x∈[0,1]d

1

ñPl(Bx,hn)
dPl(x)

≤ c9
Mn∑
i=1

∫
x∈[0,1]d

1{x ∈ Bzi,hn/2}
ñPl(Bx,hn

)
dPl(x)

≤ c9ñ−1Mn = c9c10ñ
−1h−dn (17)

where we let ñ ∆
= nl + gv(δn)naug

u . The technique of covering used in the last two inequalities was
from (Györfi et al., 2002, Eq. 5.1).

To bound the second term in (11), we write

m̂(x)− m̄(x) =
∑

(Y,X)∈Dssl

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(Y −m(X)). (18)

Recall that Dssl = Dl ∪Daug. For every (Y l, X l) ∈ Dl, we have E(Y l | X l) = m(X).

For any δn that satisfies δn ≤ min{c3,∆, 1/4}, where c3 was introduced in Assumption (A2) and ∆
was introduced in Assumption (A6), we have

P(Ŷ = 1, Ỹ = 0 | X̃,Xu)

= P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≥ 1− δn | X̃,Xu) + P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≤ δn | X̃,Xu)

= P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≥ 1− δn | X̃,Xu)

≤ P(Ỹ = 0, m̂0(Xu) ≥ 1− δn,m(Xu) ≥ 1− δn − c8n−r0 | X̃,Xu)

+ P(m̂0(Xu) ≥ 1− δn,m(Xu) ≤ 1− δn − c8n−r0 | X̃,Xu)

≤ P(Ỹ = 0,m(Xu) ≥ 1− δn − c8n−r0 ) + 0

≤ δn + c8n
−r
0 ,

and similarly, P(Ŷ = 0, Ỹ = 1 | X̃,Xu) ≤ δn + c8n
−r
0 . Thus,

E(|Ŷ − Ỹ | | X̃) = E{E(|Ŷ − Ỹ | | X̃,Xu) | X̃} ≤ 2δn + 2c8n
−r
0 .

Consequently, for every (Ŷ , X̃) ∈ Daug, we have

E(Ŷ | X̃) = E(Ỹ | X̃) + κ(X̃) = m(X̃) + κ(X̃) (19)

where κ(X̃)
∆
= E(Ŷ − Ỹ | X̃) ≤ 2δn + 2c8n

−r
0 .

Back in (18), let u(Y ) = Y if (Y,X) ∈ Dl and u(Y ) = Ỹ if (Y,X) ∈ Daug, where Ỹ is the
pseudo-label random variable as in Assumption (A2) and equality (19). In this way, we have
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E(u(Y ) | X) = m(X). We rewrite (18) as

m̂(x)− m̄(x) = T3(x) + T4(x), where

T3(x)
∆
=

∑
(Y,X)∈Dssl

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(u(Y )−m(X))

T4(x)
∆
=

∑
(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(Ŷ − Ỹ )

≤
∑

(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

(Ŷ ,X̃)∈Daug K(h−1
n (x−X))

(Ŷ − Ỹ ).

Let X ssl ∆
= {X : (·, X) ∈ Dssl} and X aug ∆

= {X : (·, X) ∈ Daug}. Then, we can bound

P
(
|m̄(x)− m̂(x)| > tn/2 | X ssl) (20)

≤ P
(
|T3(x)| > tn/4 | X ssl)+ P

(
|T4(x)| > tn/4 | X ssl)

≤ 2 exp

{
− 2(tn/4)2∑

X∈X ssl K2(h−1
n (x−X))/{

∑
X′ K(h−1

n (x−X ′))}2

}
+ (21)

+ P
(∣∣∣∣ ∑

(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

X′∈X aug K(h−1
n (x−X ′))

(Ŷ − Ỹ − E(Ŷ − Ỹ | X̃))

∣∣∣∣ > tn/8 | X ssl
)

+

+ P
(∣∣∣∣ ∑

X̃∈X aug

K(h−1
n (x− X̃))∑

X′∈X aug K(h−1
n (x−X ′))

κ(X̃))

∣∣∣∣ > tn/8 | X aug
)

≤ 2 exp

{
−1

8
t2n

∑
X∈X ssl

K(h−1
n (x−X))

}
+ 2 exp

{
− 1

128
t2n

∑
X∈X aug

K(h−1
n (x−X))

}
+ (22)

+ P
(

2δn + 2c8n
−r
0 > tn/8

)
(23)

≤ 4 exp

{
− 1

128
t2n

∑
X∈X aug

K(h−1
n (x−X))

}
(24)

≤ 41

{ ∑
X∈X aug

K(h−1
n (x−X)) <

1

2
naug

u Pu(Bx,hn
)− log2 naug

u

}
+

4 exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn) +

1

128
t2n log2 naug

u

}
(25)

provided that

2δn + 2c8n
−r
0 ≤ tn/8. (26)

In the above derivation, (21) uses the Hoeffding’s inequality, the fact that K2(·) = K(·), and the
triangle inequality, (22) uses the Hoeffding’s inequality again, (23) follows from (19), (24) is from
X aug ⊆ X ssl, and (25) is by the definition of the indicator function. Consequently, with the choice of

tn log naug
u ≤ 1, (27)

we have

P
(
|m̄(x)− m̂(x)| > tn/2

)
(28)

≤ 4Pu

{ ∑
X∈X aug

K(h−1
n (x−X)) <

1

2
naug

u Pu(Bx,hn)− log2 naug
u

}
+ 8 exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn

)

}
. (29)
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The first term in (29), according to the Bernstein inequality, can be upper bounded by

4 exp

{
−1

2

(naug
u Pl(Bx,hn)/2 + log2 naug

u )2

naug
u Pl(Bx,hn

) + (naug
u Pl(Bx,hn

)/2 + log2 naug
u )/3

}}
≤ 4 exp

{
− 3

14
(naug

u Pl(Bx,hn)/2 + log2 naug
u )

}
≤ 4 exp

{
− 3

14
log2 naug

u )

}
.

Therefore, we can bound the second term in (11) by

Pl
(
|m̄(X)− m̂(X)| > tn/2

)
≤
∫
x∈[0,1]d

P
(
|m̄(x)− m̂(x)| > tn/2

)
dPl(x)

≤ 4 exp

{
− 3

14
log2 naug

u )

}
+ 8

∫
x∈[0,1]d

exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn

)

}
dPl(x).

The second term in (29), according to the same arguments as in (17), can be upper bounded by
8 · 256 · c9c10/(gv(δn)t2nn

aug
u hdn). Therefore, we have

Pl
(
|m̄(X)− m̂(X)| > tn/2

)
≤ 4 exp

{
− 3

14
log2 naug

u )

}
+

211c9c10

gv(δn)t2nn
aug
u hdn

.

Combining inequalities (9), (10), (11), and (17), we obtain

Rnaug
u

(Ĉssl) ≤ 2c6t
1+α
n +

c9c10

(nl + gv(δn)naug
u )hdn

+ 4 exp

{
− 3

14
log2 naug

u )

}
+

211c9c10

gv(δn)t2nn
aug
u hdn

.

Finally, we use a probabilistic lower bound of naug
u to obtain the risk bound. Let E denote the event

min{1− m̂0(X), m̂0(X)} ≤ δn. By the triangle inequality, assumptions (A1) and (A6), we have

Pu(min{1− m̂0(X), m̂0(X)} ≤ δn)

≥ Pu(min{1−m(X),m(X)} ≤ δn − c8n−r0 )− Pu(|m(X)− m̂0(X)| > c8n
−r
0 , E)

≥ gs(δn − c8n−r0 )

Note that naug
u is a sum of nu IID Bernoulli random variables Z with probability P(Z = 1) =

Pu(min{1 − m̂0(X), m̂0(X)} ≤ δn). By the Hoeffding’s inequality, with probability at least
1− 2 exp{−nu(ñu/nu)2/2}, we have

3ñu

2
≥ naug

u ≥ ñu

2
, where ñu

∆
= gs(δn − c8n−r0 ) · nu.

Therefore, we have

R(Ĉssl) = ERnaug
u

(Ĉssl)

≤ 2c6t
1+α
n +

c9c10

(nl + gv(δn)ñu/2)hdn
+ 4 exp

{
− 3

14
(log ñu − log 2)2)

}
+

211c9c10

gv(δn)t2nñuhdn/2
+ exp

{
−nu

2

(
gs(δn − c8n−r0 )

)2}
, (30)

provided that the choices of (14), (26), and (27) are made, namely

tn/2 > c7h
q
n, 2δn + 2c8n

−r
0 ≤ tn/8, tn log(3ñu/2) ≤ 1.

Choosing hn, tn, and δn at the rate of

hn ∼ n−1/{q(α+3+v+s)+d}
u , tn ∼ hqn, δn ∼ hqn,

and invoking the assumption (A7), we can verify that the rate of convergence in (30) is at the order of

R(Ĉssl) ∼ n−q(α+1)/{q(α+3+v+s)+d}
u ,

which concludes the proof.
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