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Abstract

Band selection is a critical step in processing hyperspectral imagery (HSI), reducing in-
put dimensionality to mitigate redundancy, enhance computational efficiency and improve
learning accuracy. Efficient unsupervised deep-learning-based band selection methods have
recently garnered significant attention due to their strong feature representation capabil-
ities. In existing literature, we observe that there is a broader and more general line of
research regarding feature selection, which some recent deep learning-based HSI band selec-
tion methods have drawn inspiration from. This work concentrates on efficient unsupervised
deep-learning-based band selection methods from the standpoint of unifying two research
lines: the more general feature selection and the more specific HSI band selection. Specif-
ically, we conduct an in-depth comparative analysis in terms of downstream classification
performance and computation cost, on six state-of-the-art efficient unsupervised HSI band
selection methods, of which one does not involve deep learning and the other five do. Classi-
fication experiments are carried out using three publicly available remote sensing benchmark
datasets, where we incorporate a recent Mamba-based classifier that outperforms the typical
SVM substantially in classification accuracy by a ∼10-20% margin. To our best knowledge,
this is the first work that puts together and compares the aforementioned efficient unsuper-
vised methods in the context of HSI band selection and employs a Mamba-based classifier
in the analysis.

1 Introduction

Remotely-sensed hyperspectral imagery (HSI) presents significant opportunities in Earth observation. HSI
captures hundreds of contiguous spectral bands, providing more detailed insights about the imaging scene
compared to conventional RGB images, and has become an effective tool in various applications, such as
precision agriculture (Ram et al., 2024), mineral detection (Siebels et al., 2020), landscape classification (A
& S, 2023), and even medical diagnosis (Wang et al., 2021b). However, the high dimensionality of HSI
imposes significant computational burden on data processing and analysis. Therefore, it is crucial to address
the reduction of dimensionality in HSI.

Dimensionality reduction in general has several benefits, including reducing experimental costs (Min et al.,
2014), enhancing interpretability (Ribeiro et al., 2016), speeding up computation, reducing memory storage,
and even improving the generalization of downstream tasks (Chandrashekar & Sahin, 2014). One popular
technique for dimensionality reduction is feature selection, which involves the identification and retention
of the most informative features, as opposed to feature extraction techniques that alter features’ semantics
by creating new ones in a lower dimensional space. By retaining the original features, researchers can
directly relate model outputs to input data, facilitating insights and hypothesis generation. Moreover, in
applications where sensing hardware costs or energy consumption are major concerns, such as in IoT devices
or sensor-based systems, feature selection can inform the design of simpler and more affordable hardware.

Feature selection algorithms typically assume most features are uninformative and uncorrelated, and the
task is to “identify a small, highly discriminative subset” (Kuncheva et al., 2020), e.g., genes associated with
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drug response from the entire genome. In the context of HSI, each spectral band is often considered as a
feature. On the contrary, most spectral bands individually offer similar amounts of information since they
view the same scene but with often-subtle differences in contrast (Blumberg et al., 2022). In other words,
most spectral bands correlate strongly and contain significant redundancy. Therefore, existing state-of-the-
art feature selection methods that work well in common data modalities such as grayscale or RGB imagery,
text, speech etc., might not be as effective when employed on HSI data.

With the advent of miniaturized hyperspectral cameras that are able to be mounted on autonomous drones
(Tuohy et al., 2023), the development of more efficient yet more powerful deep learning architectures, and
the advancement of GPU-equipped edge hardware, there is a lot of potential in incorporating light-weight
deep learning models into the real-time HSI processing pipeline (Dastranj et al., 2025). In this work, we
focus on the software algorithmic component of band selection and pixel-wise classification. Specifically, our
experiments are designed to address the following two research questions (RQs):

1. How robust are unsupervised, light-weight, autoencoder-based HSI band selection methods on a
variety of datasets and classifiers?

2. How can Mamba-based HSI classifiers further benefit from band selection in terms of accuracy and
computation cost?

Fig. 1 displays our experiment workflow. We concentrate on unsupervised, light-weight, autoencoder-based
architectures for HSI band selection. We select five recent ones from the literature (two of which have yet to
be applied for HSI band selection). An efficient state-of-the-art non-deep-learning method is also included
in our comparative analysis. We unify and organize their code in Python and PyTorch for a more fair
and convenient comparison, analyze their architecture, selection mechanism, classification performance, and
computation cost with three distinct hyperspectral remote sensing datasets.

Figure 1: Experiment workflow consisting of two phases – band selection followed by classification. Experi-
ments are carried out with three datasets (see Section 3), six band selection methods (see Section 4.1) and
two classifiers (see Section 2.4).

Despite the rapid advancement of deep learning architectures, recent works (Sun et al., 2022; Ahishali et al.,
2022; Zhang et al., 2024; Xu et al., 2025) still virtually exclusively employ traditional machine learning
classifiers such as support vector machine (SVM) (Melgani & Bruzzone, 2004), random forest (RF) (Ham
et al., 2005), and K-nearest neighbors (KNNs) (Jia & Richards, 2005), for evaluating the efficacy of HSI band
selection methods. We address this gap by incorporating a recent Mamba-based classifier named MambaHSI
(Li et al., 2024) into our comparative analysis and demonstrating their distinct behavior compared to SVM
in terms of classification accuracy with respect to the selected band subsets.
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Our key contributions are summarized as follows and in Fig. 2:

1. To our best knowledge, this is the first work that puts together and compares efficient unsupervised
deep-learning-based methods for HSI band selection from the standpoint of unifying two research
lines in literature – the more general feature selection and the more specific HSI band selection.

2. We are also the first to include a Mamba-based classifier in HSI band selection research and reveal
their distinct behaviors compared to the conventional SVM.

3. Inspired by two prior works (Sun et al., 2022; Xu et al., 2025) that design an unsupervised HSI band
selection method by incorporating an existing feature selection mechanism into an autoencoder, we
follow suit for another two recent feature selection methods, resulting in their first applications in
literature for HSI band selection.

SRL-SOA
(TensorFlow)

SIFDR
(MATLAB)

Dropout FR
STG

WAST
SAND

(TensorFlow)

HSI Band Selection Feature Selection

Main focus of this paper
Feature selection + 
Autoencoder (AE)  
           HSI Band Selection

Existing work:
- Dropout FR + AE
- STG + AE (Code N/A)

Our contribution:
- WAST + AE
- SAND + AE
- Convert code to PyTorch
- MambaHSI for downstream 
classification

Figure 2: Contributions of this work. We concentrate on autoencoder-based feature selection techniques
that can be adapted for HSI band selection. We convert code to Python/PyTorch for a more fair and
convenient comparison and include a Mamba-based model in our downstream classification analysis. Text
in parentheses indicates either code not available or code implemented in languages/frameworks other than
Python/PyTorch.

The remainder of this article is structured as follows: Section 2 presents related work in feature selection,
unsupervised HSI band selection and HSI classification. The datasets are detailed in Section 3. Section 4
elucidates six state-of-the-art efficient unsupervised techniques that we study in this work. Section 5 exhibits
experimental results and analyses. Finally, Section 6 draws conclusions.
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2 Background

2.1 Feature Selection

Feature selection operates either at the instance level (Covert et al., 2023), e.g., identifying different salient
parts of different images, or at the population level by selecting across all the instances. For hyperspectral
imagery (HSI), spectral band selection is population-wide.

According to literature, feature selection methods are generally divided into three classes: filter methods,
wrapper methods, and embedded methods. Filter methods attempt to remove irrelevant features
prior to learning a predictive model. They rely on a per-feature relevance score (e.g., Laplacian score (He
et al., 2005)) based on statistical or information-theoretic measures. While these methods are fast and can
handle high-dimensional data, they overlook intricate relationships between features. Wrapper methods
exploit the performance of a predictive model to evaluate the quality of a subset of features. They require
recomputing the model for each subset of features, and thus can be prohibitively computationally expensive
although being more effective than filter methods. Examples include SHAP (SHapley Additive exPlanations)
(Lundberg & Lee, 2017) , greedy sequential search (Das & Kempe, 2011) and other search-based algorithms
(Morales et al., 2021). Embedded methods rank features based on metrics intrinsically learned during
model training, seamlessly integrating feature selection into the learning process. Examples include feature
importance for tree-based algorithms (Breiman, 2001), Recursive Feature Elimination for Support Vector
Machine (RFE-SVM) (Guyon et al., 2002), and deep learning techniques (Simonyan et al., 2013; Wang et al.,
2014). Such methods enable an automatic selection of relevant features during training and can effectively
handle non-trivial relationships in data.

2.2 Unsupervised HSI Band Selection

A multitude of unsupervised HSI band selection approaches have been proposed to tackle the band redun-
dancy problem, and according to literature, they are often categorized into four groups: ranking-based,
clustering-based, searching-based, and deep learning-based. Ranking-based methods (Chang
et al., 1999; Jia et al., 2016) rank the significance of each band based on some statistical characteristics,
e.g., structural similarity (SSIM) (Xu et al., 2021). However, the correlation between selected bands are
very high, implying considerable redundancy. Clustering-based methods (Sun et al., 2015; Wang et al.,
2018; 2021a) aim to reduce the correlation between selected bands compared to ranking-based methods. In
general, clustering-based methods group relevant bands based on some similarity measures and then select
the ones closest to the center from each cluster; thus significantly reducing redundancy among the chosen
bands. However, this strategy may ignore some representative bands if they are grouped into the same
cluster. Besides, the clustering process is very sensitive to noise. Searching-based methods (Morales
et al., 2021; Wang et al., 2020) use specific search strategies and objective functions, such as maximum in-
formation and minimum redundancy (MIMR) (Feng et al., 2016) and maximum information and minimum
noise (MIMN) (Chen et al., 2020), to directly find an optimal band subset through iterative exploration and
evaluation. However, their computation burden is rather high due to numerous iterations. The majority of
deep learning-based methods utilize the autoencoder (AE) architecture (Feng et al., 2021; Cai et al., 2020;
Ahishali et al., 2022; Liu et al., 2022), and demonstrate superiority over their non-deep-learning counterparts,
for their capabilities to learn non-linear dependencies among input features (Li et al., 2017).

2.3 Unifying Feature Selection and HSI Band Selection

As displayed in Fig. 3, the categorization of Feature Selection and HSI Band Selection can be unified. Quite
straightforwardly, ranking and searching-based methods for HSI band selection fall under filter and wrap-
per methods, respectively. Clustering and deep-learning-based methods, on the other hand, belong to the
embedded feature selection category as the features are ranked upon the clustering/learning process. Given
the pervasive adoption of deep learning in recent years, this work concentrates on embedded feature selec-
tion techniques with regard to deep learning. Specifically, we are interested in autoencoders that efficiently
identify a subset of the most informative features and simultaneously learn a neural network to reconstruct
the input data from the selected features.
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Figure 3: The unification of categorization of two lines of research – the more general feature selection and
the more specific HSI band selection. In this work, we concentrate on efficient embedded techniques using
autoencoders for HSI band selection.

2.4 HSI Classifiers

Traditional machine learning classifiers, such as support vector machine (SVM) (Melgani & Bruzzone, 2004),
random forest (RF) (Ham et al., 2005), and K-nearest neighbors (KNNs) (Jia & Richards, 2005), treat each
spatial pixel as an independent sample and thus ignore the spatial context, yielding suboptimal results.
Likewise, there are inherent limitations in mainstream deep-learning based HSI classifiers, which are CNN
or Transformer-based. CNN-based models are constrained by their local receptive fields, hindering their
ability to model long-range dependencies. Although Transformer-based models show superior performance
for global modeling, their self-attention mechanism scales quadratically with sequence length. In contrast,
Mamba (Gu & Dao, 2024), an emerging architecture based on selective state space models (SSMs), is adept
at continuous long-sequence data analysis while maintaining linear complexity in terms of sequence length
(Gu et al., 2021). Moreover, due to their limitations, CNN and Transformer-based models process HSI data
in patches, whereas Mamba-based models are capable of taking the entire image as input and process at a
fine-grained pixel level.

MambaHSI (Li et al., 2024) is a recent Mamba-based HSI classifier that we employ in our experiments.
It’s backbone contains two main components: Spatial Mamba Block (SpaMB) and Spectral Mamba Block
(SpeMB), to extract discriminative spatial and spectral features. Table 1 summarizes the function of the
two Mamba blocks from the perspective of processing a 1-D sequence, where the HSI data cube has a spatial
size of H × W , and C spectral bands. For SpeMB, the full spectrum is divided into G equal groups (G = 4
is used in the experiments). Batch size 1 indicates the entire HSI image is processed at once without being
broken into patches.

SVM is the default classifier in most HSI band selection research (Sun et al., 2022; Ahishali et al., 2022;
Zhang et al., 2024; Xu et al., 2025); thus we include it in our experiments and analysis.

Table 1: Summary of the function of the two Mamba blocks in MambaHSI from the perspective of 1-D
sequence processing

Batch Size Sequence Length Embedding Dimension
Spatial Mamba Block 1 H × W C
Spectral Mamba Block 1 ×H × W G C ÷ G
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3 Datasets – Land Cover Land Use (LCLU) Classification

Table 2: Summary of the three studied hyperspectral remote sensing datasets
Dataset Spectral Bands Spectral Range Total Pixels Classes Spatial Resolution
PaviaU 103 430-860 nm 610 × 340 9 1.3 m
Houston 144 380-1050 nm 349 × 1905 15 2.5 m

HanChuan 274 400-1000 nm 1217 × 303 16 0.109 m

Following Li et al. (2024), we select three widely used and diverse hyperspectral benchmark datasets, which
include both urban and agricultural scenes and have different spatial resolutions. Table 2 summarizes the
details of each dataset. For every dataset, during band selection (phase 1), 1000 pixels are randomly selected
from the entire HSI regardless of whether the selected pixel has a class label or not; during classification
(phase 2), for each class, 30 pixels are randomly selected as training samples, 10 pixels are randomly selected
as validation samples, and the remaining labeled pixels are used for testing.

3.1 Pavia University (PaviaU)

The image (Fig. 4) was acquired over University of Pavia in 2002 with the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor, consisting of 103 spectral bands covering the 430-860nm spectral range, with
a spatial size of 610 × 340 pixels and a 1.3m ground sampling distance (GSD). The image contains 9 classes.

(a) (b)

Figure 4: (a) False color image and (b) ground truth map of Pavia University.

3.2 Houston (Debes et al., 2014)

The image (Fig. 5) was acquired over the University of Houston campus and its neighboring regions with
the ITRES CASI 1500 HS imager, consisting of 144 spectral bands covering the 380-1050nm spectral range,
with a spatial size of 349 × 1905 pixels and a 2.5m ground sampling distance (GSD) . The image contains
15 classes. It was provided by the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) data fusion
contest.

3.3 WHU-Hi-HanChuan (HanChuan) (Zhong et al., 2020)

The image (Fig. 6) was acquired from 17:57 to 18:46 on June 17, 2016, in Hanchuan, Hubei province,
China, with an 17-mm focal length Headwall Nano-Hyperspec imaging sensor mounted on a Leica Aibot
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(a)

(b)

Figure 5: (a) False color image and (b) ground truth map of Houston.

X6 UAV V1 platform flying at an altitude of 250m. During data collection, the weather was clear and
cloudless, the temperature was about 30◦C, and the realtive humidity was about 70%. The studied area is a
rural–urban fringe zone with buildings, water and cultivated land including seven crop species: strawberry,
cowpea, soybean, sorghum, water spinach, watermelon, and greens. The image consists of 274 bands covering
the 400-1000nm spectral range, and has a spatial size of 1217 × 303 pixels and a 0.109m ground sampling
distance (GSD). The image contains 16 classes. Notably, since the first two bands are entirely zeros, only
the remaining 272 bands are used for the experiments. Moreover, since this dataset was acquired during the
afternoon when the solar elevation angle was low, there are many shadow-covered areas in the image.

(a)

(b)

Figure 6: (a) False color image and (b) ground truth map of WHU-Hi-HanChuan. (Rotated 90 degrees
counterclockwise)

4 Experiments

The classification experiments were executed on a workstation equipped with NVIDIA RTX 6000 GPUs and
AMD EPYC 7282 16-Core Processors. The algorithms are implemented with PyTorch 2.7.0 and Python
3.9.21.

4.1 Compared Methods

This section briefly describes the mechanism of six state-of-the-art efficient unsupervised techniques that we
study in this work, including five deep-learning light-weight autoencoder-based methods (one specifically for
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HSI band selection and the other four originally for the more general feature selection), and one non-deep-
learning method. We denote N as the total number of spectral bands and k as the number of selected bands,
where k ≪ N .

4.1.1 Self-Representation Learning with Sparse 1D-Operational Autoencoder (SRL-SOA) (Ahishali
et al., 2022)

This method assumes that each HSI band can be represented by a linear combination of all other bands. The
encoder part consists of Q 1D convolutional layers and outputs a representation matrix A of size N × N .
Band importance is determined by the row sum of A – the larger the sum, the more important the
band. Diagonal entries of A are zeroed out to prevent trivial solutions where each band is represented by
itself. ℓ1 regularization is applied on A to impose sparsity. Mathematically, the encoder can be described as
the following function:

y(p) = σ(
Q∑

q=1
(x)q ∗ w(p)

q + b(p)
q ) (1)

where σ is the activation function (hyperbolic tangent) and p indicates the pth filter. We adopt Q = {1, 3}
in our experiments, where a larger Q indicates a higher degree of nonlinearity.

4.1.2 Dropout Feature Ranking (FR) (Chang et al., 2017)

This method employs the mechanism of the widely used overfitting prevention technique: Dropout (Srivastava
et al., 2014), where a multiplicative Bernoulli noise is injected into each hidden neuron within a neural
network. However, instead of having preset, fixed dropout rates, they adopt Variational Dropout (Maeda,
2014), where the dropout rates are learned and optimized. This Variational Dropout regularization is applied
to the input layer to perform feature ranking. Band importance is determined by the optimized dropout
rates – the lower the rate, the more important of a band. The Bernoulli discrete variables are optimized
through Concrete relaxation (Jang et al., 2016; Maddison et al., 2016) – during training, the temperature
of the concrete selector layer is gradually decreased, which encourages a user-specified number of discrete
features to be learned. Xu et al. (2025) have applied Dropout FR to unsupervised HSI band selection.

4.1.3 Feature Selection using Stochastic Gates (STG) (Yamada et al., 2020)

This method was primarily proposed to serve as a feature selection method for non-linear functions, just
as the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) is to linear functions.
Specifically, they approximate the ℓ0 norm of features (i.e., the count of selected features) via Gaussian-based
relaxation of the Bernoulli distribution, so that gradient descent based optimization can be used. Gaussian-
based relaxation is preferred over the heavy-tailed logistic distribution used in the Concrete relaxation (Jang
et al., 2016; Maddison et al., 2016) for better consistency in the selected set of features. Mathematically, the
Stochastic Gate (STG, i.e., the relaxed Bernoulli variable) is defined as zd = max(0, min(1, µd+ϵd)), where ϵd

is drawn from N (0, σ2), σ is a fixed, preset hyperparameter, µd is learned and d ∈ [N ]. This approximation
can be viewed as a clipped, mean-shifted, Gaussian random variable. In principle, ẑd = max(0, min(1, µd))
determines band importance, where the values of ẑd converge to either 0 or 1. Sun et al. (2022) have
applied STG to unsupervised HSI band selection – their method is named “stochastic gate-based autoencoder
(SGAE)”, but their code is not publicly available.

4.1.4 Where to Pay Attention in Sparse Training for Feature Selection? (WAST) (Sokar et al., 2022)

This method jointly optimizes an autoencoder’s weights and its sparse topology (i.e., connectivity) during
training to quickly pay attention to informative features. A preset sparsity level is kept fixed throughout
training, and the sparse topology is optimized so that the sparse connections are gradually redistributed to
the most informative features (i.e., neurons at the input layer). The authors define neuron importance based
on the magnitude of the gradient with respect to reconstruction loss and the connecting weights. Band
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importance is determined by the neuron importance at the input layer. Thus far this method has not
been experimented with HSI band selection in the literature.

4.1.5 SAND: One-Shot Feature Selection with Additive Noise Distortion (Pad et al., 2025)

This method introduces a novel, non-intrusive feature selection layer such that no alteration to the loss
function (i.e., no additional regularization term) is required during training. The layer is mathematically
elegant and can be fully described by

x̃i = aixi + (1 − ai)zi (2)

where xi is the input feature, zi is a zero-mean Gaussian noise, and ai is a trainable parameter such
that

∑N
i=1 a2

i = k. This formulation induces an automatic clustering effect, driving k of the ai’s to 1
(selecting informative features) and the rest to 0 (discarding redundant ones) via weighted noise distortion
and normalization of ai’s. Band importance is determined by the magnitude of ai. Thus far this
method hasn’t been applied to HSI band selection. Inspired by (Sun et al., 2022) and (Xu et al., 2025), we
incorporate the SAND selection layer into an autoencoder structure.

4.1.6 A Real-Time Unsupervised Hyperspectral Band Selection via Spatial-Spectral Information
Fusion-Based Downscaled Region (SIFDR) (Zhang et al., 2024)

This method is the only non-deep-learning method included in this work. It first employs bicubic interpo-
lation to downscale the HSI spatially by a factor of 1

8 × 1
8 . This has three benefits: 1.) mitigating noise

speckles, 2.) computational time and memory usage are substantially reduced, and 3.) the interpolation
process involves weighted calculations of neighboring pixels, which implicitly incorporates spatial context
in the downscaled image. Then, a vector of length N that assigns an importance weight to each band is
generated based on constrained energy. Finally, to generate a more representative band subset with less
redundancy, this vector is refined with the aid of the Euclidean distance between bands that are normalized
with the hyperbolic tangent function to suppress noise for their saturation property. Band importance is
determined by the refined weight vector.

4.2 Evaluation Metrics

Following literature conventions (Ahishali et al., 2022; Xu et al., 2025), we use the classification results to
evaluate the efficacy of different band selection techniques described in Section 4.1. There are three metrics:
overall accuracy (OA), average per-class accuracy (AA), and the Cohen’s kappa coefficient (Kappa). We
report the mean and standard deviation of results over five runs with different seeds. The larger the mean
and the smaller the standard deviation, the better the performance.

5 Results and Discussion

Fig. 7 depicts the overall classification accuracy of applying different band selection algorithms with var-
ious band budgets. Comparing the classifiers, it can be clearly observed that MambaHSI outshines SVM
significantly, especially with the more challenging dataset WHU-Hi-HanChuan. Moreover, in stark contrast
to SVM, MambaHSI can handle randomly generated band subsets just as well as those generated by so-
phisticated selection algorithms. Also, as opposed to MambaHSI’s accuracies improving with the number
of bands, SVM’s curves are significantly flatter. Notably, when only 5 bands are selected, SVM tends to
outperform MambaHSI.

For the Pavia University dataset, which is the easiest out of the three, each band selection method exhibits
similar levels of accuracy. Interestingly, with the slightly harder Houston dataset, the band selection algo-
rithms demonstrate consistent behavior across the two classifiers, where two algorithms – WAST and SIFDR,
are the notable two low performers when compared against other algorithms that show similar performance.
It is the most challenging WHU-Hi-HanChuan dataset that the band selection algorithms show notably
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Figure 7: Overall accuracy of three HSI datasets: Pavia University (a)(d), Houston (b)(e), and WHU-Hi-
HanChuan (c)(f) for various band selection methods using two classifiers: MambaHSI (containing only the
Spatial Mamba Block (SpaMB)) (a)-(c) and SVM (d)-(f). (Random: randomly select a subset of bands;
Raw/Original: Full HSI data)

different result patterns between the two classifiers. While the accuracy curves produced by MambaHSI are
tangled together, WAST works significantly less effective with SVM.

Table 3: Classification results of different band selection algorithms for Pavia University dataset (30 bands
selected out of 103 total bands [∼29% selected])

Method MambaHSI SVM
OA(%) AA(%) Kappa(%) OA(%) AA(%) Kappa(%)

Random 88.64 ± 4.55 91.76 ± 2.27 85.36 ± 5.74 57.77 ± 2.23 68.89 ± 2.43 48.01 ± 2.31
SRL-SOA (Q=1) 92.77 ± 2.16 94.29 ± 0.72 90.56 ± 2.71 77.13 ± 2.34 83.11 ± 1.34 70.83 ± 2.90
SRL-SOA (Q=3) 93.44 ± 1.22 94.40 ± 0.87 91.38 ± 1.57 78.29 ± 1.07 83.58 ± 1.31 72.19 ± 1.41

Dropout FR 92.65 ± 1.07 93.68 ± 0.67 90.35 ± 1.37 78.61 ± 2.75 83.87 ± 1.45 72.59 ± 3.38
STG 92.83 ± 1.76 94.04 ± 0.18 90.61 ± 2.24 79.13 ± 1.96 83.27 ± 0.94 73.06 ± 2.43

WAST 92.89 ± 1.33 93.49 ± 0.93 90.66 ± 1.70 78.25 ± 3.06 83.67 ± 1.45 72.21 ± 3.63
SAND 91.79 ± 2.32 93.77 ± 0.35 89.30 ± 2.94 76.82 ± 4.61 82.74 ± 1.66 70.46 ± 5.33
SIFDR 91.69 ± 3.74 93.34 ± 1.77 89.20 ± 4.69 82.88 ± 1.20 86.13 ± 0.49 77.80 ± 1.44

All Bands (SpaMB-ONLY) 95.39 ± 0.70 95.81 ± 0.48 93.93 ± 0.89 - - -
All Bands (Full Model) 96.07 ± 0.41 96.04 ± 0.33 94.80 ± 0.53 81.08 ± 1.55 85.31 ± 0.92 75.62 ± 1.97

Tables 3, 4 and 5 record the performance of each studied dataset respectively. We record the performance
using 30 selected bands for Pavia University (103 bands total) and Houston (144 bands total) datasets, and
60 selected bands for WHU-Hi-HanChuan dataset (272 bands total). The best values are highlighted in
bold, and the second-best values are underlined. The first row of each table records the performance from a
randomly generated band subset, which we intend to serve as a lower bound. For the upper bound, we also
record the performance using the original HSI data containing all the bands.
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Table 4: Classification results of different band selection algorithms for Houston dataset (30 bands selected
out of 144 total bands [∼21% selected])

Method MambaHSI SVM
OA(%) AA(%) Kappa(%) OA(%) AA(%) Kappa(%)

Random 90.21 ± 1.35 91.62 ± 1.07 89.41 ± 1.46 71.69 ± 1.25 73.34 ± 1.26 69.42 ± 1.35
SRL-SOA (Q=1) 90.85 ± 0.56 92.19 ± 0.54 90.10 ± 0.60 85.17 ± 0.87 85.44 ± 0.69 83.95 ± 0.94
SRL-SOA (Q=3) 90.61 ± 1.40 92.15 ± 1.12 89.84 ± 1.51 85.19 ± 0.97 85.42 ± 0.83 83.98 ± 1.04

Dropout FR 89.92 ± 1.10 91.34 ± 1.01 89.10 ± 1.18 85.19 ± 0.97 85.59 ± 0.94 83.98 ± 1.05
STG 89.56 ± 2.45 91.24 ± 1.97 88.71 ± 2.64 85.32 ± 0.98 85.66 ± 0.98 84.12 ± 1.06

WAST 88.36 ± 2.85 90.15 ± 2.41 87.41 ± 3.08 78.63 ± 1.75 79.52 ± 1.84 76.91 ± 1.89
SAND 90.91 ± 1.39 92.41 ± 1.07 90.17 ± 1.50 84.74 ± 1.64 85.26 ± 1.59 83.49 ± 1.78
SIFDR 88.64 ± 1.20 90.47 ± 0.96 87.71 ± 1.30 80.82 ± 1.40 81.91 ± 1.25 79.25 ± 1.51

All Bands (SpaMB-ONLY) 93.60 ± 1.35 94.73 ± 1.16 93.08 ± 1.46 - - -
All Bands (Full Model) 94.30 ± 1.00 95.21 ± 0.92 93.84 ± 1.09 86.01 ± 1.13 86.32 ± 1.07 84.87 ± 1.22

Table 5: Classification results of different band selection algorithms for WHU-Hi-HanChuan (60 bands
selected out of 272 total bands [∼22% selected])

Method MambaHSI SVM
OA(%) AA(%) Kappa(%) OA(%) AA(%) Kappa(%)

Random 89.65 ± 1.05 89.24 ± 1.59 87.96 ± 1.21 40.83 ± 5.75 37.53 ± 3.81 34.37 ± 5.75
SRL-SOA (Q=1) 87.51 ± 2.04 87.06 ± 1.98 85.49 ± 2.35 68.11 ± 1.30 62.08 ± 0.71 63.41 ± 1.42
SRL-SOA (Q=3) 87.84 ± 1.52 87.08 ± 1.87 85.87 ± 1.75 67.48 ± 0.60 61.32 ± 0.61 62.68 ± 0.68

Dropout FR 87.55 ± 3.07 86.66 ± 3.47 85.53 ± 3.55 66.78 ± 0.75 61.39 ± 1.04 61.95 ± 0.80
STG 88.91 ± 0.48 88.60 ± 1.14 87.11 ± 0.55 66.97 ± 2.13 61.08 ± 1.60 62.15 ± 2.29

WAST 88.43 ± 1.34 88.27 ± 1.22 86.56 ± 1.55 65.34 ± 2.09 59.17 ± 1.98 60.30 ± 2.28
SAND 83.92 ± 8.34 83.76 ± 8.18 81.47 ± 9.38 69.28 ± 1.64 63.40 ± 1.05 64.73 ± 1.76
SIFDR 89.15 ± 0.25 88.86 ± 1.14 87.38 ± 0.28 68.19 ± 1.03 62.30 ± 0.42 63.53 ± 1.08

All Bands (SpaMB-ONLY) 88.98 ± 2.49 88.17 ± 2.91 87.16 ± 2.91 - - -
All Bands (Full Model) 89.87 ± 1.88 90.01 ± 2.22 88.22 ± 2.16 71.00 ± 0.90 65.85 ± 0.38 66.69 ± 0.94

Overall, MambaHSI outperforms SVM ∼10-20% in accuracy depending on the dataset. Besides, on every
dataset, MamabaHSI paired with the least performant band selector still outshines SVM when all bands are
in use. There doesn’t exist a single best band selection algorithm that works robustly well across distinct
datasets and classifiers. One particular band selection method can be the best on one dataset and a notable
low performer on the other. Additionally, as the dataset gets more complicated with more classes and more
noise, for MambaHSI, the studied band selection methods are not as effective anymore and even perform
worse than randomly selecting bands by chance. Particularly for the WHU-Hi-HanChuan dataset, none of
the band selection methods exceed the random selector.

5.1 Architectural Analysis of Deep-Learning-Based Band Selection Methods

Table 6: Summary of architecture information for deep-learning-based band selection algorithms

Method Encoder Encoder Output / Decoder Decoder Activation
Architecture Decoder Input Architecture Output Function

SRL-SOA Conv 1D layer(s) representation matrix -

X̂

Tanh
Dropout FR Concrete selector layer

selected bands 3 FC layers ReLUSTG Stochastic gate layer
SAND SAND layer
WAST 2 FC layers X̂ - - sigmoid
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Table 6 presents architectural information for autoencoder-based band selection algorithms. X̂ ∈ RH×W ×N

denotes the reconstructed HSI data cube, where N is the total number of spectral bands.

The encoder of SRL-SOA (Ahishali et al., 2022) consists of one or more 1D convolutional layers with a kernel
size of 3 and both in_channels and out_channels equal N . The hyperbolic tangent activation function is
applied once after all the convolutional layers and before the matrix is constructed. The encoder of WAST
(Sokar et al., 2022) consists of two fully connected (FC) layers with (in_features, out_features) equal
(N, 200) and (200, N) respectively. The sigmoid activation function is applied after the first FC layer.

Dropout feature ranking (FR) (Chang et al., 2017), stochastic gates (STG) (Yamada et al., 2020), and
one-shot feature selection with additive noise distortion (SAND) (Pad et al., 2025) are originally feature
selection mechanisms that can be plugged into any model architecture. (Xu et al., 2025) and (Sun et al.,
2022) have employed Dropout FR and STG, respectively, as the encoder layer of an autoencoder structure
for HSI band selection. Inspired by them, we follow suit for SAND as well. The decoder consists of three FC
layers with (in_features, out_features) equal (k, 128), (128, 256) and (256, N) respectively, where
k is the number of selected bands. ReLU is applied after the first two FC layers.

5.2 Efficiency Analysis

5.2.1 Phase 1: Band Selection

Table 7: Comparison of computation cost for each band selection algorithm on the WHU-Hi-HanChuan
dataset for selecting 60 bands

Method FLOPs Params Training Time (s) Test Time (s)
SRL-SOA (Q=1) 8.88M 222.22K 64.63 ± 1.21 0.066
SRL-SOA (Q=3) 22.22M 666.67K 71.03 ± 0.19 0.080

Dropout FR 3.31M 111.01K 17.99 ± 0.15 -
STG 3.31M 111.01K 21.90 ± 0.54 -

WAST 3.26M 109.27K 15.48 ± 0.66 -
SAND 3.31M 111.01K 16.08 ± 0.13 -
SIFDR - - 1.74 ± 0.17 -

Table 7 displays the computation cost in terms of floating-point operations (FLOPs), model parameter count,
as well as training and test time, of all studied band selection algorithms on the WHU-Hi-HanChuan dataset
for selecting 60 bands. The training time is measured over five runs with different seeds. Notably, of all
the deep-learning-based methods, WAST (Sokar et al., 2022) is the most light-weight and fast because it
employs sparse training and a sparse autoencoder. SIFDR (Zhang et al., 2024) is a non-deep-learning-based
statistical method and thus requires the least amount of time to generate band ranking.

Dropout feature ranking (FR) (Chang et al., 2017), stochastic gates (STG) (Yamada et al., 2020), and
one-shot feature selection with additive noise distortion (SAND) (Pad et al., 2025) have the exact same
architecture but differ in selection mechanisms. Interestingly, Dropout FR and STG both aim to relax
discrete Bernoulli variables but utilize different distributions (Concrete vs. Gaussian) to approximate; both
STG and SAND involve adding Gaussian noise to their input but do so differently with different constraints.

Of all deep-learning-based methods, SRL-SOA (Ahishali et al., 2022) is the only one that requires post-
processing upon training to obtain band ranking, i.e., calculating the row sum of the representation matrix
generated by the trained encoder. For others, we can directly obtain band ranking via sorting the learned
model parameters (Dropout FR, STG, and SAND) or the data structure used to store neuron importance
(WAST).

5.2.2 Phase 2: HSI Classification

Tables 8 and 9 showcase the computation cost and runtime for training and testing MambaHSI and SVM
on the WHU-Hi-HanChuan dataset. In accordance with the findings in Li et al. (2024), spatial features are
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Table 8: Comparison of computation cost on the WHU-Hi-HanChuan dataset for training MambaHSI with
different numbers of bands

No. of Spectral Bands FLOPs Params Training Time (s) Test Time (s) OA (%)
30 bands 5.13G 34.28K 35.77 ± 0.13 0.040 81.50 ± 1.95
60 bands 15.19G 101.75K 58.02 ± 0.41 0.066 89.15 ± 0.25

All Bands (SpaMB-ONLY) 26.70G 126.54K 46.71 ± 6.51 0.041 88.98 ± 2.49
All Bands (Full Model) 33.98G 137.01K 293.72 ± 29.93 0.311 89.87 ± 1.88

Table 9: Comparison of runtime on the WHU-Hi-HanChuan dataset for training SVM with different numbers
of bands

No. of Spectral Bands Training Time (s) Test Time (s) OA (%)
30 bands 0.01 5.93 ± 0.08 68.11 ± 0.61
60 bands 0.01 6.57 ± 0.16 69.28 ± 1.64

All Bands (272 bands) 0.02 17.38 ± 0.81 71.00 ± 0.90

more discerning than spectral features for HSI classification, and thus removing the Spectral Mamba Block
only induce negligible accuracy degradation (∼1%) while reducing 84% of training time.

Unless specified with “Full Model”, all experiments carried out with MambaHSI uses only the Spatial Mamba
block (SpaMB). As noted in Appendix A, the hidden dimension of Mamba block decreases as the number
of selected bands decreases. It can be observed from Table 8 that, when employing MambaHSI, using 30
bands (∼ 11% of total bands) results in a mere ∼ 8% accuracy loss, and when using 60 bands (∼ 22% of
total bands), there’s even a slight accuracy improvement (∼ 0.15%). When employing SVM, the accuracy
difference is rather small across a wide range of number of bands, as reflected by the relatively flat curves
in Fig. 7 and Table 9. However, there’s considerable savings in inference time when the number of bands is
reduced.

5.3 Discussion

With respect to RQ #1, we determine that there doesn’t exist a universally superior light-weight autoencoder-
based HSI band selection method independent of the dataset and classifier in use. This is reasonable as there
exists substantial diversity in each HSI dataset in terms of hyperspectral sensors used for data collection,
spatial and spectral resolution, spectral range and scene type (e.g., urban or agricultural), etc.

Since it is common that HSI remote sensing datasets present low inter-class separability and high intra-class
variability, SVM falls short since the classes most likely are not linearly separable. If a GPU-equipped edge
device is available, MambaHSI will be a better option due to its light-weight architecture and fast inference.
Also, a band selection method might not be necessary if MambaHSI is in use.

Regarding RQ #2, we learn that MambaHSI preserves accuracy fairly well – only a maximum 6% accuracy
drop when using ∼20-30% of the bands (see Tables 3, 4 and 5). Table 8 also demonstrates the reduction in
model FLOPs and parameters as well as runtime when using only a subset of bands.

The merit of this work is to analyze and compare the mechanism, architecture and computation cost for
each method so that researchers, engineers and practitioners can make a more informed choice given their
specific hyperspectral sensors, dataset, and constraints of computation resources.

6 Conclusions and Future Work

This work aligns two seemingly divergent research lines – the more general feature selection and the more
specific HSI band selection and concentrates on efficient unsupervised deep learning-based techniques for
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HSI band selection. We provide an in-depth comparative analysis of six state-of-the-art HSI band selection
methods, including five light-weight autoencoder-based methods and one non-deep-learning method. Exper-
iments are carried out on three publicly available remote sensing benchmark datasets with two classifiers –
SVM and MambaHSI. The results show clear superiority of the Mamba-based model in terms of accuracy
and inference time when a GPU is available. Although we could not conclude a universally superior band
selection method that stands out across diverse datasets, we dived deep into the inner workings of each
method, organized and put together the code in PyTorch, hoping it will benefit researchers and engineers in
making the process of hyperspectral sensing and data processing more efficient and accurate. Future work
will be to integrate one of the band selection methods into a real-world hyperspectral remote sensing and
data processing pipeline with edge hardware onboard an unmanned aerial vehicle (UAV).
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A Hyperparamter Details

In addition to the general hyperparameters for training a neural network, such as batch size, learning rate,
and training epochs, each band selection method has its own hyperparameters to tune. Table 10 lists the
number of hyperparameters uniquely for each band selection method to consider. We generally follow the
insights and suggestions from the original papers, do a mini grid search on the Houston dataset, and then
apply the same hyperparameters on the other two HSI datasets. To enhance the reproducibility of our work,
the meaning of each hyperparameter and the values we use are provided below:

Table 10: Number of hyperparameters for each band selection algorithm
SRL-SOA Dropout FR STG WAST SAND SIFDR

# Hyperparam. 1 2 2 4 2 2

• SRL-SOA (Ahishali et al., 2022)

– Q = {1, 3}; the number of 1D convolutional layers in the encoder.

• Dropout FR (Chang et al., 2017; Xu et al., 2025)

– The start (τs = 1) and final (τf = 0.01) temperatures for the concrete selector. We apply an
annealing scheduler (Eq. 3) such that the temperature gradually decays at each epoch. As the
temperature τ gradually anneals to zero, the Concrete distribution approximates more closely
to the discrete argmax.

τ = τs × (τf

τs
)

curr_epoch
total_epochs (3)

• STG (Yamada et al., 2020; Sun et al., 2022)

– σ = 0.01; noise component of the stochastic gate is drawn from N (0, σ2).
– λ = 0.1; regularization coefficient.

• WAST (Sokar et al., 2022)

– N_hidden = 200; number of neurons in hidden layer.
– λ = 0.4; regularization coefficient in neuron importance.
– α = 0.3; the fraction of dropped and regrown weights.
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– density = 0.2; percentage of model weights/connections retained throughout training.

• SAND (Pad et al., 2025)

– σ = 1.5; indicates how firmly we would like to restrict the number of features to k. A higher value
of σ places greater emphasis on precisely achieving k features, resulting in faster binarization
(polarization towards 0 and 1) of the gains (ai’s).

– α = 2; Euclidean norm is used to normalize the gain vector a during training.

• SIFDR (Zhang et al., 2024)

– spatial scaling factor r = 1
8 for bicubic interpolation to scale down the image.

– batch size = 1000 for calculating the weight vector indicating band importance based on con-
strained energy.

Table 11 presents the general training hyperparameters for training deep-learning based band selection
algorithms on all studied datasets.

For classifier training, we completely follow (Li et al., 2024) for training the Mamba classifier with a 0.0003
learning rate and 200 total epochs. The hidden dimension of the Mamba block is set to 64 when using all
bands, and k when using k selected bands where k < 64. Note that when k is close to 64 (e.g., 60) as
exhibited in Table 8, the runtime might slightly increase.

For the SVM classifier, we use the default SVC from sklearn.svm with the regularization parameter C set
to 1000.

Table 11: General training hyperparameters for each deep-learning-based band selection algorithm
SRL-SOA Dropout FR STG WAST SAND

batch size 15 15 15 5 15
learning rate 0.0001 0.0001 0.001 0.05 0.001
total epochs 50 50 50 10 50
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