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Abstract001

This paper explores the use of hidden states002
from large language models (LLMs) to detect003
semantic shifts in specialized domains via a004
zero-shot approach. While encoder-based mod-005
els dominate this research, they face limitations006
in context length, computational cost, and in-007
terpretability. We propose extracting contex-008
tualized word embeddings from the decoder009
hidden states of Llama 3 series models (Dubey010
et al., 2024). Our method employs structured011
input formulations to guide LLMs in gener-012
ating context-sensitive word definitions, from013
which we extract hidden state representations.014
Using a historical corpus (Credit Suisse Bul-015
letin, 1970–2018), we measure semantic shifts016
with Jensen-Shannon divergence. Experimen-017
tal results show decoder hidden states effec-018
tively capture contextualized semantics, demon-019
strated by a case study of the word "interest".020
To our knowledge, this is the first study lever-021
aging decoder hidden states prompted by defi-022
nition generation without reliance on generated023
text analysis. Our method enables decoder-only024
models to effectively detect semantic shifts,025
providing a computationally efficient, inter-026
pretable alternative for unlabeled data while027
significantly reducing computational overhead028
compared to encoder-based approaches.029

1 Introduction030

In recent years, Transformer-based language mod-031

els have advanced significantly in modeling repre-032

sentation through dynamic embeddings, enabling033

increasingly sophisticated analyses in downstream034

tasks such as semantic shift detection (SSD). SSD035

is the task of identifying changes in word meanings036

between two sets of texts, such as diachronic or037

text-genre corpora, which is crucial for understand-038

ing how language evolves. The evolution of SSD039

methods has progressed from static word embed-040

dings like Word2Vec (Mikolov et al., 2013) and041

GloVe (Pennington et al., 2014) to dynamic rep-042

resentation models. While encoder-based models043

now dominate current SSD research (Montanelli 044

and Periti, 2023; Rudolph and Blei, 2017; Ishihara 045

et al., 2022), their limitations excite exploration 046

of alternative model architectures. Diachronic 047

domain-specific corpora are valuable, but the ex- 048

pensive manual annotation impedes their linguistic 049

research. 050

Existing SSD research predominantly relies on 051

encoder-based models, which have three main con- 052

straints for SSD. First, commonly used encoder- 053

only models have modest parameters and pre- 054

training volumes compared to LLMs (e.g., BERT- 055

Large 330M vs. DeepSeek V3 671B (Devlin 056

et al., 2019; Liu et al., 2024)), suggesting a dis- 057

parity in representational ability. Second, applying 058

BERT-like models often requires transfer learning 059

pipelines and side-tricks (Gao et al., 2021; Ishihara 060

et al., 2022). Recent work using decoder-only mod- 061

els could address its unidirectional nature by load- 062

ing unmasked LLMs (e.g., NV-Embed (Lee et al., 063

2024), LLM2Vec (BehnamGhader et al., 2024)); 064

however, this approach blurs the border between 065

decoder and encoder models. Other studies fo- 066

cus on analyzing generated contents (Giulianelli 067

et al., 2023; de Sá et al., 2024), which lack scala- 068

bility. Therefore, an efficient SSD solution that can 069

leverage LLMs for large-scale unlabelled corpora 070

remains challenging. 071

This paper focuses on leveraging LLMs for zero- 072

shot SSD in specialized domains, addressing a cru- 073

cial question: how can we extract semantic informa- 074

tion without fine-tuning overhead? Our zero-shot 075

approach eliminates dependency on gold-standard 076

datasets, making it applicable to any historical texts. 077

We hypothesize that decoder-only LLMs’ hidden 078

states contain sufficient semantic information to 079

detect meaning shifts without modification or post- 080

training steps. 081

To address the above challenges, we propose an 082

innovative approach that utilizes the LLM (LLaMA 083

3 series (Dubey et al., 2024)) for zero-shot SSD 084
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by extracting decoder hidden states directly from085

the model. Our method employs structured input086

formulations to guide LLMs in generating context-087

sensitive word definitions, from which we extract088

semantics. This approach leverages the LLMs’089

intensive pre-training and extended context capa-090

bilities without specialized post-training. To our091

knowledge, this is the first study leveraging de-092

coder hidden states guided by prompted defini-093

tions, distinguishing our approach clearly from094

prior decoder-based research. We analyze the evo-095

lution of semantics over 50 years (1970–2018)096

using a historical corpus (Credit Suisse Bulletin)097

(Volk et al., 2016). Experimental results show that098

decoder hidden states effectively capture contextu-099

alized semantics, demonstrated by a case study.100

Our contributions are:101

• A novel zero-shot SSD method utilizing de-102

coder hidden states instructed by definition103

generation, without requiring fine-tuning or104

analysis of generated content.105

• A computationally efficient, interpretable al-106

ternative to encoder-based methods for seman-107

tic shift analysis in unlabeled corpora.108

• Validation of the method’s effectiveness109

through analysis of semantic evolution in a110

50-year financial corpus.111

The rest of this paper is organized as follows:112

Section 2 summarizes related work on semantic113

shift detection and LLM applications. Section 3114

describes our proposed method for extracting and115

analyzing hidden states. Section 4 presents our116

experimental setup and results, followed by discus-117

sions of implications in Section 5. Finally, Section118

6 concludes the paper and suggests directions for119

future work. The code for this work is available on120

GitHub (anonymized for review).121

2 Related Work122

Semantic Shift Detection (SSD) has evolved from123

static word embeddings to context-aware models.124

Encoder-based models like BERT (Devlin et al.,125

2019) have dominated recent SSD research (Mon-126

tanelli and Periti, 2023), with various techniques127

for improving performance (Giulianelli et al., 2020;128

Ishihara et al., 2022). These approaches benefit129

from bidirectional context but face significant limi-130

tations: they typically have smaller base models, re-131

quire resource-intensive fine-tuning for diachronic132

adaptation, and struggle with limited contexts, lim- 133

iting their effectiveness in SSD. 134

Decoder-only LLMs remain largely unexplored 135

for SSD despite their compelling advantages: mas- 136

sive parameter scales and strong zero-shot capabil- 137

ities across domains (Brown et al., 2020; Dubey 138

et al., 2024). Limited work with decoder mod- 139

els primarily focuses on analyzing generated text 140

(Wang and Choi, 2023; de Sá et al., 2024) rather 141

than utilizing their internal representations. Some 142

approaches like model modification (Lee et al., 143

2024; BehnamGhader et al., 2024) have been pro- 144

posed to adapt LLMs for embedding extraction, but 145

these modifications blur the distinction between 146

decoder and encoder architectures, adding unnec- 147

essary complexity. 148

Our work addresses a significant research gap by 149

pioneering the direct utilization of decoder hidden 150

states for zero-shot SSD—a novel approach in the 151

literature. Unlike prior work that analyzes gener- 152

ated outputs, we propose a more elegant solution: 153

employing structured prompts to extract seman- 154

tically rich representations from decoder hidden 155

states without generation analysis or model modifi- 156

cation. This approach uniquely combines the rep- 157

resentational power of LLMs with computational 158

efficiency, offering the first truly zero-shot SSD 159

method that requires neither fine-tuning nor gold- 160

standard datasets while maintaining interpretabil- 161

ity. 162

3 Methodology 163

3.1 Overview 164

This section details the method for extracting word 165

embeddings by leveraging the hidden states of a 166

decoder-only LLM architecture for zero-shot Se- 167

mantic Shift Detection (SSD). Since decoders are 168

generally considered to only encode unidirectional 169

information from left to current token, their hid- 170

den states are typically not considered suitable for 171

contextualized word embedding (CWE) extraction. 172

Our proposed method uses the hidden states of 173

LLMs to represent CWEs by guiding the model 174

with carefully designed prompts, avoiding special- 175

ized post-training. 176

3.2 Model and Embedding Extraction 177

3.2.1 Embedding Extraction Techniques 178

We investigated five strategic positions for extract- 179

ing contextualized word embeddings (CWEs) from 180

the model’s hidden states: 181
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• input_mean: Average of all input sequence182

hidden states.183

• input_last_token: Hidden state of the final184

input token (conditioning the first generated185

token).186

• eos_token: Hidden state of a manually added187

EOS token at the input end.188

• output_mean: Average of generated defini-189

tion hidden states.190

• output_eos: Hidden state of the model-191

generated EOS token.192

We extracted hidden states from all layers and193

compared their semantic representation capabil-194

ities. Based on comparative evaluation of pol-195

ysemous word clustering clarity (Section 4.3),196

input_last_token outperforms other positions in197

distinguishing polysemous meanings, while requir-198

ing no additional model modifications and enabling199

extraction without generation steps. This position200

was selected for subsequent analyses.201

3.3 Structured Input Formulation for202

Definition Elicitation203

We systematically formulated structured in-context204

learning templates to elicit context-sensitive word205

definitions from the LLM. Through comparative206

evaluation (Section 4.4), we identified a three-role207

dialog template (icl_basic), consisting of a sys-208

tem role defining the task, a user role providing209

an example and query, and an assistant role for210

generation, that maximized definition consistency211

and minimized generation errors. The complete212

template specifications and error analysis metrics213

are detailed in Appendices B and C.214

3.4 Semantic Shift Detection Techniques215

We measure semantic shifts quantitatively using216

Jensen-Shannon divergence (JSD), a symmetric,217

bounded metric (0–1) suitable for capturing distri-218

butional changes. Unlike cosine similarity, which219

compares only average vectors, JSD fully leverages220

our large-scale collection of CWEs, enabled by our221

zero-shot approach, and evaluates entire embed-222

ding distributions, providing enhanced sensitivity223

to subtle semantic shifts.224

3.5 Dimensionality Reduction and225

Visualization226

For visualization and computational efficiency, we227

use UMAP (McInnes et al., 2018) to reduce the228

high-dimensional embeddings. Specific UMAP 229

parameters are detailed in Appendix A.3. UMAP 230

was selected for its ability to preserve topological 231

structure and improve cluster separation compared 232

to linear methods like PCA. Our analysis employs 233

scatter plots to identify polysemy and temporal 234

visualizations to track shifts. 235

4 Experiments and Results 236

This section details our experimental methodology 237

and presents the findings. The core analyses were 238

performed using the LLaMa 3.1 8B Instruct model. 239

Comprehensive details regarding the experimental 240

setup, model configurations, hyperparameters, and 241

computational resources are provided in Appendix 242

A. 243

4.1 Datasets 244

We use a long-span professional publication corpus, 245

the English portion of the Credit Suisse Bulletin cor- 246

pus (Volk et al., 2016) (1970-2018, OCR and PDF 247

sources), which is available for research purposes. 248

The corpus underwent common NLP preprocess- 249

ing (POS tagging, lemmatization) from raw XML 250

data. This preprocessing was followed by exten- 251

sive rule-based filtering to enhance data quality and 252

appropriateness. These filters included checks for 253

proper ending punctuation, the presence of emails 254

or URLs, excessive consecutive digits, sentence 255

length constraints (typically 5 to 100 words), non- 256

English character limits, a minimum number of al- 257

phabetic characters, and an English language check. 258

The filtering for emails, URLs, and consecutive dig- 259

its also served to reduce the presence of directly 260

identifiable information in the dataset. Addition- 261

ally, perplexity filtering was employed to remove 262

nonsensical sentences (see Appendix A.1 for model 263

details). The LLaMA 3 series models are used un- 264

der their open-source license. 265

For evaluation purposes, target words in the 266

cleaned sentences were annotated with WordNet 267

(Miller, 1995) sense IDs using the OpenAI O1- 268

mini API via batch processing. WordNet come 269

with expert-curated lexical database that orga- 270

nizes English words into sets of cognitive syn- 271

onyms (synsets), each representing a distinct lex- 272

ical meaning structure. We use WordNet to pro- 273

vide sense definitions, enabling structured compar- 274

ison across time. These annotations serve as a sil- 275

ver standard—machine-assigned labels grounded 276

in expert definitions, offering interpretability but 277
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not gold-standard precision. The final dataset was278

grouped into 5-year intervals for long-term SSD.279

4.2 Optimal Layers for Semantic280

Representation281

We visualized each layer’s representational capa-282

bility for "capital" through UMAP dimensionality283

reduction. Figure 1 shows scatter plot distributions284

in four representative layers and WordNet labels.285

As the layers deepen, the model gradually forms286

semantic clusters, showing significant grouping287

trends from layer 22 onward. Notably, the blue288

points (representing "wealth in the form of money289

or property") and purple points (representing "as-290

sets available for producing other assets") appear291

partially overlapped in later layers, reflecting their292

close semantic relationship. From WordNet’s per-293

spective, the blue points represent an extension of294

the purple points in terms of ownership - while295

purple points emphasize the productive function of296

assets, blue points highlight the possession aspect297

of wealth. This overlap in the LLM’s representa-298

tion space demonstrates how the model captures299

subtle semantic relationships that align with lexico-300

graphical knowledge structures.301

Our analysis of semantic representation across302

different layers showed that the early layers mainly303

capture syntactic features, while middle layers be-304

gin to cook semantically relevant clusters. The later305

layersdemonstrate the ability to distinguish differ-306

ent semantic categories, forming distinct cluster307

structures. Based on this evidence, we concate-308

nated the model’s later layers as the primary basis309

for semantic shift analysis.310

4.3 Optimal Embedding Extraction Positions311

We visualized UMAP-reduced embeddings for pol-312

ysemous words to compare extraction methods313

(input_mean, input_last_token, eos_token,314

output_mean, output_eos). Figure 2 shows this315

comparison using r̈ate,̈ utilizing the previously de-316

termined optimal later layers (21-33).317

The input_last_token position shows318

the clearest separation of semantic clus-319

ters. eos_token performs reasonably well.320

input_mean tends to blur distinctions. Output-321

based methods (output_mean, output_eos) show322

less coherent clustering. The distinct cluster323

identified by input_last_token corresponds to324

idiomatic uses (e.g., ät any rate)̈.325

We also computed pairwise cosine similarity be-326

tween the methods. Figure 3 shows the similarity327

(a) Layer 5 (b) Layer 15

(c) Layer 22 (d) Layer 33

(e) WordNet Labels

Figure 1: Semantic representation capability for "capi-
tal" at representative layers (5, 15, 22, 33) and WordNet
label distribution (Llama 3.1 8B), colored by WordNet
sense ID.

matrix. 328

Based on the clarity of semantic cluster- 329

ing and distinctiveness from other methods, 330

input_last_token is selected as the optimal ex- 331

traction position for subsequent analyses. 332

4.4 Evaluation of Instruction Design 333

We compared two prompt designs: icl_basic (Ta- 334

ble 2) and icl_context_aware. Prompts were 335

evaluated based on their tendency to produce er- 336

roneous outputs, specifically examining common 337

error categories including Content duplication (E1 338

CD), Polysemic enumeration (E2 PE), Instruction 339

Response Shift (E3 IRS), and CoT activation (E4 340

CoTA). Table 1 summarizes the performance. The 341

icl_basic prompt demonstrated more stable per- 342

formance, minimizing most errors (E1, E3, E4) 343

while generating concise definitions, despite occa- 344

sional polysemic enumeration (E2), and was there- 345

fore chosen for the main experiments. A summa- 346

rized description for each error type is provided in 347

Appendix C. 348
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(a) input_mean (b) input_last_token (c) eos_token

(d) output_mean (e) output_eos (f) Rate labels

Figure 2: Comparison of semantic clustering capabilities of five different embedding extraction methods for the
word r̈ateüsing stacked later layers (21-33). Colours correspond to WordNet definitions. Red points are rejected for
labelling by O1-mini.

Prompt E1: E2: E3: E4:
CD PE IRS CoTA

icl_basic ✗ ✓ ✓ ✗
icl_context_aware ✗ ✓ ✓ ✓

Table 1: Observed error behaviours for compared
prompts. ✓indicates the error was observed, ✗ indi-
cates it was not.

Figure 3: Pairwise cosine similarity heatmap between
different embedding extraction methods. Darker color
indicates high similarity.

4.5 Model Configuration Analysis 349

Results confirmed that decoder hidden states from 350

later layers (21-33) of Llama 3.1 8B effectively 351

capture context-specific semantics. Our ablations 352

revealed: (1) the 8B model outperformed the 3B 353

model, demonstrating clear scaling benefits; (2) 354

sufficient context length (5 sentences) improved dif- 355

ferentiation of subtle meanings despite higher com- 356

putational costs; and (3) the icl_basic prompt 357

balanced guidance and stability better than more 358

complex alternatives. These findings suggest that 359

larger models with adequate context window bene- 360

fit semantic representation quality. Detailed abla- 361

tion results are provided in Appendix F. 362

4.6 Semantic Shift Detection 363

4.6.1 Overall Semantic Shift Trajectory 364

Visualization 365

To visualize the semantic evolution of financial 366

terminology over five decades, we mapped the tra- 367

jectories of 44 financial terms in a shared semantic 368

space using UMAP dimensionality reduction on 369

hidden states extracted via the input_last_token 370

method. Figure 4 presents these trajectories, where 371

each point represents a term’s semantic centroid 372

within a specific time window (1970-2018). 373

The visualization reveals varying trajectory 374
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Figure 4: Semantic shift trajectory map of financial terms (1970-2018). Each trajectory represents a word’s semantic
shift path across time windows.

lengths and patterns among the terms. Some375

terms exhibit short, concentrated trajectories (e.g.,376

"bank", "profit"), while others show longer, more377

directional movements (e.g., "security", "bond") or378

fluctuating patterns without clear directional trends379

(e.g., "monetary"). The quantitative analysis of380

these patterns is presented in Section 5.381

4.6.2 Quantitative Analysis of "Interest"382

Figure 5 presents the sense distribution of "inter-383

est" across time periods (1970-2018). The data384

shows two dominant meanings: definition 4 ("fixed385

charge for a service, usually a certain percentage386

of the loan amount") and definition 1 ("attention387

and curiosity towards someone or something").388

The data shows that between 1970 and 1995, def-389

inition 4 represented over 75% of usage instances.390

After 2004, definition 1 increased from under 20%391

to nearly 50%. The line graph shows the overall392

frequency of the term declined during this period. 393

Figure 6 presents the Jensen-Shannon diver- 394

gence (JSD) measurements for "interest." The JSD 395

values remained at approximately 0.15 from 1970 396

to 1990, then increased to 0.4 by 2008. 397

Additional quantitative results for the term "real" 398

are provided in condensed form in Appendix E. 399

5 Discussion 400

5.1 Interpretation of Semantic Trajectories 401

Based on the trajectory visualization in Section 402

4.6.1, we identified three distinct patterns of seman- 403

tic evolution: 404

• Stability: Terms such as "bank" and "profit" 405

maintain consistent semantic positions, ex- 406

hibiting short, concentrated trajectories. 407

• Shifting: Terms such as "security" and "bond" 408
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Figure 5: Sense label distribution of "Interest" (1970-
2018). The bar chart shows the proportion of each sense
in different periods, and the line chart represents the
word frequency changes.

show unidirectional semantic shift with clear409

directional movement.410

• Oscillation: Terms such as "monetary" dis-411

play fluctuating patterns without a clear direc-412

tional trend, reflecting periodic adjustments413

or sampling variability.414

This trajectory analysis provides valuable in-415

sights into the semantic relationships between fi-416

nancial terms and enables comparative analysis417

across multiple terms. The map reveals both grad-418

Figure 6: JS divergence for "interest" (1970-2018). The
figure shows JS Divergence over time, indicating seman-
tic shift intensity.

ual shifts over decades and more pronounced tran- 419

sitions in specific periods. 420

5.2 Analysis of "Interest" Semantic Evolution 421

The case study of "interest" in Section 4.6.2 demon- 422

strates a significant semantic transition from spe- 423

cialized financial meaning toward more general 424

usage. The sharp increase in JSD values after 1990 425

corresponds precisely to the observed shift from 426

financial to general meaning. This indicates that 427

our method effectively captures meaningful seman- 428

tic evolution rather than random variation. The 429

quantitative data reveals a clear trend: the finan- 430

cial sense (definition 4) clearly dominated initially, 431

representing over 75% of usage instances, while 432

after 2004, a significant shift occurred—the gen- 433

eral sense (definition 1) increased dramatically, ap- 434

proaching equivalence with the financial meaning. 435

The divergent semantic trajectory of "interest" 436

likely reflects changing content focus in the Credit 437

Suisse Bulletin over this period, potentially indicat- 438

ing a shift in communication strategy from purely 439

financial reporting toward broader topics with gen- 440

eral audience appeal. This exemplifies a broader 441

"universalization" trend observed across multiple 442

specialized terms in our corpus. 443

5.3 WordNet Labels vs. LLM Representations 444

Comparing WordNet semantic annotation with 445

LLM-derived clustering reveals complex relation- 446

ships. WordNet provides structured reference, but 447

its distinctions do not always align with LLMs’ se- 448

mantic space. Key patterns observed: (1) LLMs 449

exhibit broader semantic clustering than WordNet’s 450

fine distinctions; (2) LLMs sometimes differenti- 451

ate instances with identical WordNet senses based 452

on context; and (3) LLMs distinguish idiomatic 453

expressions not specifically in WordNet. These 454

patterns suggest LLMs capture broader category 455

groupings and subtle contextual distinctions reflect- 456

ing actual language use, which may differ from 457

WordNet’s predefined classifications. 458

5.4 Broader Trends in Domain Terminology 459

Our analysis across multiple terms reveals a preva- 460

lent pattern in specialized domains: the gradual 461

transition of terminology from restricted technical 462

usage toward more generalized applications over 463

time. This "universalization" phenomenon extends 464

beyond individual cases like "interest" (Section 465

4.6.2) and "real" (Appendix E). 466

7



We attribute this pattern to several potential fac-467

tors:468

• Changes in publication strategy, with in-469

creased focus on broader audiences470

• Evolution of financial discourse toward more471

accessible language472

• Semantic broadening as specialized terms en-473

ter mainstream usage474

This observed trend highlights how technical lan-475

guage naturally evolves to serve both specialized476

and general communication functions over time,477

particularly in long-running professional publica-478

tions like the Credit Suisse Bulletin.479

5.5 Methodological Implications for SSD480

Our approach provides robust, interpretable em-481

beddings from decoder hidden states without fine-482

tuning, making it particularly suitable for large-483

scale historical corpus analysis. The JSD metric484

effectively quantifies semantic shifts, demonstrat-485

ing practical utility for identifying both subtle and486

dramatic meaning changes over time.487

The case studies collectively validate our an-488

alytical framework’s capability to capture differ-489

ent change patterns, including semantic stability,490

shift, and differentiation. The combination of hid-491

den state extraction and distributional analysis of-492

fers a powerful, computationally efficient method493

for semantic evolution research in unannotated di-494

achronic corpora, with potential applications be-495

yond the financial domain.496

5.6 Limitations497

This study has limitations. Regarding data, the498

diachronic corpus faces challenges: the inherent499

sparsity of language combined with this leads to500

infrequent appearance of some interesting terms,501

resulting in insufficient sample sizes for stable sta-502

tistical metrics and semantic traces. As a weak503

label source, WordNet suffers from subjectivity504

and granularity issues that differ from the seman-505

tic structures revealed by LLMs. Methodological506

limitations are constituted by the quality of model507

generation, the selection of hidden state layers, di-508

mension loss, and the lack of strong labels for pre-509

cise evaluation. Additionally, the generated text510

still contains errors such as content repetition and511

multiple-definition listing, which may affect the512

quality of contextualized word embedding.513

6 Conclusion and Future Work 514

6.1 Summary of Contributions 515

This paper presents a novel zero-shot method 516

for SSD using decoder hidden states from LLMs 517

(Llama 3), guided by definition generation using 518

structured inputs. We demonstrated its effective- 519

ness in capturing semantic shifts in a 50-year di- 520

achronic corpus without fine-tuning. Key contri- 521

butions include: (1) pioneering the combined use 522

of decoder hidden states and definition generation 523

guided by structured inputs for embedding-based 524

SSD, (2) proposing an input formulation technique 525

for embedding extraction, (3) applying JSD for dis- 526

tributional shift analysis, and (4) providing insights 527

into long-term semantic evolution. Our approach 528

offers a computationally efficient alternative to tra- 529

ditional methods and serves as a methodological 530

advancement for SSD in any unlabeled corpus. Our 531

approach also demonstrates how leveraging large 532

decoder-only language models can shift method- 533

ological paradigms within computational linguis- 534

tics research. Our results highlight the complemen- 535

tarity between decoder-only LLM representations 536

and structured semantic resources like WordNet, of- 537

fering broad potential applications beyond financial 538

semantic analysis as a versatile analytical tool in 539

linguistics, artificial intelligence, and data science. 540

6.2 Future Works 541

Future work includes: (1) Optimizing prompt de- 542

sign and potentially using generated definitions 543

as pseudo-labels, freeing us from our dependence 544

on WordNet’s auxiliary. (2) Investigating reason- 545

ing models with explicit think tokens, such as 546

DeepSeek R1, to extract CWEs after their interme- 547

diate reasoning steps, potentially leading to more 548

accurate and interpretable embeddings. (3) Ex- 549

tending to cross-lingual semantic shift detection by 550

leveraging the aligned, parallel translations avail- 551

able in our dataset, enabling both language-specific 552

SSD and comparative analysis of semantic evo- 553

lution across languages. (4) Improving compu- 554

tational efficiency by leveraging KV caching to 555

enable parallel extraction of hidden states for all 556

words in one sentence. Combining LLM represen- 557

tations with structured knowledge like WordNet 558

may also yield benefits. 559
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A Computational Details 646

A.1 Model Size and Computational Budget 647

The primary language models employed in this re- 648

search were Meta’s Llama 3.1 8B (approximately 649

8 billion parameters) and Llama 3.2 3B (approxi- 650

mately 3 billion parameters), accessed via the Hug- 651

ging Face ‘transformers‘ library. All experiments 652

were conducted on a SLURM system equipped 653

with 4 Nvidia GH200 GPUs. The Llama 3.1 8B 654

model required approximately 6 hours of computa- 655

tion time for the full runs, while the experimental 656

runs for the Llama 3.2 3B model required approxi- 657

mately 3.5 GPU hours, with both utilizing the four 658

GPUs in parallel. 659

A.2 Experimental Setup and 660

Hyperparameters 661

For the generation of contextualized definitions and 662

subsequent hidden state extraction, a fixed experi- 663

mental configuration was utilized. Operations were 664
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performed using ‘bf16‘ mixed precision. Text gen-665

eration employed a beam search strategy with 3666

beams, a temperature setting of 0.3 to ensure deter-667

ministic and focused outputs, and a maximum limit668

of 50 newly generated tokens per definition. No669

systematic hyperparameter search was conducted;670

these settings were established based on qualitative671

assessments from preliminary experiments.672

A.3 Data Preprocessing and Software673

Parameters674

Initial data preprocessing included an English lan-675

guage filtering step using the ‘langdetect‘ library676

with an English probability threshold of 0.7. For677

dimensionality reduction and visualization, the678

‘umap-learn‘ Python package was used. UMAP679

was configured with ‘n_components=2‘ for 2D vi-680

sualizations and ‘n_components=16‘ for dimen-681

sionality reduction prior to JSD computation; other682

UMAP parameters (e.g., ‘n_neighbors‘, ‘min_dist‘,683

‘metric‘) were kept at their default values from the684

‘umap-learn‘ package. Linguistic preprocessing685

(Part-of-Speech tagging and lemmatization) relied686

on the spaCy library. WordNet sense annotation687

was performed using the OpenAI O1-mini model.688

Visualizations were generated using Matplotlib.689

B Prompt Templates690

Table 2 shows the primary in-context learning691

prompt template (icl_basic) used for definition692

generation. We also experimented with a context-693

aware variant (icl_context_aware), the detailed694

content of which is available on GitHub.695

C Response Error Comparison696

This appendix summarizes the error types men-697

tioned in Section 4.4. Table 3 provides a brief de-698

scription and a condensed example for each error699

type.700

D Illustrative Prompt Output701

Comparison702

This section provides illustrative examples703

of outputs generated by the icl_basic and704

icl_context_aware prompt templates (Appendix705

B). These examples highlight typical qualitative706

differences and associated error behaviours707

summarized in Appendix C.708

E Additional Case Studies 709

E.1 Semantic Shift Analysis of "Real" 710

The term "real" shifted from a specific financial 711

meaning (inflation-adjusted) to a more general us- 712

age after 1995. This shift, illustrated by JSD trends 713

(Figure 7), reflects the corpus’s content evolution. 714

JSD analysis showed high values initially, stabi- 715

lizing after the 1990s as the term’s usage evolved 716

from predominantly technical economic contexts 717

to more general senses.

Figure 7: JSD trend for the word "real" across time
periods.

718

F Model Configuration Analysis Details 719

This appendix provides condensed additional de- 720

tails for the model configuration analysis men- 721

tioned in Section 4.5. 722

F.1 Model Size Comparison: Llama 3.2 3B vs 723

Llama 3.1 8B 724

In model size comparisons, we observed that Llama 725

3.1 8B generally produced more accurate and 726

contextually relevant definitions compared to the 727

smaller Llama 3.2 3B model. The 8B model 728

demonstrated better handling of complex contexts 729

and polysemy, though it occasionally added redun- 730

dant details (Error E3: IRS). The 3B model, while 731

faster, more frequently exhibited content duplica- 732

tion (Error E1: CD) and produced less nuanced 733

definitions. 734

F.2 Sentence Level Context Length 735

Longer context (e.g., 5 sentences) consistently im- 736

proved definition precision for terms like "mar- 737

ket" compared to shorter or no context scenarios 738

when using Llama 3.1 8B. Sufficient context helped 739

the model capture more nuanced, systemic profes- 740

sional meanings rather than basic or overly general 741

interpretations. When examining the impact on the 742

term "market" with Llama 3.1 8B, we observed 743

that with no context, the model provided basic 744
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Role Content
System You are a dictionary. Your only task is to provide a single definition by its context within 20

words. Do not include bullet points, steps, explanations, or any text besides the definition itself.
User Example:

Sentence: "The company’s revenue showed significant growth in Q4."
Word: "growth"
An increase in size, quantity, or importance over time.

For the sentence: "{sentence}"
Define the word "{word}":

Assistant [empty response to be generated]

Table 2: Basic in-context learning prompt template (icl_basic).

Error Type Short Description Example (Shortened)
E1: CD Content duplicated from input. Input: "He implemented..." Output: "He imple-

mented..."
E2: PE Lists multiple possible meanings. Input: "...emerging market." Output: "An area

where goods... or... A place...Or a particular in-
dustry..."

E3: IRS Adds extraneous comments. Input: "...political risk..." Output: "An economic
system... (Note: I’ve kept...)"

E4: CoTA Begins unnecessary reasoning. Input: "Not fair..." Output: "I understand... Here
are the definitions: 1. For sentence..."

Table 3: Summary of response error types.

Table 4: Illustrative comparison of outputs from icl_basic and icl_context_aware. Error codes (e.g., E4) refer
to Appendix C.

Input (Sentence; Word) Output from icl_basic Output from icl_context_aware
Sentence: "The research paper
discussed the rate of inflation."
Word: "rate"

"A measure, quantity, or frequency, typically
compared against another quantity." (Con-
cise, general definition)

"The speed at which economic indicators,
such as inflation, change." (Context-specific,
exhibit E4: CoTA)

Sentence: "He decided to bank
the money he won."
Word: "bank"

"To deposit money in a financial institution."
(Direct, concise definition)

"1. To deposit money. 2. To rely upon. Here,
meaning 1 applies." (Exhibit E2: PE)

Sentence: "The company’s capi-
tal was invested wisely."
Word: "capital"

"Wealth or assets owned by a person or orga-
nization." (Focused definition)

"Financial resources for business use, distinct
from other meanings such as a capital city."
(Context-aware, exhibit E3: IRS)

definitions (e.g., "place or situation"); with 1 sen-745

tence, it captured limited aspects (e.g., "fluctuating746

supply/demand"); with 3 sentences, it performed747

similar to minimal context; and with 5 sentences,748

it produced more accurate, systemic definitions749

(e.g., "system of buyers/sellers, price by supply/de-750

mand"). While inference speed was not signifi-751

cantly affected by context length, memory usage752

increased with longer contexts due to expanded KV753

caches.754
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