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Abstract

This paper explores the use of hidden states
from large language models (LLMs) to detect
semantic shifts in specialized domains via a
zero-shot approach. While encoder-based mod-
els dominate this research, they face limitations
in context length, computational cost, and in-
terpretability. We propose extracting contex-
tualized word embeddings from the decoder
hidden states of Llama 3 series models (Dubey
et al., 2024). Our method employs structured
input formulations to guide LLMs in gener-
ating context-sensitive word definitions, from
which we extract hidden state representations.
Using a historical corpus (Credit Suisse Bul-
letin, 1970-2018), we measure semantic shifts
with Jensen-Shannon divergence. Experimen-
tal results show decoder hidden states effec-
tively capture contextualized semantics, demon-
strated by a case study of the word "interest".
To our knowledge, this is the first study lever-
aging decoder hidden states prompted by defi-
nition generation without reliance on generated
text analysis. Our method enables decoder-only
models to effectively detect semantic shifts,
providing a computationally efficient, inter-
pretable alternative for unlabeled data while
significantly reducing computational overhead
compared to encoder-based approaches.

1 Introduction

In recent years, Transformer-based language mod-
els have advanced significantly in modeling repre-
sentation through dynamic embeddings, enabling
increasingly sophisticated analyses in downstream
tasks such as semantic shift detection (SSD). SSD
is the task of identifying changes in word meanings
between two sets of texts, such as diachronic or
text-genre corpora, which is crucial for understand-
ing how language evolves. The evolution of SSD
methods has progressed from static word embed-
dings like Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) to dynamic rep-
resentation models. While encoder-based models

now dominate current SSD research (Montanelli
and Periti, 2023; Rudolph and Blei, 2017; Ishihara
et al., 2022), their limitations excite exploration
of alternative model architectures. Diachronic
domain-specific corpora are valuable, but the ex-
pensive manual annotation impedes their linguistic
research.

Existing SSD research predominantly relies on
encoder-based models, which have three main con-
straints for SSD. First, commonly used encoder-
only models have modest parameters and pre-
training volumes compared to LLMs (e.g., BERT-
Large 330M vs. DeepSeek V3 671B (Devlin
et al., 2019; Liu et al., 2024)), suggesting a dis-
parity in representational ability. Second, applying
BERT-like models often requires transfer learning
pipelines and side-tricks (Gao et al., 2021; Ishihara
et al., 2022). Recent work using decoder-only mod-
els could address its unidirectional nature by load-
ing unmasked LLMs (e.g., NV-Embed (Lee et al.,
2024), LLM2Vec (BehnamGhader et al., 2024));
however, this approach blurs the border between
decoder and encoder models. Other studies fo-
cus on analyzing generated contents (Giulianelli
et al., 2023; de Sa et al., 2024), which lack scala-
bility. Therefore, an efficient SSD solution that can
leverage LLMs for large-scale unlabelled corpora
remains challenging.

This paper focuses on leveraging LLMs for zero-
shot SSD in specialized domains, addressing a cru-
cial question: how can we extract semantic informa-
tion without fine-tuning overhead? Our zero-shot
approach eliminates dependency on gold-standard
datasets, making it applicable to any historical texts.
We hypothesize that decoder-only LLMs’ hidden
states contain sufficient semantic information to
detect meaning shifts without modification or post-
training steps.

To address the above challenges, we propose an
innovative approach that utilizes the LLM (LLaMA
3 series (Dubey et al., 2024)) for zero-shot SSD



by extracting decoder hidden states directly from
the model. Our method employs structured input
formulations to guide LLMs in generating context-
sensitive word definitions, from which we extract
semantics. This approach leverages the LLMs’
intensive pre-training and extended context capa-
bilities without specialized post-training. To our
knowledge, this is the first study leveraging de-
coder hidden states guided by prompted defini-
tions, distinguishing our approach clearly from
prior decoder-based research. We analyze the evo-
lution of semantics over 50 years (1970-2018)
using a historical corpus (Credit Suisse Bulletin)
(Volk et al., 2016). Experimental results show that
decoder hidden states effectively capture contextu-
alized semantics, demonstrated by a case study.
Our contributions are:

* A novel zero-shot SSD method utilizing de-
coder hidden states instructed by definition
generation, without requiring fine-tuning or
analysis of generated content.

* A computationally efficient, interpretable al-
ternative to encoder-based methods for seman-
tic shift analysis in unlabeled corpora.

* Validation of the method’s effectiveness
through analysis of semantic evolution in a
50-year financial corpus.

The rest of this paper is organized as follows:
Section 2 summarizes related work on semantic
shift detection and LLM applications. Section 3
describes our proposed method for extracting and
analyzing hidden states. Section 4 presents our
experimental setup and results, followed by discus-
sions of implications in Section 5. Finally, Section
6 concludes the paper and suggests directions for
future work. The code for this work is available on
GitHub (anonymized for review).

2 Related Work

Semantic Shift Detection (SSD) has evolved from
static word embeddings to context-aware models.
Encoder-based models like BERT (Devlin et al.,
2019) have dominated recent SSD research (Mon-
tanelli and Periti, 2023), with various techniques
for improving performance (Giulianelli et al., 2020;
Ishihara et al., 2022). These approaches benefit
from bidirectional context but face significant limi-
tations: they typically have smaller base models, re-
quire resource-intensive fine-tuning for diachronic

adaptation, and struggle with limited contexts, lim-
iting their effectiveness in SSD.

Decoder-only LL.Ms remain largely unexplored
for SSD despite their compelling advantages: mas-
sive parameter scales and strong zero-shot capabil-
ities across domains (Brown et al., 2020; Dubey
et al., 2024). Limited work with decoder mod-
els primarily focuses on analyzing generated text
(Wang and Choi, 2023; de S4 et al., 2024) rather
than utilizing their internal representations. Some
approaches like model modification (Lee et al.,
2024; BehnamGhader et al., 2024) have been pro-
posed to adapt LLMs for embedding extraction, but
these modifications blur the distinction between
decoder and encoder architectures, adding unnec-
essary complexity.

Our work addresses a significant research gap by
pioneering the direct utilization of decoder hidden
states for zero-shot SSD—a novel approach in the
literature. Unlike prior work that analyzes gener-
ated outputs, we propose a more elegant solution:
employing structured prompts to extract seman-
tically rich representations from decoder hidden
states without generation analysis or model modifi-
cation. This approach uniquely combines the rep-
resentational power of LLMs with computational
efficiency, offering the first truly zero-shot SSD
method that requires neither fine-tuning nor gold-
standard datasets while maintaining interpretabil-

ity.
3 Methodology

3.1 Overview

This section details the method for extracting word
embeddings by leveraging the hidden states of a
decoder-only LLM architecture for zero-shot Se-
mantic Shift Detection (SSD). Since decoders are
generally considered to only encode unidirectional
information from left to current token, their hid-
den states are typically not considered suitable for
contextualized word embedding (CWE) extraction.
Our proposed method uses the hidden states of
LLMs to represent CWEs by guiding the model
with carefully designed prompts, avoiding special-
ized post-training.

3.2 Model and Embedding Extraction

3.2.1 Embedding Extraction Techniques

We investigated five strategic positions for extract-
ing contextualized word embeddings (CWESs) from
the model’s hidden states:



* input_mean: Average of all input sequence
hidden states.

* input_last_token: Hidden state of the final
input token (conditioning the first generated
token).

* eos_token: Hidden state of a manually added
EOS token at the input end.

* output_mean: Average of generated defini-
tion hidden states.

* output_eos: Hidden state of the model-
generated EOS token.

We extracted hidden states from all layers and
compared their semantic representation capabil-
ities. Based on comparative evaluation of pol-
ysemous word clustering clarity (Section 4.3),
input_last_token outperforms other positions in
distinguishing polysemous meanings, while requir-
ing no additional model modifications and enabling
extraction without generation steps. This position
was selected for subsequent analyses.

3.3 Structured Input Formulation for
Definition Elicitation

We systematically formulated structured in-context
learning templates to elicit context-sensitive word
definitions from the LLM. Through comparative
evaluation (Section 4.4), we identified a three-role
dialog template (icl_basic), consisting of a sys-
tem role defining the task, a user role providing
an example and query, and an assistant role for
generation, that maximized definition consistency
and minimized generation errors. The complete
template specifications and error analysis metrics
are detailed in Appendices B and C.

3.4 Semantic Shift Detection Techniques

We measure semantic shifts quantitatively using
Jensen-Shannon divergence (JSD), a symmetric,
bounded metric (0-1) suitable for capturing distri-
butional changes. Unlike cosine similarity, which
compares only average vectors, JSD fully leverages
our large-scale collection of CWEs, enabled by our
zero-shot approach, and evaluates entire embed-
ding distributions, providing enhanced sensitivity
to subtle semantic shifts.

3.5 Dimensionality Reduction and
Visualization

For visualization and computational efficiency, we
use UMAP (Mclnnes et al., 2018) to reduce the

high-dimensional embeddings. Specific UMAP
parameters are detailed in Appendix A.3. UMAP
was selected for its ability to preserve topological
structure and improve cluster separation compared
to linear methods like PCA. Our analysis employs
scatter plots to identify polysemy and temporal
visualizations to track shifts.

4 Experiments and Results

This section details our experimental methodology
and presents the findings. The core analyses were
performed using the LL.aMa 3.1 8B Instruct model.
Comprehensive details regarding the experimental
setup, model configurations, hyperparameters, and
computational resources are provided in Appendix
A.

4.1 Datasets

We use a long-span professional publication corpus,
the English portion of the Credit Suisse Bulletin cor-
pus (Volk et al., 2016) (1970-2018, OCR and PDF
sources), which is available for research purposes.
The corpus underwent common NLP preprocess-
ing (POS tagging, lemmatization) from raw XML
data. This preprocessing was followed by exten-
sive rule-based filtering to enhance data quality and
appropriateness. These filters included checks for
proper ending punctuation, the presence of emails
or URLs, excessive consecutive digits, sentence
length constraints (typically 5 to 100 words), non-
English character limits, a minimum number of al-
phabetic characters, and an English language check.
The filtering for emails, URLs, and consecutive dig-
its also served to reduce the presence of directly
identifiable information in the dataset. Addition-
ally, perplexity filtering was employed to remove
nonsensical sentences (see Appendix A.1 for model
details). The LLaMA 3 series models are used un-
der their open-source license.

For evaluation purposes, target words in the
cleaned sentences were annotated with WordNet
(Miller, 1995) sense IDs using the OpenAl O1-
mini API via batch processing. WordNet come
with expert-curated lexical database that orga-
nizes English words into sets of cognitive syn-
onyms (synsets), each representing a distinct lex-
ical meaning structure. We use WordNet to pro-
vide sense definitions, enabling structured compar-
ison across time. These annotations serve as a sil-
ver standard—machine-assigned labels grounded
in expert definitions, offering interpretability but



not gold-standard precision. The final dataset was
grouped into 5-year intervals for long-term SSD.

4.2 Optimal Layers for Semantic
Representation

We visualized each layer’s representational capa-
bility for "capital" through UMAP dimensionality
reduction. Figure 1 shows scatter plot distributions
in four representative layers and WordNet labels.

As the layers deepen, the model gradually forms
semantic clusters, showing significant grouping
trends from layer 22 onward. Notably, the blue
points (representing "wealth in the form of money
or property") and purple points (representing "as-
sets available for producing other assets") appear
partially overlapped in later layers, reflecting their
close semantic relationship. From WordNet’s per-
spective, the blue points represent an extension of
the purple points in terms of ownership - while
purple points emphasize the productive function of
assets, blue points highlight the possession aspect
of wealth. This overlap in the LLM’s representa-
tion space demonstrates how the model captures
subtle semantic relationships that align with lexico-
graphical knowledge structures.

Our analysis of semantic representation across
different layers showed that the early layers mainly
capture syntactic features, while middle layers be-
gin to cook semantically relevant clusters. The later
layersdemonstrate the ability to distinguish differ-
ent semantic categories, forming distinct cluster
structures. Based on this evidence, we concate-
nated the model’s later layers as the primary basis
for semantic shift analysis.

4.3 Optimal Embedding Extraction Positions

We visualized UMAP-reduced embeddings for pol-
ysemous words to compare extraction methods
(input_mean, input_last_token, eos_token,
output_mean, output_eos). Figure 2 shows this
comparison using ratey utilizing the previously de-
termined optimal later layers (21-33).

The input_last_token position shows
the clearest separation of semantic clus-
ters. eos_token performs reasonably well.
input_mean tends to blur distinctions. Output-
based methods (output_mean, output_eos) show
less coherent clustering. The distinct cluster
identified by input_last_token corresponds to
idiomatic uses (e.g., it any rate).

We also computed pairwise cosine similarity be-
tween the methods. Figure 3 shows the similarity
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person or business and human resources of economic value

3. a seat of government

4. a center that is associated more than any other with some
activity or product

® No definition match
(e) WordNet Labels

Figure 1: Semantic representation capability for "capi-
tal" at representative layers (5, 15, 22, 33) and WordNet
label distribution (Llama 3.1 8B), colored by WordNet
sense ID.

matrix.

Based on the clarity of semantic cluster-
ing and distinctiveness from other methods,
input_last_token is selected as the optimal ex-
traction position for subsequent analyses.

4.4 Evaluation of Instruction Design

We compared two prompt designs: icl_basic (Ta-
ble 2) and icl_context_aware. Prompts were
evaluated based on their tendency to produce er-
roneous outputs, specifically examining common
error categories including Content duplication (E1
CD), Polysemic enumeration (E2 PE), Instruction
Response Shift (E3 IRS), and CoT activation (E4
CoTA). Table 1 summarizes the performance. The
icl_basic prompt demonstrated more stable per-
formance, minimizing most errors (E1, E3, E4)
while generating concise definitions, despite occa-
sional polysemic enumeration (E2), and was there-
fore chosen for the main experiments. A summa-
rized description for each error type is provided in
Appendix C.
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Figure 2: Comparison of semantic clustering capabilities of five different embedding extraction methods for the
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Prompt E1l: E2: E3: E4:
CD PE 1IRS CoTA
icl_basic X v v X
icl_context_aware X v v v
Table 1: Observed error behaviours for compared

prompts. v'indicates the error was observed, X indi-
cates it was not.
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Figure 3: Pairwise cosine similarity heatmap between
different embedding extraction methods. Darker color
indicates high similarity.

4.5 Model Configuration Analysis

Results confirmed that decoder hidden states from
later layers (21-33) of Llama 3.1 8B effectively
capture context-specific semantics. Our ablations
revealed: (1) the 8B model outperformed the 3B
model, demonstrating clear scaling benefits; (2)
sufficient context length (5 sentences) improved dif-
ferentiation of subtle meanings despite higher com-
putational costs; and (3) the icl_basic prompt
balanced guidance and stability better than more
complex alternatives. These findings suggest that
larger models with adequate context window bene-
fit semantic representation quality. Detailed abla-
tion results are provided in Appendix F.

4.6 Semantic Shift Detection

4.6.1 Overall Semantic Shift Trajectory
Visualization

To visualize the semantic evolution of financial
terminology over five decades, we mapped the tra-
jectories of 44 financial terms in a shared semantic
space using UMAP dimensionality reduction on
hidden states extracted via the input_last_token
method. Figure 4 presents these trajectories, where
each point represents a term’s semantic centroid
within a specific time window (1970-2018).

The visualization reveals varying trajectory
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Figure 4: Semantic shift trajectory map of financial terms (1970-2018). Each trajectory represents a word’s semantic

shift path across time windows.

lengths and patterns among the terms. Some
terms exhibit short, concentrated trajectories (e.g.,
"bank", "profit"), while others show longer, more
directional movements (e.g., "security", "bond") or
fluctuating patterns without clear directional trends
(e.g., "monetary"). The quantitative analysis of
these patterns is presented in Section 5.

4.6.2 Quantitative Analysis of ''Interest'

Figure 5 presents the sense distribution of "inter-
est" across time periods (1970-2018). The data
shows two dominant meanings: definition 4 ("fixed
charge for a service, usually a certain percentage
of the loan amount") and definition 1 ("attention
and curiosity towards someone or something").
The data shows that between 1970 and 1995, def-
inition 4 represented over 75% of usage instances.
After 2004, definition 1 increased from under 20%
to nearly 50%. The line graph shows the overall

frequency of the term declined during this period.
Figure 6 presents the Jensen-Shannon diver-
gence (JSD) measurements for "interest." The JSD
values remained at approximately 0.15 from 1970
to 1990, then increased to 0.4 by 2008.
Additional quantitative results for the term "real"
are provided in condensed form in Appendix E.

5 Discussion

5.1 Interpretation of Semantic Trajectories

Based on the trajectory visualization in Section
4.6.1, we identified three distinct patterns of seman-
tic evolution:

* Stability: Terms such as "bank" and "profit"
maintain consistent semantic positions, ex-
hibiting short, concentrated trajectories.

* Shifting: Terms such as "security" and "bond"
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Figure 5: Sense label distribution of "Interest" (1970-
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in different periods, and the line chart represents the
word frequency changes.

show unidirectional semantic shift with clear
directional movement.

* Oscillation: Terms such as "monetary" dis-
play fluctuating patterns without a clear direc-
tional trend, reflecting periodic adjustments
or sampling variability.

This trajectory analysis provides valuable in-
sights into the semantic relationships between fi-
nancial terms and enables comparative analysis
across multiple terms. The map reveals both grad-
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Figure 6: JS divergence for "interest" (1970-2018). The
figure shows JS Divergence over time, indicating seman-
tic shift intensity.

ual shifts over decades and more pronounced tran-
sitions in specific periods.

5.2 Analysis of "Interest' Semantic Evolution

The case study of "interest" in Section 4.6.2 demon-
strates a significant semantic transition from spe-
cialized financial meaning toward more general
usage. The sharp increase in JSD values after 1990
corresponds precisely to the observed shift from
financial to general meaning. This indicates that
our method effectively captures meaningful seman-
tic evolution rather than random variation. The
quantitative data reveals a clear trend: the finan-
cial sense (definition 4) clearly dominated initially,
representing over 75% of usage instances, while
after 2004, a significant shift occurred—the gen-
eral sense (definition 1) increased dramatically, ap-
proaching equivalence with the financial meaning.

The divergent semantic trajectory of "interest"
likely reflects changing content focus in the Credit
Suisse Bulletin over this period, potentially indicat-
ing a shift in communication strategy from purely
financial reporting toward broader topics with gen-
eral audience appeal. This exemplifies a broader
"universalization" trend observed across multiple
specialized terms in our corpus.

5.3 WordNet Labels vs. LLM Representations

Comparing WordNet semantic annotation with
LLM-derived clustering reveals complex relation-
ships. WordNet provides structured reference, but
its distinctions do not always align with LLMs’ se-
mantic space. Key patterns observed: (1) LLMs
exhibit broader semantic clustering than WordNet’s
fine distinctions; (2) LLMs sometimes differenti-
ate instances with identical WordNet senses based
on context; and (3) LLMs distinguish idiomatic
expressions not specifically in WordNet. These
patterns suggest LLMs capture broader category
groupings and subtle contextual distinctions reflect-
ing actual language use, which may differ from
WordNet’s predefined classifications.

5.4 Broader Trends in Domain Terminology

Our analysis across multiple terms reveals a preva-
lent pattern in specialized domains: the gradual
transition of terminology from restricted technical
usage toward more generalized applications over
time. This "universalization" phenomenon extends
beyond individual cases like "interest" (Section
4.6.2) and "real" (Appendix E).



We attribute this pattern to several potential fac-
tors:

* Changes in publication strategy, with in-
creased focus on broader audiences

¢ Evolution of financial discourse toward more
accessible language

» Semantic broadening as specialized terms en-
ter mainstream usage

This observed trend highlights how technical lan-
guage naturally evolves to serve both specialized
and general communication functions over time,
particularly in long-running professional publica-
tions like the Credit Suisse Bulletin.

5.5 Methodological Implications for SSD

Our approach provides robust, interpretable em-
beddings from decoder hidden states without fine-
tuning, making it particularly suitable for large-
scale historical corpus analysis. The JSD metric
effectively quantifies semantic shifts, demonstrat-
ing practical utility for identifying both subtle and
dramatic meaning changes over time.

The case studies collectively validate our an-
alytical framework’s capability to capture differ-
ent change patterns, including semantic stability,
shift, and differentiation. The combination of hid-
den state extraction and distributional analysis of-
fers a powerful, computationally efficient method
for semantic evolution research in unannotated di-
achronic corpora, with potential applications be-
yond the financial domain.

5.6 Limitations

This study has limitations. Regarding data, the
diachronic corpus faces challenges: the inherent
sparsity of language combined with this leads to
infrequent appearance of some interesting terms,
resulting in insufficient sample sizes for stable sta-
tistical metrics and semantic traces. As a weak
label source, WordNet suffers from subjectivity
and granularity issues that differ from the seman-
tic structures revealed by LLMs. Methodological
limitations are constituted by the quality of model
generation, the selection of hidden state layers, di-
mension loss, and the lack of strong labels for pre-
cise evaluation. Additionally, the generated text
still contains errors such as content repetition and
multiple-definition listing, which may affect the
quality of contextualized word embedding.

6 Conclusion and Future Work

6.1 Summary of Contributions

This paper presents a novel zero-shot method
for SSD using decoder hidden states from LLMs
(Llama 3), guided by definition generation using
structured inputs. We demonstrated its effective-
ness in capturing semantic shifts in a 50-year di-
achronic corpus without fine-tuning. Key contri-
butions include: (1) pioneering the combined use
of decoder hidden states and definition generation
guided by structured inputs for embedding-based
SSD, (2) proposing an input formulation technique
for embedding extraction, (3) applying JSD for dis-
tributional shift analysis, and (4) providing insights
into long-term semantic evolution. Our approach
offers a computationally efficient alternative to tra-
ditional methods and serves as a methodological
advancement for SSD in any unlabeled corpus. Our
approach also demonstrates how leveraging large
decoder-only language models can shift method-
ological paradigms within computational linguis-
tics research. Our results highlight the complemen-
tarity between decoder-only LLM representations
and structured semantic resources like WordNet, of-
fering broad potential applications beyond financial
semantic analysis as a versatile analytical tool in
linguistics, artificial intelligence, and data science.

6.2 Future Works

Future work includes: (1) Optimizing prompt de-
sign and potentially using generated definitions
as pseudo-labels, freeing us from our dependence
on WordNet’s auxiliary. (2) Investigating reason-
ing models with explicit think tokens, such as
DeepSeek R1, to extract CWEs after their interme-
diate reasoning steps, potentially leading to more
accurate and interpretable embeddings. (3) Ex-
tending to cross-lingual semantic shift detection by
leveraging the aligned, parallel translations avail-
able in our dataset, enabling both language-specific
SSD and comparative analysis of semantic evo-
lution across languages. (4) Improving compu-
tational efficiency by leveraging KV caching to
enable parallel extraction of hidden states for all
words in one sentence. Combining LLM represen-
tations with structured knowledge like WordNet
may also yield benefits.
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A Computational Details
A.1 Model Size and Computational Budget

The primary language models employed in this re-
search were Meta’s Llama 3.1 8B (approximately
8 billion parameters) and Llama 3.2 3B (approxi-
mately 3 billion parameters), accessed via the Hug-
ging Face ‘transformers® library. All experiments
were conducted on a SLURM system equipped
with 4 Nvidia GH200 GPUs. The Llama 3.1 8B
model required approximately 6 hours of computa-
tion time for the full runs, while the experimental
runs for the Llama 3.2 3B model required approxi-
mately 3.5 GPU hours, with both utilizing the four
GPUs in parallel.

A.2 Experimental Setup and
Hyperparameters

For the generation of contextualized definitions and
subsequent hidden state extraction, a fixed experi-
mental configuration was utilized. Operations were


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.11993
https://arxiv.org/abs/2305.11993
https://arxiv.org/abs/2305.11993
https://arxiv.org/abs/2305.11993
https://arxiv.org/abs/2305.11993
https://doi.org/10.18653/v1/2022.aacl-main.17
https://doi.org/10.18653/v1/2022.aacl-main.17
https://doi.org/10.18653/v1/2022.aacl-main.17
https://doi.org/10.18653/v1/2022.aacl-main.17
https://doi.org/10.18653/v1/2022.aacl-main.17

performed using ‘bf16‘ mixed precision. Text gen-
eration employed a beam search strategy with 3
beams, a temperature setting of 0.3 to ensure deter-
ministic and focused outputs, and a maximum limit
of 50 newly generated tokens per definition. No
systematic hyperparameter search was conducted;
these settings were established based on qualitative
assessments from preliminary experiments.

A.3 Data Preprocessing and Software
Parameters

Initial data preprocessing included an English lan-
guage filtering step using the ‘langdetect’ library
with an English probability threshold of 0.7. For
dimensionality reduction and visualization, the
‘umap-learn‘ Python package was used. UMAP
was configured with ‘n_components=2° for 2D vi-
sualizations and ‘n_components=16°‘ for dimen-
sionality reduction prior to JSD computation; other
UMAP parameters (e.g., ‘n_neighbors®, ‘min_dist*,
‘metric‘) were kept at their default values from the
‘umap-learn‘ package. Linguistic preprocessing
(Part-of-Speech tagging and lemmatization) relied
on the spaCy library. WordNet sense annotation
was performed using the OpenAl O1-mini model.
Visualizations were generated using Matplotlib.

B Prompt Templates

Table 2 shows the primary in-context learning
prompt template (icl_basic) used for definition
generation. We also experimented with a context-
aware variant (icl_context_aware), the detailed
content of which is available on GitHub.

C Response Error Comparison

This appendix summarizes the error types men-
tioned in Section 4.4. Table 3 provides a brief de-
scription and a condensed example for each error

type.

D Illustrative Prompt Output
Comparison

This section provides illustrative examples
of outputs generated by the icl_basic and
icl_context_aware prompt templates (Appendix
B). These examples highlight typical qualitative
differences and associated error behaviours
summarized in Appendix C.
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E Additional Case Studies

E.1 Semantic Shift Analysis of ''Real"

The term "real" shifted from a specific financial
meaning (inflation-adjusted) to a more general us-
age after 1995. This shift, illustrated by JSD trends
(Figure 7), reflects the corpus’s content evolution.
JSD analysis showed high values initially, stabi-
lizing after the 1990s as the term’s usage evolved
from predominantly technical economic contexts
to more general senses.
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Figure 7: JSD trend for the word "real" across time
periods.

F Model Configuration Analysis Details

This appendix provides condensed additional de-
tails for the model configuration analysis men-
tioned in Section 4.5.

F.1 Model Size Comparison: Llama 3.2 3B vs
Llama 3.1 8B

In model size comparisons, we observed that Llama
3.1 8B generally produced more accurate and
contextually relevant definitions compared to the
smaller Llama 3.2 3B model. The 8B model
demonstrated better handling of complex contexts
and polysemy, though it occasionally added redun-
dant details (Error E3: IRS). The 3B model, while
faster, more frequently exhibited content duplica-
tion (Error E1: CD) and produced less nuanced
definitions.

F.2 Sentence Level Context Length

Longer context (e.g., 5 sentences) consistently im-
proved definition precision for terms like "mar-
ket" compared to shorter or no context scenarios
when using Llama 3.1 8B. Sufficient context helped
the model capture more nuanced, systemic profes-
sional meanings rather than basic or overly general
interpretations. When examining the impact on the
term "market" with Llama 3.1 8B, we observed
that with no context, the model provided basic



Role Content
System You are a dictionary. Your only task is to provide a single definition by its context within 20
words. Do not include bullet points, steps, explanations, or any text besides the definition itself.
User Example:
Sentence: "The company’s revenue showed significant growth in Q4."
Word: "growth"
An increase in size, quantity, or importance over time.
For the sentence: "{sentence}"
Define the word "{word}":
Assistant [empty response to be generated]
Table 2: Basic in-context learning prompt template (icl_basic).

Error Type | Short Description Example (Shortened)

El: CD Content duplicated from input. Input: "He implemented..." Output: "He imple-
mented..."

E2: PE Lists multiple possible meanings. Input: "...emerging market." Output: "An area
where goods... or... A place...Or a particular in-
dustry..."

E3: IRS Adds extraneous comments. Input: "...political risk..." Output: "An economic
system... (Note: I've kept...)"

E4: CoTA Begins unnecessary reasoning. Input: "Not fair..." Output: "I understand... Here
are the definitions: 1. For sentence..."

Table 3: Summary of response error types.

Table 4: Illustrative comparison of outputs from icl_basic and icl_context_aware. Error codes (e.g., E4) refer

to Appendix C.

Input (Sentence; Word)

Output from icl_basic

Output from icl_context_aware

Sentence: "The research paper
discussed the rate of inflation."
Word: "rate"

"A measure, quantity, or frequency, typically
compared against another quantity." (Con-
cise, general definition)

"The speed at which economic indicators,
such as inflation, change." (Context-specific,
exhibit E4: CoTA)

Sentence: "He decided to bank
the money he won."
Word: "bank"

"To deposit money in a financial institution."
(Direct, concise definition)

"1. To deposit money. 2. To rely upon. Here,
meaning 1 applies." (Exhibit E2: PE)

Sentence: "The company’s capi-
tal was invested wisely."
Word: "capital”

"Wealth or assets owned by a person or orga-
nization." (Focused definition)

"Financial resources for business use, distinct
from other meanings such as a capital city."
(Context-aware, exhibit E3: IRS)

definitions (e.g., "place or situation"); with 1 sen-
tence, it captured limited aspects (e.g., "fluctuating
supply/demand"); with 3 sentences, it performed
similar to minimal context; and with 5 sentences,
it produced more accurate, systemic definitions
(e.g., "system of buyers/sellers, price by supply/de-
mand"). While inference speed was not signifi-
cantly affected by context length, memory usage
increased with longer contexts due to expanded KV

caches.
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