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Abstract

Recent work has introduced a framework that allows users to directly optimize explanations for desired properties
and their trade-offs. While powerful in principle, this method repurposes evaluation metrics as loss functions – an
approach whose implications are not yet well understood. In this paper, we study how different robustness metrics
influence the outcome of explanation optimization, holding faithfulness constant. We do this in the transductive
setting, in which all points are available in advance. Contrary to our expectations, we observe that the choice of
robustness metric can lead to highly divergent explanations, particularly in higher-dimensional settings. We trace
this behavior to the use of metrics that evaluate the explanation set as a whole, rather than imposing constraints on
individual points, and to how these “global” metrics interact with other optimization objectives. These interactions
can allow the optimizer to produce locally inconsistent, unintuitive, and even undesirable explanations, despite
satisfying the desired trade-offs. Our findings highlight the need for metrics whose mathematical structure more
closely aligns with their intended use in optimization, and we advocate for future work that rigorously investigates
metrics that incorporate a pointwise evaluation and their influence on the optimization landscape.

1. Introduction
To assess the quality of explanations, the interpretable machine learning community relies on properties such as faithfulness
(how accurately the explanation reflects the model’s behavior) and robustness (how stable the explanation remains under
input perturbations). Recent work by Tadesse et al. (2024) proposes a framework that enables users to tailor feature
attribution explanations to their needs by directly optimizing explanations for desired levels of faithfulness and robustness.
Their work addresses a limitation of standard explanation algorithms such as LIME (Ribeiro et al., 2016) and SmoothGrad
(Smilkov et al., 2017) which implicitly encode fixed trade-offs (LIME favoring faithfulness, SmoothGrad robustness).

However, this framework still requires users to choose specific faithfulness and robustness metrics from an abundance of
mathematical formalizations for these properties (for a collection, see Chen et al. (2024)’s work), making this a complex
and underexplored task. To examine how significantly the choice of optimization metrics affects outcomes in practice, we
study the influence of different robustness metrics on the resulting explanations when used as optimization objectives (in the
transductive setting). We did this for varying function types, data dimensionalities, and perturbation regions.

We initially conjectured that the choice of robustness metric would not matter significantly – that as long as the explanations
were fixed to a specific faithfulness loss, they would be consistent across different robustness metrics with little variance.
Contrary to our initial expectations, we found that optimizing for desired properties can lead to counterintuitive and
undesirable behaviors, especially in higher-dimensional settings. We hypothesize that this behavior arises from the use of
metrics that evaluate the explanation set as a whole, rather than at the level of individual points, and from how such “global”
metrics interact with other objectives in the optimization. When using such metrics in an optimization setting, the optimizer
can exploit this flexibility of only considering the entire set as a whole and, e.g., focus on faithfulness in some regions of the
function and robustness in others. This can result in explanations that appear faithful (according to the specified ”global”
metric), but that are highly imbalanced locally.
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2. Related Works
Previous work has repeatedly shown that humans prefer different explanation properties for different tasks (Zhou et al.,
2021; Liao et al., 2022; Nofshin et al., 2024), motivating the need for explanation methods that allow users to specify which
properties are most important. However, enabling such customization is challenging because explanation properties are
often in tension. Previous work, for example, has documented trade-offs between faithfulness and robustness (Bansal et al.,
2020), faithfulness and complexity (Bhatt et al., 2020b), and faithfulness and homogeneity (Balagopalan et al., 2022). To
give concrete examples of this tension, several works have found that LIME (Ribeiro et al., 2016), a method that encourages
faithfulness, often lacks robustness (Alvarez-Melis & Jaakkola, 2018b; Ghorbani et al., 2018; Slack et al., 2020). Conversely,
methods like SmoothGrad (Smilkov et al., 2017) and GradCAM (Selvaraju et al., 2019), which prioritize robustness in their
explanations, often exhibit lower faithfulness (Adebayo et al., 2020; Tan & Tian, 2023).

An additional issue that emerges in the need for explanations with specific properties is that most existing methods do not
explicitly optimize for explanation quality with respect to a certain property. Decker et al. (2024) have proposed to linearly
aggregate explanations from multiple methods to obtain explanations with more optimal properties, but the optimality of the
resulting explanations is limited by the linear span of the initial set of explanations. Similarly, Wang et al. (2024) proposed a
framework in which explanations are directly optimized for multiple properties simultaneously using a genetic algorithm.
However, because the explanations are generated through a stochastic process, the method is ineffective at targeting a
specific balance of properties.

More recently, Tadesse et al. (2024) introduced a framework for directly optimizing explanations with respect to user-
specified property metrics and trade-offs between them, representing the first method to formalize this kind of control.

Since there exists a wide range of available property metrics (Chen et al., 2024) that users can (and have to) choose from to
use this framework – often with subtle yet important differences in how they evaluate explanations – we identify a lot of
value in determining how the different formalizations influence the explanations resulting from this optimization framework.

3. Methods
3.1. Experimental Setup

We use a simple toy example as the basis for our experiment. Specifically, we consider a model f that maps a multidimen-
sional input x ∈ RD to an output f(x) ∈ R. We then generate feature attribution explanations, which approximate the
contribution of each input feature (i.e., the different dimensions of x) to the output of the model, f(x). In other words, we
are estimating the gradient of f with respect to x.

In our experiment, we focus on the transductive setting in which all input points that explanations are generated for are
known in advance. To evaluate the consistency of our results, we compare explanations across five different functions (see
Table 1) that vary in steepness and periodicity, allowing us to assess whether observed behaviors generalize or whether
behavior differs for certain families of functions.

Name Function
x2 f(x) =

∑D
d=1 x

2
d

x3 f(x) =
∑D

d=1 0.35x
3
d

sin x+ ex − x2 f(x) =
∑D

d=1 sin 2xd + 0.1exd − 0.5x2
d

sin x f(x) =
∑D

d=1 sinxd

sin x3 f(x) =
∑D

d=1 sin 0.35x
3
d

Table 1: Function Classes with Corresponding Functions and Dimensions. We introduced the coefficients to ensure that the
specified fixed faithfulness loss mentioned in section 3 was achievable. Note that the name just states the general function
type and does not include the coefficients.

Our experiments use input points sampled from the range [−5, 5]D, with D ∈ {1, 2, 3, 4}; higher dimensions were excluded
due to computational constraints. We also vary the perturbation radius u, a hyperparameter that all three robustness metrics
depend on. We consider the values u ∈ {1, 2, 3, 5, 10}, subject to the constraint that the minimum Euclidean pairwise
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distance between input points exceeds u. For further implementation details, see Appendix A.

3.2. Comparing the Influence of Robustness Metrics

Choice of Metrics. To analyze the impact of different property metrics on explanations, we consider one faithfulness and
three robustness metrics and compare pairing the faithfulness metric with each of the robustness metrics as loss functions in
our direct optimization. The Faithfulness metric as a loss minimizes the distance between the explanation to the original
function. Using Max-Sensitivity as a robustness loss function minimizes the maximum difference between explanations
across nearby points within a perturbation region u. Local-Stability minimizes the maximum rate of change in explanations
with respect to input perturbations within a perturbation region u. Average-Sensitivity minimizes the average change in
explanations within a perturbation region u. Table 2 provides the formalizations for our metrics.

Metric Formalization

Faithfulness Lfaithful(E) =
∑N

n=1 ∥∇fn −En∥22

Max-Sensitivity (Yeh et al., 2022) Lmax sensitivity(E) =
∑N

n=1 max n′∈Ns.t.
∥Xn−Xn′∥≤u

∥En −En′∥

Local-Stability (Alvarez-Melis & Jaakkola, 2018a) Llocal stability(E) =
∑N

n=1 max n′∈Ns.t.
∥Xn−Xn′∥≤u

∥En−En′∥
∥Xn−Xn′∥

Average-Sensitivity (Bhatt et al., 2020a) Laverage sensitivity(E) =
∑N

n=1

∑N
n′=1∥En −En′∥2 · pn(n′)

Table 2: Property metrics used in this work. In all formalizations, E are the explanations, N are the total number of
considered points, and Xn refers to the nth input point (X is sorted). f is the underlying model that is being explained. For
average-sensitivity, pn is the uniform probability distribution pn = U( {n′ | ∥Xn −Xn′∥ ≤ u} ).

Isolating the Effects of the Robustness Metrics. We want to determine how the choice of robustness metric in our
considered optimization framework affects the explanations of a model f . Therefore, to help isolate this effect as much as
possible, we not only keep the considered faithfulness metric constant, but we also fix the total loss Lfaithful for every set of
explanations. This ensures that the explanations optimized for different robustness metrics all have the same faithfulness
loss, enabling a more direct comparison. We achieve this by first determining the range of possible Lfaithful values for a given
model f . This range always starts at Lmin

faithful = 0 (with the explanation E = ∇f ) and ends at Lmax
faithful, which comes from

having a perfectly robust explanation (i.e., the average value of the gradient over all inputs). To remain consistent across all
our considered robustness metrics, we need to fix Lfaithful to be a specific value, so we chose it to be η = 0.2 · Lmax

faithful. We
then use Lfaithful ≤ η as a constraint in the optimization problem. For a given robustness metric, we solve:

E∗
robust = argmin

E
Lrobust(E)

s.t. Lfaithful(E) ≤ η

Since the optimization aims to minimize the robustness loss, and since robustness and faithfulness operate in a natural
trade-off, this results in all explanations having Lfaithful ≈ η.

We solve this problem using the Python package cvxpy (Diamond & Boyd, 2016; Agrawal et al., 2018) with the MOSEK
solver (ApS, 2025). See Appendix C for our derivations on how we turn the metrics into convex second-order cone programs,
which enables us to use the cvxpy package to solve for the optimal explanation.

Comparing the Effects of Robustness Metrics via Agreement Rates. To quantify each robustness metric’s impact on
the resulting explanations, we compute the agreement rate over all considered input points: for each point, we record
whether the feature deemed most important is the same across all explanations. Higher agreement rates indicate more similar
explanations. Note that agreement is only defined for input dimensions D ≥ 2 (the agreement rate for D = 1 is trivially 1).
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Figure 1: Agreement rates between explanations optimized for various robustness objectives, across increasing input
dimension (we present D = 2 and D = 4 here. For the agreement rates table for D = 3, refer to Appendix B) and across all
mentioned functions in Table 1 (listed in Appendix A).

4. Results and Analysis
We performed the experiment as described and find that different robustness metrics result in divergent explanations, even
when constrained to equal overall faithfulness. This seems to be particularly true in higher dimensions and for functions
with steep or oscillatory gradients.

This is shown by the agreement rates we obtain from the explanations that have been optimized under different robustness
metrics (see Fig. 1): as the dimensionality of the input data increases, the agreement rates between different explanations
steadily decrease – sinking from relatively high rates (≳ 0.8 in D = 2) to rates consistently below 0.5 in D = 4 for functions
with highly oscillatory (sin x3) and steeper (x3) gradients.

This divergence in explanations is particularly striking given the simplicity of our experimental setup: picking the most
important feature out of only four candidates. Real-world models often involve dozens or even hundreds of input features; if
agreement among just four drops below 50%, discrepancies in higher dimensions could be much worse.

Why do explanations optimized for different robustness metrics diverge so dramatically, even when they have the
same faithfulness loss? We find this empirical result to be counterintuitive, so we investigate further:

Let Ω ⊂ Rd be our input domain and let f : Ω → R be a function with gradient ∇f(x) ∈ Rd. Suppose that an explanation
E : Ω → Rd approximates ∇f . We have a faithfulness loss:

Lfaithful(E,∇f) =
1

|Ω|

∫
Ω

∥E(x)−∇f(x)∥22 dx

Figure 2: A depiction of the “faith-
ful in some areas, robust in others”-
phenomenon. The optimization with
a global faithfulness constraint can
result in unbalanced explanations.

We want the faithfulness loss to be bounded, so we require Lfaithful(E,∇f) ≤ η
for some η > 0. This, however, constrains E only in an average sense: as long
as the overall average faithfulness loss remains ≤ η, explanations may deviate
substantially from ∇f ; these deviations just have to “cancel out” elsewhere. An
example of this phenomenon can be seen in Fig. 2, where we consider x3 with
D = 1 and perturbation region u = 1. We can clearly see how the optimization
under average-sensitivity, with the constraint Lfaithful(E,∇f) ≤ η, results in
explanations that represent the original model very faithfully in certain regions
(-4 to -2, as well as 2 to 4), but that also has completely flat (and robust) parts
elsewhere. On average, the robust regions cancel the faithful ones out, such that
the robustness metric is minimized while still satisfying the Lfaithful(E,∇f) ≤ η
constraint.

Because the faithfulness constraint is global (i.e. acting on E as a whole, not on
individual explanation points), it does not prevent a robustness-driven optimizer
from, e.g., concentrating faithfulness in certain regions (where ∇f is large or
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highly variable) while smoothing or flattening explanations elsewhere. The result
can be “uneven” (and undesirable) explanations that are very faithful in some areas and highly robust in others. In geometric
terms, this can be seen as the set of admissible explanations E lying within an L2 ”ball” of radius

√
η, whose center is the

concatenation of explanations that have Lfaithful = 0 (i.e., ∇fn for all input points N ).

This counterintuitive phenomenon highlights the importance of carefully investigating and developing an understanding of
how evaluation metrics influence the optimization before using them as loss functions.

Crucially, the number of degrees of freedom available to deviate from ∇f grows with D. In low dimensions, there are
relatively few directions in which the optimizer can ”shift” the explanation to minimize robustness while preserving global
faithfulness. As D increases, however, the optimizer can exploit a much larger space of directions, leading to very different
optima for different robustness metrics. We believe that this is why agreement rates decrease so significantly as D grows.

Conclusion
In this work, we demonstrate that – while intuitive – it is not advisable to naively repurpose evaluation metrics as loss
functions within Tadesse et al. (2024)’s optimization framework in the transductive setting. This appears to be particularly
true when the metric – used as a loss function – operates over a set of explanations as a whole, rather than at the level of
individual points, as there are otherwise no guarantees about the properties of individual explanations - just about the entire
set. This can lead to inconsistent, unintuitive and even undesirable explanations.

To better address the challenge of generating explanations that fulfill user-specified properties in the transductive setting, we
need metrics with mathematic formalizations that – when used as loss functions – work in the way we intend and expect. To
get us closer to that goal, we identify the need to rigorously explore and evaluate how the optimization is affected by metrics
that consider individual points. We believe that such metrics will result in more stable and consistent explanations, as they
introduce restrictions on individual explanations and limit the optimizer’s excessive flexibility to find weird minima.
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Figure 3: Agreement rates for D = 3 between explanations optimized for various robustness objectives across all mentioned
functions in Table 1.

A. Experimental Setup
This section includes more detail on our exact methodology.

Number of Input Points Considered. We did not use the same amount of input samples in each dimension, as we wanted
equidistant samples across the entire input range to approximate the entire space as faithfully as possible. Computational
constraints forced us to adaptively choose the maximum number of points N that still allowed for equidistant sampling.
This resulted in N = 80 for D = 1, N = 81 for D = 2, N = 125 for D = 3, and N = 81 for D = 4.

Perturbation Regions Considered. We consider perturbation regions u ∈ {1, 2, 3, 5, 10} in our experiments, subject to
the constraint that the minimum (euclidean) pairwise distance between input points is larger than u. This means that u = 1
is only used for D = 1, u = 2 for D ≤ 2 and u = 3 for D ≤ 3).

B. Agreement Rates for Dimension 3
In addition to the agreement rate tables for dimension 2 and 4 in Figure 1, we also provide the agreement rate table for
dimension 3, which depicts the gradual decrease in agreement as dimensionality increases (see Figure 3).

C. Derivations
This section provides our derivations for how we turned the three metrics – max-sensitivity, local-stability, and average-
sensitivity – into convex second-order cone programs, which can be solved via the MOSEK solver in cvxpy.

C.1. Derivation of Max-Sensitivity as a Convex Second-Order Cone Program

This is the original equation:

Lmax sensitivity(E) =

N∑
n=1

max
n′∈Ns.t.

∥Xn−Xn′∥≤u

∥En −En′∥ (1)

We want to form Lmax sensitivity into an optimization problem that we can feed into a solver. Our overarching goal is to find
Eopt = argmin

E
Lmax(E).

First, we need to figure out how to obtain the max in a way that allows us to use an optimization problem with constraints.
For a fixed En we want to find the explanation En′ — under the restriction that ∥Xn −Xn′∥ ≤ u — that will result in the
highest possible L2-norm between the two explanations (i.e. max n′∈Ns.t.

∥Xn−Xn′∥≤r

∥En −En′∥).

Let’s create the variable ln that denotes this highest possible squared L2-norm for En. Put formally:
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ln = max
n′∈Ns.t.

∥Xn−Xn′∥≤u

∥En −En′∥ (2)

In order to form this into an optimization problem that we can feed into a solver, we want to get rid of the max statement.
However, we still want to ensure that ln really does represent that max value. We can do that by putting some constraints on
ln: it needs to be at least equal the value of every possible squared L2-norm between the fixed En and all other En′ (given
the restriction ∥Xn −Xn′∥ ≤ u). Thus, we will have a total of y constraints for ln, where 1 ≤ y ≤ N .

With the assumption that ∥Xn −Xn′∥ ≤ u holds true for all n, n′ pairs, we would get the constraints:

ln ≥ ∥En − E1∥
ln ≥ ∥En − E2∥

...
ln ≥ ∥En − En∥

These constraints establish the correct lower bound for ln, i.e.

ln ≥ max
n′∈Ns.t.

∥Xn−Xn′∥≤u

∥En −En′∥ (3)

From this follows:

N∑
n=1

ln ≥
N∑

n=1

max
n′∈Ns.t.

∥Xn−Xn′∥≤u

∥En −En′∥ (4)

N∑
n=1

ln ≥ Lmax sensitivity(E) (5)

Since we want
∑N

n=1 ln to be equal to Lmax sensitivity(E), we have to make sure that we also define a rigorous upper bound
for each ln. We can indirectly achieve this by simply minimizing this sum with respect to all the ln values. Thus, we get:

argmin
ln

N∑
n=1

ln = Lmax sensitivity(E) (6)

Now that we have rephrased Lmax sensitivity(E) in a way that no longer involves the max expression over multiple iterations,
we can now minimize Lmax sensitivity(E) with respect to E in a way that allows us to use a solver! We simply do:

argmin
E

Lmax sensitivity(E) = argmin
ln,E

N∑
n=1

ln (7)

This will give us the explanations Eopt that minimize Lmax sensitivity.
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B. Derivation of Local-Stability as a as a Convex Second-Order Cone Program

This is the original equation:

Llocal stability(WE) =

N∑
n=1

max
n′∈Ns.t.

∥Xn−Xn′∥≤u

∥En −En′∥
∥Xn −Xn′∥

(8)

Given that Max-Sensitivity and Local-Stability are extremely similar to each other (ln and all its constraints are just divided
by ∥Xn −Xn′∥), we can simply follow the proof for max-sensitivity and adjust it slightly with this change. Everything else
stays the same.

C. Derivation of Average-Sensitivity as a Convex Second-Order Cone Program

This is the original equation:

Laverage sensitivity(E) =

N∑
n=1

N∑
n′=1

∥En −En′∥ · pn(n′) (9)

where pn is the uniform probability distribution pn = U( {n′ | ∥Xn −Xn′∥ ≤ u} ).

The formation of this robustness metric into an optimization problem is a lot less complex: we want to minimize
Laverage sensitivity(E) with respect to E. This is the same as finding E that minimizes the sum of ∥En − En′∥ · pn(n′)
for all possible combinations of n, n′. Thus, we have no constraints.
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