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ABSTRACT

In this paper, we propose triple 2D decomposition (T2D) of a 3D vision Trans-
former (ViT) for efficient spatiotemporal feature learning. The idea is to decom-
pose the self-attention operation in a 3D data cube into three self-attention opera-
tions in three 2D data planes. Such a design not only effectively reduces the com-
putational complexity of a 3D ViT, but also guides the network to focus on learn-
ing correlations among more relevant tokens. Compared with other decomposition
methods, the proposed T2D is shown to be more powerful at a similar computa-
tional complexity. The CLIP-initialized T2D-B model achieves state-of-the-art
top-1 accuracy of 85.0% and 70.5% on Kinetics-400 and Something-Something-
v2 datasets, respectively. It also outperforms other methods by a large margin on
FineGym (+17.9%) and Diving-48 (+1.3%) datasets. Under the zero-shot setting,
the T2D model obtains a 2.5% top-1 accuracy gain over X-CLIP on HMDB-51
dataset. In addition, T2D is a general decomposition method that can be plugged
into any ViT structure of any model size. We demonstrate this by building a tiny
size of T2D model based on a hierarchical ViT structure named DaViT. The result-
ing DaViT-T2D-T model achieves 82.0% and 71.3% top-1 accuracy with only 91
GFLOPs on Kinectics-400 and Something-Something-v2 datasets, respectively.
Source code will be made publicly available.

1 INTRODUCTION

Learning spatiotemporal representation for videos is one of the most fundamental yet challenging
tasks in computer vision (CV). The challenges come mainly from the contradiction between the
insufficient data and the diverse spatiotemporal patterns that need to be learned. It will become very
obvious if we take the representation learning for images as a reference. The largest public image
dataset ImageNet-21K Deng et al. (2009) consists of more than 14M images divided into over 21K
classes, while the largest public video dataset Kinetics-700 Carreira et al. (2019) only consists of
around 500K videos divided into 700 human action classes. Video data are far inferior to image data
in terms of quantity and diversity, but the spatiotemporal information to be learned is one dimension
higher than the spatial information contained in the image.

A straightforward idea to address this challenge in video representation learning is to make full use
of the spatial modeling capability gained by the image models. Researchers started to implement
this idea back in the convolution neural network (CNN) era. For example, I3D network Carreira
& Zisserman (2017) uses inflated ResNet weights trained on ImageNet for initialization. More
recently, as the Transformer Vaswani et al. (2017) architecture starts to dominate in CV, the ViT
Dosovitskiy et al. (2021) network pretrained on ImageNet or by CLIP Radford et al. (2021) has
been adopted as the initialization of spatiotemporal feature learning networks in many efforts Wang
et al. (2021b); Pan et al. (2022); Lin et al. (2022).

The quadratic complexity of Transformer brings a great challenge to the adaptation from image-
oriented 2D ViT to video-oriented 3D ViT. Decomposition is in need to make the computation
complexity tractable. Previous work Bertasius et al. (2021) has proposed space-time decomposi-
tion, axial decomposition, or local-global decomposition, among others, but they have not achieved
satisfactory performance. In fact, the key question to be considered when decomposing a 3D ViT is
which tokens should be grouped together to perform the self-attention. The selection of group size
and coverage should trade off the computational complexity and the attainable modeling capability.
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Figure 1: Decomposing 3D video data XYT into three data planes, denoted by XY, XT, and TY. The
XY data plane is sufficient for recognizing main objects. The XT and TY data planes provide rich
information of object motion.

We propose triple 2D decomposition for effective spatiotemporal learning from videos, which is a
third-order tensor. Decomposition of higher-order tensors has found many applications in computer
vision to deal with 3D geometry Chan et al. (2022); Chen et al. (2022a) or video modeling Tran
et al. (2018); Bertasius et al. (2021). Our work shares a similar idea as the tri-plane representation in
EG3D Chan et al. (2022) to decompose a 3D tensor into three 2D data planes. Let X, Y, and T denote
the horizontal, vertical, and temporal axis of a video tensor, respectively. The XY data plane contains
sufficient spatial information for recognizing the main objects, and the two extended temporal data
planes XT and TY provide rich information of object motions, as Fig.1 shows. The T2D design
groups the tokens in the same XY, XT, or TY plane for self-attention computation. The group
size is more manageable than the default 3D attention. More importantly, all the computational
resources and the available training data are spent on mining the correlation of the most relevant
tokens. Besides, we propose to share weights between the XT and TY data planes, while leaving the
XY branch to be separately initialized with pretrained weights of an image model.

The proposed triple 2D decomposition is a straightforward design, but not sufficiently explored by
previous researchers. We think the possible reasons are twofold. First, previous research mainly fo-
cused on reducing computational complexity of models, and such T2D decomposition do not reduce
the complexity in a typical CNN setting1. Second, the action recognition performance is usually
evaluated on simple or scene-focused datasets, such as UCF-101 Kuehne et al. (2011), HMDB-51
Soomro et al. (2012), and Kinetics Kay et al. (2017), where spatial modeling plays a dominant role.
In this case, temporal modeling has not received the attention it deserves. In summary, the main
contributions of our work are three-fold:

• We propose triple 2D decomposition for efficient spatiotemporal feature learning with a
Transformer network. Isolating self-attention operation within each 2D data plane not only
makes the computational complexity easily manageable, but offers great design flexibility,
allowing us to select different settings and initialization for spatial and temporal modeling.

• We provide a detailed analysis of different decomposition methods for 3D ViT and carry
out ablation studies to demonstrate the advantage of the proposed T2D.

• We make T2D a plug-n-play component and implement it based on both CLIP ViT Radford
et al. (2021) and DaViT Ding et al. (2022). All versions of the T2D network achieve higher
or competitive performance on Kinetics-400 and Something-Something-v2 benchmarks
when compared with state-of-the-art (SOTA) models of similar sizes. The CLIP-based
T2D network is extensively evaluated on a broad range of video action recognition bench-
marks. T2D-B pushes previous SOTA from 88.0%/86.4%/50.9% to 89.3%/93.6%/68.8%
on Diving-48, Gym99, and Gym288, respectively. It also achieves competitive or higher
performance in zero-shot evaluation on HMDB-51 and UCF-101 datasets compared to pre-
vious SOTA ActionCLIP Wang et al. (2021b) and X-CLIP Ni et al. (2022).

1A typical 3 × 3 × 3 convolution kernel has the same computation complexity compared with three 3 × 3
convolution kernels.
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2 RELATED WORK

Videos are moving pictures. Video models learn spatiotemporal representation from the 3D input
while image models only learn spatial representation from the 2D input. Whether from a semantic
or operational level, a video model should leverage the more intensely studied image models. In
this section, we review related work on spatiotemporal feature learning from two perspectives. One
is how a video model is factorized to make use of the 2D operations, and the other is how a video
model can be built upon the spatial modeling capabilities of image models.

Factorized Video Model Design. A video model extracts spatiotemporal features from the input
3D data. It is natural to use the 3D kernel as the building block of a video model Tran et al. (2015);
Arnab et al. (2021). Even in the CNN era, 3D kernels suffer from high computational and memory
cost Tran et al. (2018). Cost reduction can be approached by replacing part of the 3D kernels with
2D kernels or factorizing a 3D kernel (e.g., 3× 3× 3) into a 2D spatial kernel (e.g., 1× 3× 3) and
a 1D temporal kernel (e.g., 3× 1× 1). P3D Qiu et al. (2017), R(2+1)D Tran et al. (2018), and S3D
Tran et al. (2018) are contemporaneous works that explore factorization CNNs.

Recently, with the widespread adoption of vision Transformers (ViT) Dosovitskiy et al. (2021);
Dong et al. (2022); Chen et al. (2022b); Wang et al. (2022b); Ding et al. (2022), the complexity issue
in video models becomes more prominent. As is well known, the attention operation in Transformers
Vaswani et al. (2017) has quadratic complexity with respect to the input token numbers. If we use
S to denote the spatial resolution and T the temporal resolution, the full space-time attention has
the complexity of O(T 2S4). TimeSformer Bertasius et al. (2021) explores the divided spatial and
temporal attention with the complexity of O(TS2(T +S2)) to replace the full space-time attention.
It is actually the Transformer version of R(2+1)D. In a similar fashion, ViViT Arnab et al. (2021)
also explores several space-time factorization mechanisms for video Transformer. We will provide
a detailed analysis of different decomposition methods for 3D ViT in Section 3.2.

Video Models Built Upon Pretrained ViT Models. It has been a common practice since the CNN
era to initialize a video model with the weights from a pretrained image model Carreira & Zisserman
(2017); Arnab et al. (2021); Liu et al. (2021b). While the 3D kernels in CNN need to be inflated from
2D kernels, the token-based Transformer architecture can be more easily converted from a image
model to a video model. For example, ViViT and TimeSformer are initialized with the weights of
ViT, which are pretrained by the supervised image classification task on ImageNet-21K. For another
example, Video Swin Transformer Liu et al. (2021b) uses the weights from Swin Transformer, also
pretrained on ImageNet-21K.

Beyond the ImageNet pretrained model, a surge of new image foundation models Radford et al.
(2021); Yuan et al. (2021); Yu et al. (2022) for general visual representation learning have been
developed with the availability of large-scale weakly labeled image-text data. Such image-text pre-
trained models has demonstrated impressive generalization capacities and even ”zero-shot” transfer
capability. CLIP Radford et al. (2021), as one representative work, has already been extended to
video models in many efforts. Text4Vis Wu et al. (2022) proposed a new visual tuning paradigm
by leveraging the textual knowledge from CLIP. Concurrently, X-CLIP Ni et al. (2022) proposed
video-specific prompting to better utilize the text information. It is found in other works Lin et al.
(2022); Wang et al. (2021b) that frozen CLIP models could already achieve satisfactory performance
so efficient transfer learning pipelines are built to reduce the transfer cost.

We build our main T2D network based on CLIP. The CLIP-version of our T2D network can leverage
the accompanying text encoder just as X-CLIP does and it has the zero-shot adaptation capability.
Yet, we point out that T2D is a general decomposition method which can be implemented in any ViT-
based network structures. To demonstrate its plug-n-play capability, we also implement a version
based on another ImageNet-21K pretrained image Transformer model DaViT Ding et al. (2022).

3 METHOD

We build a video model, named T2D network, for efficient spatiotemporal feature learning and
video action recognition. In this section, we first provide an overview of the proposed T2D network,
and then analyze the core component, namely T2D decomposition, through the comparison with
previous decomposition methods.
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Figure 2: Overview of the proposed T2D network for video action recognition and the implementa-
tion details of the T2D Transformer layer. P.E. is short for positional embedding.

3.1 OVERVIEW

The T2D network is a video vision Transformer adapted from ViT Dosovitskiy et al. (2021) to
process 3D videos. Its architecture is illustrated in Fig.2. Let us denote the input video clip by
X ∈ RT×H×W×3, where H and W are the height and width of video frames, T is the clip length,
and 3 is the number of RGB channels. The T2D network first divides the input video clip into N
non-overlapping patches, each of size Pt×Ps×Ps, where Pt and Ps are the temporal and the spatial
patch size, respectively, and embeds them into Xp ∈ RN×C , where C is the number of channels.
Then positional embedding is added to obtain the input Z0 to the first T2D Transformer layer:

Z0 = Xp + es + et, (1)

where es and et are learnable spatial and temporal positional embeddings, respectively. The ’+’
here represents broadcast addition operation, which is explained in detail in Appendix.

The core network is composed of L T2D Transformer layers, whose structure is also shown in
Fig.2. Each T2D Transformer layer is composed of Multi-Headed Self-Attention (MSA) blocks,
layer normalization (LN) layers, and the multi-layer perceptron (MLP) blocks. Let Zl−1 and Zl

denote the input and the output of the lth Transformer layer, respectively, and the computation
implemented by this layer can be written as:

Y l = MSA(LN(Zl−1)) + Zl−1 (2)

Zl = MLP(LN(Y l)) + Y l. (3)

Finally, spatiotemporal pooling is performed on the output ZL of the last Transformer layer, and a
linear classifier is attached to classify the video features into predefined categories.

3.2 T2D DECOMPOSITION FOR 3D VIT

Decomposition for 3D ViT is necessary for two reasons. First, directly computing self-attention
among all tokens in a 3D cube incurs huge computational cost Vaswani et al. (2017). Second, the
quantity and diversity of existing video training data are limited. Considering the complexity and
diversity of the spatiotemporal information to be learned, it is possible that we never get enough
data to fully explore the capacity of a 3D ViT. In this case, we shall prioritize training on the most
relevant set of tokens. This serves as the motivation of our T2D proposal.

Fig.3 illustrates how a patch in frame T interacts with adjacent patches in different decomposi-
tion methods. In addition to the proposed T2D decomposition, we also include the space-only
(2D) attention, the divided space-time (2D+1D) attention, the local-global attention, and the axial
(1D+1D+1D) attention mentioned in previous work Bertasius et al. (2021). The implementation of
these decomposition methods are described below:

Space-only (2D) attention. Attention is performed within each frame but not across frames. The
advantage is that the computational complexity is exactly the same as in 2D image ViT, but the
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Figure 3: Visualization of different decomposition schemes. We denote the query patch as filled red
and its attention neighborhood in green. Uncorrelated patches are masked in black. We show the
center frame and its two adjacent frames. The proposed T2D attention, where each colored border
represents a single attention plane (XY: red, XT: blue, TY: yellow), explores the correlation in a
wider range than other methods under comparable complexity.

shortcoming is also obvious. The temporal modeling based on simple pooling operation across
multiple frames is too rudimentary to achieve good performance on motion-focused datasets.

Divided space-time (2D+1D) attention. A more widely adopted structure is 2D+1D decompo-
sition. This approach first computes the self-attention within each frame, and then compute the
self-attention along the temporal axis among tokens from the same spatial index. This approach also
has controllable complexity, but temporal attention without spatial resolution might fail to catch
objects in other frames, as the example shows in Fig.3.

Axial (1D+1D+1D) attention. The axial attention further decomposes the 2D spatial attention into
two 1D attention operations. The computational complexity is further reduced when compared with
divided space-time attention, but the spatial modeling capability is also compromised.

Local-global attention. Another less frequently mentioned approach is local-global decomposition
Child et al. (2019). The local self-attention is first computed in the Nt × Nh/2 × Nw/2 local
windows, and the global sparse self-attention is then calculated over the entire clip with a stride of 2
tokens along both temporal and spatial dimensions. Compared to divided space-time attention, the
local-global attention sacrifices some spatial modeling capability for stronger temporal modeling.

T2D attention Finally, the last column in Fig.3 illustrates the proposed T2D decomposition. Self-
attention is computed among patches within red, blue, and yellow boxes, which represent the XY,
XT, and TY data planes, respectively. The computation complexity is only slightly higher than
divided space-time attention, but T2D decomposition explores the patch correlations in a much
wider range than other decomposition methods. T2D attention can be easily implemented by feature
reshaping. Take the attention in TX data plane as an example. An input Z ∈ R1×(Nh·Nw·Nt)×C can
be reshaped to Ztx ∈ RNh×(Nw·Nt)×C before computing the pair-wise self-attention.

Table 1 outlines the per-layer complexity of the MSA module in different decomposition methods.

Table 1: Per-layer complexity of the MSA module in different decomposition schemes.
Method Complexity
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Architecture. In main experiments, we use ViT Dosovitskiy et al. (2021) as the base model. In T2D
Transformer layers, the added XT and TY self-attention use shared parameters and they are sequen-
tially connected after the original XY self-attention. We use CLIP pre-trained weights to initialize
the MLP and XY self-attention blocks. Other parameters are randomly initialized. We build two
variants T2D-B and T2D-L, derived from ViT-B/16 and ViT-L/14, respectively. To demonstrate that
T2D is a plug-n-play block, we also build a tiny-size model called DaViT-T2D-T from a hierarchical
Transformer DaViT-T Ding et al. (2022) as well as a CNN-based model ResNet-T2D from ResNet.

Benchmark datasets and evaluation protocols. We evaluate the proposed T2D network under fine-
tuning protocol on major action recognition benchmark datasets, including Kinetics-400 (K400) Kay
et al. (2017), Something-Something-v2 (SSv2) Goyal et al. (2017), FineGym Shao et al. (2020), and
Diving-48 Li et al. (2018). We also report zero-shot results of the CLIP-initialized T2D network on
UCF-101 Soomro et al. (2012) and HMDB-51 Kuehne et al. (2011) datasets.

Training and inference. For all datasets, we use 224× 224 input clips with clip length of 16 or 32.
We follow the sparse sampling and data augmentation in X-CLIP Ni et al. (2022) on K400. On SSv2,
Diving-48, and FineGym datasets, we use segment-based sampling as in TSM Lin et al. (2019) and
follow the augmentation in MViT Fan et al. (2021). More details are provided in Appendix.

4.2 COMPARISON OF DECOMPOSITION METHODS

Tab.2 presents the performance of different decomposition methods mentioned in Section 3.2 on
multiple network structures and benchmark datasets. The local-global attention and axial attention
are not included in this experiment as they have already been proven to be inferior to the divided
space-time (2D+1D) attention Bertasius et al. (2021).

For ViT-based models, we find that different decomposition methods have similar performance on
K400. Even the space-only (2D) attention achieves a high top-1 accuracy of 84.0%. This is consis-
tent with previous findings Bertasius et al. (2021) that spatial modeling dominates the performance
on K400, which is a scene-focused dataset. Nevertheless, our T2D network achieves the highest
top-1 accuracy among all the methods. We also tried to remove XT or TY attention in the T2D
model, and we obtain 84.3% and 84.1% top-1 accuracy, respectively, showing that all three data
planes contribute to the action recognition performance. On SSv2, however, the performance of dif-
ferent methods varies widely. The 2D attention performs poorly on this motion-focused dataset as it
lacks temporal modeling. The 3D attention performs even worse and we suspect that it is due to the
lack of training data. The space-time decomposition models, including 2D+1D and T2D perform
significantly better. Our T2D model achieves the best top-1 accuracy on SSv2.

We also carry out experiments to evaluate different decomposition methods on CNN-based ResNet
and another Transformer-based model DaViT. We obtain very similar results with the ViT model. In
order to demonstrate that the gain achieved by T2D over 2D+1D is not due to the slightly increased
computational cost, we use light-weight depth-wise convolution to implement the computation for
1D in 2D+1D and that for XT and TY in T2D. The resulting ResNet-based 2D + 1D model and T2D
model have almost the same GFLOPs, but T2D model still outperforms 2D+1D model by a 0.4%
top-1 accuracy on K400. We can see that the proposed T2D decomposition achieves consistent non-
negligible gain over divided space-time (2D+1D) decomposition across different network structures.

Table 2: Comparison of different decomposition methods based on three network structures.
ViT DaViT ResNetMethod GFLOPs K400@1 SSv2@1 GFLOPs K400@1 GFLOPs K400@1

2D 282 84.0 68.3 74 80.6 93 71.3
3D 452 84.3 67.2 92 80.3 186 70.9
2D+1D 372 84.1 70.2 86 80.6 93 72.3
T2D 397 84.5 70.5 91 81.0 94 72.7
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Table 3: Ablation of T2D block.
ID. Con. Share GFLOPs SSv2@1
1 Seq. Tem. 397 70.5
2 Par. Tem. 397 68.7
3 Seq. None 486 70.6
4 Seq. All 308 69.9

Table 4: Zero-shot performances on HMDB-51 and
UCF-101.
Method HMDB-51 UCF-101
ActionCLIP Wang et al. (2021b) 40.8± 5.4 58.3± 3.4
X-CLIP-B/16 Ni et al. (2022) 44.6± 5.2 72.0 ± 2.3
T2D-B 47.1 ± 0.3 71.1± 0.2

4.3 ABLATION STUDIES

Before diving into system comparisons with other methods, we present the ablation studies on how
to connect different branches and whether to share parameters among the three branches in the T2D
blocks. We use T2D-B with 32 frames input for all the ablation studies.

We explore two connection variants, one is to sequentially connect the spatial and temporal kernel
with skip connection, and the other is to connect the two kernels in parallel. Here the temporal
kernel means the cascade of XT and TY self-attention, and the spatial kernel means the XY self-
attention. As shown in Tab.3, the sequentially connected model performs significantly better as such
a structure makes the adaptation from image model to video model more naturally. We use the
sequential connected model as the default setting in other experiments.

The other question in T2D is whether we should share parameters among three self-attentions. We
design three parameter sharing variants. The first model shares parameters between two temporal
attention blocks, the second model does not share parameters, and the third model shares parame-
ters among all three self-attentions. The parameters shared with spatial self-attention are initialized
from CLIP pre-trained model, otherwise they are randomly initialized. As shown in Tab.3, the
non-shared version obtains the best performance while the temporal shared version strikes the best
performance-accuracy trade-off. It is as expected that the all-shared model does not achieve plausi-
ble performance, as spatial modeling and temporal modeling have their own distinct characteristics.

It is worth noting that the all shared model is similar to the CoST method proposed by Li et al.
(2019), which aims to learn spatial and temporal features collaboratively for CNN. Although they
use similar decomposition formulation as ours, the insight behind such decomposition is different.
Their experiments on K400 verify that the sharing design is the key to their performance improve-
ment over 3D model. However, in our experiments, we find that collaborative spatiotemporal fea-
ture learning hurts the performance. Concretely, sharing spatial and temporal parameters introduces
0.6% top-1 accuracy loss compared to the model with temporal sharing only. Such performance loss
indicates the importance of decoupling spatial and temporal feature learning.

4.4 COMPARISON TO THE STATE-OF-THE-ART

Kinetics-400. In Tab.5, we report the results on Kinetics-400 with comparison to state-of-the-art
methods group by model architectures and pre-train models. Compared to methods with CNN and
methods with Transformer that do not using CLIP pre-trained weights, our T2D have a large perfor-
mance gain. Specifically, on base size, our T2D-B with 16 frames outperform X3D-XXL Feichten-
hofer (2020) by 4.3% top-1 accuracy and Uniformer-B Li et al. (2022) by 1.7% top-1 accuracy. On
large size, our T2D-L with 16 frames outperform Video-Swin-V2-G (384 ↑) Liu et al. (2021a) by
0.8% and TokenLearner by 2.2% although these two models are even heavier. Compare to methods
with the same CLIP pre-training, our T2D models also show competitive performance. On base size,
the T2D-B with 16 frames outperforms ActionCLIP Wang et al. (2021b) by 0.9%, EVL Lin et al.
(2022) by 0.5%, ST-Adapter Pan et al. (2022) by 2.0% and Text4Vis Wu et al. (2022) by 1.1%. The
T2D-B with 32 frames achieves 85.0% top-1 accuracy which is the best among all compared mod-
els. On large size, T2D-L with 32 frames achieves 87.8% top-1 accuracy and 97.9% top-5 accuracy
which are the SOTA. On tiny size, DaViT-T2D-T with only 91 GFLOPs outperforms Video-Swin-S
Liu et al. (2021b) by 1.4% and MTV-B Yan et al. (2022) by 0.2%.

FineGym. Finegym is a newly proposed dataset built with gymnastic videos which contains sub-
tly different gymnastic actions. We compare our T2D-B with 32 frames with baseline methods
established by Shao et al. (2020) and SOTA methods including SELFYNetKwon et al. (2021) and
RSANet Kim et al. (2021). Results are shown in Tab.6. Surprisingly, our model improves previous
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Table 5: Comparison to the state-of-the-art on Kinetics-400.”#Frames” denotes the total number of
frames used during inference which is #frames per clip × # spatial crop × # temporal clip.

Method #Frames GFLOPs Top-1 Top-5
Methods with CNN

R(2+1)D Tran et al. (2018) 16x1x10 75 72.0 90.0
CoST Tran et al. (2018) 32x- - 77.5 93.2
SlowFast + NL Feichtenhofer et al. (2019) 16x3x10 234 79.8 93.9
X3D-XXL Feichtenhofer (2020) 16x3x10 144 80.4 94.6

Methods with Transformer
Video-SwinV2-G (384 ↑) Liu et al. (2021a) 8x5x4 - 86.8 -
TokenLearner Ryoo et al. (2021) 64x3x4 4076 85.4 96.3
ViViT-L FE Arnab et al. (2021) 32x3x1 3980 83.5 94.3
MViTv2-L (312 ↑) Li et al. (2021) 40x3x5 2828 86.1 97.0
TimeSformer-L Bertasius et al. (2021) 96x3x1 2380 80.7 94.7
CoVeR TimeSformer-L Zhang et al. (2021) -x3x1 - 87.2 -
Video-Swin-L (384 ↑) Liu et al. (2021b) 32x5x10 2107 84.9 96.7
MTV-L Yan et al. (2022) 32x3x4 1504 84.3 96.3
MTV-B Yan et al. (2022) 32x3x4 399 81.8 95.0
Uniformer-B Li et al. (2022) 32x3x4 259 83.0 95.4
MViTv2-B Li et al. (2021) 32x1x5 225 82.9 95.7
Video-Swin-S Liu et al. (2021b) 32x3x4 166 80.6 94.5
DaViT-T2D-T (Ours) 32x3x4 91 82.0 95.5

Methods with CLIP-B pre-trained ViT
ActionCLIP-B/16 Wang et al. (2021b) 32x3x10 563 83.8 96.2
EVL ViT-B/16 Lin et al. (2022) 32x3x1 592 84.2 -
X-CLIP-B/16 Ni et al. (2022) 16x3x4 287 84.7 96.8
ViT-B w/ ST-Adapter Pan et al. (2022) 32x3x1 607 82.7 96.2
Text4Vis-B/16 Wu et al. (2022) 16x3x4 - 83.6 96.4
T2D-B (Ours) 16x3x4 395 84.7 96.7
T2D-B (Ours) 32x3x4 842 85.0 96.8

Methods with CLIP-L pre-trained ViT
EVL ViT-L/14 (336px) Lin et al. (2022) 32x3x1 6065 87.7 -
X-CLIP-L/14 (336 ↑) Ni et al. (2022) 16x3x4 3086 87.7 97.4
ViT-L w/ ST-Adapter Pan et al. (2022) 32x3x1 2749 87.2 97.6
Text4Vis-L/14 (336 ↑) Wu et al. (2022) 32x3x1 3829 87.8 97.6
T2D-L (Ours) 16x3x4 1807 87.6 97.7
T2D-L (Ours) 32x3x4 3821 87.8 97.9

Table 6: Comparison to SOTA on FineGym.
Method Gym288 Gym99

Mean Mean
I3D Carreira & Zisserman (2017) 27.9 63.2
TSM Lin et al. (2019) 34.8 70.6
SELFYNet Kwon et al. (2021) 49.5 87.7
RSANet Kim et al. (2021) 50.9 86.4
T2D-B 68.8 93.6

Table 7: Comparison to SOTA on Diving48.
Method Top-1
SlowFast Feichtenhofer et al. (2019) 77.6
TimseSformer-L Bertasius et al. (2021) 81.0
PST-B Xiang et al. (2022) 86.0
BEVT Wang et al. (2022a) 86.7
ORViT TimsSformer Herzig et al. (2021) 88.0
T2D-B 89.3

SOTA by 17.9% and 7.2% on Gym288 and Gym99, respectively, in terms of mean class accuracy.
Such strong results demonstrate the powerful temporal modeling capability of our T2D models.

Diving-48. Tab. 7 compares our T2D-B with SOTA methods on Diving-48, which is also a fine-
grained action recognition dataset. It contains 48 classes of competitive diving sequences. We
compare our method with strong baselines SlowFast Feichtenhofer et al. (2019) and TimeSformer
Bertasius et al. (2021), as well as recent proposed SOTA methods PST-B Xiang et al. (2022) and
ORViT TimeSformer Herzig et al. (2021). We achieve 8.3% top-1 accuracy gain over TimeSformer-
L even with a smaller model size. We also outperform previous best method ORViT by 1.3%.

8



Under review as a conference paper at ICLR 2023

Table 8: Comparison to the state-of-the-art on Something-Something-v2.
Method #Frames GFLOPs Top-1 Top-5

Methods with CNN
TSM Lin et al. (2019) 16x1x1 66 63.3 88.5
MSNet Kwon et al. (2020) 16x1x1 67 64.7 89.4
SELFYNet Kwon et al. (2021) 16x1x1 67 65.7 89.8
TDN Wang et al. (2021a) 16x1x1 132 66.9 90.9

Methods with hierarchical Transformer
Video-Swin-B Liu et al. (2021b) 32x3x1 321 69.6 92.7
UniFormer-B Li et al. (2022) 32x3x1 259 71.2 92.8
MViT-B-24 Fan et al. (2021) 32x3x1 236 68.7 91.5
MViTv2-S Li et al. (2021) 32x3x1 65 68.2 91.4
MViTv2-B Li et al. (2021) 32x3x1 225 72.1 93.4
DaViT-T2D-T (Ours) 32x3x1 91 71.3 93.0

Methods with cylindrical Transformer
TimeSformer-HR Bertasius et al. (2021) 16x3x1 1703 62.5 -
ViViT-L Arnab et al. (2021) 16x3x4 903 65.4 89.8
MTV-B (320p) Yan et al. (2022) 16x3x4 930 68.5 90.4
Mformer-L Patrick et al. (2021) 32x3x1 1185 68.1 91.2
EVL ViT-B/16 Lin et al. (2022) 32x3x1 682 62.4 -
ViT-B w/ ST-Adapter Pan et al. (2022) 32x3x1 652 69.5 92.6
T2D-B (Ours) 32x3x2 397 70.5 92.6

Something-Something-v2. Tab.8 presents the results of T2D and SOTA methods on SSv2. We
group the methods into three categories by model architecture. The first group is CNN-based meth-
ods which do not achieve competitive performance compared to newly proposed Transformer-based
methods. The second group is hierarchical Transformer-based methods. The best method MViTv2-
B Li et al. (2021) achieves the highest top-1 accuracy of 72.1% with 225 GFLOPs. Our DaViT-
T2D-T model also achieves a competitive top-1 accuracy of 71.3% with only 91 GFLOPs. It strikes
a better performance-complexity tradeoff than MViTv2 models as it obtains 2.9% top-1 accuracy
gain over MViTv2-S with only 40% more FLOPs. The third group is cylindrical Transformer-based
methods which use the same model architecture as ours. Although this architecture seems to be
inferior to hierarchical Transformer on SSv2 dataset, our T2D-B manages to achieve 70.5% top-1
accuracy and outperforms all competitors in this category.

Zero-shot results on UCF-101 and HMDB-51. Finally, we present zero-shot results of T2D in
Tab.4 to demonstrate the generalization capability of our methods. We use the K-400 pre-trained
models and test on UCF-101 and HMDB-51. The text encoder in CLIP is fixed during training
and zero-shot testing. Details of zero-shot implementation are provided in the Appendix. T2D
outperforms previous SOTA X-CLIP Ni et al. (2022) on HMDB-51 by 2.5% in top-1 accuracy and
loses 0.9% top-1 accuracy on UCF-101. Note that X-CLIP utilizes a more powerful video-specific
prompting while we only use handcrafted prompting. The X-CLIP with handcrafted prompting gets
63.9% top-1 accuracy on UCF-101 which is 7.2% lower than ours.

5 CONCLUSION

In this work, we have presented triple 2D decomposition to efficiently implement a 3D ViT for
spatiotemporal feature learning. The idea is simple yet effective. We believe that isolating the self-
attention computation within each 2D data plane guides the network to focus on learning correlations
among the most relevant tokens in a video clip. The proposed T2D block is a plug-n-play component,
and it is implemented based on two SOTA image models known as CLIP and DaViT. Extensive
evaluations are carried out on both two versions of T2D network. Very strong results are achieved
across various benchmark datasets under both fine-tuning and zero-shot evaluation protocols. In the
future, we plan to explore the self-supervised training of T2D networks on unlabelled video data,
with an objective to fully exploit the temporal modeling capability.
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A ARCHITECTURE DETAILS

Patch embedding. The patch embedding layer maps a video X ∈ RT×H×W×3 to a sequence of
tokens Xp ∈ RN×C , where H and W are the height and width of video frames, T is the clip length,
3 is the number of RGB channels, N is the number of embedded tokens, and C is the number of
feature channels. It first divides the video clip into non-overlapping patches with the patch size of
Pt × Ps × Ps and use a linear layer to transform each patch to a feature vector. Ps is set to 16
and 14 for base and large model which is the same as in CLIPRadford et al. (2021). When video is
considered, we use Pt = 2 on SSv2 dataset to cover more frames and Pt = 1 on other datasets.

We do not use class token to aggregate spatial or temporal information because it does not bring
accuracy improvement in action recognition task but increases inference time.

Positional embedding. We use space-time separable learnable positional embedding as shown in 1.
A spatial positional embedding es ∈ RNh·Nw×C and a temporal positional embedding et ∈ RNt×C

are added on Xp. The spatial positional embedding is initialized from pre-trained weights and the
temporal positional embedding is randomly initialized. In Eq.1, the spatial positional embedding,
the temporal positional embedding, and the video patches are fused by a broadcast addition operation
with proper reshaping. Concretely, we first reshape Xp ∈ RN×C from the shape of N × C to the
shape of Nt×Ns×Ns×C. The spatial positional embeddings es is with the shape of 1×Ns×Ns×C
and the temporal positional embeddings et is with the shape of Nt×1×1×C. We use the broadcast
add operation to sum up Xp, es, and et, and then reshape the output back to the shape of N × C.

Spatiotemporal pooling. We use a spatiotemporal pooling layer to aggregate patch-level outputs
from T2D Transformer layer to video-level features. The spatial pooling is simply a global average
pooling. In temporal pooling, we use an attentive pooling which is inspired from X-ViT Bulat et al.
(2021). Given Nt spatially pooled feature vectors [z0, ..., zNt

] from Nt ”frames”, we use temporal
Transformer layers to aggregate temporal information. The self-attention in temporal Transformer
layers are calculated across different frames. As the input is already pooled in spatial, it has negligi-
ble computational cost compared to the T2D Transformer layers.

Classification head. We use two types of classifier in our implementation. On SSv2, FineGym,
and Diving-48, we use a learnable linear classifier which is randomly initialized and trained on the
training set. On K400, UCF-101, and HMDB-51, we use an offline text-generated classifier to utilize
the textual knowledge from CLIP’s text encoder Wu et al. (2022). Take K400 as an example, we
generate text embeddings of class names in K400 with the template of ”a video of a person [CLASS
NAME]”. The generated text embeddings {w1, ..., wc} are stacked to form a linear projection weight
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W ∈ Rc×C , where c is the number of classes and C is the number of channels. Given the video-
level feature vector Xv ∈ RC from spatiotemporal pooling, the output of the classifier is calculate
by:

Y = σ(W ·Xv), (4)

where · is the matrix multiplication, and σ denotes the softmax operation. The classifier is not
optimized during training.

We find such offline text-generated classifier results in higher top-1 accuracy on K400 than randomly
initialized linear classifier. The performance gain is about 0.2% (84.5% −→ 84.7%) on the base model
with 16 frames. We do not use this classifier in the ablation studies.

B DAVIT ARCHITECTURE

Dual attention Vision Transformer (DaViT) Ding et al. (2022) is a newly proposed hierarchical
vision Transformer architecture for image. It utilizes two types of self-attention, one of which is
calculated among local spatial tokens, and the other is calculated among channel tokens. The channel
tokens are defined by inverting the channel dimension and spatial dimension of spatial tokens so that
the attention on channel tokens is able to capture global context. We extend DaViT image models
to DaViT-T2D video models by modifying its local spatial attention only. Similar to what we have
done on ViT, we add additional XT and TY windowed attention after the original XY self-attention
with skip connection. The window size for T is set to the clip length. We leave the channel attention
unchanged as it captures the same global interaction as in image processing.

C RESNET ARCHITECTURE

To extend ResNet He et al. (2016) to a video model using T2D decomposition, we add XT (3×1×3)
and TY (3 × 3 × 1) convolution after the XY (1 × 3 × 3) convolution in each ResNet Bottleneck
block. Depth-wise convolution is used for the adding XT and TY convolutions. We do not modify
the 1× 1 convolution and the 3× 3 convolution in the stem. We use ResNet-50 in our experiments
and use the pre-trained weights from CLIP.

D DATASET DETAILS

Kinetics-400. Kinetics-400 (K400) Kay et al. (2017) is a large-scale video action recognition dataset
collect collected from YouTube. Our Kinetics-400 dataset contains 234,584 training videos and
19,760 validation videos. We use 224 spatial input size in all experiments and sparsely sample 16
or 32 frames from the entire video. We use the same data augmentation and regularization as in
X-CLIP Ni et al. (2022), including random horizontal flip, multi-scale cropping, color jitter, and
random grayscale. We also use label smoothing, Mixup Zhang et al. (2018), and CutMix Yun et al.
(2019) as regularization. We adopt the multi-view testing with four temporal clips and three spatial
crops. We report the top-1 and top-5 classification accuracy on K400.

Something-something-v2 Something-Something-v2 (SSv2) Goyal et al. (2017) is a large-scale ac-
tion recognition benchmark including 168.9K training videos and 24.7K validation videos over 174
classes. The labels are like ”Pulling something from left to right”, so capturing the motion is cru-
cial to achieve high performance. We use segment based sampling Lin et al. (2019) to sample 32
frames from the original video. The augmentation and regularization strategy are adapted from
MViT Fan et al. (2021), which includes repeated augmentation Hoffer et al. (2020), random aug-
mentation Cubuk et al. (2020), random erasing Zhong et al. (2020), CutMix Yun et al. (2019), and
Mixup Zhang et al. (2018).

FineGym. Finegym Shao et al. (2020) is a fine-grained action recognition dataset built on top of
gymnastics videos. We use the same frame sampling strategy and data augmentation as it is in SSv2.
The reported T2D-B model is with 32 frames and it uses the pre-trained weights from K400 because
of the relative small scale of this dataset. Following Shao et al. (2020); Kim et al. (2021), we report
the mean-class accuracy on two subsets of Gym288 and Gym99 that contain 288 and 99 action
classes, respectively.
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Table 9: Hyper-parameters used in K400.
Model Base Large
Batch size 256
Epochs 30
Warmup epochs 5
Learning rate 1e-5 5e-6
Learning rate schedule cosine
Optimizer AdamW
Weight decay 1e-3
RandomFlip 0.5
MultiScaleCrop (1, 0.875, 0.75, 0.66)
ColorJitter 0.8
GrayScale 0.2
Label smoothing 0.1
Mixup 0.8
CutMix 1.0

Table 10: Hyper-parameters used in SSv2, Diving48, and FineGym.
Dataset SSv2 Diving48 FineGym
Batch size 64
Epochs 30 50 50
Warmup epochs 5
Learning rate 5e-5 3e-5 2e-5
Learning rate schedule cosine
Optimizer AdamW
Weight decay 5e-2
Repeated augmentation 2
RandomAugment rand-m9-n4-mstd0.5-inc1
Random erasing 0.25
Label smoothing 0.1
Mixup 0.8
CutMix 1.0

Diving-48. Diving-48 Li et al. (2018) is also a fine-grained action benchmark. It contains 18k videos
with 48 diving action classes. As the background and the moving object is nearly the same across
classes, the performance on this dataset heavily relies on effective temporal modeling. The setting
for Diving-48 is the same as we use for FineGym. Following Bertasius et al. (2021), we report top-1
accuracy in Diving-48.

UCF-101. UCF-101 Soomro et al. (2012) is a video recognition dataset collected from YouTube. It
includes 13,320 video clips with 101 categories. There are three splits of the test set and we report
the average top-1 accuracy and standard deviation. We apply the zero-shot evaluation protocol and
report results with 32 frames and a single view. The evaluated model is pre-trained on K400.

HMDB-51. HMDB-51 Kuehne et al. (2011) is a small dataset containing 7K videos with 51 cate-
gories. We use the same zero-shot evaluation protocol as we used for UCF-101.

E HYPERPARAMETER DETAILS

Training Hyperparameters. We present the hyper-parameters we used in different datasets and
models in Tab.9 and Tab.10. Hyper-parameters on K400 are adapted from X-CLIP Ni et al. (2022)
and hyper-parameters on SSv2 are adapted from MViT Fan et al. (2021). The learning rate shown
in Tables are for CLIP initialized parameters. For randomly initialized parameters, we use a 100x
learning rate for K400 and a 10x learning rate for SSv2, FineGym, and Diving48.
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Figure 4: Empirical complexity analysis of T2D model versus 3D model. We plot the number of
GFLOPs and the number of GPU memories as a function of spatial resolution (left), and frame
length (right). As spatial resolution or frame length increases, our proposed T2D model leads to
huge computational savings compared to the 3D model.

Prompt templates in zero-shot experiments. we use a single prompt template ”a video of a person
[CLASS NAME]” for HMDB-51, and multiple prompt templates for UCF-101. When multiple
templates are used, their text embeddings are averaged so there is no additional cost compared to
using a single template.

F ADDITIONAL EXPERIMENTS

Empirical complexity analysis. In addition to the theoretical complexity analysis in Tab. 1, we
present additional empirical results to demonstrate the efficiency of the T2D model. As shown
in Fig.4, the complexity advantage of T2D becomes obvious as spatial resolution or frame length
increases. In particular, the 3D model will be out of memory with 64 frame length or 448 spatial
resolution while our T2D model only needs about 30GB GPU memory under these settings.

G VISUALIZATION

In Fig.5 and Fig.6, we show the difference in attention maps among the 3D, 2D, 2D + 1D, and the
proposed T2D attention. As we do not have class token in the network, we use the center pixel as
the query. Compared to other methods, attention maps learned by T2D attention concentrate more
on action regions.
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Figure 5: Visualization of attention maps on ”applying cream”. The 3D, 2D, 2D + 1D and T2D
attention maps are provided in the top, medium, and bottom rows, respectively. T2D concentrates
more on action regions.
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Figure 6: Visualization of attention maps on ”abseiling”. The 3D, 2D, 2D + 1D, and T2D attention
maps are provided in the top, medium, and bottom rows, respectively. T2D concentrates more on
action regions.
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