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Abstract
Discovering causal structures of processes is a
major tool of scientific inquiry because it helps
us better understand and explain the mechanisms
driving a phenomenon of interest, thereby facili-
tating analysis, reasoning, and synthesis for such
systems. However, accurately inferring causal
structures within a phenomenon based on observa-
tional data only is still an open problem. In partic-
ular, this problem becomes increasingly difficult
when it relies on data with missing values. In this
article, we present a method to uncover causal re-
lations between chaotic dynamical systems from
sporadic time series (that is, incomplete observa-
tions at infrequent and irregular intervals), which
builds upon Convergent Cross Mapping and re-
cent advances in continuous time-series modeling
(GRU-ODE-Bayes).

1. Introduction
Inferring a right causal model of a physical phenomenon is
at the heart of scientific inquiry. It is fundamental to how we
understand the world around us and to predict the impact of
future interventions (Pearl, 2009). Correctly inferring causal
pathways helps us reason about a physical system, anticipate
its behavior in previously unseen conditions, design changes
to achieve some objective, or synthesize new systems with
desirable behaviors. As an example, in medicine, it allows
to predict if a drug will be effective for a specific patient, or
in climatology, to assess human activity as a causal factor in
climate change. Causal mechanisms are best uncovered by
making use of interventions because this framework leads
to an intuitive and robust notion of causality. However,
there is a significant need to identify causal dependencies
when only observational data is available, because such data
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is more readily available as it is more practical and less
costly to collect (e.g., relying on observational studies when
interventional clinical trials are not yet available).

However, real-world data arising from less controlled envi-
ronment than, for instance, clinical trials poses many chal-
lenges for analysis. Confounding and selection bias come
into play, which bias standard statistical estimators. If no
intervention is possible, some causal configurations cannot
be identified. Importantly, with real-world data comes the
major issue of missing values. In particular, when collecting
longitudinal data, the resulting time series are often spo-
radic: sampling is irregular in time and incomplete across
dimensions leading to varying time intervals between obser-
vations of a given variable and typically multiple missing ob-
servations at any given time. This problem is ubiquitous in
various fields, such as healthcare (De Brouwer et al., 2019),
climate science (Thomson, 1990), or astronomy (Cuevas-
Tello et al., 2010).

A key problem in causal inference is to assess whether
one time series is causing another or is merely correlated
with it. From assessing causal pathways for neural activity
(Roebroeck et al., 2005) to ecology (Sugihara et al., 2012)
or healthcare, it is a necessary step to unravel underlying
generating mechanisms. A common way to infer causal
direction between two time series is to use Granger causal-
ity (Granger, 1969), which defines “predictive causality” in
terms of the predictability of one time series from the other.
A key requirement of Granger causality is then separability
(i.e., that information about causes are not contained in the
caused variable itself). This assumption holds in purely
stochastic linear systems, but fails in more general cases
(such as weakly coupled nonlinear dynamical systems) (Sug-
ihara et al., 2012). To address this nonseparability issue,
Sugihara et al. (Sugihara et al., 2012) introduced the Conver-
gent Cross Mapping (CCM) method, which is based on the
theory of chaotic dynamical systems, particularly on Tak-
ens’ theorem. This method has been applied successfully
in various applications in for example ecology, climatol-
ogy (Wang et al., 2018), and neuroscience (Schiecke et al.,
2015). However, as the method relies on embedding the
time series under study with time lags, it is highly sensitive
to missing values and, thus, cannot be applied in settings
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with sporadic time series, despite their occurrence in many
practical settings.

To address this important limitation, we leverage GRU-
ODE-Bayes (De Brouwer et al., 2019), a recently introduced
method that extends the Neural ODE (Chen et al., 2018)
model. By relying on an Ordinary Differential Equation
(ODE) model parameterized by a neural network to model
the evolution of stochastic differential equations, it can han-
dle sporadic time series. Based on sporadic observations,
our approach learns the ODE dynamics to both probabilis-
tically reconstruct the original data and then infer causal
dependencies between the learned dynamical systems.

In a series of increasingly challenging test cases, our method
accurately detects the correct causal dependencies with high
confidence, even when fed very few observations, and out-
performs other imputation methods, such as Gaussian Pro-
cesses.

2. Related work
Granger causality (Granger, 1969) provides the first sig-
nificant framework to infer causal dependencies from time
series. Relying on predictability between dynamical sys-
tems, it was extended to account for different limitations,
such as nonlinearity (Chen et al., 2004) or instantaneous re-
lationships (Schiatti et al., 2015). However, the assumption
of separability of information between causative and caused
variables make the Granger paradigm fail for a significant
number of time series coupling scenarios (Sugihara et al.,
2012) (see Appendix D for an example). Convergent Cross
Mapping, a technique based on nonlinear state space recon-
struction was introduced to tackle this issue (Sugihara et al.,
2012). Recently, Dimensional Causality (DC), an extension
of CCM, was proposed to improve the discrimination of the
confounding cases (Benkő et al., 2018).

Techniques to infer causal direction from non-fully-
observed time series have also been proposed, all relying
on the Granger causality framework. They use direct partial
correlations on regularly sampled data (but with missing
values) (Elsegai, 2019) or generalization of similarity mea-
sures for irregular time series (Bahadori & Liu, 2012). But,
to the best of our knowledge, identifying causal dependen-
cies from sporadic time series in the dynamical systems
framework using CCM has not been investigated before.

3. Method
We consider here the problem of inferring causal depen-
dency between two multivariate time seriesX[t] ∈ RdX and
Y [t] ∈ RdY . Those time series are only observed at times
tX and tY respectively, which are typically not regularly
spaced. As not all dimensions are sampled each time, we fur-

ther have two masksMX [t] ∈ {0, 1}dX andMY [t]{0, 1}dY
for all observation times that indicate whether a given vari-
able was observed at a given time. We say that X causes
Y if p(Y |do(X)) 6= P (Y ) where do(X) is an intervention
on X or, more loosely said, if intervening on process X
impacts the values of process Y .

3.1. Convergent Cross Mapping and Takens’ theorem

CCM aims at discovering the causal direction between dy-
namical systems by checking if the value of one time series
can be recovered from another. Intuitively, if X causes Y ,
information from X leaks into Y and it should be possible
to fully recoverX from Y , but not the other way round. The
technique relies on Takens’ embedding theorem (Takens,
1981). Let X[t] ∈ RdX be a chaotic dynamical system that
has a strange attractor A with box-counting dimension dA.
Takens’ theorem states that a delay embedding with delay τ

φ(X[t]) = (α(X[t]), α(X[t− τ ]), . . . , α(X[t− kτ ]))

is an embedding of the strange attractor A if k > 2dA and
α : RdX → R is a twice-differentiable observation function.
More specifically, the embedding map φ is a diffeomor-
phism between the original strange attractor manifoldMX
and a shadow attractor manifoldM′

X . Under these assump-
tions, one can then theoretically reconstruct the original
time series from the delay embedding.

The simplest observation function α consists in simply tak-
ing one of the dimensions of the dynamical system. In this
case, writing Xi[t] as the i-th dimension of X[t], Takens’
theorem ensures that there is a diffeomorphism between
the original attractor manifold of the full dynamical system
and a shadow manifold M′

x that would be generated by
X ′[t] = (Xi[t], Xi[t − τ ], . . . , Xi[t − kτ ]). To see how
this theorem can be used to infer the causal direction, let us
consider the manifoldMZ of the joint dynamical system
resulting of the concatenation of X[t] and Y [t]. We then
generate two shadow manifoldsMX andMY from the de-
lay embeddings X ′[t] = (Xi[t], Xi[t− τ ], . . . , Xi[t− kτ ])
and Y ′[t] : (Yj [t], Yj [t − τ ], . . . , Yj [t − kτ ]). Now, if X
causes Y , because of Takens’ theorem, it is theoretically
possible to recover the originalMZ fromMY and hence,
by extension, recoverMX fromMY . However, the con-
trary is not true and it is in general not possible to recover
MY fromMX .

The CCM algorithm uses this property to infer causal depen-
dency. It embeds both dynamical systems X and Y and use
k-nearest neighbors to predict points onMX fromMY and
inversely. The result then consists in the correlation of the
predictions with the true values. If this correlation is high,
we deduce that there is a causal arrow between the predictor
dynamical system and the predicted one. Importantly, the
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correlation will increase with the length of the observed
time series, as the observed manifold becomes denser.

The potential results are then interpreted in the following
way (1) X causes Y if one can reconstruct with high accu-
racyMX fromMY ; (2) X and Y are not causally related
(but not necessarily statistically independent) if norMX

norMY can be reconstructed from the other; (3) X and Y
are in a circular causal relation if bothMY andMX can be
reconstructed from the other. In the extreme case of strong
coupling, the two systems are said to be in synchrony.

3.2. Neural ODEs

Many continuous-time deterministic dynamical systems are
usefully described as ODEs. One can thus attempt to de-
scribe the dynamics underlying a multivariate time series
X[t] as dX(t)

dt = fθ(X(t), t) where we consider that the dis-
cretely sampled time series X[t] comes from an underlying
continuous process X(t), and fθ(·) is a uniformly Lipschitz
continuous function. Learning the dynamics of the system
then consists in learning those parameters θ from a finite set
of (potentially noisy) observations of the process X . Neu-
ral ODE (Chen et al., 2018) consists in parametrizing this
function by a neural network, therefore allowing for a wide
range of possible functions. Learning the weights of this
network can be done using the adjoint method or by simply
back-propagating through the numerical integrator.

3.3. Causal inference with GRU-ODE-Bayes

A key step in the CCM methodology is to compute the delay
embedding of both time series: X ′[t] and Y ′[t]. However,
when the data is only sporadically observed at irregular in-
tervals, the probability of observing the delayed samples
Xi[t], Xi[t−τ ], . . . , Xi[t−kτ ] is vanishing for any t. X ′[t]
and Y ′[t] are then never fully observed (in fact, only one di-
mension is observed) and nearest neighbor prediction cannot
be performed.

As a first solution, casting the data into time bins would
lead to more dimensions being observed. However, when
the sampling is sparse, the binning would result in loss of
accuracy without fully solving the problem because most
samples would still contain missing values. This would
result in very few samples in the state-space manifolds,
therefore leading to low correlation scores in the CCM.

We propose to impute the sporadic time series by learning
its governing ODE dynamics and then use those interpolated
samples to compute the delay embeddings of both processes.
In particular, we use GRU-ODE-Bayes (De Brouwer et al.,
2019), a filtering technique that extends Neural ODEs. The
method jointly learns the ODE driving the data and com-
putes the filtered probability of future samples conditioned
on previous ones, in continuous time. The filtering approach

is strictly causal, resulting in no leakage of future informa-
tion backward in time. Crucially, this approach allows us to
(1) compute the time delay embedding at all observed times
tX and tY and (2) reconstruct time delay embeddings at
regular time points, using only the filter estimations, result-
ing is straightforward applicability of the CCM method for
reliable causality direction estimation.

4. Experiments
We evaluate the performance of our approach on samples
from the trajectories of three double pendulums. Based on
their sporadic observations of the processes, we first inde-
pendently compute a filtered continuous-time reconstruction
for each dynamical system using GRU-ODE-Bayes and then
use CCM to infer the causal dependencies.

4.1. Double pendulum

Each dynamical system in our experiments is a double pen-
dulum, a simple physical system that is chaotic and exhibits
rich dynamical behavior. It consists of two point masses
m1 and m2 connected to a pivot point and to each other by
weightless rods of length l1 and l2, as shown on Figure 1 in
the appendix. The trajectories of the double pendulum are
described by the time series of its state-space variables θ1
and θ2, defined as the angles of the rods with respect to the
vertical, as well as the angular momenta p1 and p2 conju-
gate to these angles. Each trajectory is then a collection of
4-dimensional vector observations.

The time evolution of these pendulums is simulated by inte-
grating the Hamiltonian using the Störmer-Verlet integrator.
For the derivation of the Hamiltonian, see Appendix A.

To introduce causal dependencies, we include a non-
physical asymmetrical coupling term in the update of the
momentum conjugate to the first angle:

ṗX1 = −∂H
X

∂θX1
− 2 · cX,Y (θX1 − θY1 ),

where cX,Y is a coupling parameter. The term correspond-
ing to a quadratic potential incorporated to the Hamiltonian
of system X results in an attraction on system X by sys-
tem Y . Therefore, intervening on system Y would result in
change in system X , hence Y causes X . Depending on the
values of cX,Y and its reciprocal cY,X , we have different
causal relationships between X and Y . Namely,

• X causes Y iff cY,X 6= 0

• Y causes X iff cX,Y 6= 0

• X is not causally related to Y if cY,X = cX,Y = 0
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Table 1. Average reconstruction correlations (and standard deviations) in all directions for Cases 1 (top) and 2 (bottom). Standard
deviations are computed using 5 repetitions. Significant correlations are in bold. Our approach detects the correct causal structure. 3and
7highlight correct and wrong direction detection respectively.

CASE DIRECTION LINEAR GP MVGP OURS

CASE 1 X ← Y 0.001 ± 0.006 3 -0.003 ± 0.005 3 -0.014 ± 0.05 3 0.0017 ± 0.005 3
X→ Y 0.000 ± 0.004 7 0.003 ± 0.005 7 -0.002 ± 0.037 7 0.209∗ ± 0.037 3

CASE 2 X ← Y -0.0005 ± 0.005 3 -0.001 ± 0.008 3 -0.009 ± 0.253 0.0001 ± 0.007 3
X → Y 0.001 ± 0.005 3 0.001 ± 0.003 3 -0.007 ± 0.019 3 −0.019 ± 0.06 3
X → Z 0.003 ± 0.007 3 -0.001 ± 0.002 3 0.001 ± 0.087 3 −0.003 ± 0.003 3
Z→ X 0.001 ± 0.007 7 0.082 ± 0.002 3 -0.013 ± 0.033 7 0.698 ± 0.299 3
Y → Z 0.002 ± 0.006 3 0.001 ± 0.003 3 0.003 ± 0.015 3 0.003 ± 0.012 3
Z→ Y 0.002 ± 0.005 7 0.003 ± 0.003 7 0.0034 ± 0.091 7 0.096 ± 0.048 3

4.2. Evaluation

We consider two main cases. The first with only two double
pendulums (X[t] and Y [t]) with X causing Y . In this case,
we set cX,Y = 0 and cY,X = 0.3. In the second case, we
consider three double pendulums (X[t], Y [t] and Z[t]) and
investigate the ability of our method to identify confounding.
We set cX,Y = cY,X = 0, cX,Z = 0.5, and cY,Z = 0.8, cor-
responding to the case where Z is a confounder for both X
and Y . Graphical representation of those cases is presented
in Appendix C along with the parameters of the pendulums
(lengths and masses), as well as a third experiment case
consisting of strong coupling between two double pendu-
lums. For each of those cases, we generate 5 trajectories
with different initial conditions (θ1 ∼ N (−1, 0.05) and
θ2 ∼ N (0.5, 0.05)). Each trajectory consists of 2,000 win-
dows of 10 seconds. To simulate sporadicity, we sample
observation uniformly at random with an average rate of 4
samples per second. Furthermore, for each of those samples,
we apply an observation mask that keeps each individual
dimension with probability 0.3. This leads to a sporadic
pattern with missing observed dimensions at each sample
as shown in Figure 2 of the appendix.

We trained GRU-ODE-Bayes on those samples, leaving, for
each trajectory, 20% of the windows for hyperparameter
tuning. We then computed the filtered reconstruction on
all windows as there is no means for information about the
target task (causal direction inference) to leak from this data.
We apply CCM with an embedding dimension of k = 10
and with a time delay τ = 0.4s, as dictated by the mutual
information profile of the time series.

For each causal direction, we report the empirical corre-
lations between predicted and actual samples in the delay
embedding manifold. For instance, for a direction X → Y ,
we report the correlation between predictions of M̂X ob-
tained fromMY and the actual ones (MX ). Importantly, a
strong positive correlation suggests an accurate reconstruc-
tion and thus a causal link in the studied direction between

both variables (e.g., X → Y ). By contrast, a weak correla-
tion suggests no causal link in that direction.

4.3. Baseline methods

To the best of our knowledge, this is the first time CCM is
applied to sporadic time series. Indeed, because of missing
variables, many standard approaches are simply not applica-
ble. We compared our approach to an interpolation of the
sporadic time series using (1) linear interpolation and (2) us-
ing univariate and multivariate Gaussian Processes (GP and
MVGP). For the Gaussian Process, we chose a mixture of
RBF and identity kernel and learn the parameters from the
data. To model multivariate GPs, we used co-regionalization
(Bonilla et al., 2008). We then use the mean of the posterior
process as the reconstruction fed to the CCM method.

4.4. Results

Results over 5 folds for the two first cases (two and three
double pendulums) are presented in Table 1. Regarding the
first case, our approach is the only one to recover the right
causal direction from the sporadic data. The other baselines
do not detect any significant correlation and thus no causal
link between both double pendulums. The second part of
Table 1 presents the results for the second case (three double
pendulums) in each direction. Again, our approach is the
only one that infers the correct causal structure between
the sporadic time series. Importantly, it shows that we can
detect confounding whether the confounders are observed
or not. Regarding the competing methods, the GP detects a
weak causal relation between Z and X , but fails to detect
the one from Z to Y . The linear method does not detect
any edge. In Appendix C, we present another setup with
stronger coupling where we show that our method is also
the most reliable to infer the correct causal graph.
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5. Conclusion and future work
In this work, we propose a way to detect causal structure
linking chaotic dynamical systems that are sporadically ob-
served using a neural ordinary differential equations model
(GRU-ODE-Bayes). We show that our method correctly
detects the causal directions between time series in a low
and irregular sampling regime, even in the case of hidden
confounders. Despite the apparent limitation of our method
on chaotic systems, CCM is broadly applicable in prac-
tice as many real dynamical systems are indeed chaotic or
empirically allow Takens’-like embeddings. We leave the
application to other real world data as future work.
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A. Double pendulum
Figure 1 presents a graphical representation of a double
pendulum with its two masses and two weightless rods.
Figure 2 shows examples of trajectories generated by a
double pendulum.

The double pendulum is a simple physically system that
is chaotic and exhibits rich dynamical behavior. The La-
grangian of the double pendulum is

L =
1

2
(m1+m2)l

2
1θ̇

2
1+

1

2
m2l

2
2θ̇

2
2+m2l1l2θ̇1θ̇2 cos(θ1−θ2)

(1)

The corresponding Hamiltonian can be derived using Leg-
endre transform H =

∑
i θ̇ipi − L.

The system evolution can be simulated by integrating the
Hamilton equations:

θ̇i =
∂H

∂pi

ṗi = −
∂H

∂θi

Figure 1. Physical representation of the double pendulum.

The Jacobian of the right hand side is

J =


∂2H
∂θ1∂p1

∂2H
∂2p1

∂2H
∂p1∂θ2

∂2H
∂p1∂p2

− ∂2H
∂2θ1

− ∂2H
∂θ1∂p1

− ∂2H
∂θ1∂θ2

− ∂2H
∂θ1∂p2

∂2H
∂θ1∂p2

∂2H
∂p1∂p2

∂2H
∂θ2∂p2

∂2H
∂2p2

− ∂2H
∂θ1∂θ2

− ∂2H
∂p1∂θ2

− ∂2H
∂2θ2

− ∂2H
∂θ2∂p2


Note the diagonal elements cancelling in pairs resulting in a
trace of zero, indicating the volume preserving property of
the Hamiltonian flow according to Liouville’s theorem. This
property corresponds to information preservation in nondis-
sipating physical systems. Consequently, a noncoupled dou-
ble pendulum does not have a proper attractor. However, for
a given initial condition, and thus given energy, the possible
states still form a densely populated volume in state-space.
Applying the nonphysical coupling term, the conservation
rule do not hold anymore.

The real part of the eigenvalues of J are called the local
Lyapunov exponents.

The direction of the largest expansion evolves as

dq

dt
= Jq

|q(0)| = 1

The largest Lyapunov exponent is given by

λ1 = lim
t→∞

1

t
log |q(t)|.
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Figure 2. Example of trajectories generated by a double pendulum.
The solid lines represent the true process and the dots the sampled
measurements.

Note that in stationary processes J is constant, and the
differential equation have a closed form solution

q(t) = q(0)eJt,

and the local and global Lyapunov exponents are equal.

The largest Lyapunov exponent can be described intuitively
as

|δ(t)| ≈ |δ(0)|eλ1t,

where δ(t) is defined as the difference between two phase-
space trajectories, with initial condition infinitesimally close
to each other:

x′(t) = x(t) + δ(t), t ≥ 0

|δ(0)| ≤ ε.

We use numerical integration to compute the largest Lya-
punov exponent of the double pendulum, and verify it is in
the chaotic regime.

B. Case studies
Figure 3 shows a graphical model representation of the two
main cases discussed in the body of the paper. The first one
is a causal drive from X to Y . The second case is with a
third double pendulum Z that acts as a confounder between
X and Y .

Table 2. Parameters [m, kg] and the largest Lyapunov exponents
of the uncoupled pendulums (λ1 > 0 indicates chaotic behavior).
Numerical error given as standard deviation of 10 repetitions.

SYSTEM l1 l2 m1 m2 λ1

X → Y
X 1.0 0.5 2.0 1.0 0.398± 0.0001
Y 0.5 1.0 0.5 4.0 0.005± 0.0023

WHOLE X → Y SYSTEM 0.571± 0.0014

X ← Z → Y
X 0.5 1.0 2.0 1.0 0.008± 0.0005
Y 1.0 0.5 0.5 4.0 0.505± 0.0002
Z 1.0 1.0 1.0 3.0 0.010± 0.0015

WHOLE X ← Z → Y SYSTEM 0.227± 0.0009

X Y X

Z

Y

Figure 3. Graphical model representation of both cases considered
in the main body of the paper. Left: Case 1. Right: Case 2
(confounding).

C. Additional experiments
To further demonstrate the capabilities of our approach, we
consider a third case involving two double pendulums with
stronger coupling. It consists in 3 subcases. In Subcase 1,
we set cY,X = 1 and cX,Y = 0. In Subcase 2, cY,X = 0
and cX,Y = 1. In Subcase 3, we consider no coupling.
Graphical model representation of the 3 subcases are pre-
sented in Figure 4.The parameters (masses and lengths) of
the double pendulums are the same as in Case 1 and are
presented in Table 2 (top row). Again, we run our analysis
over 5 repetitions.

X Y X YX Y

X Y

Figure 4. Graphical model representation of the three subcases.
Top left: first subcase; X drives Y . Top right: second subcase;
Y drives X . Bottom: third subcase; X and Y are not causally
related.

Results for the five folds and 3 subcases are presented in
Figure 5 and in Table 3. We report the causal direction
score SX,Y , which we define as the difference in prediction
accuracy between predictingMX fromMY and predicting
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Figure 5. Distribution of the scores SX,Y for the different scenarios (1, 2 and 3) and for the different methods. Our approach can infer
causal direction reliably.

MY from MX . If we write M̂X as the reconstructed
shadow manifoldMY fromMY , the score is then defined
as

SX,Y = Corr(MX ,M̂X)− Corr(MY ,M̂Y ), (2)

where we abuse notation to indicate the correlation between
the estimated values and the reconstructed ones on the
shadow manifolds at each time t. Importantly, SX,Y close
to 1 suggests thatX causes Y , SX,Y close to−1 suggests Y
causes X and SX,Y ≈ 0 suggests X and Y are not causally
related or both cause each other. As we do not consider the
latter case in our experiments, it would mean the former.
Note that those cases could still be distinguished in practice
by examining the individual value of both correlations in
Equation 2

For Case 1 (X → Y ), our approach is close to optimal
as it leads to a score of −0.9, close to −1. If it is able to
detect some signal for Case 2 (X ← Y ), it is however less
confident about that dependency. Some spurious correlation
is found for Case 3, leading to the score not being very
close to 0. Overall, our method accurately detects the causal
direction linking both time series. The baseline methods,
by contrast, capture much less signal and all erroneously
point towards no causal relationship between time series.
Note that, while there is some consistency for the GP results
(scores for Case 1 are lower than for Case 3, which are
themselves lower than scores for Case 2), this does not
allow to reliably infer causal dependencies, as one would
conclude in all cases that no causal relations exist.

D. Failure of Granger causality framework
To show how the Granger causality framework would fail in
the general nonlinear dynamical systems case, we consider
the following coupled dynamical system:

Table 3. Average scores (with standard deviations for all cases

CASE LINEAR GP OURS

X → Y 0.001 ± 0.002 -0.027 ± 0.01 -0.9 ± 0.03
X ← Y 0.004 ± 0.004 0.09 ± 0.005 0.4 ± 0.01
X⊥Y 0.001 ± 0.006 0.003 ± 0.004 -0.13 ± 0.01

X[t+ 1] = X[t](a− bX[t]− cY [t])

Y [t+ 1] = Y [t](d− eY [t]).

Following Granger causality, including values of Y for pre-
dictingX[t+1] should increase the prediction accuracy, and
thus hint towards a causal effect of Y on X . However, dy-
namics of X[t] can be rearranged such that all information
about Y [t] is contained in X[t] already. Indeed,

Y [t] =
−1
c
(

X[t]

X[t− 1]
− a+ b)(d+

e

c
(

X[t]

X[t− 1]
− a+ b).

Conditioning on Y [t] would not bring additional informa-
tion and Granger causality would then fail to uncover the
right causal structure.
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