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Abstract

Technological advances in medical data collection, such as high-throughput ge-
nomic sequencing and digital high-resolution histopathology, have contributed
to the rising requirement for multimodal biomedical modelling, specifically for
image, tabular and graph data. Most multimodal deep learning approaches use
modality-specific architectures that are often trained separately and cannot cap-
ture the crucial cross-modal information that motivates the integration of different
data sources. This paper presents the Hybrid Early-fusion Attention Learning
Network (HEALNet) – a flexible multimodal fusion architecture, which: a) pre-
serves modality-specific structural information, b) captures the cross-modal in-
teractions and structural information in a shared latent space, c) can effectively
handle missing modalities during training and inference, and d) enables intuitive
model inspection by learning on the raw data input instead of opaque embeddings.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic
data on four cancer datasets from The Cancer Genome Atlas (TCGA). HEALNet
achieves state-of-the-art performance compared to other end-to-end trained fu-
sion models, substantially improving over unimodal and multimodal baselines
whilst being robust in scenarios with missing modalities. The code is available
at https://github.com/konst-int-i/healnet.

1 Introduction

A key challenge in Multimodal Machine Learning is multimodal fusion, which is the integration of
structurally heterogeneous data into a common representation that reduces the dimensionality of
the data whilst preserving salient biological signals [Steyaert et al., 2023]. Fusion approaches are
well-studied in areas where there is a clearly defined shared semantic space, such as audio, visual,
and text tasks like visual question answering [Goyal et al., 2016], image captioning [Yu et al., 2020],
or multimodal dialogue [Liang et al., 2023]. However, healthcare data commonly consists of 2D or
3D images (histopathology and radiology), graphs (molecular data), and tabular data (multi-omics,
electronic health records), where cross-modal relationships are typically more opaque and complex,
the modalities often do not share semantics, and common representations are less explored. The
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Figure 1: Overview of HEALNet (Hybrid Early-fusion Attention Learning Network) using a
shared and modality-specific parameter space to learn from structurally different data sources in
the same model (Fig. 1A). The shared space is a learned latent embedding S that is iteratively
updated through d attention-based fusion layers and captures the shared information between
modalities. The hybrid early-fusion layer (Fig. 1B, and Eq. 3) learns the cross-attention weights
Wm = {W (q)

m ,W
(k)
m ,W

(v)
m } for each modality m corresponding to the queries (Qm = W

(q)
m S),

keys (Km =W
(k)
m Xm), and values (Vm =W

(v)
m Xm) which are shared between layers. These layers

capture the structural information of each modality and encode it in the shared embedding after a
pass through a self-normalising network (SNN) layer.

fusion stage describes how far the multimodal representation is removed from the raw (unimodal)
data, and is commonly categorised into early, intermediate, and late fusion [Baltrusaitis et al., 2019].

Early fusion approaches combine the raw data early in the pipeline, which allows the training of
a single model from all data modalities simultaneously. However, most of these approaches use
simple operations such as concatenation, which removes structural information, or take the Kronecker
product [Chen et al., 2022a], which can lead to exploding dimensions when applied to multiple
modalities and large matrices. Late fusion, on the other hand, trains separate models for each
modality at hand, which allows capturing the salient structural information but prevents the model
from learning interactions between modalities [Liang et al., 2023]. Intermediate fusion approaches
attempt to overcome this trade-off by learning a low-level representation (embedding) for each
modality before combining them. This can result in discovering the cross-modal interactions whilst
taking advantage of each modality’s internal data structure. The problem with many intermediate
fusion approaches is that the learnt latent representation is not interpretable to human experts, and
handling missing modalities is often noisy [Cui et al., 2023]. To overcome these issues, we posit that
there is a need for more sophisticated early fusion methods, which we refer to as hybrid early-fusion,
that: a) preserve structural information and b) learn cross-modal interactions, and c) work on the raw
data, thus allowing for in-model explainability.

In this paper, we propose Hybrid Early-fusion Attention Learning Network (HEALNet, Figure 1),
a novel hybrid early-fusion approach that leverages the benefits of early and intermediate fusion
approaches, and scales to any number of modalities. The main idea behind HEALNet is to use
both a shared and modality-specific parameter space in parallel within an iterative attention archi-
tecture. Specifically, a shared latent bottleneck array is passed through the network and iteratively
updated, thus capturing shared information and learning tacit interactions between the data modalities.
Meanwhile, attention weights are learned for each modality and are shared between layers to learn
modality-specific structural information. We demonstrate the multimodal utility of HEALNet on
survival analysis tasks on four cancer sites from The Cancer Genome Atlas (TCGA) data, combining
multi-omic (tabular) and histopathology slides (imaging) data. Our results show that HEALNet
achieves state-of-the-art concordance Index (c-Index) performance compared to other fusion models
on all four cancer datasets for multimodal patient survival prediction. More specifically, HEALNet
leads to an average improvement of up to 7% compared to the best unimodal benchmarks and up
to 4.5% compared to the best early, intermediate, and late fusion benchmarks, which we see as a
promising validation of our hybrid early-fusion paradigm. In summary, the contributions of our
proposed HEALNet include:
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• Preserving the modality-specific structure: HEALNet outperforms unimodal tabular (omic) and
imaging (histopathology) baselines without a dedicated modality-specific network topology.

• Learning cross-modal interactions: HEALNet effectively captures cross-modal information, achiev-
ing a significantly higher multimodal uplift compared to existing early, intermediate, and late fusion
baselines.

• Handling missing modalities: We show that HEALNet effectively handles missing modalities at
inference time without introducing further noise to the model, a common problem in the clinical
use of multimodal models.

• Model inspection: HEALNet is explainable ‘by design’ since the modality-specific attention
weights can provide insights about what the model has learned without the need for a separate
explanation method. We believe that they are useful for model debugging and validation alongside
domain experts.

2 Related Work

In this paper, we focus on multimodal learning problems from biomedical data, where the data
modalities are structurally heterogeneous, specifically combining image (e.g., Whole Slide Imagery
(WSI)) and tabular (e.g., omic and clinical) data. This aspect is different and more general than
approaches that focus on combining homogeneous modalities, such as multi-omic data, where
the combined modalities have the same structural formalism (tabular) [Sammut et al., 2021, Dai
et al., 2021]. As such, our work closely relates to several approaches for multimodal data fusion
that consider learning from WSI images and genomic data. Namely, Cheerla and Gevaert [2019]
introduce a two-step procedure, combining a self-supervised pre-training step with a downstream
fine-tuning for survival analysis. In the first self-supervised step, a modality-specific embedding is
trained and optimised using a similarity loss (similar to contrastive learning) between the embeddings.
The latter step includes (supervised) fine-tuning of a survival model, trained and optimised using the
Cox loss. HEALNet, on the other hand, implements a sequential architecture for end-to-end training
to learn across modalities without requiring a separate pre-training step. The model architecture
is flexible to allow for both training on the raw input data as well as leveraging pre-trained model
encoders, which may further improve its performance on a particular task of interest.

HEALNet’s multimodal fusion capabilities build on attention architectures [Vaswani et al., 2017].
A popular such architecture is the Perceiver [Jaegle et al., 2021], which uses iterative self- and
cross-attention layers and achieves impressive performance across various unimodal tasks. However,
this architecture is restricted to single modalities unless inputs are concatenated before training,
which may remove salient structural signals. In a multimodal context, cross-attention has been used
as a core component for several intermediate and late fusion models. ‘Multimodal co-attention’
(MCAT) [Chen et al., 2021] is an attention-based fusion approach that uses a tabular modality as
the query and the imaging modality as the key and value array to train a cross-attention unit. Xu
and Chen [2023] further extend this concept by introducing a refined co-attention mechanism based
on optimal transport, where one modality is used to better contextualise the other. Such co-attention
approaches only scale to two modalities since the co-attention units can only take in one set of
query-key-value inputs. It also requires having a ‘primary’ modality that should be contextualised
by a ‘secondary’ modality, which may not always be the case.

Chen et al. [2022a] present an intermediate fusion approach that first constructs modality-specific
embeddings before passing them through a gating-based attention mechanism, combining the output
via a Kronecker product. In turn, the resulting high-dimensional ‘3D multimodal tensor’ is used for
a downstream survival prediction task. Similarly, Chen et al. [2022b] propose a late fusion approach
which implements modality-specific model encoders before combining each model’s output via a
gating mechanism. Here, the attention mechanism is only applied to the imaging modality (WSI),
which serves as a method for learning more general representations by combing the patch-level
latents, but also allows for explainable post-hoc image analysis of the identified regions. An inherent
limitation of such an approach is that the encoders are trained separately (without the other modality’s
context), and consequently, the explanations only account for unimodal information.

Another common limitation of all the above approaches is that they expect fixed tensor dimensions
during training and inference. An alternative to this is presented with sequential fusion methods such
as by Swamy et al. [2023], where modalities can be skipped if not present. Currently, the problem
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with this approach is that it only works on 1D tensors and latent states, relying on encoders specific
to this architecture.

In contrast, HEALNet overcomes many of the limitations of the related fusion approaches. First, its
design readily scales to more than two modalities without additional computational overhead beyond
the one introduced by the additional modality-specific encoders. Namely, the iterative attention
mechanism alleviates the use of fusion operators (such as a Kronecker product) that render high-
dimensional embeddings, and allows for combining many modalities while preserving the structural
information of each. Moreover, HEALNet can learn cross-modal interactions since the modalities
are used as mutual context for each other’s updates. This also allows for more holistic explanations
compared to late fusion approaches that use modality-specific models trained in isolation.

3 HEALNet

Preliminaries. Let Xm represent data from modality m = 1, ..., j ∈ N. Let Xm ∈ Rp×n be either a
tabular dataset with p features and n samples or an image dataset Xm ∈ Rh×w×c×n with n images
with height h, width w and channels c. The goal of a multimodal fusion approach is to learn a fusion
function f() such that y = f(X1, ..., Xj). A conventional design of such a system (such as the
related work discussed in Section 2) is to first learn a modality-specific function gm(), which learns
an intermediate representation hm = gm(Xm), and then apply a fusion function f() for predicting
the target variable ŷ = f(h1, ..., hj).

Architecture. We depict HEALNet in Figure 1. Instead of computing hm and applying a single
fusion function f(), HEALNet uses an iterative learning setup. Let t denote a step, where the total
number of steps T = d × j for the number of fusion layers d ∈ θ. Let St represent a latent array
shared across modalities, initialised at S0 where S ∈ Ra×b for embedding dimensions a, b ∈ N and
is updated at each step. First, instead of learning an intermediate representation hm as encoded inputs
for Xm, we compute the attention weights as

a(t)m = α(St, Xm), (1)

for each modality m at each step t. Second, we learn an update function ψ() to be applied at each
step. The update of S with modality m is given by

St+1,m = ψ(St, a
(t)
m ), (2)

for total time steps T and attention function α (Equation 1). For parameter efficiency, the final
implementation uses weight sharing between layers. Across modalities, each early-fusion layer
becomes an update function of the form

St+j = ψ(St, a1, ..., aj). (3)

The final function for generating a prediction only takes the final state of the shared array and returns
the predictions of the target variable ŷ = f(ST ) as a fully-connected layer.

Figure 1 depicts a high-level visual representation of this approach, showing: (a) Hybrid Early-fusion
Attention Learning Network, and its key component (b) the early fusion layer (as given in Equation 3).
We use attention layers since they: a) make fewer assumptions about the input data (e.g., compared to
a convolutional network), and b) their ability to provide context to the original modality through the
cross-attention mechanism. We start by initialising a latent embedding variable, which is iteratively
used as a query into each of the fusion layers, and is updated with information from the different
modalities at each layer pass. We chose the iterative attention paradigm due to its highly competitive
performance on a range of unimodal tasks [Jaegle et al., 2021]. Passing the modalities through
the shared latent array helps to significantly reduce the dimensionality whilst learning important
structural information through the cross-attention layers. The HEALNet pseudocode is detailed
further in Appendix A.

Preserving structural information. To handle heterogeneous modalities, we use modality-specific
cross-attention layers α() and their associated attention weights a(t)m , whilst having the latent array
S shared between all modalities. Sharing the latent array between modalities allows the model to
learn from information across modalities, which is repeatedly passed through the model (Figure 1A).
Meanwhile, the modality-specific weights between the cross-attention layers (Figure 1B) focus on
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learning from inputs of different dimensions, as well as learning the implicit structural assumptions
of each modality. Specifically, in this work, the employed attention mechanism refers to the original
scaled dot product attention from [Vaswani et al., 2017], with adjustments for tabular and image data.

Formally, given a tabular dataset as a matrix Xm = {x(11)m , ..., x
(np)
m }, with n ∈ N samples and

p ∈ P features (e.g., a gene expression), we aim to learn the weight matrices W (q)
m , W (k)

m , and
W

(v)
m that act as a linear transformation for S and Xm that form the queries (q(n)m ), keys (k(n)m ) and

values (v(n)m ) for each sample passed into the layer. The general scale dot-product attention generates
attention scores for each feature and can be expressed in Cartesian Notation as

α(qp,K) =

P∑
i=1

[
exp(qp · kPi )∑
j exp(qp · kPj )

]
∀j ∈ [1, N ]. (4)

In other words, for each channel p and sample n, an attention layer calculates the normalised and
scaled attention weight being given the context of all other features for that sample. This has
the benefit that the attention scores are always specific to each input given to the attention layer.
From this, we can extract both the normalised attention matrix A as well as the context matrix
Cp(q,K, V ) =

∑P
i=1Ap,i × vi, which is the attention-weighted version of the original input x.

In our case, we need to combine multiple inputs to apply the iterative attention mechanism (i.e.,
cross-attention) – these inputs are the latent S and the input matrix Xm for each modality. To do
this, we use the latent array as the query and the input tensor as the keys and values, respectively.
Given a latent array S, we define the query for each sample q(n)m =W

(q)
m S and the keys and values

as km =W
(k)
m x and v(n)m =W

(v)
m for all samples n ∈ [1, N ]. Intuitively, the iterative cross-attention

can be seen as aligning the query to each modality individually, but not aligning the modalities
themselves to ensure that its unique signal is captured. At each time step, the query for the next
update provides context from the other modalities of previous updates.

High-dimensional biomedical data. Attention-based architectures are typically trained on vast
datasets (which are commonly available for vision and language tasks). The challenges of working
with biomedical data, however, are their high dimensionality whilst often having relatively few
samples (i.e., patients). For example, a dataset (such as TCGA-BLCA) contains whole slide images
of approximately 6.4 gigapixels (80k × 80k pixels) in its highest resolution and includes thousands
of multi-omic features, but only from a few hundred patients in total. This leads to two common
problems in digital pathology – overfitting [Holste et al., 2023] and high computational complexity.

First, to counteract overfitting, HEALNet implements both L1 and L2 regularisation. Considering the
relatively large number of parameters required for the attention layers, we found L1 regularisation to
be important. Beyond that, we opted for a self-normalising neural network (SNN) block, due to its
proven robustness and regularisation properties [Klambauer et al., 2017].

Second, handling the extremely high resolution of the whole slide images (WSIs) within computa-
tional constraints is also a challenge. We address this by extracting non-overlapping 256x256 pixel
patches on the 2x and 4x downsampled whole-slide image (~0.5 and 1.0µm per pixel respectively).
For comparability with other work, we extract a 2048-dimensional feature vector for each patch using
a standard ResNet50 pre-trained on the Kather100K dataset, which consists of 100k histopathology
images of both healthy tissue and colorectal cancer tissue [Pocock et al., 2022]. While HEALNet
also achieves competitive results on the raw patch data, this requires more significant downsampling
to be computationally feasible at scale.

Handling missing modalities. A common challenge in clinical practice is missing data modalities dur-
ing inference. Namely, in practical scenarios, while models have been trained on multiple modalities,
there is a great chance that not all data modalities are available for predicting the patient’s outcome.
Therefore, multimodal approaches must be robust to such scenarios. Typical intermediate fusion ap-
proaches would need to randomly initialise or impute a tensor of the same shape, or sample the latent
space for a semantically similar replacement to pass into the fusion function f(h1, ..., hj ; θ) at in-
ference, which is likely to introduce noise. In contrast, HEALNet overcomes this issue by design: the
iterative paradigm can simply skip a modality update step (Equation 3) at inference time in a noise-free
manner. Note that these practical benefits also extend to training scenarios, where a (typically small)
number of samples are missing some modalities. Rather than imputing this data or completely omit-
ting the samples, HEALNet can train and utilise all the available data using the same update principle.
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4 Experiments

Datasets. We empirically evaluate the utility of HEALNet on survival analysis tasks on four
cancer datasets from The Cancer Genome Atlas (TCGA). Concretely, we use modalities which are
structurally heterogeneous such as the ones formalised in a tabular or image dataset. Our tabular
data structures consist of three sources: bulk gene expressions (RNAseq), mutations (whole-genome
sequencing), and copy number variations. HEALNet treats these as three separate modalities, while
for the baselines that only support two modalities we had to concatenate them – in continuation of
this paper we refer to these as omic modality. The WSI modality includes H&E-stained whole slide
tissue images of the same patient cohorts as in the omic modality. Namely, the four cancer datasets
that we include are Muscle-Invasive Bladder Cancer (BLCA, n=436), Breast Invasive Carcinoma
(BRCA, n=1021), Cervical Kidney Renal Papillary Cell Carcinoma (KIRP, n=284), and Uterine
Corpus Endometrial Carcinoma (UCEC, n=538) (further dataset details are provided in Appendix C).
These specific sites were chosen based on their sample size (BRCA, BLCA, and UCEC are some
of the largest TCGA datasets), performance indicators reported in previous unimodal studies (e.g.,
KIRP highest on omic, UCEC highest on WSI only [Chen et al., 2022b]), and other omic properties
(e.g., BLCA and UCEC are known for their very high gene mutation rate [Ma et al., 2022]).

Task setup. We focus on modelling overall survival. For each patient, we are provided with
right-censored censorship status c (a binary variable on whether the outcome was observed at the
end of the study or not) and survival months since data recording. In line with our baselines [Chen
et al., 2022b], we take non-overlapping quartiles k for the uncensored patients and apply them to
the overall population, which assigns a categorical survival risk to each patient. For the survival
task, our prediction model and the baselines are set to output logits of these survival buckets
ylogits = f(Xm, S; θ, ρ). Using these, we calculate the hazard as the sigmoid of the logits
fhazard = 1

1e−ylogits
, and the corresponding survival as fsurvival =

∏k
1 1− fhazard. The survival,

hazards, censorship status and discretised survival label are all used to calculate the negative
log-likelihood (NLL) loss from the proportional hazards model defined in [Zadeh and Schmid, 2021].
The concordance index is then calculated by comparing all study subject pairs to determine the
fraction of pairs in which the predictions and outcomes are concordant [Brentnall and Cuzick, 2018].

During development, we found that the proportion of uncensored patients sometimes can be as little
as 15% of the cohort (UCEC). Applying the survival bins from such a small sub-sample led to very
imbalanced discretised survival on the full cohort. To counteract this, we added the option to apply
survival class weighting in the loss function, implemented as the inverse weight of the survival
bins. Additionally, note that the NLL loss and the concordance index are sometimes only loosely
related. Therefore, our loss weighting helped to stabilise the correlation between the NLL loss and
the c-Index. To ensure fair comparison and comparability with the baselines, we employed the same
NLL loss and weighting for training HEALNet. Nevertheless, HEALNet is readily extensible and
can be implemented with other survival loss functions such as the Cox loss, which can potentially
lead to more stable c-Index results [Cheerla and Gevaert, 2019].

Baselines. In all experiments, we compare HEALNet to state-of-the-art uni- and multimodal ap-
proaches that utilise different fusion strategies. This includes Porpoise [Chen et al., 2022b], which
uses a late fusion gating method to combine the latent representations learned from a self-normalising
network (SNN) on the omic modality and an attention-based multiple-instance learning network
(AMIL) [Chen et al., 2022b]. In terms of intermediate fusion, we include MCAT [Chen et al., 2021]
and MOTCAT [Xu and Chen, 2023], which leverage co-attention between latent representations
resulting from modal-specific encoders. Furthermore, we compare to MultiModN [Swamy et al.,
2023], a sequential fusion approach for multi-task learning with a pre-defined set of encoders. We
also include the Perceiver model [Jaegle et al., 2021], which has shown strong performance on various
unimodal tasks through its iterative attention mechanism. Following the original implementation,
we benchmark its multimodal integration capabilities using early fusion via concatenation. Finally,
for each of our multimodal baselines, we trained unimodal variants as reported in the task-specific
papers [Chen et al., 2022b, 2021], as well as unimodal models trained with HEALNet using a single
modality. We report the best unimodal model out of the set. The full results of all unimodal baselines
can be found in Appendix B.

Implementation details. For each experiment we employ 5-folds of repeated random sub-sampling
(Monte Carlo cross-validation) with a 70-15-15 split for the training, validation and test sets. All
reported results show the models’ performance on test data that was not used during training or
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Table 1: Mean and standard deviation of the concordance Index on four survival risk categories.
We trained HEALNet and all baselines on four TCGA tasks and report the performance on the test
set across five folds. HEALNet outperforms all of its multimodal baselines and three out of four
unimodal baselines in absolute c-Index performance.

Model BLCA BRCA KIRP UCEC
Uni-modal (Omics) 0.606 ± 0.019 0.580 ± 0.027 0.780 ± 0.035 0.550 ± 0.026
Uni-modal (WSI) 0.556 ± 0.039 0.550 ± 0.037 0.533 ± 0.099 0.630 ± 0.028

Porpoise (Late) 0.620 ± 0.048 0.630 ± 0.040 0.790 ± 0.041 0.590 ± 0.034
MCAT (Intermediate) 0.620 ± 0.040 0.589 ± 0.073 0.789 ± 0.087 0.589 ± 0.062
MOTCAT (Intermediate) 0.631 ± 0.051 0.607 ± 0.069 0.810 ± 0.062 0.587 ± 0.083
MultiModN (Sequential Fusion) 0.551 ± 0.060 0.582 ± 0.084 0.753 ± 0.152 0.610 ± 0.121
Perceiver (Early Fusion) 0.565 ± 0.042 0.566 ± 0.068 0.783 ± 0.135 0.623 ± 0.107

HEALNet (ours) 0.668 ± 0.036 0.638 ± 0.073 0.812 ± 0.055 0.626 ± 0.037

BLCA BRCA KIRP UCEC
10
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Perceiver (Early Fusion)

HEALNet (ours)

Figure 2: Mean percentage uplift of all multimodal models compared to the best unimodal baseline.
Across all tested TCGA cancer sites, HEALNet’s hybrid early-fusion paradigm outperforms early,
intermediate, and late fusion methods.

validation. We re-train all of the baseline models using the code reported in the respective papers. All
models have been run under the same circumstances and using the same evaluation framework (includ-
ing data splits and loss weighting). For hyperparameter tuning, we ran a Bayesian Hyperparameter
search [Bergstra et al., 2013] for all training parameters across models. Model-specific parameters of
the baselines were tuned if the optimal parameters on the TCGA datasets were not available. The final
set of hyperparameters can be found in Appendix D. All experiments were run on a single Nvidia
A100 80GB GPU running on a Ubuntu 22.04 virtual machine. HEALNet is implemented in the
PyTorch framework and available open-source at https://github.com/konst-int-i/healnet.

5 Results

The results of the survival analysis are summarised in Table 1, showing the mean and standard
deviation of the c-Index across five cross-validation folds. Across all tested cancer sites, HEALNet
outperforms all multimodal baselines. This corresponds to an improvement over the multimodal
baselines of approximately 7%, 1%, 3% and 6% on the BLCA, BRCA, KIRP, and UCEC tasks
respectively. HEALNet also exhibits more stable behaviour compared to the multimodal baselines, as
evident from the standard deviation (across folds), which is lower in three out of four datasets.

The unimodal baselines shown in Table 1 correspond to the best-performing models from a selection
of unimodal baselines we trained (refer to the complete list in Appendix B). Compared to the better of
the two unimodal baselines, HEALNet achieves an approximately 10% higher c-Index on BLCA and
BRCA, a 4% higher c-Index on KIRP, and a nearly equivalent performance on UCEC. We refer to
this as a multimodal uplift, which is illustrated in Figure 2, where we compare the improvement of the
different multimodal models and fusion strategies to the best unimodal model. Note that the UCEC
dataset is an example of modality dominance, where all informative signal stems from one modality
(in this case WSI), while the signal from the other modality can be either non-informative or noisy. In-
termediate and late fusion approaches, which directly combine modalities, are less robust in such cases.
For instance, in the case of Porpoise and MCAT, this can even lead to performance degradation. Since
HEALNet is more robust to such noise, it leads to performance comparable to the unimodal variant.

7
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Table 2: Analysis of the performance of HEALNet, trained on all modalities, in scenarios with
missing modalities at inference, compared to unimodal baselines. Each test sample contains only
one of either the Omic or WSI modality. The scenarios include test sets consisting of samples with
only Omic modality, only WSI modality or a combination of both (at random). HEALNet achieves a
higher c-Index across datasets, implying effective encoding of cross-modal information and handling
different amounts of data with missing modalities.

Test 100% Omics 100% WSI 50%WSI + 50% Omics WSI+Omic
Uni-modal HEALNet Uni-modal HEALNet Uni-modal HEALNet HEALNet

BLCA 0.606 0.618 0.487 0.501 0.547 0.612 0.668
BRCA 0.556 0.571 0.529 0.539 0.543 0.541 0.638
KIRP 0.771 0.773 0.518 0.526 0.644 0.714 0.812
UCEC 0.509 0.529 0.558 0.584 0.533 0.580 0.626

To further assess the robustness of HEALNet, we evaluate its performance in scenarios with missing
modalities. Specifically, using HEALNet trained on four modalities (WSI + 3×Omics), we investigate
its performance when modalities are missing during inference. Note that half of the test samples
include only a WSI modality, while the other half is an Omics modality, chosen randomly. The
unimodal baseline corresponds to the predictions of the available modality in the same way that a late
fusion model would use two unimodal models followed by an XOR gating mechanism to make its
prediction. For completeness, we also report results where the whole test set consists of samples with
either Omics or WSI modality, rather than a combination of both. Note that the unimodal baselines
are HealNet models, trained on a single modality. The results from this analysis, given in Table 2,
show that our proposed HEALNet, pre-trained on both modalities, archives stable and generally
better performance than a late fusion baseline (as commonly performed in practice).

6 Discussion

Structure-preserving fusion. The results support our hypothesis that HEALNet is able to learn
the structural properties of each modality and convert the structural signal into better performance.
The quantitative evidence of this is given by HEALNet’s absolute c-Index performance across tasks
(Table 1), performing substantially better than the early fusion baseline that employs concatenation.
Additionally, HEALNet allows for further qualitative analysis of this behaviour, as we can visualise
the sample-level attention of different regions of the whole slide image. The attention maps in
Figure 3 show a sample where the model identified multiple patches in the same region – distilling
the wider image down to local information for which we would typically use convolutional networks.

HEALNet learns about high-level structural relationships by using a hybrid of modality-specific
and shared parameters. For each modality, we learn attention weights (Equation 1) simultaneously
in an end-to-end process. We believe that this distinguishes our hybrid early-fusion approach from
conventional early and intermediate fusion methods. Instead of removing structural information
(i.e., concatenation) or creating excessively large input tensors (i.e., Kronecker product), our hybrid
early-fusion is able to preserve such structures by design. Similar to intermediate fusion methods,
we use a shared latent space to capture cross-modal dependencies. However, instead of creating
a latent space through multiple encodings before combining them via a downstream function
(f(h1, ..., hj ;ϕ)), HEALNet learns an update function (Equation 3) that iteratively updates the
shared latent with modality-specific information. Nevertheless, a limitation of such an approach
is akin to training a higher number of parameters (i.e., large attention matrices), but on relatively
few samples, making it prone to overfitting. Hence, we found that HEALNet can be sensitive to
the choice of regularisation mechanisms, even though the current regularisation techniques (such
as L1 + SNN) have shown to be effective (see Figure 4 in Appendix E).

Cross-modal learning. The motivation of using a hybrid early-fusion over a late fusion approach is
to enable the model to learn cross-modal interactions that are unavailable to modality-specific models
trained in isolation. We can see the effect of this in Figure 2, showing HEALNet’s substantially
higher uplift compared to the late fusion benchmark. Additionally, Table 2 shows that even when
a modality is missing, HEALNet outperforms the best unimodal models that are present, indicating
that the multimodal embedding is implicitly inferring some information about the missing modality.
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We note, however, that using a multimodal model is not always a requirement, especially in the pres-
ence of modality dominance, which we see on the UCEC dataset. This dominance can be explained by
the relatively high morphological variety that has been found in endometrial carcinomas (i.e., UCEC),
which is expressed by spindled, stromal, or extremely large cells [Rabban, 2020]. This visual signal
can only be picked up by the WSI, which is a trend we saw consistently across baselines. Nonetheless,
HEALNet is robust to such cases, achieving comparable performance to the best unimodal model.
Upon further inspection of the HEALNet’s Omics attention weights on the UCEC task, we found
that they barely changed since their initialisation. HEALNet was able to (correctly) inhibit this signal,
which is not the case for the other multimodal baselines where it leads to a loss in performance.

Missing modality handling. A key benefit of using iterative attention is that we can skip updates
if modalities are missing at inference time without adding additional noise. For many intermediate
fusion methods, missing modalities introduce noise since the fusion function f() expects an
intermediate representation hm for all modalities. This requires initialising a random array or doing a
latent search for a similar array to impute the missing portion. A practical approach to this challenge
is a late fusion approach, which requires training and keeping several unimodal alternatives, that
can act as a substitution. This, however, can be computationally intensive. HEALNet, on the other
hand, overcomes this challenge by design. We believe that this underlines a key benefit of hybrid
early-fusion – handling mixed missing modalities, at inference time, which takes advantage of
multimodal training, without introducing additional noise.

Computational complexity. Another advantage of HEALNet’s sequential architecture design is that
it scales linearly with respect to both sample size n and the number of modalitiesm. More specifically,
since the cross-attention and self-normalising layers that comprise the fusion layers scale with O(n),
each fusion layer has a complexity ofO(mn). As a result, the runtime only depends on the number of
fusion layers d, which in our setup is a hyperparameter (refer to Appendix D for the hyperparameter
values used in this work). Compared to other competitive multimodal baselines, HEALNet scales
much more efficiently. For instance, MCAT [Chen et al., 2021] is natively designed for two modalities.
Scaling MCAT to m > 2 would require calculating the modality-guided cross-attention for all unique
pairwise combinations, resulting in O(m2n). This quadratic scaling trend is also similar for other
baselines that implement Kronecker product for combining modalities, such as Porpoise [Chen et al.,
2022b] and MOTCAT [Xu and Chen, 2023]. Note that, in all cases, including HEALNet, the actual
runtime will further depend on several additional factors and designs, such as the choice of the
modality-specific encoders and the size of their embeddings within the underlying multimodal model.

Inspections and explanations. Finally, another design benefit of using attention on the raw input data
is that it allows for instance-level insights into the model’s behaviour, without the need for additional
post-hoc explanation methods. Figure 3 shows what parts of the sample the model attends to on
average across layers. For images, one can create a high-level heatmap of the cell tissue to highlight
relevant regions for more detailed insights into the tumour microenvironment and disease progression.
In turn, these regions can be further analysed post-hoc, such as via nucleus segmentation. To showcase
this capability, in Figure 3, we take the highest attention patches and perform nucleus segmentation

Figure 3: Illustration of model’s inspection capabilities using HEALNet on a high-risk patient of the
UCEC study. We use the mean modality-specific attention weights across layers to highlight high-risk
regions and inspect high-attention omic features. Individual patches can be used for further clinical
or computational post-hoc analysis such as nucleus segmentation. We observe that the high-risk
regions exhibit a very high concentration and different arrangement of epithelial cells (red) which is
commonly associated with the origin of various cancer types [Coradini et al., 2011].
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into epithelial cells, lymphocytes, macrophages, and neutrophils using a HoverNet [Graham et al.,
2019] pre-trained on the MoNuSAC dataset [Verma et al., 2021]. For the high-risk regions, we
observe a higher concentration of epithelial cells that are commonly associated with various cancer
origins [Coradini et al., 2011], which we see as initial validation that the high-risk patches identified
by the model capture salient biological signal.

7 Conclusion

We introduce HEALNet, a flexible hybrid early-fusion approach for multimodal learning. HEALNet
has several distinctive and beneficial properties, suitable for applications in biomedical domains:
1) it preserves structural signal of each modality through modality-specific attention, 2) it learns
cross-modal interactions due to its iterative architecture, 3) it effectively handles missing modalities,
and 4) it enables easy model inspection. The experimental evaluation highlights the importance of
fusing data early in the model pipeline to capture the cross-modal signal leading to better overall
model performance. While in this work we focus only on survival analysis using modalities from
digital pathology and genomic data, we believe that our framework can also be extended to other
domains (and modalities) such as radiology or precision oncology, as well as other tasks such as
diagnosis or predicting treatment response.

Broader Impact Statement

HEALNet is a novel and flexible multimodal approach able to leverage complex heterogeneous
biomedical data. Technological advances in medical data collection, such as high-resolution
histopathology and high-throughput genomic sequencing, have inspired the development of novel
multimodal approaches, able to address a variety of challenging modelling tasks in many biomedical
applications. Our work extends the state-of-the-art in this area, introducing a performant architecture
with several distinctive and beneficial properties suitable for many clinically-relevant applications.
Specifically, we demonstrate the utility of our architecture on four real-world applications related
to cancer prognosis using histopathology and multi-omic data collected by The Cancer Genome
Atlas (TCGA) consortium.

As such, the primary aim and impact of our work is advancing data analysis capabilities in critical do-
mains such as medicine and biology, focusing on complex tasks that require simultaneous modelling
of multimodal data. The ability of our architecture to effectively handle missing modalities during
inference can support many clinically relevant scenarios. For instance, this includes scenarios where
HEALNet has been trained using costly data, but it can still be used to predict outcomes for patients in
clinics that do not have access to sophisticated data collection technologies. Moreover, as HEALNet
is explainable ‘by design’, it can enable easy model inspection as well as insights into the cross-modal
interactions, which can facilitate trustworthiness and better adoption in such critical domains.

To this end, our work has only been evaluated in a strictly research setting. Further applications of
our work in scenarios with sensitive data, such as clinical practice, introduce some challenges. As our
primary focus is biomedical applications, data privacy must be carefully managed. Furthermore, as
HEALNet is intended to serve as a decision-aiding tool, it bears risks of decision bias. Mitigating this
involves further extensive evaluations, clinical trials, and medical regulation to ensure its reliability
and safety before wider adoption in clinical settings.
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Appendix
HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data

A HEALNet Pseudocode

Algorithm 1 HEALNet

Input: Training data Xm = {x(1)1 , . . . , x
(n)
j }; for modalities m ∈ {1, . . . , j} and samples

N ∈ {1, . . . , n}, where m,N ∈ N.
Input: Survival training labels Y = {y(1), . . . , y(n)} for S ∈ {1, . . . , s} survival bins, where
S, y(i) ∈ N∀i = 1, . . . , n.
Input: Number of fusion layers d ∈ N.
Output: Logits of survival predictions Ŷlogits ∈ {ŷ(1), . . . , ŷ(n)}, where ŷ(i) ∈ R,∀i =
1, . . . , n.

1: S0 ← Rcl×dl // S0 is the latent array with S0[i, j] ∼ U(0, 1) ∀i ∈ {1, . . . , cl}, j ∈ {1, . . . , dl}
for latent channels cl and latent dimensions dl.

2: for fusion layer l = 0, . . . , d− 1 do
3: Sl+j ← FusionUpdate(Sl, Xm) // Equation 3
4: end for
5: Ŷlogits ← LinearHead(ST ) // where total timesteps T = md ∈ N
6: Ŷhazard = sigmoid(Ŷlogits)

7: Loss = NegativeLogLikelihood(Y, Ŷhazard)

8: return Ŷhazard

Algorithm 2 Hybrid Early-fusion Layer (FusionUpdate)
Input: Latent array St ∈ Rcl×dl at time step t ∈ {1, . . . , T}.
Input: Training data Xm = {x(1)1 , . . . , x

(n)
j } for modalities m ∈ {1, . . . , j} and samples

N ∈ {1, . . . , n}, where each x(m)
i ∈ Rdx and m,N, dx ∈ N. dx corresponds to each modality’s

channel dimensions.

Output: St+j ∈ Rcl×dl .

1: for modality m = 1, . . . , j do
2: Qm ←W

(q)
m St+m−1 where W (q)

m ∈ Rdl // query
3: Km ←W

(k)
m Xm where W (k)

m ∈ Rdx // key
4: Vm ←W

(v)
m Xm where W (v)

m ∈ Rdx // value
5: ϕam ← {W (q)

m ,W
(k)
m ,W

(v)
m }

6: a
(t)
m = α(Xm, St;ϕ

am) // Attention, Equation 1
7: St+m = ψ(St, a

(t)
m ) // Latent Update, Equation 2

8: St+m ← SNN(St+m)
9: end for

10: return St+j
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B Experimental Results

While the main paper includes selected experimental results, where we only show the best uni-modal
performance, the full list of experimental results can be found below.

Table 3: Full results of mean and standard deviation of the concordance Index on four survival risk
categories. We trained HEALNet and all baselines on four The Cancer Genome Atlas (TCGA) tasks
and report the performance on the hold-out test set across five cross-validation folds. A selection of
these results are presented in Table 1.

Modalities Model (+Fusion Type) BLCA BRCA KIRP UCEC

Omic

Porpoise (Late) 0.590 ± 0.043 0.580 ± 0.027 0.780 ± 0.035 0.550 ± 0.026
MCAT (Intermediate) 0.552 ± 0.036 0.484 ± 0.045 0.721 ± 0.084 0.542 ± 0.065
MultiModN (Sequential) 0.575 ± 0.037 0.422 ± 0.070 0.764 ± 0.149 0.440 ± 0.086
HEALNet (ours) 0.606 ± 0.019 0.556 ± 0.035 0.771 ± 0.135 0.509 ± 0.016

WSI

Porpoise (Early) 0.540 ± 0.030 0.550 ± 0.037 0.520 ± 0.037 0.630 ± 0.028
MCAT (Intermediate) 0.556 ± 0.039 0.489 ± 0.039 0.533 ± 0.099 0.602 ± 0.068
MultiModN (Sequential) 0.500 ± 0.040 0.510 ± 0.055 0.484 ± 0.102 0.489 ± 0.022
HEALNet (ours) 0.487 ± 0.046 0.529 ± 0.042 0.518 ± 0.123 0.558 ± 0.072

Omic + WSI

Porpoise (Late) 0.620 ± 0.048 0.630 ± 0.040 0.790 ± 0.041 0.590 ± 0.034
MCAT (Intermediate) 0.620 ± 0.040 0.589 ± 0.073 0.789 ± 0.087 0.589 ± 0.062
MultiModN (Sequential) 0.551 ± 0.060 0.582 ± 0.084 0.753 ± 0.152 0.610 ± 0.121
Perceiver (Early) 0.565 ± 0.042 0.566 ± 0.068 0.783 ± 0.135 0.623 ± 0.107
HEALNet (ours) 0.668 ± 0.036 0.638 ± 0.073 0.812 ± 0.055 0.626 ± 0.107

Additional experiments

We provide an extended analysis of the performance of HEALNet on combining tabular and time
series modalities, evaluated on intensive care data from the Medical Information Mart for Intensive
Care (MIMIC-III) Johnson et al. [2016]. We train models for two separate tasks: predicting patient
mortality (’MORT’), formulated as a multi-class classification task; and disease classification (’ICD-9’
codes), which we formulate as a binary classification task. We use both clinical variables and small
time series data on various vital signs measured at 24 time steps. Both tasks have sample size of
n = 32616 and the same feature set for different task labels. We report the average AUC in the case
of ICD9 and Macro-AUC (“one-vs-rest”) in the case of MORT, averaged across five folds.

Table 4: Mean and standard deviation of classification performance. We trained HEALNet and
all baselines on two MIMIC-III tasks and report the performance on the test set across five folds.
HEALNet outperforms all multi-modal and uni-modal baselines in classification performance.

Model (+Fusion Type) ICD9 MORT
UniModal (Tabular) 0.731±0.023 0.658±0.000
UniModal (Time Series) 0.700±0.013 0.715±0.016
Perceiver (Early) 0.733±0.028 0.723±0.015
MultiModN (Sequential) 0.500±0.000 0.500±0.000
MCAT (Intermediate) 0.500±0.000 0.500±0.000
HEALNet (ours) 0.767±0.022 0.748±0.009
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C Dataset Details

The results shown in this paper here are based upon data generated by the TCGA Research Network:
https://www.cancer.gov/tcga. The Cancer Genome Atlas (TCGA) is an open-source genomics
program run by the United State National Cancer Institute (NCI) and National Human Genome
Research Institute, containing a total of 2.5 petabyts of genomic, epigenomic, transcriptomic, and
proteomic data. Over the years, this has been complemented by multiple other data sources such as
the whole slide tissue images, which we use in this project. It contains data on 33 different cancer
types for over 20,000 patients. Across the four cancer sites in the scope of this paper, we process
a total of 2.5 Terabytes of imaging and omics data, the vast majority of which is taken up by the
high-resolution whole slide images. Specifically, the four cancer sites are:

• Urothelial Bladder Carcinoma (BLCA): Most common type of bladder cancer, where the
carcinoma starts in the urothelial cells lining the inside of the bladder.

• Breast Invasive Carcinoma (BRCA): Commonly referred to as invasive breast cancer refers
to cancer cells that have spread beyond the ducts of lobules into surrounding breast tissue.

• Kidney Renal Papillary Cell Carcinoma (KIRP): Type of kidney cancer characterised by
the growth of papillae within the tumour which is multi-focal, meaning that they frequently
occur in more than one location in the kidney.

• Uterine Corpus Endometrial Carcinoma (UCEC): Most common type of uterine cancer
arising in the endometrium, i.e., the lining of the uterus.

Table 5: Overview of data availability and dimensionality of the four TCGA datasets used for
experiments.

Property BLCA BRCA KIRP UCEC
Slide samples 436 1,019 297 566
Omic samples 437 1,022 284 538
Overlap (n used) 436 1,019 284 538
Omic features used 2,191 2,922 1,587 1,421
Sample WSI resolution (px) 79,968 x 79,653 35,855 x 34,985 72,945 x 53,994 105,672 x 71,818
Censorship share 53.9% 86.8% 84.5% 85.5%
Survival bin sizes [72, 83, 109, 172] [403, 289, 172, 155] [43, 56, 113, 72] [68, 143, 83, 244]
Disk space (GB) 594 883 275 756
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D Hyperparameters

Table 6: Overview of Hyperparameters used in the final code implementation. Parameters that are
consistent across datasets can be set in the config/main_gpu.yml and dataset-specific parameters
can be set in config/best_hyperparameters.yml

Scope Paramter BLCA BRCA KIRP UCEC

Shared

Output dims 4 4 4 4
Patch Size 256 256 256 256
Loss NLL NLL NLL NLL
Loss weighting inverse inverse inverse inverse
Subset uncensored uncensored uncensored uncensored
Batch Size 8 8 8 8
Epochs 50 50 50 50
Early stopping patience 5 5 5 5
Scheduler OneCycle LR OneCycle LR OneCycle LR OneCycle LR
Max LR 0.008 0.008 0.008 0.008
Momentum 0.92 0.92 0.92 0.92
Optimizer Adam Adam Adam Adam
L1 reg 0.00001 0.000006 0.00004 0.0003

HEALNet

Layers 2 2 5 2
Shared Latent dims 25 x 119 25 x 119 25 x 119 25 x 119
Attention heads 8 8 8 8
Dims per head 16 63 27 103
Attention dropout 0.08 0.46 0.32 0.25
Feedforward dropout 0.47 0.36 0.05 0.06

MCAT/MOTCAT

Model Size Omic 256x256 256x256 256x256 256x256
Model Size WSI 1024 x 256 x 256 1024 x 256 x 256 1024 x 256 x 256 1024 x 256 x 256
Dropout 0.1 0.25 0.25 0.25
Fusion Method bilinear bilinear concat concat

Perceiver

Layers 2 2 5 2
Latent dims 25 x 119 17 x 126 17 x 62 16 x 65
Attention heads 8 8 8 8
Attention dropout 0.08 0.46 0.32 0.25
Feedforward dropout 0.47 0.36 0.05 0.06
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E Sensitivity to the regularisation mechanism

We found that HEALNet can be sensitive to the choice of regularisation mechanisms, even though
the current regularisation techniques, such as L1 + SNN, have shown to be effective.

Figure 4: Effect of the regularisation mechanism. We show the train (top) and validation (bottom)
losses on the KIRP dataset, of HEALNet variants with no regularisation (blue), only L1 regularisation
(indigo), and L1 regularisation + a self-normalising network layer (green).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: We provide extensive experimental evidence and discussion that supports our
claims and contributions. Please refer to Sections 5 and 6, as well as the Supplementary
material.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discussed in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss our approach in detail in Section 3; provide a pseudo-code of our
approach in Appendix A; discuss all experimental details in Section 4, including details of
the datasets (Appendix C) and hyperparametrs (Appendix D. We also provide the code for
reproducing the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets (detailed in Appendix C) are a generated by the TCGA Research
Network (https://www.cancer.gov/tcga) and are publicly available. We provide the
code for reproducing the results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We discuss all experimental settings in Section 4, including details of the
datasets (Appendix C) and hyperparametrs (Appendix D).

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 1 (in Section 5) and Table 3 (in Appendix B) report mean and standard
deviation of the Concordance Index across different folds.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer:[Yes]
Justification: Reported in ’Implementation details’ in Section 4.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted conforms with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Section 7

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[NA]
Justification: [NA]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the details of our approach as well as the source code. The code is
available at https://github.com/konst-int-i/healnet

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No] ,
Justification: [NA]
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