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ABSTRACT

Hallucination occurs when large language models (LLMs) exhibit behavior that
deviates from the boundaries of their knowledge during the response generation
process. Previous learning-based methods focus on detecting knowledge bound-
aries and finetuning models with instance-level feedback, but they suffer from
inaccurate signals due to off-policy data sampling and coarse-grained feedback.
In this paper, we introduce R

¯
einforcement L

¯
earning f

¯
or H

¯
allucination (RLFH), a

fine-grained feedback-based online reinforcement learning method for hallucina-
tion mitigation. Unlike previous learning-based methods, RLFH enables LLMs
to explore the boundaries of their internal knowledge and provide on-policy, fine-
grained feedback on these explorations. To construct fine-grained feedback for
learning reliable generation behavior, RLFH decomposes the outcomes of large
models into atomic facts, provides statement-level evaluation signals, and traces
back the signals to the tokens of the original responses. Finally, RLFH adopts
the online reinforcement algorithm with these token-level rewards to adjust model
behavior for hallucination mitigation. For effective on-policy optimization, RLFH
also introduces an LLM-based fact assessment framework to verify the truthful-
ness and helpfulness of atomic facts without human intervention. Experiments
on HotpotQA, SQuADv2, and Biography benchmarks demonstrate that RLFH
can balance their usage of internal knowledge during the generation process to
eliminate the hallucination behavior of LLMs.

1 INTRODUCTION

Large Language Models have demonstrated remarkable capabilities in generating fluent and plausible
responses. However, these models occasionally incorporate fabricated facts in truthful content,
referred to as hallucination. For instance, as shown in Figure 1, the response of LLMs about "Turing"
contains erroneous factual information, such as stating he was born in 1911 and was American.

The crux of hallucination is the misalignment of the models’ generation and their internal knowledge
(Xu et al., 2024). This occurs when large language models produce behavior that does not align
with the boundaries of their knowledge during the response generation process. Such misalignment
leads to various hallucinatory behaviors in the response, including misleading responses, reckless
attempts, and evasive ignorance. Specifically, misleading responses refers to instances where the
model inaccurately answers a question within its knowledge boundary. Reckless attempts, on
the other hand, occur when the model attempts to respond to a query beyond its knowledge scope.
Evasive ignorance is when the model, despite possessing the necessary knowledge, refrains from
providing an answer. Unfortunately, due to the opaque nature of model knowledge, we can only
observe erroneous responses generated by large models or their refusal to respond, without accurately
determining whether they have experienced hallucinations and the specific types of hallucinations
they have experienced. Different types of hallucinations may even appear simultaneously within a
single response. This immeasurable characteristic of hallucinations presents a significant challenge
for mitigating them in LLMs.

To address the hallucination problem in large language models, previous work can be categorized
into two directions: learning-based and editing-based. Learning-based methods involve detecting the
model’s knowledge boundaries and then fine-tuning it with feedback data to eliminate hallucinations.
However, these methods suffer from off-policy data sampling (Zhang et al., 2024; Wan et al., 2024;
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Alan Turning was born in 1911 and died 
in 1954 in New York. He is an American 
computer scientist and logician and the 
father of artificial intelligence.

Alan Turning is a computer scientist, 
who was born in 1992 in London.

Alan Turning was born in 1911 and died in 1954
in New York. He is an American computer 
scientist and logician and the father of 
artificial intelligence.

Alan Turning was born in 1911 and died in 1954 
in New York. He is an American computer 
scientist and logician and the father of 
artificial intelligence.

[1] Alan Turing (23 June 1912 – 7 June 1954)
was an English mathematician, computer 
scientist and cryptanalyst.

Model Generation

Reference

Coarse-grained Feedback Online & Fine-grained AI Feedback

[2] Alan Turing is widely considered to be the 
father of theoretical computer science 
and artificial intelligence.

Knowledge Detection

When is the birthday of Turning and when did 
Turning died?

Offline Sampling

(a) Conventional learning-based 
hallucination mitigating approaches 

(b) Our proposed reinforcement 
learning for hallucination framework

Figure 1: The figure illustrates the hallucinatory case and several hallucination mitigation method-
ologies. The factual information within the text is underlined. False content is highlighted in red,
whereas accurate facts are indicated in blue. Statements with uncertain veracity are marked in orange.

Lin et al., 2024), leading to distribution shifts and suboptimal strategies. Besides, the instance-level,
coarse-grained feedback (Sun et al., 2022; Tian et al., 2023; Kang et al., 2024) signals can not precisely
pinpoint the content and type of hallucinations, potentially causing side effects. For example, a single
sample might contain both correct and incorrect knowledge, and a coarse-grained feedback signal
can optimize both of them in the same direction. Besides, due to the current lack of understanding of
how models learn and express knowledge, existing knowledge detection techniques (Zhang et al.,
2023a; Cheng et al., 2024; Yang et al., 2023) might be inaccurate. The detection outcomes can
vary significantly based on specific prompts, and the data constructed based on model knowledge
detection might not align with the real knowledge boundary of LLMs. In contrast, editing-based
methods (Gou et al., 2023; Manakul et al., 2023) generate content first by LLM, and then edit it based
on external ground-truth knowledge. However, considering the limitation of external knowledge,
editing-based methods can only provide incremental improvements without fundamentally correcting
the hallucination generation behavior of LLMs. Therefore, the key to solving the hallucination
problem lies in providing fine-grained feedback signals tailored to the online policy LLM, enabling
the model to explore its knowledge boundaries effectively and learn reliable generation behavior.

In this paper, we present R
¯

einforcement L
¯

earning f
¯
or H

¯
allucination (RLFH), an online reinforcement

learning approach predicated on fine-grained feedback for hallucination mitigation. The main idea
behind RLFH is to enable LLMs to explore the boundaries of their internal knowledge and provide
on-policy, fine-grained feedback on these explorations. This allows LLMs to effectively learn how
to balance their usage of internal knowledge during the generation process, thereby eliminating the
hallucination behavior of LLMs. To this end, RLFH first requires LLMs to explore potential outcomes
and decompose the response into atomic facts. These atomic facts then undergo an assessment to
verify their truthfulness and helpfulness by comparing the generated facts with ground truth from
external knowledge sources. Then starting from these fine-grained, statement-level assessments,
RLFH will trace back the judgment on atomic facts to the original outcomes, and construct token-level
dense reward signals which can be directly leveraged to optimize the policy model. Finally, we adopt
the online reinforcement algorithm with these token-level reward signals to adjust model behavior
for hallucination mitigation. Furthermore, to address the need for timely and low-cost construction
of reward signals in the on-policy optimization process, RLFH also introduces an LLM-based fact
assessment framework to verify the truthfulness and helpfulness of atomic facts without human
intervention. Specifically, we utilize LLMs to automatically determine whether an atomic fact aligns
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with the facts described in the ground-truth document and assess the informativeness of the fact. This
automated fact assessment ensures that reward signals can be obtained in real-time and accurately,
thereby enabling RLFH to be directly used for on-policy behavior optimization.

We conducted experiments on HotpotQA, SQuADv2, and Biography benchmarks to evaluate the
effectiveness of RLFH on hallucination mitigation. Results demonstrate that RLFH can effectively
improve the truthfulness and informativeness of the model response. Compared with the initial
model, the model after RLFH has achieved a significant improvement (+17.9% FactScore on average).
Furthermore, compared to previous learning-based hallucination mitigation methods, RLFH can
better mitigate hallucination behavior through on-policy and fine-grained signals, thus achieving an
improvement (+2.0% FactScore on average).

To sum up, the primary contributions of this paper are threefold:

1) We propose Reinforcement Learning for Hallucination, an online reinforcement learning frame-
work designed for mitigating hallucinations in large language models.

2) We propose to construct fine-grained, token-level knowledge feedback signals based on atomic fact
judgment. By decomposing the outcomes of large models into atomic facts, providing statement-
level evaluation signals, and tracing back the signals to the tokens of the original outcomes, we
effectively achieve fine-grained feedback and learning for hallucination behaviors of LLMs.

3) We propose an LLM-driven method for evaluating the truthfulness and helpfulness of facts.
By automatically comparing with ground truth documents, this method effectively constructs
on-policy feedback signals automatically without human intervention.

2 RELATED WORKS

2.1 HALLUCINATION MITIGATION

Prior research (Zhang et al., 2023c; Ye et al., 2023; Tonmoy et al., 2024) has been dedicated to
addressing the hallucination of Language Language Models. Some studies focus on reducing errors
(Wang, 2019; Parikh et al., 2020) and supplementing missing knowledge (Ji et al., 2023) during data
curation. Other works mitigate hallucination in either pre- or post-generation by retrieving external
knowledge (Peng et al., 2023; Li et al., 2023b; Gou et al., 2023) or by exploiting self-consistency
(Manakul et al., 2023; Shi et al., 2023; Lee et al., 2023). Recent studies put efforts into investigating
the essence of the hallucination (Yu et al., 2024; Jiang et al., 2024) and resort to improving the model’s
factuality during the alignment stage. These works focus on resolving the inconsistency between
the model’s generation pattern and its internalized knowledge (Xu et al., 2024) through knowledge
detection and coarse-grained feedback. Typically, these works attempt to delineate the boundary of
model knowledge through explicit prompting (Zhang et al., 2023a; Yang et al., 2023; Cheng et al.,
2024; Wan et al., 2024), self eliciting (Chen et al., 2024a; Lin et al., 2024), self-evaluation (Zhang
et al., 2024) or by probing the model’s internal states (Liang et al., 2024). Based on the detection
of model knowledge, the data is meticulously crafted to align with the model’s knowledge scope.
Subsequently, the model is fine-tuned with coarse-grained feedback, which inspects the truthfulness
of the response as a whole (Sun et al., 2022; Tian et al., 2023; Kang et al., 2024).

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (Stiennon et al., 2020; Ouyang et al., 2022) has
emerged as a noteworthy approach reaching significant success in the domain of the Language
Language Model. Given the instability of reinforcement learning, some research (Lu et al., 2022;
Rafailov et al., 2023; Dong et al., 2023) has attempted to learn human preferences directly from
labeled data. In addition to sparse rewards, some works have resorted to designing more instructive
rewards. One line of works (Wu et al., 2023; Lightman et al., 2023; Chen et al., 2024b; Cao et al.,
2024) is dedicated to the acquisition of dense rewards. Another line of work (Ramé et al., 2023;
Eisenstein et al., 2023; Coste et al., 2024; Ramé et al., 2024) concentrates on ensemble multiple
reward models. Despite the majority of research prioritizing helpfulness and harmlessness, few
studies (Wu et al., 2023; Tian et al., 2023; Liang et al., 2024) have explicitly considered truthfulness.
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Response

Sample from 
dataset

Generates responses 
for the question

Reward model gives 
fine-grained feedback

Convert into 
dense reward

Question

The reward is used to update the policy using PPO.

𝑟
PPO

Figure 2: A diagram illustrating the steps of our algorithm: (1) Online sample response from tuning
model, (2) Collect fine-grained knowledge feedback from AI-driven annotation pipeline and (3)
Convert the language-form feedback into the token-level dense reward for reinforcement learning.

3 REINFORCEMENT LEARNING FOR HALLUCINATION

Given the train prompt set X = {x1, x2, ..., x|X |}, the faithful reward model M, and the reference
document set D = {d1, d2, ..., dD}, this section demonstrates how to mitigate the hallucination of
the policy model π via online fine-grained feedback reinforcement learning, as shown in Figure 2.
Here’s a detailed breakdown of each step: 1) Response Generation: Given the prompt xi, the policy
model π generates a corresponding response yi. This step involves the model using its current policy
to produce an output based on the input prompt. 2) Fine-grained Feedback from Faithful Reward
Model (§3.1): The faithful reward model M evaluates the generated response yi by comparing it
with the reference document set D. After the evaluation, the faithful reward model M provides
fine-grained feedback E at the statement level. 3) On-Policy Optimization with Token-level Reward
(§3.2): The detailed feedback E is translated into token-level rewards r. These rewards are then used
to update the policy model π using Proximal Policy Optimization (PPO), ensuring that the model
learns to reduce hallucinations effectively.

3.1 FINE-GRAINED FEEDBACK FROM FAITHFUL REWARD MODEL

Given the prompt xi and its corresponding response yi, the faithful reward model M will give
fine-grained feedback concerning the truthfulness and helpfulness at the statements-level granularity.
Specifically, the faithful reward model M initially extracts atomic statements Ei =

{
e1, e2, ..., e|Ei|

}
from the response yi, where each statement ej represents an atomic fact in the response. After that,
the faithful reward model M further verifies each statement ei with the reference document and gives
fine-grained feedback.

3.1.1 STATEMENT EXTRACTION

Given a query x and its corresponding output y, the reward model extracts valid factual statements
in a hierarchical manner. Specifically, M initially divide the response into sentences {si}Mi=1 and
then extract all valid factual statements {eij}Ni

j=1 from the each sentence si. There are two main
reasons for the aforementioned hierarchical method: (1) Splitting the response into sentences before
extracting statements consistently yields finer granularity; (2) Extracting statements sentence-by-
sentence facilitates the conversion from language-form annotation to dense reward. To mitigate noise
during the extraction process, we further filter out sentences without valid statements.

3.1.2 FACTUAL VERIFICATION

The reward model M evaluates the truthfulness of the extracted factual statements by comparing
them with external knowledge sources. We retrieve the relevant supporting materials ci

L
i=1 ⊂ C

from the external reference document set D for each statement e. With these supporting contexts,
the reward model M performs the statement verification as reading comprehension. Specifically,
this process is represented as ktruth = M

(
e, {ci}Li=1}

)
. However, the limited scope of supporting

materials and the inherent unpredictability of model generation may lead to some statements lacking
verifiable truthfulness. To mitigate this challenge, we introduce the "Vague" category for statement
classification. Consequently, the model classifies each statement into the following labels: 1) Correct:
statement supported by evidence; 2) Hedged Correct: accurate statement with uncertainty; 3) Vague:
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Substring Matching

Sentence 2

Sentence 1

Documents

Statement 1

Gerhard Fischer is 
graduated from Dresden 
University, who is a person 
of American origin known 
for his contributions in 
the invention.

Truth: -2

Truth: -0.2 Info: +1.2 

Truth: +1.2 Info: +1 

Statement 3

Statement 2

Response
S1

S2

S3

Extract Truthfulness Helpfulness

Dense Reward Conversion

Figure 3: A schematic representation of fine-grained feedback and token-level reward strategy method-
ology is presented. Initially, the statements are extracted in a hierarchical fashion. Subsequently, the
veracity and utility of each statement are assessed. Ultimately, the structured feedback is mapped
back into a dense reward via the Longest Common Subsequence (LCS) algorithm.

truthfulness uncertain; 4) Hedged Wrong: false statement with uncertainty; 5) Wrong: statement
contradicted by evidence.

3.1.3 INFORMATIVENESS ASSESSMENT

In addition to assessing correctness, RLFH also evaluates the informativeness of the response. Each
statement’s helpfulness is rated on a five-point scale, from providing crucial information (+5) to
containing useless details (+1). Unlike the individual verification of each statement in the statement
verification process, assessing informativeness requires simultaneously evaluating multiple statements
from the response. This is because when evaluating informativeness, we typically compare the
information content between different statements to determine their relative importance or relevance.
This requires considering the overall context and the comprehensiveness of the content, rather than
just the truthfulness of individual statements. In this way, we assess multiple statements in a single-
pass prompting, which denoted as {kiinfo}Ni=1 = M

(
{ei}Ni=1

)
. The introduction of informativeness

prevents the trivial hack that the model either rejects the majority of responses or produces only brief
answers, both of which are undesirable outcomes.

3.2 ON-POLICY OPTIMIZATION WITH TOKEN-LEVEL REWARD

Given the fine-grained, statement-level feedback from the reward model, RLFH will trace back
the judgment on atomic facts to the original response, and construct token-level dense reward
signals, which can be directly leveraged to optimize the policy model. Finally, we adopt the
online reinforcement algorithm with these token-level reward signals to adjust model behavior for
hallucination mitigation.

3.2.1 DENSE REWARD CONVERSION

We represent the helpfulness and truthfulness of the response through the dense reward conversion
presented in Figure 3. Due to the mutually exclusive nature (Xu et al., 2024) of these two objectives,
the model learns to balance the pursuit toward two dimensions, thereby acquiring the appropriate
strategy for the utilization of their internalized knowledge.

Truthfulness For each extracted statement, we will assign a truthfulness reward computed as follows:

rtruth = αf(ktruth)|g(kinfo)| (1)

where f and g represent manually designed functions that transform the labels k into scalar values. In
principle, f gives a positive reward to the truthful statement and a negative reward to the unverifiable
or false statement. Due to the phenomenon of hallucination snowball (Zhang et al., 2023b), i.e. some
critical errors lead to the magnification of the hallucinations, g is included to diversify the importance
of different statements. The sign of the output function f is maintained by passing the outcome of the
function g through an absolute value function. The coefficient α balances between the truthfulness
reward and the helpfulness reward.

The reward rtruth will then be mapped back to the token sequences of the model’s responses y through
a hierarchical structure constructed in prior annotations. Specifically, we first employ the Longest
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Common Subsequence algorithm to map the characters of each statement eij back to its originating
sentence si. Subsequently, each sentence si is mapped back to the model’s response y through
the Longest Common Substring algorithm. Finally, the reward rtruth is assigned to the token in the
response which corresponds to the index of the last character in the statement.

Informativeness For each sentence, we assign an informative reward based on the statements
encompassed as follows:

rinfo = β log

(
1 + max

(
ϵ,

N∑
i

g
(
kiinfo

)))
(2)

In this equation, N denotes the total number of statements within a sentence, while ϵ represents
the minimum reward threshold serving to penalize non-informative statements. As indicated by
the equation, the reward increases with the number of statements in a sentence and their respective
informativeness. However, the rate of growth of the reward diminishes rapidly. Conversely, the
penalty for producing non-informative statements by the model escalates swiftly. We utilize the same
method as the correctness reward to map the reward value back to the response token sequence.

3.2.2 ONLINE REINFORCEMENT LEARNING

Given our reward function, the training process is to maximize the following objective:

argmax
π

Ex∼X ,y∼π

[
T∑

i=1

r (yt, (x, y1:t))

]
(3)

The policy model π is optimized through online reinforcement learning (Tang et al., 2024). Specifi-
cally, we first sample the prompt x and responding response y. Then our fact assessment framework
provides fine-grained feedback and converts it into token-level dense reward r = [r1, r2, ..., rT ],
where T stands for the total length of the response y. Given the timely nature of the LLM-based fact
assessment framework, the reward can be collected online. Finally, the model π is optimized by the
Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm.

4 EXPERIMENT

4.1 SETTINGS

Datasets We employ three distinct datasets for our experiments. Following the approach in Min
et al. (2023), we filter out prompts lacking corresponding wiki pages for both training and evaluation.
Additionally, we sample 20,000 questions from HotpotQA (Yang et al., 2018) and utilize the English
Wikipedia from 04/01/2023 as the retrieval corpus for training. We filtered the questions in the Hotpot
QA with less than 5 words and sampled 256 questions for evaluation. We deduplicate the question in
SQuADv2 (Rajpurkar et al., 2016) with the same reference wiki pages, leaving 191 questions for
out-of-distribution QA evaluation. Biography is the identical biographies dataset as utilized in the
FactScore (Min et al., 2023) for evaluation out-of-distribution of different forms.

Baselines We compare RLFH with two different types of baselines: 1) hallucination mitigation
methods using the same initialize model, including inference-time intervention (INI) (Li et al., 2023a),
decoding by contrasting layers (DOLA) (Chuang et al., 2023) and finetuning for factuality (FACT)
(Tian et al., 2023); 2) advanced aligned models with the same model size of our model (7B), including
Zephyr (Tunstall et al., 2023), Orca (Mukherjee et al., 2023), Llama2 Chat (Touvron et al., 2023),
and Vicuna 1.5 (Zheng et al., 2023).

Evaluation To evaluate the truthfulness and helpfulness of each generated response, we employ the
FactScore (Min et al., 2023) pipeline run by GPT4 (OpenAI, 2023). FactScore pipeline extracts the
facts and determines the correctness of each fact. For each dataset, we report the number of correct
and relevant facts (# Cor.), the number of inaccurate facts (# Inc.), the ratio of responded questions
(% Res.), and the computed FactScore metrics (Score.).

Implementation Our training implementations are developed based on TRLX (Havrilla et al., 2023).
The base model utilized is Vicuna-7b-1.5 (Zheng et al., 2023) and Mixtral-8x7B-Instruct (AI, 2023)
is deployed to provide fine-grained AI feedback. Detailed prompts are shown in Appendix 6.1.
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Table 1: Experiment results on HotpotQA, SQuADv2, and Biography.

Model HotpotQA SQuADv2 Biography

#Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score

Advanced Aligned Model

Orca2 20.04 9.042 0.996 0.467 22.04 11.57 0.995 0.580 11.99 33.86 1.000 0.264
Zephyr 10.48 6.191 0.965 0.610 14.34 8.727 0.995 0.657 19.85 41.20 1.000 0.325
Llama2 12.71 12.23 0.922 0.544 24.90 21.31 0.990 0.556 23.08 58.50 0.978 0.288
Vicuna 7.430 6.320 0.910 0.569 13.07 6.597 0.979 0.669 15.73 27.71 0.830 0.347

Hallucination Mitigation methods based on Vicuna-7B

ITI 21.66 17.92 0.961 0.547 32.49 26.37 0.990 0.544 21.58 47.93 0.989 0.311
DOLA 6.734 5.688 0.801 0.582 12.78 7.644 0.963 0.647 13.25 24.16 0.681 0.357
FACT 13.31 7.363 0.945 0.647 16.13 7.931 0.984 0.676 16.46 20.75 0.736 0.457

RLFH 13.05 8.304 0.645 0.655 23.40 10.96 0.953 0.683 18.08 19.20 0.692 0.474

4.2 MAIN RESULTS

Table 1 presents the performance of all baselines and RLFH on three datasets. We can see that:

1. Our method significantly mitigates hallucination. As demonstrated in Table 1, our method
achieved the highest FactScore across all datasets. Given that FactScore is a well-established metric
for assessing the factuality of long-form generation with the support of external knowledge, we argue
that the improvement substantiates the effectiveness of our algorithm in mitigating hallucination.

2. The improvement is generalizable to out-of-distribution prompts. Notably, despite being
trained on the HotpotQA dataset, our algorithm demonstrated improved accuracy on two out-of-
distribution datasets of different task settings. This indicates the reasonable utilization of knowledge
learned by our algorithm is a meta-ability that can be generalized.

3. The aligned model is more conservative but provides more information within its capacity. As
shown in Table 1, our trained model decreases in response ratio. This can be ascribed to two primary
factors: (1) The FactScore pipeline determines whether the model refuses to answer by detecting the
presence of characteristic words, while our trained model tends to express uncertainty even when
providing relevant information, leading to an underestimation of the indicators. (2) Our tuned model
is overall more conservative, as evidenced by the decreased response ratio across all datasets. Even
though, the model’s responses generally contain more statements, indicating increased confidence in
answering questions deemed answerable. Also, the model refuses more questions on the HotpotQA
and Biography datasets and less on the SQuADv2 dataset. This can be attributed to that SQuADv2 is
comparatively easier than the other two datasets as indicated in the metrics of the base model.

4.3 DETAILED RESULTS

To investigate the changes in model behavior after RLFH, we conducted a detailed analysis of 5000
questions from HotpotQA that were not included in the training phase.

1. Our method augments the ratio of high-accuracy responses. As indicated in Figure 4, the
distribution of average statement accuracy shifts significantly towards higher accuracy, signifying a
reduction in responses with lower accuracy and an increase in responses with higher accuracy. It is
noteworthy that there is a significant increase in responses with an accuracy exceeding 0.7, suggesting
the model provides more reliable responses after training.

2. Our algorithm enhances the responses’ helpfulness while suppressing errors. As illustrated
in Figure 6a, our algorithm increases the proportion of responses containing more statements. As
specified in Figures 6b and 6c, this is achieved by increasing the responses containing more correct
statements, while concurrently reducing the responses containing incorrect statements. Figure 5
jointly estimates the truthfulness and helpfulness of the model’s responses. As presented in the figure,
the distribution shifts toward the upper right direction, indicating that the model tends to generate
more informative responses while minimizing the occurrence of unverifiable statements.
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Figure 4: The statement accuracy distribution differ-
ence before and after training. The distributions are
normalized due to the filtering of rejected responses
resulting in different numbers of prompts.
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Figure 6: The distributions of the quantity of the statements per response.

3. Our algorithm aligns the model’s behavior with its knowledge boundary. We compare the
distribution of the number of statements under varying accuracy ranges in both pre- and post-training.
As illustrated in Figure 7, there is a noticeable shift in the model’s behavioral strategy as the accuracy
range changes from low to high. Specifically, the number of statements tends to decrease in the lower
accuracy range and increase in the higher accuracy range. This suggests that the model is learning to
provide information in a manner that is commensurate with its knowledge. Furthermore, we inspect
the relationship between the refusal ratio and the original response accuracy. We determine the
refusal by our annotation pipeline for the reason mentioned in Section 4.2. As shown in Figure 8, the
model tends to refuse questions that it originally performed poorly. This is expected as the model is
penalized more frequently for attempting to answer uncertain questions.

4.4 IMPACT OF REWARD GRANULARITY

In this section, we conduct an ablation experiment to investigate the impact of the granularity of
the reward on the performance. Specifically, we evaluate the three different granularities of reward
signals: response-level, sentence-level, and statement-level. The statement-level reward is the default
setting described in previous sections. For the sentence-level reward, feedback for each sentence is
incorporated into a single reward assigned at the end token of each sentence. For the response-level
reward, feedback is aggregated into a single value representing the overall quality. As illustrated in
Table 2, the statement-level reward achieved the highest FactScore, indicating that more fine-grained
feedback tends to yield better performance. Note that although the model under statement-level
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Figure 7: The distribution of the number of state-
ments under different statement accuracy ranges.
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Figure 8: The ratio of prompts rejected after train-
ing, grouped by their original accuracy levels.

reward had the lowest response ratio, it reached the highest number of statements per response. This
phenomenon could be a result of the underestimation problem discussed before.

4.5 IMPACT OF ANNOTATION MODEL

In this section, we explore the impact of the annotation model used for collecting feedback. We
employ open-source models of varying sizes to execute the annotation pipeline. As depicted in Table
3, many open-source models are sufficiently capable of delivering beneficial factual supervision
signals. Note that different models exhibit distinct characteristics when completing these tasks,
e.g. the granularity of statement extraction, the inclination towards informative assessment, or the
ability to evaluate factuality within a supporting context. These differences lead to varying model
behaviors. For instance, even though our model supervised by the same SFT model achieves the
highest FactScore, it is at the cost of helpfulness in the measurement of the average statements
contained in the response.

Table 2: Results of our algorithm under reward
granularity levels on HotpotQA.

Reward HotpotQA
#Cor. #Inc. %Res. Score.

Paragraph 7.152 5.660 0.867 0.639
Sentence 11.17 6.453 0.715 0.645
Statement 13.05 8.304 0.645 0.655

Table 3: Results of our algorithm under reward mod-
els powered by different LLMs on HotpotQA.

Model HotpotQA
#Cor. #Inc. %Res. Score.

Vicuna-7b 4.207 2.023 0.800 0.697
Vicuna-13b 9.371 4.637 0.773 0.668
Llama2-70b 9.292 4.675 0.781 0.672
Falcon-30b 5.148 3.156 0.777 0.652
Mixtral 13.05 8.304 0.645 0.655
GPT41 5.590 3.648 0.750 0.638

5 CONCLUSION

In this work, we introduce R
¯

einforcement L
¯

earning f
¯
or H

¯
allucination (RLFH), a fine-grained

feedback-based online reinforcement learning method for hallucination mitigation. RLFH enables
LLMs to explore their knowledge scope and adjust their behavior based on fine-grained on-policy
feedback. Specifically, our approach provides fine-grained knowledge feedback based on atomic fact
judgment and constructs token-level dense rewards for online reinforcement learning. Experiment
results on three factual benchmarks show that RLFH can significantly improve the truthfulness and
informativeness of LLMs under both in-distribution and out-of-distribution settings. For future work,
we plan to extend our method to mitigate hallucinations in multi-modal large language models.

1Due to the cost of API calls, single-pass prompting discussed in the Appendix 6.1 is used for the annotation.
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6 APPENDIX

6.1 PROMPT FOR AI FEEDBACK

The rollout stage in reinforcement learning requires online sampling, thus the annotation procedure
must concurrently consider efficiency and effectiveness. Given the time-intensive nature of this
process, we have implemented a pipeline prompting strategy. The entire procedure is divided into
extraction, verification, and assessment, responding to the descriptions in Section 3.1, using prompts
in Table 5, 6, and 7, respectively. As discussed in Section 4.5, most open-source models with certain
capabilities in instruction following and reading comprehension are able to accomplish these tasks.

Due to the high cost and low throughput of the GPT4 API call, we opted for another single-pass
prompting pipeline to complete the annotation, as illustrated in Table 4. The primary distinction
between the single-pass and pipeline strategies lies in the granularity of the extracted statements. The
pipeline strategy tends to fragment sentences in a more detailed manner resulting in more statements.
We find the majority of open-source models failed to complete single-pass prompting satisfactorily.

6.2 CASE STUDY

In order to get more intuitive insights into our algorithm, we illustrate the evolution of the model’s
response throughout the training process. Two representative cases are presented in Table 8. The first
case demonstrates the algorithm’s capability to diminish the number of incorrect statements within
the response. This is accomplished by adopting a more conservative approach towards unfamiliar
questions or by simply declining to provide an answer. In the second case, our algorithm amends the
model’s response from being entirely incorrect to almost correct. This result is encouraging as the
test question is not included in the training set, indicating that the model is learning to deliver more
accurate and effective responses by better leveraging its inner knowledge, rather than by acquiring
additional knowledge from the training corpus. The cases imply that in addition to inadequate
knowledge, the model’s inability to reasonably utilize knowledge is also a nonnegligible factor
contributing to hallucinations.
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Table 4: The prompt used for single-pass annotation.

Check the factuality and helpfulness of a response to a question based on the materials.
- Extraction: Break the sentences with object facts into atomic statements.
- Truthfulness Verification: verify each statement based on the materials.

- "Correct": The statement is proved by the materials.
- "Hedged correct": The statement is expressed with uncertainty but is true.
- "Vague": The statement can not be decided as true or false based on the materials.
- "Hedged wrong": The statement is expressed with uncertainty and is false.
- "Wrong": The statement is denied by the materials.

- Informativeness Assessment: evaluate the helpfulness of each statement.
- "5": The statement is an answer to the question.
- "4": The statement provides crucial information.
- "3": The statement gives relevant content.
- "2": The statement contains supplementary facts.
- "1": The statement is repeating information, providing useless information.

- Details:
- Do not consider the correctness of the statement when assessing informativeness.
- Follow the valid JSON format **(Use escape characters, e.g. f̈or ")** shown in the example.
- Skip the sentences like "It’s hard to say ...", "I’m sorry, I don’t know ...". If there is no valid

statement, output {}

>> Example:
[Materials]
- First for Women is a women’s magazine published by Bauer Media Group in the USA. The magazine
was started in 1989. It is based in Englewood Cliffs, New Jersey. In 2011 the circulation of the
magazine was 1,310,696 copies."
- Arthur’s Magazine (1844–1846) was an American literary periodical published in Philadelphia in
the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H. Ingraham, Sarah
Josepha Hale, Thomas G. Spear, and others. In May 1846 it was merged into "Godey’s Lady’s Book".
- Which magazine was started first Arthur’s Magazine or First for Women? The correct answer may
be "Arthur’s Magazine".
[Question]
Which magazine was started first, Arthur’s Magazine founded by Arthur K. Watson, or First for
Women?
[Response]
It is difficult to say which game has been released in more versions without more information, so I
can only guess based on my training data. Arthur’s Magazine was likely started first. It was possibly
founded in 1923 by Arthur K. Watson, a prominent publisher in the field of men’s magazines. First
for Women, on the other hand, was not founded until 1989. It was created as a spin-off of Family
Circle magazine, which was founded in 1957.
[Annotation]
{"Arthur’s Magazine was likely started first.": {"Arthur’s Magazine was likely started first.": ["Cor-
rect", 5]}, "It was possibly founded in 1923 by Arthur K. Watson, a prominent publisher in the field of
men’s magazines.": {"It was possibly founded in 1923.": ["Wrong", 4], "It was founded by Arthur K.
Watson.": ["Wrong", 3], "Arthur K. Watson is a prominent publisher in the field of men’s magazines.":
["Vague", 2]}, "First for Women, on the other hand, was not founded until 1989.": {"First for Women
was not founded until 1989.": ["Correct", 4]}, "It was created as a spin-off of Family Circle magazine,
which was founded in 1957.": {"It was created as a spin-off of Family Circle magazine.": ["Vague",
3], "Family Circle magazine was founded in 1957.": ["Vague", 2]}}

>> Real Problem:
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Table 5: The prompt used for extracting statements.

- Find every sentence containing object facts.
- Break sentences into atomic statements.
- If there is no valid sentence, output "No statements".
- Skip the sentences without statements.
- Do not output any explanation or other words.
- Strictly follow the output format shown in the example.

Here is an example:
# Response
It is difficult to say which game has been released in more versions without more information, so I
can only guess based on my training data. Arthur’s Magazine was likely started first. It was possibly
founded in 1923 by Arthur K. Watson, a prominent publisher in the field of men’s magazines. First
for Women, on the other hand, was not founded until 1989. It was created as a spin-off of Family
Circle magazine, which was founded in 1957.
# Statements
>> Sentence 1: Arthur’s Magazine was likely started first.
* Arthur’s Magazine was likely started first.
>> Sentence 2: It was possibly founded in 1923 by Arthur K. Watson, a prominent publisher in the
field of men’s magazines.
* Arthur’s Magazine was possibly founded in 1923.* Arthur’s Magazine was founded by Arthur K.
Watson.
* Arthur K. Watson is a prominent publisher in the field of men’s magazines.
>> Sentence 3: First for Women, on the other hand, was not founded until 1989.
* First for Women was not founded until 1989.
>> Sentence 4: It was created as a spin-off of Family Circle magazine, which was founded in 1957.
* First for Women was created as a spin-off of Family Circle magazine.
* Family Circle magazine was founded in 1957.

And then comes your task:

Table 6: The prompt used for verifying statements.

Choose from "Correct", "Vague" and "Wrong" for the verification of the statement.
- "Correct": The statement is supported by the materials.
- "Vague": Hard to determine the truthfulness of the statement based on the materials.
- "Wrong": The statement is negated by the materials.
Directly output the verification result without explanation.

Here is an example:
# Materials
- First for Women is a women’s magazine published by Bauer Media Group in the USA. The
magazine was started in 1989. It is based in Englewood Cliffs, New Jersey. In 2011 the
circulation of the magazine was 1,310,696 copies."
- Arthur’s Magazine (1844–1846) was an American literary periodical published in Philadel-
phia in the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H.
Ingraham, Sarah Josepha Hale, Thomas G. Spear, and others. In May 1846 it was merged into
"Godey’s Lady’s Book".
- The correct answer for the question "Which magazine was started first Arthur’s Magazine or
First for Women" may be "Arthur’s Magazine".
# Statement
Arthur’s Magazine was likely started first.
# Verification
Correct

And then comes your question:
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Table 7: The prompt used for assessing the importance of the statement.

Evaluate the helpfulness of the statement:
- "5": The statement answer the question.
- "4": The statement provides crucial information.
- "3": The statement contains relevant facts.
- "2": The statement is about other supplementary facts.
- "1": The statement is useless or not relevant at all.
Directly output the evaluation result without explanation.

Here is an example:
# Question
Which magazine was started first Arthur’s Magazine founded by Arthur K. Watson or First
for Women?
# Response
It is difficult to say which game has been released in more versions without more information,
so I can only guess based on my training data. Arthur’s Magazine was likely started first.
It was possibly founded in 1923 by Arthur K. Watson, a prominent publisher in the field of
men’s magazines. First for Women, on the other hand, was not founded until 1989. It was
created as a spin-off of Family Circle magazine, which was founded in 1957.
# Statement
Arthur’s Magazine was possibly founded in 1923.
# Evaluation
4

And then comes your task:
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Table 8: The table provided delineates the cases encountered during the training process. Correct
segments are highlighted in green, while those containing vague information are denoted in brown.
Incorrect segments are marked in red. The reward is the aggregation of the rewards of each token.

Prompt Response Reward

"Tina in the Sky
with Diamonds"
is the second
episode of the
fifth season of
which television?

"Tina in the Sky with Diamonds" is the second episode of the fifth
season of the television series"Breaking Bad". It was written by
series creator Vince Gilligan and directed by Michelle MacLaren.
The episode aired on August 10, 2014.

-5.696

"Tina in the Sky with Diamonds" is the second episode of the fifth
season of the television series "The Crown," which was created by
Peter Morgan.

-2.066

I’m sorry, but I am not able to provide information about specific
episodes of television series as my training data only goes up
until 2021 and I don’t have access to any information about future
episodes.

0

Are Veratrum and
Leontopodium
genuses of plants
that are found in
the same family?

Yes, Veratrum and Leontopodium are both genera of plants that are
found in the same family, the Veratrum family (Veratrumaceae).

0.4555

Veratrum and Leontopodium are not genuses of plants that are
found in the same family. Veratrum is a genus of plants belonging
to the family Meliaceae, while Leontopodium is a genus of plants
belonging to the family Asteraceae. The two genera are not closely
related and are found in different parts of the world.

3.432

No, Veratrum and Leontopodium are not genera of plants that are
found in the same family. They are both genera of plants, but
they belong to different families. Veratrum is a genus of plants
thatbelongs to the family Melanthiaceae. It contains several species
of flowering plants that are native to North and South America,
as well as parts of Asia. Leontopodium, on the other hand, is a
genus of plants thatbelongs to the family Asteraceae. It contains
several species of flowering plants that are native to the Alps and
other mountain ranges in Europe. So, while both genera contain
species of flowering plants, they are not closely related and belong
to different families.

16.653
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