
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOLAR: COMMUNICATION-EFFICIENT MODEL ADAP-
TATION VIA SUBSPACE-ORIENTED REPARAMETRIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, enable scalable
adaptation of foundation models by injecting low-rank adapters. However, their
communication and storage costs remain a major bottleneck in resource-constrained
settings. We propose SOLAR (Subspace-Oriented Latent Adapter Reparameter-
ization), a post-training compression framework that substantially reduces the
communication cost (i.e., the number of parameters to transmit or store) of PEFT
adapters. SOLAR expresses each PEFT update as a linear combination of basis vec-
tors formed from the foundation model’s singular vectors with controlled random
perturbations. By exploiting the subspace similarity (the alignment of principal
directions) between the foundation model and task-specific fine-tuned updates,
SOLAR decouples the adapter size from PEFT structure and ensures compact
yet expressive representations. It is model-agnostic and compatible with existing
PEFT methods, including LoRA and other adapter modules. We theoretically
establish a bound on the reconstruction error. Experiments on language and vision
tasks using LLaMA, GPT, and ViT models demonstrate that SOLAR preserves
task performance while significantly reducing model representation sizes, offering
an effective and communication-efficient solution for deployment in distributed
systems and edge devices.

1 INTRODUCTION

Foundation models—large-scale pretrained transformer architectures—have catalyzed substantial
progress across natural language processing, computer vision, and a range of other domains. However,
adapting these models to downstream tasks remains resource-intensive. Full fine-tuning, which
updates all model parameters, demands considerable computational, memory, and storage resources
Houlsby et al. (2019). Parameter-Efficient Fine-Tuning (PEFT) techniques address this challenge by
freezing the backbone and updating only a small set of task-specific parameters. For example, adapter
modules insert compact trainable layers into each network block Houlsby et al. (2019); prefix-tuning
optimizes a continuous prompt of only ∼0.1% of the model’s parameters Li & Liang (2021); and
Low-Rank Adaptation (LoRA) injects low-rank update matrices into each layer Hu et al. (2021).
These methods achieve performance comparable to fully fine-tuned models while updating less than
1% of the model’s parameters.

Despite these parameter savings, the cumulative communication and storage costs of PEFT modules
remain a critical bottleneck in many real-world scenarios, particularly as foundation models continue
to scale Wolf et al. (2020). In distributed scenarios (e.g., federated learning), these adapters must be
communicated and stored across multiple devices or nodes, leading to significant overhead Wolf et al.
(2020). Communication and storage overhead increase with the number of PEFT modules, as many
fine-tuned adapters are saved and frequently transmitted or synchronized, thus turning millions of
adapter parameters into a major bottleneck, particularly in bandwidth-limited or memory-constrained
environments such as edge devices or federated learning systems Gao & Zhang (2024); Wang et al.
(2025). The resulting communication and storage costs (i.e., the number of adapter parameters that
must be transmitted and stored) can lead to slower training, increased energy consumption, and
reduced scalability, highlighting the need for more efficient adapter compression techniques.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of SOLAR. Given fine-tuned adapters (A,B), SOLAR projects them onto
structured subspaces derived from the pretrained model’s SVD. A pseudo-random generator, seeded
with a known value, constructs partially randomized basis matrices. Topk coefficients α and β are
selected under a communication/storage budget to reconstruct the compressed update matrices Ã and
B̃. Only the coefficients α, β, and the seed need to be communicated or stored.

To address this, several methods decouple tunable parameters from adapter rank and model dimen-
sions: NOLA Koohpayegani et al. (2024) expresses LoRA’s matrices as linear combinations of
random basis matrices, training only the coefficients; VeRA Kopiczko et al. (2023) uses shared frozen
random vectors with small learned scaling vectors; and SVFT Lingam et al. (2024) constructs a
basis from singular vectors of pretrained weights and learns a sparse combination during fine-tuning.
However, random bases not aligned with the model or task may reduce representational efficiency,
and methods such as Kopiczko et al. (2023); Lingam et al. (2024); Koohpayegani et al. (2024) are not
post-hoc, as they modify the training process and cannot compress adapters already trained—creating
a need for a flexible, training-free compression utility.

In this paper, we propose SOLAR (Subspace-Oriented Latent Adapter Reparameterization), a novel
post-training compression method for PEFT adapters. SOLAR exploits the empirical structure of
adapter updates by reparameterizing them as linear combinations of structured, randomized basis
matrices. It is model-agnostic and applicable post-training without modifying the fine-tuning process.
The main contributions of this work are as follows:

• We leverage the observed subspace similarity between the foundation model’s weights (W) and
the task-specific update (∆W) to create a more compact and efficient adapter representation. By
expressing ∆W as a sparse combination of basis vectors, our method effectively decouples the
adapter’s final size from the model’s architecture.

• We develop a three-step framework for post-hoc adapter compression that involves: 1) constructing
a basis pool of size N by perturbing the foundation model’s singular vectors with random noise,
2) performing a sparse selection of the most significant basis vectors to meet a budget k, and 3)
reconstructing the adapter using only the selected coefficients and a single random seed.

• We provide a formal theoretical analysis that bounds the reconstruction error. Our proof decomposes
the total error into the original training error and a controllable compression error, which can be
minimized by tuning SOLAR’s hyperparameters (N and k).

• We demonstrate through extensive experiments that SOLAR reduces adapter sizes by up to 98%
while preserving the performance of the original LoRA adapters. Our results show competitive
accuracy across a wide range of vision and language tasks using ViT, GPT-2, and LLaMA models.

2 PROPOSED METHOD: SOLAR

We propose a post-training compression strategy that serves as a modular add-on for compressing
PEFT-based updates. It introduces no training overhead and is compatible with LoRA Hu et al. (2021),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

QLoRA Dettmers et al. (2023), Compacter Karimi Mahabadi et al. (2021), and NOLA Koohpayegani
et al. (2024), operating post-hoc by taking the final trained adapter matrices as input. SOLAR
also applies to Orthogonal Finetuning (OFT) Qiu et al. (2023) and variants Liu et al. (2023), as its
SVD-based subspace captures principal directions and compresses orthogonal matrices post-hoc.
By exploiting the low-rank structure of updates, SOLAR significantly reduces communication and
storage costs in distributed or resource-limited settings.

2.1 PROBLEM FORMULATION

Transformer-based models parameterize attention and MLP layers using full-rank weight matrices
W ∈ Rm×n. Recent PEFT methods, such as LoRA Hu et al. (2021), decompose the task-specific
update ∆W as ∆W = BA, where A ∈ Rr×n, B ∈ Rm×r, and r ≪ min(m,n). This reduces the
trainable parameters from mn to r(m+ n), yielding a compression ratio of mn

r(m+n) . While effective,
LoRA’s fixed-rank formulation limits its flexibility. Alternatives, such as NOLA Koohpayegani
et al. (2024), leverage random projections to approximate ∆W , but often require large basis sets to
sufficiently capture the relevant directions. To address this challenge and enhance compression further,
we formulate the problem as minimizing the approximation loss between ∆W and its compressed
counterpart ∆W̃ subject to a strict communication (or storage) budget:

min
∆W̃

∥∆W −∆W̃∥2F , s.t. ∥∆W̃∥0 ≤ k, (1)

where ∥ · ∥F denotes the Frobenius norm, and ∥ · ∥0 represents the number of non-zero elements (i.e.,
∥X∥0 ≜

∑m
i=1

∑n
j=1 I{Xij ̸= 0}). The parameter k specifies the total budget.

Building on the LoRA formulation, we approximate the individual factors A and B, aiming to find
compressed counterparts Ã, B̃ such that:

min
Ã,B̃

∥BA− B̃Ã∥2F , s.t. ∥Ã∥0 ≤ kA, ∥B̃∥0 ≤ kB , kA + kB = k, (2)

where kA and kB represent budgets for Ã and B̃, respectively. This problem is challenging: counting
the number of nonzero elements is non-convex, sparse element selection is combinatorial, and
excessive sparsity may degrade accuracy. Achieving high compression without task performance loss
thus requires careful subspace design and adaptive optimization.

2.2 METHOD: SUBSPACE-ORIENTED RANDOMIZED BASIS, SPARSE SELECTION, AND
RECONSTRUCTION

To solve (2), we propose SOLAR. A key insight motivating our approach is that ∆W predominantly
resides in the subspace spanned byW , particularly in LoRA-based fine-tuning, where constraining the
rank r ≪ min(m,n) forces ∆W to concentrate its variation along specific directions of W Hu et al.
(2021). This alignment (i.e., the overlap in the principal directions of W and ∆W) has been observed
empirically and explained theoretically via neural tangent kernel (NTK) theory Jacot et al. (2018);
Malladi et al. (2023); Seleznova et al. (2023). The left- and right-singular alignments are measured
as ∥U⊤

WU∆W ∥2F and ∥V ⊤
WV∆W ∥2F , where U and V contain the left and right singular vectors from

the SVD of each matrix Hu et al. (2021). Under this perspective, the model’s response to updates
is well-approximated by a first-order expansion: f(ξ;W +∆W) ≈ f(ξ;W) + ⟨∇f(ξ;W),∆W ⟩,
where f is the model, ξ is input data, and ∇W f(ξ;W) denotes the gradient of the foundation model’s
output. This implies that ∆W lies in a low-curvature (and hence low-dimensional) subspace defined
by W ’s parameter space (see Section 3.4 for empirical evidence). Thus, projecting ∆W into the
subspace of W enables an efficient and compact representation that can be sparsified with minimal
information loss.

Building on these insights, we design a three-stage compression framework (Figure 1). First, we
construct a randomized basis set aligned with the foundation model (Section 2.2.1). Next, we select
a sparse set of bases to approximate the projected update (Section 2.2.2). We then reconstruct the
update using a budget-aware combination of selected components (Section 2.2.3).

2.2.1 STEP 1: SUBSPACE-ORIENTED RANDOMIZED BASIS SET

We construct a basis set from the foundation model’s parameter space via SVD of the model weight,
W = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthonormal, and Σ ∈ Rm×n is diagonal. This

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

decomposition enables a basis naturally aligned with the directions of task-specific updates ∆W .
Unlike methods such as NOLA Koohpayegani et al. (2024) relying on unstructured random bases,
our foundation-aligned directions allow a more compact representation of ∆W .

To enrich the expressive power of this subspace, we construct randomized basis matrices by perturbing
slices of the singular vectors:

MA =
{
M

(i)
A = V [:, Ii] + ϵi

}NA

i=1
, MB =

{
M

(j)
B = U [:,Jj] + ϵj

}NB

j=1
, (3)

where Ii and Jj are randomly sampled index sets, NA, NB are the number of basis candidates for A
and B, respectively, and ϵi, ϵj are Gaussian noise N (0, 1). These basis sets form a flexible pool of
candidates for approximation.

2.2.2 STEP 2: SPARSE SELECTION OF BASES

To enable more compact approximations, the LoRA update ∆W = BA is first projected into the
subspace of W . Given the singular value decomposition W = UΣV T , this projection is defined as
∆WProj = UT∆WV = (UTB)(AV) = BProjAProj, where AProj = AV and BProj = UTB represent
the update components expressed in the basis of W . This transformation retains all information
when W is full-rank, and is particularly effective when ∆W is already aligned with the foundation
subspace, a property commonly observed in LoRA-based fine-tuning. Under this projection, the
update becomes ∆W = U∆WProjV

T . This approach leverages the inherent alignment between W
and ∆W , enabling more efficient approximations with fewer basis elements than methods such as
NOLA, which rely on unstructured random projections. Specifically, we approximate the projected
LoRA factors AV and UTB using sparse linear combinations of the basis matrices:

min
α

∥∥∥∥∥AV −
NA∑
i=1

αiM
(i)
A

∥∥∥∥∥
2

F

, s.t. ∥α∥0 ≤ kA, min
β

∥∥∥∥∥∥UTB −
NB∑
j=1

βjM
(j)
B

∥∥∥∥∥∥
2

F

, s.t. ∥β∥0 ≤ kB . (4)

A two-step strategy is employed to solve these NP-hard problems efficiently. The first step computes
the unconstrained least squares solution to obtain coefficients α∗ and β∗. The second step applies
hard thresholding to retain only the topk entries by magnitude based on the budgets kA and kB .

2.2.3 STEP 3: BUDGET-AWARE RECONSTRUCTION

The approximated model update is then reconstructed using the selected topk bases, resulting in Ã
and B̃ for A and B, respectively:

A ≈
(∑

i∈SA
α∗
iM

(i)
A

)
V T , B ≈ U

(∑
j∈SB

β∗
jM

(j)
B

)
, (5)

where SA and SB are the selected topk index sets. Because the update reconstruction is performed
within the subspace defined by W , this step ensures strong alignment with task-relevant direc-
tions. The reconstruction balances accuracy and compression, with the sparsity budgets kA and kB
controlling the number of active basis.

Adaptive Compression. SOLAR enables flexible allocation of sparsity budgets kA and kB , adapting
to system constraints such as memory, storage, or bandwidth. This allows deployment on resource-
constrained devices, with adapter size dynamically adjustable post-training. For instance, a server
can send a compact adapter to low-memory clients and a richer version to more capable devices.

2.3 THEORETICAL ANALYSIS OF RECONSTRUCTION ERROR

We assume that (A1) the model is initialized with spectral initialization; (A2) the optimal update is
low-rank; (A3) the change in the model’s weights from fine-tuning is well-behaved according to the
generation process in Zhang et al. (2025a); and (A4) the singular values of the projected update matrix
exhibit Fast Spectrum Decay. These assumptions are well-established and frequently utilized in the
literature for convergence analyses, as in previous works, such as Zhang et al. (2025a); Martinsson &
Tropp (2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1 [SOLAR Reconstruction Error Bound] Let ∆W ∗ be the optimal low-rank adapter, ∆W
be the adapter learned via fine-tuning, and ∆W̃ be the adapter reconstructed by SOLAR. Under as-
sumptions (A1)–(A4), the expected total error is bounded by E

[
∥∆W̃ −∆W ∗∥F

]
≤ C1+C2, where

C1 captures the fine-tuning error (depending on learning rate, training steps, and spectrum of ∆W ∗;

see Appendix A), and C2 =
√
1 + r

N−r−1

√∑N
i=r+1 σ

2
i (∆W)+

√∑N
j=k+1 σ̃

2
j +

√
mn ∥β∥2∥α∥2,

with σi denoting the i-th singular value of the projected update ∆W and σ̃j denoting the singular
values of the projected SOLAR matrix.

The SOLAR reconstruction error consists of two components: a training error from fine-tuning (C1)
and a compression error introduced by SOLAR (C2). The compression error can be reduced by
enlarging the basis pool N to lower projection error and increasing the sparsity budget k to minimize
sparsification error. Detailed derivations and proofs are provided in Appendix A.

3 EXPERIMENTS

We evaluate SOLAR through extensive experiments in three domains: 1) image classification with
ViT-B/L in few-shot and full-data settings (Section 3.1); 2) instruction tuning on LLaMA-3 models
using Alpaca and MMLU (Section 3.2); and 3) language generation with GPT-2 on E2E NLG
(Section 3.3). Across all settings, SOLAR matches LoRA and NOLA in accuracy while reducing
adapter size by up to 98%, offering a lightweight representation for model adaptation.

3.1 SOLAR ON VISION TRANSFORMERS

We conduct few-shot image classification experiments using ViT-B and ViT-L Dosovitskiy et al.
(2020) foundation models, initialized with either supervised or self-supervised He et al. (2022).

Experimental Setup. We compare SOLAR against LoRA Hu et al. (2021) and NOLA Koohpayegani
et al. (2024). Experiments are conducted on ViT-Base (ViT-B) and ViT-Large (ViT-L) architectures.
Supervised ViT models pretrained on ImageNet-21k Deng et al. (2009) are obtained from Google’s
official releases via the Hugging Face repository Wolf et al. (2020); Research (2025), and MAE
models pretrained on ImageNet-1K are sourced from the Timm library Wightman (2025). All
experiments run on a single NVIDIA RTX 4090 GPU using PyTorch Paszke (2019) and HuggingFace
libraries. In SOLAR, the compressed representation consists of (i) a random seed to regenerate
the basis vectors, (ii) an encoded list of selected basis indices, and (iii) their coefficients. Reported
trainable parameters include both projection coefficients and overhead (i.e., seed and index encoding).
The MLP classifier head is dataset-specific and excluded from the parameter count unless noted.

Evaluation Benchmarks. We fine-tune on standard image classification datasets: CIFAR-10
Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), Food-101 Bossard et al. (2014),
Tiny-ImageNet Le & Yang (2015), ImageNet-1K Deng et al. (2009), Oxford Pets Parkhi et al. (2012),
SUN397 Xiao et al. (2010), and CUB-200-2011 Welinder et al. (2010).

Comparison Methods. We compare SOLAR with several baselines: Full Fine-Tuning (Full-FT),
LoRA Hu et al. (2021), and NOLA Koohpayegani et al. (2024). In Full-FT, all backbone parameters
are updated. For LoRA, we apply low-rank adapters to the attention Query projection matrices,
with a rank of 4 for ViT-B and either 1 or 4 for ViT-L. For NOLA, following Koohpayegani et al.
(2024), adapters are inserted into MLP layers using 1000 random basis vectors for each of the A
and B matrices. All models are trained with cross-entropy loss. For full-data settings, we train 5
epochs with batch size 128; for few-shot settings (10 samples per class), 25 epochs with batch size
16, emphasizing low-data efficiency relevant to real-world and distributed scenarios. To account for
variance from limited data, we sample four training splits per dataset and report mean top-1 accuracy
on the test split (or validation for ImageNet-1k). Experiments are repeated with different random
seeds, and learning rates are tuned per dataset and model. Additional details are in the appendix.

Results and Performance Analysis. We evaluate SOLAR on various vision benchmarks using foun-
dation models, with results in Table 1. In the tables, configurations are denoted as SOLARmethod(N→k),
indicating that SOLAR is applied to a NOLA or LoRA model trained with rank r, using N bases per
matrix (N = NA = NB) and selecting the top-k bases by significance, where N and k are given in
thousands. SOLAR consistently achieves competitive top-1 accuracy in few-shot (10 samples per

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Top-1 classification accuracy (%) of ViT-B and ViT-L on benchmark datasets under two
settings: (1) few-shot (10 samples/class, 25 epochs) and (2) full-data (5 epochs). Results report
mean ± std over 5 runs. SOLAR is applied with configuration method(N→k), where N and k are in
thousands.

Model Method # CIFAR-10 CIFAR-100 Food-101 T-ImageNet
Param 10 Full 10 Full 10 Full 10 Full

ViT-B

Full-FT 86M 91.1±.8 94.6±.5 78.2±.7 87.7±.3 65.8±.9 85.2±.4 78.1±1.0 85.4±.6
LoRA (r=4) 74K 92.3±.6 98.3±.2 81.8±.8 90.3±.4 72.4±.7 87.6±.3 77.9±.9 88.8±.4

NOLA 48K 92.2±.6 94.7±.5 81.3±.8 86.6±.4 72.6±.5 85.9±.2 78.4±.7 82.8±.5
SOLARr=4(4→1.6) 41K 92.3±.7 98.3±.4 81.5±.7 89.8±.2 71.8±.6 87.0±.5 77.9±.8 87.9±.4
SOLARNOLA(4→1.2) 32K 92.1±.7 94.5±.3 81.1±.6 85.4±.3 72.5±.6 85.4±.3 78.3±.8 82.3±.5

ViT-L

Full-FT 303M 90.2±.9 94.1±.6 86.2±.7 87.7±.5 73.9±.8 85.5±.4 80.8±1.1 89.2±.6
LoRA (r=4) 197K 97.1±.5 98.7±.1 88.1±.7 92.4±.3 81.8±.7 89.8±.2 84.4±.8 91.8±.5
LoRA (r=2) 98K 96.6±.4 98.7±.1 88.0±.6 92.9±.3 82.1±.7 90.0±.2 83.8±.7 90.4±.3

NOLA 96K 96.0±.8 97.4±.6 87.8±1.0 89.3±.5 82.5±.8 86.7±.4 84.3±.9 86.7±.6
SOLARr=4(4→1.6) 82K 97.0±.5 98.5±.3 87.9±.8 91.4±.4 76.8±.7 87.1±.4 78.7±.7 88.6±.5
SOLARr=2(1→0.3) 50K 96.1±.8 98.2±.4 87.4±.9 90.0±.5 77.0±.8 86.8±.6 76.4±.9 87.6±.6
SOLARNOLA(4→1.2) 64K 95.8±.9 97.0±.4 87.7±.8 89.3±.4 82.1±.7 86.6±.3 84.1±.8 86.4±.6

Table 2: Additional evaluation on vision datasets using ViT-B. The table shows bit-level representation
footprint (32-bit baseline) and top-1 accuracy. All models are trained for 10 epochs.

Method Byte Footprint Oxford Pets SUN397 CUB-200 ImageNet-1K

LoRA (r=1) 74KB 93.0±-.3 74.3±-.2 84.7±-.2 81.5±-.4
NOLA 48KB 90.4±-.5 61.7±-.4 79.4±-.4 77.4±-.3
SOLARr=1(2→0.2) 8KB (89% ↓) 92.6±-.4 73.9±-.2 84.2±-.3 81.3±-.2

Table 3: Effect of quantization on
SOLARr=4(4→1.6) performance. ViT-L-
MAE fine-tuned on CIFAR-10.

Method Quant. Accuracy Byte Footprint

SOLAR

32-bit 86.7±-.3 319KB
16-bit 86.5±-.3 166KB
8-bit 85.9±-.4 89KB
4-bit 84.8±-.6 50KB

Table 4: Effect of rank and adapter placement in
SOLARr=4(4→1). Accuracy (%) on CIFAR-100
using ViT-B.

Rank Q K V QV QKV

1 87.0 85.5 86.6 88.3 90.1
2 87.5 85.7 87.4 88.6 90.5
4 87.8 86.1 87.5 89.0 90.6
8 88.1 86.0 87.4 89.1 90.7
16 87.9 86.0 87.1 89.0 90.6

class) and full-data settings while requiring far fewer trainable parameters than LoRA and NOLA.
On ViT-B and ViT-L, SOLAR matches LoRA’s performance using up to 74% fewer parameters. For
instance, applied to a LoRA (r = 2), bases NA = NB = 4000, and topk = 1600, SOLAR reduces
fine-tuned parameters from 98K to 25K while maintaining comparable accuracy.

Beyond parameter reduction, SOLAR improves storage efficiency. Table 2 reports mean and standard
deviation over 5 runs on four additional datasets using ViT-B, quantifying the bit-level footprint
assuming 32-bit precision during training. We apply 8-bit quantization to SOLAR after topk parameter
selection. While LoRA (r = 1) requires 74KB of adapter parameters, SOLAR reduces this to 8KB
(89% reduction). These extreme compressions incur only minor accuracy drops, showing SOLAR
enables fine-grained control of model size to meet strict constraints and offers a flexible tradeoff
between footprint and performance.

In addition to reducing parameter and storage footprints, SOLAR remains highly robust under
quantization. As shown in Table 3, reducing coefficient precision from 32-bit to 4-bit incurs less than
a 2% accuracy drop on ViT-L-MAE (CIFAR-10, 10-shot). We further evaluate the effect of adapter
rank and placement (Table 4), observing that performance improves with rank up to 8 (with higher
ranks requiring more time to converge), and that the Query (Q) projection yields the highest gains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 5: Model representation efficiency for LLaMA models. SOLAR compresses LoRA adapter
updates across various model sizes. For the 13B model, all methods use 4-bit quantization, making
the LoRA baseline equivalent to QLoRA.

Model LLaMA-3.2 1B LLaMA-2 13B (4-bit)

Method LoRA NOLA SOLAR LoRA NOLA SOLAR
r=8 1000 bases r = 8(4→1.2) r=1 1000 bases r = 1(1→0.3)

Params 852K 64K 81K (90% ↓) 819K 140K 51K (94% ↓)

Val Loss 1.51 1.87 1.52 1.05 1.29 1.05
MMLU Acc 30.1 25.9 28.3 54.5 51.8 54.5

Table 6: Performance and parameter efficiency on E2E NLG using GPT-2 Small and Medium. All
methods use rank-4 adapters applied to the Query and Value projections.

Method GPT-2 Small GPT-2 Medium
MET # Params MET # Params

Full-FT 28.4 124M 46.2 355M
LoRA (r=4) 29.7 147K 47.2 393K
NOLA 29.1 48K 46.8 350K
SOLAR (r=4, 1→0.3) 29.7 15K (90% ↓) 46.4 30K (92% ↓)
SOLAR (r=1, 0.1→0.1) 26.1 4K (97% ↓) 44.8 9K (98% ↓)

3.2 SOLAR ON LLAMA

Experimental Setup. We apply SOLAR to LLaMA-3 models of size 1B–13B. All models are fine-
tuned using adapters in the query and value projections across all transformer layers. For the 1B model,
we use LoRA with rank 8; for the 31B model, we use LoRA with rank 1. To reduce GPU memory
usage for large-scale models, we quantize the 13B model using 4-bit NF4 quantization through the
BitsAndBytes library Dettmers et al. (2021); Dettmers (2025). Further implementation details
and hardware configurations are provided in the Appendix.

Evaluation Benchmarks. All models are fine-tuned on the Stanford Alpaca Taori et al. (2023)
dataset for instruction-following and evaluated on its validation loss. We also assess generalization to
out-of-distribution tasks using the MMLU benchmark Hendrycks et al. (2020).

Comparison Methods. We compare SOLAR with PEFT baselines, including LoRA Hu et al. (2021)
and NOLA Koohpayegani et al. (2024). LoRA uses rank r = 8 for LLaMA-3 1B and r = 1
for the 13B model. NOLA follows its original configuration, with 1000 random basis vectors per
matrix Koohpayegani et al. (2024). For the 13B model, we apply 4-bit quantization to all methods
(LoRA, NOLA, and SOLAR). The reported trainable parameters include learned coefficients and
overhead for basis indexing. All experiments use gradient checkpointing, and learning rates are tuned
separately per model and method to ensure a fair comparison.

Results and Performance Analysis. Table 5 reports results across model sizes. SOLAR matches
LoRA in Alpaca validation loss and MMLU Hendrycks et al. (2020) accuracy while reducing trainable
adapter parameters by up to 94%. For example, on LLaMA-3.2 13B, SOLAR cuts the adapter size
from 819K to 51K without accuracy loss.

3.3 SOLAR ON GPT-2

Experimental Setup. We evaluate our method on GPT-2 Radford et al. (2019) base and medium
models fine-tuned on the E2E NLG dataset Novikova et al. (2017) using LoRA. The models are
trained for 5 epochs using a batch size of 8 and a learning rate of 0.1. LoRA is applied to the
self-attention Query and Value projection, with a rank of r = 4. After training, we apply SOLAR to
compress the LoRA adapter updates.

Evaluation Benchmarks. We use the E2E NLG dataset to evaluate generative quality. Generated
outputs are assessed using METEOR Banerjee & Lavie (2005) metric. We report LoRA, NOLA, and
SOLAR performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Results and Performance Analysis. Table 6 summarizes results on the E2E NLG dataset using
GPT-2 Small and Medium models. SOLAR achieves competitive METEOR scores compared to
LoRA and NOLA, while substantially reducing adapter size. On GPT-2 Medium, SOLAR reduces
adapter representation size from 393K (LoRA) to 30K parameters with minimal performance loss.
Applied to rank-1 LoRA, it achieves a 98% reduction, demonstrating strong compression capability.

3.4 DISCUSSION AND ANALYSIS ON SOLAR PERFORMANCE AND EFFICIENCY

Figure 2: Subspace similarity between the W and
∆W matrices (Q, K, V) from the first layer of the
ViT-B model using LoRA with rank r = 4.

Subspace Analysis. We analyze the sub-
space similarity between the foundation model’s
weightsW and the LoRA update ∆W with rank
r = 4 (see Figure 2). Let W = UWΣWV ⊤

W and
∆W = U∆WΣ∆WV ⊤

∆W denote their SVDs.
To quantify subspace alignment, we define
the similarity function as ϕ(W,∆W, i, j) =

ψ(U
(i)
W , U

(j)
∆W) = ∥U (i)

W

⊤
U

(j)
∆W ∥2F , where U (i)

W

and U
(j)
∆W are the matrices formed by taking

the i and j left singular vectors of W and
∆W , respectively. This normalized Frobenius
inner product measures how much of the j-
dimensional subspace of ∆W lies within the
i-dimensional subspace of W , reaching its max-
imum when perfectly aligned. Figure 2 shows
that the fine-tuned model emphasizes directions already present in the foundation model, supporting
prior observations that LoRA updates lie in low-dimensional, structured subspaces Hu et al. (2021);
Farhadzadeh et al. (2025); Zhang et al. (2025b). This suggests leveraging existing directions is
more effective than relying purely on random ones: LoRA implicitly aligns with them, and SOLAR
exploits this alignment in its basis pool, explaining its performance advantage over NOLA.

Figure 3: Representation Performance vs. Repre-
sentation Cost: On ViT-B (r = 4), SOLAR demon-
strates a trade-off between parameter count and
performance, achieving strong performance with
far fewer parameters than LoRA.

Effect of Basis Pool Size and Communication
Budget on Performance. To evaluate SOLAR’s
trade-off between representation size and per-
formance, we analyze the effect of varying the
basis pool size and the number of selected topk

components on representation accuracy. Exper-
iments are conducted on a ViT-Base model fine-
tuned using LoRA with rank 4, followed by SO-
LAR compression. Each LoRA matrix A and
B requires 4 × 768 = 3072 parameters. We
observe that increasing k improves SOLAR’s
expressiveness and accuracy. Moreover, a larger
basis pool enhances performance by increasing
the likelihood of capturing directions aligned
with the fine-tuned model subspace. As shown
in Figure 3, even with fixed k, larger pools yield higher accuracy by enabling more precise reconstruc-
tion of target directions. SOLAR thus achieves performance comparable to LoRA with significantly
fewer parameters.

Table 7: Runtime Overhead: LoRA (10
epochs) vs. SOLAR post-training on ViT-B
across vision datasets. Times in seconds.

Dataset LoRA SOLAR Overhead (%)

CIFAR-10 1176 14 1.19
CIFAR-100 1165 14 1.20
Food-101 3480 67 1.92
Tiny-ImageNet 2081 15 0.72
ImageNet-1K 56634 155 0.27

SOLAR Overhead and Runtime Efficiency. As a
post-training method, SOLAR introduces negligible
runtime overhead and does not interfere with fine-
tuning. For instance, fine-tuning LLaMA-3.2 1B with
LoRA on Tiny-ImageNet took 2081 seconds, while
SOLAR, including random basis generation, convex
least-squares solving, and topk selection, took only
15 seconds (under 0.72% of training time). These
operations are computationally lightweight, as shown
in Table 7, confirming SOLAR’s practical efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Limitations and Future Work. As a post-hoc method, SOLAR’s performance is limited by the base
adapter, and its hyperparameters (N and k) may need per-task tuning to optimize the compression-
accuracy trade-off. While it shows strong results on vision and language tasks, its effectiveness on
other modalities (audio, time series, or multimodal data) remains untested. Future work will extend
SOLAR to these areas and evaluate its performance in other environments.

4 BACKGROUND AND RELATED WORKS

Transformers in NLP and Vision. Transformers Vaswani et al. (2017), are now the standard in
NLP for modeling long-range dependencies via self-attention Raiaan et al. (2024). Models such as
LLaMA Touvron et al. (2023), BERT Devlin et al. (2019), and GPT Radford et al. (2018) build on
this structure to achieve strong results across diverse benchmarks. In vision, ViT Dosovitskiy et al.
(2020) treats image patches as tokens, making Transformers a unifying backbone across modalities.

Parameter-Efficient Fine-Tuning (PEFT). As transformers scale, task-specific fine-tuning becomes
computationally intensive. PEFT methods mitigate this by updating only a subset of parameters.
LoRA Hu et al. (2021) introduces trainable low-rank matrices per layer, typically modifying <1%
of weights, while NOLA Koohpayegani et al. (2024) re-parameterizes these as linear combinations
of random bases, decoupling parameters from rank and architecture. Yet PEFT gains often fall
short in deployment, especially on edge, mobile, and federated settings with communication and
storage bottlenecks. Adapting GPT-2 (117M) on-device may still require gigabytes of transfer and
petaflop-scale computation per round Wang et al. (2025), with updates taking seconds to transmit and
hours to process on low-power hardware (e.g., Jetson TX2).

Challenges of PEFT. As models grow, adapter overhead scales rapidly. Even modest adapters (e.g.,
7M parameters for a 7B model at rank 16) accumulate significant costs across users, tasks, or training
rounds Xu et al. (2023b). A 1% adapter for LLaMA-2 70B adds 700M parameters; for GPT-3 (350B),
3.5B—tens of gigabytes in FP32. Such costs are infeasible in personalized or federated settings,
where hundreds of adapters may be exchanged or stored per user Zhang et al. (2024). While PEFT
leverages the low intrinsic dimensionality of task adaptation Hu et al. (2021), deployment remains
inefficient. It has been shown that BERT fine-tuning on MRPC Dolan & Brockett (2005) requires only
1,861 degrees of freedom out of 110M, highlighting redundancy in full-rank updates Aghajanyan et al.
(2020). Yet even small adapters impose substantial overhead on massive models Xu et al. (2023a);
Lialin et al. (2023). Hence, the true bottleneck is adapter size, not fine-tuning efficiency Jie et al.
(2023), motivating flexible post-training compression to reduce footprint without altering training.

PEFT Compression Techniques. To mitigate PEFT costs, pruning Han et al. (2024); Ilhan et al.
(2024) and quantization Chen et al. (2024); Hubara et al. (2021) have been explored. These reduce
model size but require careful tuning or retraining, are less effective under severe bandwidth limits,
and are mainly optimized for full-model compression, limiting applicability to adapters. Adapter
updates are highly redundant and lie in low-dimensional subspaces Hu et al. (2021); Yadav et al.
(2023); Wu et al. (2024), motivating post-training compression. Methods like ComPEFT Yadav
et al. (2023), BitDelta Liu et al. (2024), Delta-CoMe Ping et al. (2024), and DeltaZip Yao et al.
(2025) compress adapter weights after fine-tuning but rely on heuristics, task-specific tuning, or
training integration, reducing flexibility. Other approaches alter fine-tuning itself: VeRA Kopiczko
et al. (2023) employs a shared random basis, SVFT Lingam et al. (2024) learns sparse coefficients
for an SVD-based basis, and EigenLoRAx Kaushik et al. (2025) builds a PCA basis from many
pre-trained adapters. In contrast, SOLAR is a post-hoc, training-free utility that compresses any
adapter, providing a complementary plug-and-play solution.

5 CONCLUSION

Adapter-based fine-tuning methods such as LoRA significantly reduce the cost of adapting large
models. However, in distributed and on-device settings, communication and storage overheads remain
a major bottleneck. To address this, we introduce SOLAR, a lightweight post-training compression
method that reparameterizes adapter updates as sparse combinations of structured basis vectors
aligned with the foundation model’s latent subspace. SOLAR substantially reduces adapter size and
transmission cost without altering the training process or model architecture.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers. Bitsandbytes: 8-bit optimizers and quantization. https://github.com/
TimDettmers/bitsandbytes, 2025. Accessed: 15-May-2025.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Farzad Farhadzadeh, Debasmit Das, Shubhankar Borse, and Fatih Porikli. Lora-x: Bridging founda-
tion models with training-free cross-model adaptation. arXiv preprint arXiv:2501.16559, 2025.

Chao Gao and Sai Qian Zhang. Dlora: Distributed parameter-efficient fine-tuning solution for large
language model. arXiv preprint arXiv:2404.05182, 2024.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

10

https://github.com/TimDettmers/bitsandbytes
https://github.com/TimDettmers/bitsandbytes

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pp.
4466–4475. PMLR, 2021.

Fatih Ilhan, Gong Su, Selim Furkan Tekin, Tiansheng Huang, Sihao Hu, and Ling Liu. Resource-
efficient transformer pruning for finetuning of large models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16206–16215, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Revisiting the parameter efficiency of adapters
from the perspective of precision redundancy. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17217–17226, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Prakhar Kaushik, Ankit Vaidya, Shravan Chaudhari, and Alan Yuille. Eigenlorax: Recycling adapters
to find principal subspaces for resource-efficient adaptation and inference. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 649–659, 2025.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. Nola: Compressing lora using linear combination of random basis. ICLR 2024, 2024.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. arXiv preprint arXiv:2310.11454, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. Advances in Neural Information Processing
Systems, 37:41425–41446, 2024.

James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
fine-tune may only be worth one bit. Advances in Neural Information Processing Systems, 37:
13579–13600, 2024.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. arXiv preprint arXiv:2311.06243, 2023.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numerica, 29:403–572, 2020.

Elissa Mhanna and Mohamad Assaad. Countering the communication bottleneck in federated
learning: A highly efficient zero-order optimization technique. Journal of Machine Learning
Research, 25(418):1–53, 2024.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for
end-to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao
Chang, Zhiyuan Liu, and Maosong Sun. Delta-come: Training-free delta-compression with
mixed-precision for large language models. arXiv preprint arXiv:2406.08903, 2024.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE access, 12:26839–26874, 2024.

Google Research. Vision Transformer Models on Hugging Face. https://huggingface.co/
google, 2025. Accessed: 06-May-2025.

Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tangent
kernel) collapse. Advances in Neural Information Processing Systems, 36:16240–16270, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Shilong Wang, Jianchun Liu, Hongli Xu, Jiaming Yan, and Xianjun Gao. Efficient federated fine-
tuning of large language models with layer dropout. arXiv preprint arXiv:2503.10217, 2025.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Ross Wightman. timm: PyTorch Image Models. https://github.com/huggingface/
pytorch-image-models/tree/main/timm, 2025. Accessed: 06-May-2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

12

https://huggingface.co/google
https://huggingface.co/google
https://github.com/huggingface/pytorch-image-models/tree/main/timm
https://github.com/huggingface/pytorch-image-models/tree/main/timm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adaptation.
arXiv preprint arXiv:2406.11909, 2024.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023a.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023b.

Prateek Yadav, Leshem Choshen, Colin Raffel, and Mohit Bansal. Compeft: Compression for
communicating parameter efficient updates via sparsification and quantization. arXiv preprint
arXiv:2311.13171, 2023.

Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. Deltazip: Efficient serving of multiple full-model-
tuned llms. In Proceedings of the Twentieth European Conference on Computer Systems, pp.
110–127, 2025.

Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, and Bo Yang. When federated
recommendation meets cold-start problem: Separating item attributes and user interactions. In
Proceedings of the ACM Web Conference 2024, pp. 3632–3642, 2024.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. Lora-one: One-step full gradient could suffice for
fine-tuning large language models, provably and efficiently. arXiv preprint arXiv:2502.01235,
2025a.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. One-step full gradient suffices for low-rank fine-
tuning, provably and efficiently. arXiv preprint arXiv:2502.01235, 2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOF OF THEOREM 1

Let ∆W ∗ ∈ Rm×n denote the optimal adapter for the downstream task, ∆W the adapter obtained
by LoRA fine-tuning, and ∆W̃ the SOLAR reconstruction. Let ∆Wproj denote the projection of
∆W onto the SOLAR bases (i.e., bases that are constructed from the SVD of the foundation model’s
weights, combined with randomized perturbations).

Our proof relies on the following standard assumptions from the literature on parameter-efficient
fine-tuning and randomized numerical linear algebra:

(A1) Spectral Initialization: The LoRA adapter matricesA andB are initialized using the spectral
initialization strategy from Zhang et al. (2025a).

(A2) Low-Rank Update: The optimal task-specific update ∆W ∗ is approximately low-rank, with
rank r∗ < min{m,n} Zhang et al. (2025a).

(A3) Well-Behaved Data: The training data follows the generation process outlined in Zhang
et al. (2025a), where input features are drawn from an isotropic sub-Gaussian or Gaussian
distribution.

(A4) Fast Spectrum Decay: The projected update matrix ∆Wproj exhibits spectral decay, meaning
its tail singular values are small (Martinsson & Tropp, 2020).

First, we decompose the total error using the triangle inequality. The total error, ∥∆W̃ −∆W ∗∥F , is
the distance between the SOLAR-reconstructed adapter and the optimal adapter. This is bounded by
the sum of the Training Error and the Compression Error:

∥∆W̃ −∆W ∗∥F ≤ ∥∆W̃ −∆W∥F︸ ︷︷ ︸
Compression Error

+ ∥∆W −∆W ∗∥F︸ ︷︷ ︸
Training Error

(6)

Here, the first term, ∥∆W̃−∆W∥F , is the compression error introduced by SOLAR’s approximation.
The second term, ∥∆W − ∆W ∗∥F , is the training error from the underlying LoRA fine-tuning
process itself. We will bound each term separately.

The analysis of the training error for LoRA adapters is non-trivial and has been extensively studied.
We directly leverage the results from Zhang et al. (2025a), showing that under Assumptions (A1)-
(A3), LoRA trained with gradient descent converges to the optimal low-rank adapter ∆W ∗. Their
analysis provides the following bound on the training error after t steps:

∥∆W −∆W ∗∥F ≤
√
2r∗

(
1− ηλr∗

64κ

)t

λr∗ , (7)

where r∗ is the rank of the optimal update ∆W ∗, κ is its condition number, λr∗ is its r∗-th singular
value, and η is the learning rate. This bound, derived under the specified spectral initialization and
data concentration assumptions, demonstrates that the fine-tuned adapter ∆W gets exponentially
closer to the optimal adapter ∆W ∗ as training progresses.

The compression error arises from SOLAR’s two-stage approximation process: 1) projecting the
update onto a finite basis pool of size N , and 2) sparsifying the representation to only k non-zero
coefficients. We can further decompose this error:

∥∆W̃ −∆W∥F ≤ ∥PN (∆W)−∆W∥F︸ ︷︷ ︸
Projection Error

+ ∥∆W̃ − PN (∆W)∥F︸ ︷︷ ︸
Sparsification Error

(8)

where PN (∆W) represents the best possible approximation of ∆W using the full basis set of size
N .

SOLAR reconstructs ∆W̃ by sparsely combining perturbed basis matrices:

∆W̃ =
∑
i

∑
j

βiαj

(
M

(i)
B + ϵi

)(
M

(j)
A + ϵj

)
, (9)

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

with M (i)
B ,M

(j)
A basis matrices, αj , βi sparse coefficients, and ϵi, ϵj ∼ N (0, 1).

Expanding the product yields four types of terms:

∆W̃ =
∑
i,j

βiαjM
(i)
B M

(j)
A︸ ︷︷ ︸

dominant term

+
∑
i,j

βiαjϵiM
(j)
A︸ ︷︷ ︸

linear in ϵB

+
∑
i,j

βiαjM
(i)
B ϵj︸ ︷︷ ︸

linear in ϵA

+
∑
i,j

βiαjϵiϵj︸ ︷︷ ︸
quadratic in ϵ

. (10)

Because E[ϵi] = 0, the linear terms vanish in expectation:

E

∑
i,j

βiαjϵiM
(j)
A

 = 0, E

∑
i,j

βiαjM
(i)
B ϵj

 = 0. (11)

The quadratic term can be bounded using the Cauchy–Schwarz inequality. Let ϵ ∈ Rm×n be a
random matrix with i.i.d. entries ϵpq ∼ N (0, 1), and let αj , βi denote the sparse coefficients. Then

E
∥∥∥∑

i,j

βiαjϵiϵj

∥∥∥
F
= E

[(∑
p,q

∣∣∣∑
i,j

βiαjϵ
p
i ϵ

q
j

∣∣∣2)1/2] (12)

≤

(∑
i

|βi|2 E∥ϵi∥2F

)1/2(∑
j

|αj |2 E∥ϵj∥2F

)1/2

(13)

= ∥β∥2 ∥α∥2
√
mn, since Var(ϵpq) = 1, (14)

(15)

The dominant term
∑

i,j βiαjM
(i)
B M

(j)
A corresponds to projecting ∆W onto the basis pool of sizeN .

To make the coefficients α, β explicit and account for matrix dimensions, we model this projection
using a standard RNLA (randomized numerical linear algebra) rangefinder:

Y = ∆W Ω, Q = orth(Y), PN (∆W) = QQ⊤∆W, (16)
where Ω ∈ Rn×N is a random test matrix encoding the selection of basis vectors, and orthonormal-
ization is performed on the columns of Y to obtain Q ∈ Rm×N .

Under standard RNLA assumptions (Gaussian or sub-Gaussian Ω, oversampling N − r ≥ 2, and
mild moment conditions), the expected Frobenius-norm residual satisfies (Theorem 10.5 of Halko
et al. (2011)):

EΩ

∥∥(I −QQ⊤)∆W
∥∥
F

≤
√

1 +
r

N − r − 1

(
min(m,n)∑
i=r+1

σ2
i (∆W)

)1/2

, (17)

where r is the effective rank of ∆W and the sum over singular values runs up to min(m,n) to
account for the full matrix size.

Including the quadratic-noise term from the Gaussian perturbations in SOLAR, and explicitly ac-
counting for the coefficients α, β and matrix size, we obtain the expected reconstruction error:

E
∥∥∆W̃ −∆W

∥∥
F

≤ E∥PN (∆W)−∆W∥F︸ ︷︷ ︸
projection error

+
√
mn ∥β∥2∥α∥2︸ ︷︷ ︸

quadratic-noise contribution

, (18)

ensuring that the α, β coefficients explicitly appear in the compression error.

The second step of SOLAR is coefficient sparsification, which selects the top k most significant basis
vectors. This corresponds to the best k-term approximation of the projected adapter. Denoting the
singular values of PN (∆Wproj) by σ̃j , the sparsification error is bounded as

∥∆W̃ − PN (∆W)∥F ≤
√ ∑

j=k+1

σ̃2
j . (19)

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Combining projection, sparsification, and quadratic-noise contributions, the total compression error
(C2) is

C2 =

√
1 +

r

N − r − 1

(min(m,n)∑
i=r+1

σ2
i (∆Wproj)

)1/2
︸ ︷︷ ︸

projection

+

√ ∑
j=k+1

σ̃2
j︸ ︷︷ ︸

sparsification

+
√
mn ∥β∥2∥α∥2︸ ︷︷ ︸
quadratic-noise

. (20)

Finally, combining the fine-tuning error (C1) with the total compression error (C2) gives the full
reconstruction error bound:

E
[
∥∆W̃ −∆W ∗∥F

]
≤

√
2r∗

(
1− ηλr∗

64κ

)t

λr∗︸ ︷︷ ︸
C1

+C2, (21)

where C1 depends on the fine-tuning dynamics (learning rate, number of steps, spectrum of ∆W ∗),
and C2 explicitly accounts for SOLAR’s compression.

B IMPLEMENTATION DETAILS

All models are implemented using PyTorch Paszke (2019), with HuggingFace Transformers Wolf
et al. (2020) for LLaMA and GPT-based models, and Timm Wightman (2025) for ViT-based vision
backbones. Training and evaluation are performed on NVIDIA A100 and RTX 4090 GPUs. For all
vision experiments, we use ViT-B and ViT-L as base encoders. For language models, we use GPT-2
and LLaMA-3 (1B, 3B, 8B). LoRA is applied to the query and value projections. SOLAR operates
post-training by compressing the PEFT adapter matrices. All experiments are conducted under a
fixed random seed for reproducibility. The implementation code for SOLAR, along with scripts
used to reproduce the experiments, is included in the supplementary material and also available at
https://anonymous.4open.science/r/SOLAR-D3B2/.

C DATASET DETAILS

We summarize dataset statistics in Table 8, including number of training samples and class counts.

Table 8: Dataset statistics used in experiments. Each dataset includes the number of training samples
and classes.

Dataset Training Samples Number of Classes

CIFAR-10 50,000 10
CIFAR-100 50,000 100
Food-101 75,750 101
Tiny-ImageNet 100,000 200
ImageNet-1K 1,281,167 1,000

We summarize dataset statistics used in the LLM experiments in Table 9, covering instruction tuning
(Section 3.2) and language generation tasks (Section 3.3). The table includes the number of training
samples, average sequence lengths, and the model-specific context in which each dataset is used in
the experiments.

D REPRESENTATION COST DETAILS: PARAMETERS AND STORAGE

To quantify SOLAR’s compression benefit, we detail the number of adapter parameters and byte-level
footprint across ViT-B, ViT-L, LLaMA, and GPT-2 models. We compare LoRA, NOLA, and SOLAR
under adapter rank (r = 4). Tables 10 through 15 provide full parameter breakdowns. Byte-level
analysis is presented in Table 13.

3

https://anonymous.4open.science/r/SOLAR-D3B2/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Dataset statistics in LLM experiments.

Dataset Samples Avg. Seq. Length Context

Stanford Alpaca 52,000 ∼256 tokens LLaMA-3 instruction tuning
MMLU 15,858 ∼200 tokens LLaMA-3 Generalization evaluation
E2E NLG 42,000 ∼35 tokens GPT-2 generation fine-tuning

ViT. For vision backbones, Table 10 and Table 11 report the number of representation parameters
for query projections (Q) and classifier heads. In the experiments presented in the main paper, the
classifier head parameters are excluded from comparison since they are identical across all methods
following Koohpayegani et al. (2024). NOLA’s parameter footprint for MLP projections is shown in
Table 12 (following the setup in Koohpayegani et al. (2024)). Byte-level storage comparisons across
quantization, used to produce Table 2 and Table 3 in the main paper, are provided in Table 13.

Table 10: Number of representation parameters for ViT-B (Rank = 4). Each row reports the parameter
count for query projections and the classifier head using SOLAR and LoRA across different datasets.
The classifier head parameter count is shared across methods and is computed as (num_classes
× 768 + num_classes). For SOLAR, the query projection count corresponds to: number of
layers × (topk coefficients for A + topk coefficients for B + encoded basis for A + encoded basis for
B) +1 (seed value). All SOLAR rows follow the form N→ topk where N is the original subspace
size. For LoRA, the query projection count corresponds to: number of layers × (input dimension ×
rank for A + rank × output dimension for B), where rank is 4.

Method Dataset Query (Q) Classifier Head

SOLAR

CIFAR-10 12×
(
(1600 + 1600) + 4000+4000

32

)
+ 1 = 41,401 10× 768 + 10 = 7,690

CIFAR-100 41,401 100× 768 + 100 = 76,900
Food-101 41,401 101× 768 + 101 = 77,669
Tiny-ImageNet 41,401 200× 768 + 200 = 154,000

LoRA

CIFAR-10 12× [(768× 4) + (4× 768)] = 73,728 10× 768 + 10 = 7,690
CIFAR-100 73,728 100× 768 + 100 = 76,900
Food-101 73,728 101× 768 + 101 = 77,669
Tiny-ImageNet 73,728 200× 768 + 200 = 154,000

Table 11: Number of representation parameters for ViT-L (Rank = 4). Each row shows the parameter
counts for Query projections and the classifier head using SOLAR and LoRA across different datasets.
The classifier head parameter count is shared across methods and is calculated as (num_classes
× 1024 + num_classes).

Method Dataset Query (Q) Classifier Head

SOLAR

CIFAR-10 24×
(
(500 + 500) + 1000+1000

32

)
+ 1 = 25,501 10× 1024 + 10 = 10,250

CIFAR-100 25,501 100× 1024 + 100 = 102,500
Food-101 25,501 101× 1024 + 101 = 103,625
Tiny-ImageNet 25,501 200× 1024 + 200 = 204,800

LoRA

CIFAR-10 24× [(1024× 4) + (4× 1024)] = 196,608 10× 1024 + 10 = 10,250
CIFAR-100 196,608 100× 1024 + 100 = 102,500
Food-101 196,608 101× 1024 + 101 = 103,625
Tiny-ImageNet 196,608 200× 1024 + 200 = 204,800

LLMs. For language models, parameter counts for adapter layers are detailed in Table 14 for
LLaMA and in Table 15 for GPT-2 variants.

E ADDITIONAL EXPERIMENTAL RESULTS

This section provides supplementary experimental results to further validate the claims made in the
main paper. We present detailed performance metrics for additional model scales and include a
crucial ablation study that compares SOLAR against a parameter-matched LoRA baseline.

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: Number of representation parameters for ViT-B (Rank = 4). Each row shows the pa-
rameter counts for MLP projections (for NOLA) and classifier head across datasets. The classifier
head parameter count is shared across methods and is calculated as (num_classes × 768 +
num_classes).

Method Dataset MLP Classifier Head

NOLA

CIFAR-10 12× 2× 2× 1000 + 1 = 48,001 10× 768 + 10 = 7,690
CIFAR-100 48,001 100× 768 + 100 = 76,900
Food-101 48,001 101× 768 + 101 = 77,669
Tiny-ImageNet 48,001 200× 768 + 200 = 154,000

Table 13: Byte-level footprint of representation parameters for ViT-B and ViT-L using LoRA and
SOLAR. Each value reflects the total number of bytes required to store adapter updates (excluding
classifier heads). For LoRA, storage is computed as: number of layers ×

(
rank × output dimension

for B + input dimension × rank for A
)
× precision in bytes (e.g., 4 bytes for 32-bit float). For

SOLAR, storage is computed as: number of layers ×
(
topk coefficients for A + topk coefficients

for B + encoded basis vectors for A + encoded basis for B
)
× precision in bytes, plus 1 byte to

store a random seed. For example, the row "500→50" denotes that 500-dimensional subspaces are
sparsified to top-k = 50 coefficients, with encoded bases represented at 1 bit per element (8 elements
per byte).

Method Representation Footprint (Bytes)

LoRA (r=1) 12× [(768× 1) + (1× 768)]× 4 = 73,728
SOLAR for ViT-B 8Bit (r=1, 500→50) 12×

[
(50 + 50) + 500

8

]
× 1 + 1 = 1,951

SOLAR for ViT-B 8Bit (r=1, 100→10) 12×
[
(10 + 10) + 100

8

]
× 1 + 1 = 391

LoRA (r=4) 24× [(1024× 4) + (4× 1024)]× 4 = 786,432
SOLAR for ViT-L 32Bit (r=4, 4000→1600) 24×

[
(1600 + 1600) + 4000

32

]
× 4 + 1 = 319,201

SOLAR for ViT-L 16Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

16

]
× 2 + 1 = 165,601

SOLAR for ViT-L 8Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

8

]
× 1 + 1 = 88,801

SOLAR for ViT-L 4Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

4

]
× 0.5 + 1 = 50,401

E.1 PERFORMANCE ON INTERMEDIATE-SCALE LLAMA MODELS

Table 16 extends our analysis to the LLaMA-3.2 3B and LLaMA-3.1 8B models, demonstrating
SOLAR’s consistent efficiency and performance on intermediate-scale architectures. The results show
that SOLAR maintains the performance of the original LoRA adapters while achieving parameter
reductions of over 90%.

E.2 EXTREME COMPRESSION

In this section, we report additional experiments demonstrating SOLAR’s ability to achieve extreme
compression while retaining competitive accuracy. These results complement the main paper by
highlighting scenarios where communication and storage constraints are especially strict (e.g.,
distributed or on-device learning).

Table 17 shows evaluations on four vision datasets using ViT-B under different compression budgets.
We quantify the bit-level representation footprint assuming 32-bit precision during training and apply
8-bit quantization to the SOLAR coefficients after top-k selection. Compared to LoRA (r = 1),
SOLAR reduces the adapter footprint by up to 99% (from 74KB to 0.4KB) with only minor drops in
accuracy. These results illustrate that SOLAR enables fine-grained tradeoffs between accuracy and
storage cost under extreme compression budgets.

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Number of representation parameters for LLaMA-3 models using LoRA, NOLA, and
SOLAR. Each row reports total adapter parameters for attention projections (Q and V for LoRA
and NOLA; Q and K for SOLAR). Output heads and MLP layers are frozen. For LoRA, the
parameter count is computed as: number of layers ×

(
input dimension × rank for B + rank × output

dimension for A +
)
. Due to differing dimensions between A and B in LoRA, the table computes the

contributions for Q and V projections separately. For NOLA, it is computed as: number of layers
× 2 × (number of random basis vectors), assuming separate basis sets for A and B. For SOLAR,
the count is: number of layers × 2 ×

(
topk coefficients for B + topk for A + encoded bases for B +

encoded bases for A
)
, plus 1 byte to communicate or store the shared seed.

Model (Rank) Configuration Total Parameters

LLaMA-3.2 1B (r=8) 16 layers (Q, V) 16× [(2048× 8 + 8× 2048) + (2048× 8 + 8× 512)] = 851,968
NOLA 16 layers (Q, V) 16× 2× (1000 + 1000) = 64,000

SOLAR (r=8,4K→1.2K) 16 layers (Q, V) 16× 2×
(
1200 + 1200 + 4000

32

)
+ 1 = 80,801

LLaMA-3.2 3B (r=1) 28 layers (Q, V) 28× [(3072× 1 + 1× 3072) + (3072× 1 + 1× 1024)] = 286,720
NOLA 28 layers (Q, V) 28× 2× (1000 + 1000) = 112,000

SOLAR (r=1,1000→150) 28 layers (Q, V) 28× 2×
(
150 + 150 + 1000

32

)
+ 1 = 18,551

LLaMA-3.1 8B (r=1) 32 layers (Q, V) 32× [(4096× 1 + 1× 4096) + (4096× 1 + 1× 1024)] = 425,984
NOLA 32 layers (Q, V) 32× 2× (1000 + 1000) = 128,000

SOLAR (r=1, 1000→300) 32 layers (Q, V) 32× 2×
(
300 + 300 + 1000

32

)
+ 1 = 40,401

Table 15: Number of trainable adapter parameters for GPT-2 models using LoRA, NOLA, and
SOLAR. Each row reports the total number of parameters added to the query and value projections (Q
and V). All configurations freeze the output heads and MLP layers. For LoRA, the parameter count is
computed as: number of layers × 2 ×

(
input dimension × rank for B + rank × output dimension for

A
)
. For NOLA, the parameter count is: number of layers × 2 × (number of random basis vectors),

assuming separate basis sets for Q and V. For SOLAR, the parameter count is: number of layers × 2
×
(
topk coefficients for B + topk coefficients for A + encoded bases for B + encoded bases for A

)
,

plus 1 for the shared seed.

Model (Rank) Configuration Total Parameters

GPT-2 Small (r=4) 12 layers (Q, V) 12× 2× (768× 4 + 4× 768) = 147,456
NOLA 12 layers (Q, V) 12× 2× (1000 + 1000) = 48,000

SOLAR (r=1, 1000→300) 12 layers (Q, V) 12× 2×
(
300 + 300 + 1000

32

)
+ 1 = 15,150

SOLAR (r=1, 100→90) 12 layers (Q, V) 12× 2×
(
90 + 90 + 100

32

)
+ 1 = 4,396

GPT-2 Medium (r=4) 24 layers (Q, V) 24× 2× (1024× 4 + 4× 1024) = 393,216
NOLA 24 layers (Q, V) 350,000 Koohpayegani et al. (2024)

SOLAR (r=4, 1000→300) 24 layers (Q, V) 24× 2×
(
300 + 300 + 1000

32

)
+ 1 = 30,301

SOLAR (r=4, 100→90) 24 layers (Q, V) 24× 2×
(
90 + 90 + 100

32

)
+ 1 = 8,791

F SCALABILITY TO LARGER VISION MODELS

To validate that SOLAR remains effective and computationally tractable on larger-scale models, we
conducted experiments on the ViT-G/14 architecture. This model is substantially larger than the
ViT-B/L backbones used in our main experiments, providing a strong test of scalability.

We fine-tuned a ViT-G/14 model on the full CIFAR-10, CIFAR-100, Food-101, and T-ImageNet
datasets using a LoRA adapter with rank r = 4. We then applied SOLAR with a basis pool of 8,000
vectors, selecting the top 4,000 coefficients to form the compressed adapter.

As shown in Table 18, SOLAR successfully preserves the performance of the original LoRA adapter
with negligible accuracy drops, while reducing the adapter’s parameter count by 31% (from 492K to
340K). This result demonstrates that SOLAR’s core mechanisms—including SVD extraction and
sparse reconstruction—scale effectively to larger models without sacrificing compression efficiency
or task performance.

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 16: Model representation efficiency for LLaMA 3B and 8B models. For the 8B model, all
methods use 4-bit quantization, making the LoRA baseline equivalent to QLoRA.

Model LLaMA-3.2 3B LLaMA-3.1 8B (4-bit)

Method LoRA NOLA SOLAR LoRA NOLA SOLAR
r=1 1000 bases SOLARr=1(1K→0.1K) r=1 1000 bases SOLARr=1(1K→0.3K)

Params 287K 112K 16K (94% ↓) 425K 128K 40K (91% ↓)

Val Loss 1.02 1.31 1.04 0.89 1.01 0.90
MMLU Acc 54.0 52.7 54.0 60.9 56.1 60.9

Table 17: Evaluation of extreme compression on ViT-B. We report bit-level representation footprint
(32-bit baseline) and top-1 accuracy over 5 runs. All models are trained for 10 epochs.

Method Byte Footprint Oxford Pets SUN397 CUB-200 ImageNet-1K

LoRA (r=1) 74KB 93.0±0.5 74.3±0.3 84.7±0.4 81.5±0.6
SOLAR (r=1, 500→50) 2KB (97% ↓) 91.2±0.6 72.4±0.4 81.4±0.5 80.7±0.4
SOLAR (r=1, 100→10) 0.4KB (99% ↓) 90.3±0.7 72.4±0.5 81.3±0.6 80.6±0.5

Table 18: Scalability of SOLAR on the ViT-G/14 model. Results show top-1 accuracy (%) on full
datasets.

Method # Params CIFAR-10 CIFAR-100 Food-101 T-ImageNet

LoRA (r = 4) 492K 99.4 94.6 91.2 92.8
SOLAR (r = 4, 8K → 4K) 340K (31% ↓) 99.4 94.5 91.2 92.8

F.1 ABLATION STUDY: BUDGET-MATCHED LORA COMPARISON

To further validate the efficiency of our compression strategy, we conduct an ablation study directly
comparing SOLAR to a budget-matched LoRA baseline, as suggested by reviewer feedback.[1] This
comparison is critical to demonstrate that SOLAR’s benefits extend beyond mere parameter reduction
and offer a more effective performance-compression trade-off than simply training a lower-rank
adapter from scratch.

As shown in Table 19, fine-tuning a LoRA adapter with a reduced rank (r=2) to match the parameter
count of the compressed SOLAR adapter results in a significant performance degradation across all
tasks. In contrast, SOLAR, when applied to the higher-performing LoRA (r=4) adapter, successfully
preserves task accuracy while achieving a comparable parameter budget. This highlights that SOLAR
retains the expressive power of the original higher-rank adapter, a feat not achievable by simply
reducing the rank during training. All experiments were conducted on the full datasets using the
ViT-B backbone, with results reported as the mean accuracy over five independent runs to ensure
statistical robustness.

Table 19: Comparison of SOLAR with a budget-matched LoRA (r=2) baseline on ViT-B. While
LoRA (r=2) has a similar parameter count to the compressed SOLAR adapter, it shows a clear
performance degradation. SOLAR maintains performance comparable to the original, higher-rank
LoRA (r=4).

Method #Params CIFAR-10 CIFAR-100 Food-101 T-ImageNet

LoRA (r = 4) 74K 98.3 90.3 87.6 88.8
LoRA (r = 2) 37K 97.1 89.0 85.5 87.4

SOLAR (r = 4, 4K → 1.6K) 41K 98.3 89.8 87.0 87.9
SOLAR (r = 4, 4K → 0.8K) 22K 97.0 89.0 85.2 87.4

7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G APPLICATION TO FEDERATED LEARNING

One of the motivations for developing SOLAR is to reduce communication overhead in distributed
learning scenarios, such as Federated Learning (FL). In typical FL setups, clients fine-tune a model
on their local data and transmit the resulting model updates (e.g., LoRA adapters) to a central server
for aggregation. As highlighted by recent work Mhanna & Assaad (2024), communication—not
computation—is often the primary bottleneck. Transmitting full adapters from thousands of clients
can generate enormous data transfer loads. For example, in an FL setup with 10,000 clients—1,000
participating in each of 10 training rounds—transmitting 74 KB LoRA adapters per client would
amount to 740 GB of total data transfer.

SOLAR addresses this challenge as a lightweight, post-hoc compression utility. After local training,
each client can compress its adapter with SOLAR before transmission. The server then receives only
the sparse coefficients and a random seed, drastically reducing per-client communication costs.

To demonstrate SOLAR’s effectiveness in distributed settings, we simulated a 10-client FL environ-
ment. We compare a baseline where clients transmit full LoRA adapters with a scenario where clients
transmit SOLAR-compressed adapters. Each client fine-tunes a ViT-B model on CIFAR-10 with
LoRA (r = 4), under two data distribution scenarios: an IID baseline and a non-IID distribution
generated via a Dirichlet process with a concentration parameter of 0.5. The simulation runs for 30
communication rounds, with one epoch of local training per client per round.

As shown in Table 20, the performance gap between full LoRA adapters and SOLAR-compressed
adapters is minimal in both IID and non-IID settings. This demonstrates that SOLAR’s compression
does not disproportionately harm aggregation performance, even under significant data heterogene-
ity. Our experiment confirms that SOLAR can serve as a post-training, plug-and-play module to
reduce communication costs in standard FL frameworks without requiring complex changes to the
aggregation strategy.

Table 20: Performance of SOLAR on ViT-B under IID and non-IID data distributions in a simulated
10-client federated learning environment.

Method # Params CIFAR-10 (IID) CIFAR-10 (non-IID)

LoRA (r = 4) 74K 93.7 87.4
SOLAR (r = 4, 4K → 2K) 51K (31% ↓) 93.2 86.7

8

	Introduction
	Proposed Method: SOLAR
	Problem Formulation
	Method: Subspace-Oriented Randomized Basis, Sparse Selection, and Reconstruction
	Step 1: Subspace-Oriented Randomized Basis Set
	Step 2: Sparse Selection of Bases
	Step 3: Budget-Aware Reconstruction

	Theoretical Analysis of Reconstruction Error

	Experiments
	SOLAR on Vision Transformers
	SOLAR on LLaMA
	SOLAR on GPT-2
	Discussion and Analysis on SOLAR Performance and Efficiency

	Background and Related Works
	Conclusion
	Proof of Theorem 1
	Implementation Details
	Dataset Details
	Representation Cost Details: Parameters and Storage
	Additional Experimental Results
	Performance on Intermediate-Scale LLaMA Models
	Extreme Compression

	Scalability to Larger Vision Models
	Ablation Study: Budget-Matched LoRA Comparison

	Application to Federated Learning

