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ABSTRACT

Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, enable scalable
adaptation of foundation models by injecting low-rank adapters. However, their
communication and storage costs remain a major bottleneck in resource-constrained
settings. We propose SOLAR (Subspace-Oriented Latent Adapter Reparameter-
ization), a post-training compression framework that substantially reduces the
communication cost (i.e., the number of parameters to transmit or store) of PEFT
adapters. SOLAR expresses each PEFT update as a linear combination of basis vec-
tors formed from the foundation model’s singular vectors with controlled random
perturbations. By exploiting the subspace similarity (the alignment of principal
directions) between the foundation model and task-specific fine-tuned updates,
SOLAR decouples the adapter size from PEFT structure and ensures compact yet
expressive representations. It is model-agnostic and compatible with existing PEFT
methods, including LoRA, AdaLoRA, and other adapter modules. We theoretically
establish a bound on the reconstruction error. Experiments on language and vision
tasks using LLaMA, GPT, and ViT models demonstrate that SOLAR preserves
task performance while significantly reducing model representation sizes, offering
an effective and communication-efficient solution for deployment in distributed
systems and edge devices.

1 INTRODUCTION

Foundation models—large-scale pretrained transformer architectures—have catalyzed substantial
progress across natural language processing, computer vision, and a range of other domains. However,
adapting these models to downstream tasks remains resource-intensive. Full fine-tuning, which
updates all model parameters, demands considerable computational, memory, and storage resources
Houlsby et al. (2019). Parameter-Efficient Fine-Tuning (PEFT) techniques address this challenge by
freezing the backbone and updating only a small set of task-specific parameters. For example, adapter
modules insert compact trainable layers into each network block Houlsby et al. (2019); prefix-tuning
optimizes a continuous prompt of only ∼0.1% of the model’s parameters Li & Liang (2021); and
Low-Rank Adaptation (LoRA) injects low-rank update matrices into each layer Hu et al. (2021).
These methods achieve performance comparable to fully fine-tuned models while updating less than
1% of the model’s parameters.

Despite these parameter savings, the cumulative communication and storage costs of PEFT modules
remain a critical bottleneck in many real-world scenarios, particularly as foundation models continue
to scale Wolf et al. (2020). In distributed scenarios (e.g., federated learning), these adapters must be
communicated and stored across multiple devices or nodes, leading to significant overhead Wolf et al.
(2020). Communication and storage overhead increase with the number of PEFT modules, as many
fine-tuned adapters are saved and frequently transmitted or synchronized, thus turning millions of
adapter parameters into a major bottleneck, particularly in bandwidth-limited or memory-constrained
environments such as edge devices or federated learning systems Gao & Zhang (2024); Wang et al.
(2025). The resulting communication and storage costs (i.e., the number of adapter parameters that
must be transmitted and stored) can lead to slower training, increased energy consumption, and
reduced scalability, highlighting the need for more efficient adapter compression techniques.
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Figure 1: Overview of SOLAR. Given fine-tuned adapters (A,B), SOLAR projects them onto
structured subspaces derived from the pretrained model’s SVD. A seeded pseudo-random generator
(seeded with a known value) deterministically creates the basis matrices. Top-k coefficients α and β
are selected under a budget to reconstruct Ã and B̃, while the bases are never stored or transmitted.
Only the coefficients α, β, and the seed need to be communicated or stored.

To address this, several methods decouple tunable parameters from adapter rank and model dimen-
sions: NOLA Koohpayegani et al. (2024) expresses LoRA’s matrices as linear combinations of
random basis matrices, training only the coefficients; VeRA Kopiczko et al. (2023) uses shared frozen
random vectors with small learned scaling vectors; and SVFT Lingam et al. (2024) constructs a
basis from singular vectors of pretrained weights and learns a sparse combination during fine-tuning.
However, random bases not aligned with the model or task may reduce representational efficiency,
and methods such as Kopiczko et al. (2023); Lingam et al. (2024); Koohpayegani et al. (2024) are not
post-hoc, as they modify the training process and cannot compress adapters already trained—creating
a need for a flexible, training-free compression utility.

In this paper, we propose SOLAR (Subspace-Oriented Latent Adapter Reparameterization), a novel
post-training compression method for PEFT adapters. SOLAR exploits the empirical structure of
adapter updates by reparameterizing them as linear combinations of structured, randomized basis
matrices. It is model-agnostic and applicable post-training without modifying the fine-tuning process.
The main contributions of this work are as follows:

• We leverage the observed subspace similarity between the foundation model’s weights (W ) and
the task-specific update (∆W ) to create a more compact and efficient adapter representation. By
expressing ∆W as a sparse combination of basis vectors, our method effectively decouples the
adapter’s final size from the model’s architecture.

• We develop a three-step framework for post-hoc adapter compression that involves: 1) constructing
a basis pool of size N by perturbing the foundation model’s singular vectors with random noise,
2) performing a sparse selection of the most significant basis vectors to meet a budget k, and 3)
reconstructing the adapter using only the selected coefficients and a single random seed.

• We provide a formal theoretical analysis that bounds the reconstruction error. Our proof decomposes
the total error into the original training error and a controllable compression error, which can be
minimized by tuning SOLAR’s hyperparameters (N and k).

• We demonstrate through extensive experiments that SOLAR reduces adapter sizes by up to 98%
while preserving the performance of the original LoRA adapters. Our results show competitive
accuracy across a wide range of vision and language tasks using ViT, GPT-2, and LLaMA models.

2 PROPOSED METHOD: SOLAR

We propose a post-training compression strategy that serves as a modular add-on for compressing
PEFT-based updates. It introduces no training overhead and is compatible with LoRA Hu et al. (2021),
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QLoRA Dettmers et al. (2023), Compacter Karimi Mahabadi et al. (2021), and NOLA Koohpayegani
et al. (2024), operating post-hoc by taking the final trained adapter matrices as input. SOLAR applies
to OFT Qiu et al. (2023) and variants Liu et al. (2023), compressing ∆W = (R − I)W via its
SVD-based subspace without altering the orthogonal parameterization. By exploiting the low-rank
structure of updates, SOLAR significantly reduces communication and storage costs in distributed or
resource-limited settings.

2.1 PROBLEM FORMULATION

Transformer-based models parameterize attention and MLP layers using full-rank weight matrices
W ∈ Rm×n. Recent PEFT methods, such as LoRA Hu et al. (2021), decompose the task-specific
update ∆W as ∆W = BA, where A ∈ Rr×n, B ∈ Rm×r, and r ≪ min(m,n). This reduces the
trainable parameters from mn to r(m+ n), yielding a compression ratio of mn

r(m+n) . While effective,
LoRA’s fixed-rank formulation limits its flexibility. Alternatives, such as NOLA Koohpayegani
et al. (2024), leverage random projections to approximate ∆W , but often require large basis sets to
sufficiently capture the relevant directions. To address this challenge and enhance compression further,
we formulate the problem as minimizing the approximation loss between ∆W and its compressed
counterpart ∆W̃ subject to a strict communication (or storage) budget:

min
∆W̃

∥∆W −∆W̃∥2F , s.t. ∥∆W̃∥0 ≤ k, (1)

where ∥ · ∥F denotes the Frobenius norm, and ∥ · ∥0 represents the number of non-zero elements (i.e.,
∥X∥0 ≜

∑m
i=1

∑n
j=1 I{Xij ̸= 0}). The parameter k specifies the total budget.

Building on the LoRA formulation, we approximate the individual factors A and B, aiming to find
compressed counterparts Ã, B̃ such that:

min
Ã,B̃

∥BA− B̃Ã∥2F , s.t. ∥Ã∥0 ≤ kA, ∥B̃∥0 ≤ kB , kA + kB = k, (2)

where kA and kB represent budgets for Ã and B̃, respectively. This problem is challenging: counting
the number of nonzero elements is non-convex, sparse element selection is combinatorial, and
excessive sparsity may degrade accuracy. Achieving high compression without task performance loss
thus requires careful subspace design and adaptive optimization.

2.2 METHOD: SUBSPACE-ORIENTED RANDOMIZED BASIS, SPARSE SELECTION, AND
RECONSTRUCTION

To solve (2), we propose SOLAR. A key insight motivating our approach is that ∆W predominantly
resides in the subspace spanned byW , particularly in LoRA-based fine-tuning, where constraining the
rank r ≪ min(m,n) forces ∆W to concentrate its variation along specific directions of W Hu et al.
(2021). This alignment (i.e., the overlap in the principal directions of W and ∆W ) has been observed
empirically and explained theoretically via neural tangent kernel (NTK) theory Jacot et al. (2018);
Malladi et al. (2023); Seleznova et al. (2023). The left- and right-singular alignments are measured
as ∥U⊤

WU∆W ∥2F and ∥V ⊤
WV∆W ∥2F , where U and V contain the left and right singular vectors from

the SVD of each matrix Hu et al. (2021). Under this perspective, the model’s response to updates
is well-approximated by a first-order expansion: f(ξ;W +∆W ) ≈ f(ξ;W ) + ⟨∇f(ξ;W ),∆W ⟩,
where f is the model, ξ is input data, and ∇W f(ξ;W ) denotes the gradient of the foundation model’s
output. This implies that ∆W lies in a low-curvature (and hence low-dimensional) subspace defined
by W ’s parameter space (see Section 3.4 for empirical evidence). Thus, projecting ∆W into the
subspace of W enables an efficient and compact representation that can be sparsified with minimal
information loss.

Building on these insights, we design a three-stage compression framework (Figure 1). First, we
construct a randomized basis set aligned with the foundation model (Section 2.2.1). Next, we select
a sparse set of bases to approximate the projected update (Section 2.2.2). We then reconstruct the
update using a budget-aware combination of selected components (Section 2.2.3).

2.2.1 STEP 1: SUBSPACE-ORIENTED RANDOMIZED BASIS SET

We construct a basis set from the foundation model’s parameter space via SVD of the model weight,
W = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthonormal, and Σ ∈ Rm×n is diagonal. This
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decomposition enables a basis naturally aligned with the directions of task-specific updates ∆W .
Unlike methods such as NOLA Koohpayegani et al. (2024) relying on unstructured random bases,
our foundation-aligned directions allow a more compact representation of ∆W .

To enrich the expressive power of this subspace, we construct randomized basis matrices by perturbing
slices of the singular vectors:

MA =
{
M

(i)
A = V [:, Ii] + ϵi

}NA

i=1
, MB =

{
M

(j)
B = U [:,Jj ] + ϵj

}NB

j=1
, (3)

where Ii and Jj are randomly sampled index sets, NA, NB are the number of basis candidates for A
and B, respectively, and ϵi, ϵj are random matrices with each entry drawn i.i.d. from N (0, 1). These
basis sets form a flexible pool of candidates for approximation.

2.2.2 STEP 2: SPARSE SELECTION OF BASES

To enable more compact approximations, the LoRA update ∆W = BA is first projected into the
subspace of W . Given the singular value decomposition W = UΣV T , this projection is defined as
∆WProj = UT∆WV = (UTB)(AV ) = BProjAProj, where AProj = AV and BProj = UTB represent
the update components expressed in the basis of W . This transformation retains all information
when W is full-rank, and is particularly effective when ∆W is already aligned with the foundation
subspace, a property commonly observed in LoRA-based fine-tuning. Under this projection, the
update becomes ∆W = U∆WProjV

T . This approach leverages the inherent alignment between W
and ∆W , enabling more efficient approximations with fewer basis elements than methods such as
NOLA, which rely on unstructured random projections. Specifically, we approximate the projected
LoRA factors AV and UTB using sparse linear combinations of the basis matrices:

min
α

∥∥∥∥∥AV −
NA∑
i=1

αiM
(i)
A

∥∥∥∥∥
2

F

, s.t. ∥α∥0 ≤ kA, min
β

∥∥∥∥∥∥UTB −
NB∑
j=1

βjM
(j)
B

∥∥∥∥∥∥
2

F

, s.t. ∥β∥0 ≤ kB . (4)

A two-step strategy is employed to solve these NP-hard problems efficiently. The first step computes
the unconstrained least squares solution to obtain coefficients α∗ and β∗. The second step applies
hard thresholding to retain only the topk entries by magnitude based on the budgets kA and kB .

2.2.3 STEP 3: BUDGET-AWARE RECONSTRUCTION

The approximated model update is then reconstructed using the selected topk bases, resulting in Ã
and B̃ for A and B, respectively:

A ≈
(∑

i∈SA
α∗
iM

(i)
A

)
V T , B ≈ U

(∑
j∈SB

β∗
jM

(j)
B

)
, (5)

where SA and SB are the selected topk index sets. Because the update reconstruction is performed
within the subspace defined by W , this step ensures strong alignment with task-relevant direc-
tions. The reconstruction balances accuracy and compression, with the sparsity budgets kA and kB
controlling the number of active basis.

Adaptive Compression. SOLAR enables flexible allocation of sparsity budgets kA and kB , adapting
to system constraints such as memory, storage, or bandwidth. This allows deployment on resource-
constrained devices, with adapter size dynamically adjustable post-training. For instance, a server
can send a compact adapter to low-memory clients and a richer version to more capable devices.

2.3 THEORETICAL ANALYSIS OF RECONSTRUCTION ERROR

We assume that (A1) the model is initialized with spectral initialization; (A2) the optimal update is
low-rank; (A3) the change in the model’s weights from fine-tuning is well-behaved according to the
generation process in Zhang et al. (2025a); and (A4) the singular values of the projected update matrix
exhibit Fast Spectrum Decay. These assumptions are well-established and frequently utilized in the
literature for convergence analyses, as in previous works, such as Zhang et al. (2025a); Martinsson &
Tropp (2020).
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Theorem 1 [SOLAR Reconstruction Error Bound] Let ∆W ∗ be the optimal low-rank adapter,
∆W be the adapter learned via fine-tuning, and ∆W̃ be the adapter reconstructed by SOLAR.
Under assumptions (A1)–(A4), the expected total error is bounded by E

[
∥∆W̃ −∆W ∗∥F

]
≤

C1 + C2, where C1 captures the fine-tuning error (depending on learning rate, training steps,

and spectrum of ∆W ∗; see Appendix A), and C2 =
√
1 + rA

NA−rA−1

(∑
t>rA

σ2
t (∆W )

) 1
2

+√
1 + rB

NB−rB−1

(∑
t>rB

σ2
t (∆W )

) 1
2

+
(∑

t>k σ
2
t (∆W )

) 1
2

, where σt(∆W ) is the t-th singular
value of the fine-tuned update ∆W , and rA, rB denote the effective ranks after moving to the random
basis space. The SOLAR reconstruction error has two parts: the fine-tuning error (C1) and the
compression error (C2). The compression error decreases with larger basis pools (NA, NB) and
higher sparsity budget (k). Details are in Appendix A.

3 EXPERIMENTS

We evaluate SOLAR through extensive experiments in three domains: 1) image classification with
ViT-B/L in few-shot and full-data settings (Section 3.1); 2) instruction tuning on LLaMA-3 models
using Alpaca and MMLU (Section 3.2); and 3) language generation with GPT-2 on E2E NLG
(Section 3.3). Across all settings, SOLAR matches LoRA and NOLA in accuracy while reducing
adapter size by up to 98%, offering a lightweight representation for model adaptation.

3.1 SOLAR ON VISION TRANSFORMERS

We conduct few-shot image classification experiments using ViT-B and ViT-L Dosovitskiy et al.
(2020) foundation models, initialized with either supervised or self-supervised He et al. (2022).

Experimental Setup. We compare SOLAR against LoRA Hu et al. (2021) and NOLA Koohpayegani
et al. (2024). Experiments are conducted on ViT-Base (ViT-B) and ViT-Large (ViT-L) architectures.
Supervised ViT models pretrained on ImageNet-21k Deng et al. (2009) are obtained from Google’s
official releases via the Hugging Face repository Wolf et al. (2020); Research (2025), and MAE
models pretrained on ImageNet-1K are sourced from the Timm library Wightman (2025). All
experiments run on a single NVIDIA RTX 4090 GPU using PyTorch Paszke (2019) and HuggingFace
libraries. In SOLAR, the compressed representation consists of (i) a random seed to regenerate
the basis vectors, (ii) an encoded list of selected basis indices, and (iii) their coefficients. Reported
trainable parameters include both projection coefficients and overhead (i.e., seed and index encoding).
The MLP classifier head is dataset-specific and excluded from the parameter count unless noted.

Evaluation Benchmarks. We fine-tune on standard image classification datasets: CIFAR-10
Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), Food-101 Bossard et al. (2014),
Tiny-ImageNet Le & Yang (2015), ImageNet-1K Deng et al. (2009), Oxford Pets Parkhi et al. (2012),
SUN397 Xiao et al. (2010), and CUB-200-2011 Welinder et al. (2010).

Comparison Methods. We compare SOLAR with several baselines: Full Fine-Tuning (Full-FT),
LoRA Hu et al. (2021), and NOLA Koohpayegani et al. (2024). In Full-FT, all backbone parameters
are updated. For LoRA, we apply low-rank adapters to the attention Query projection matrices,
with a rank of 4 for ViT-B and either 1 or 4 for ViT-L. For NOLA, following Koohpayegani et al.
(2024), adapters are inserted into MLP layers using 1000 random basis vectors for each of the A
and B matrices. All models are trained with cross-entropy loss. For full-data settings, we train 5
epochs with batch size 128; for few-shot settings (10 samples per class), 25 epochs with batch size
16, emphasizing low-data efficiency relevant to real-world and distributed scenarios. To account for
variance from limited data, we sample four training splits per dataset and report mean top-1 accuracy
on the test split (or validation for ImageNet-1k). Experiments are repeated with different random
seeds, and learning rates are tuned per dataset and model. Additional details are in the appendix.

Results and Performance Analysis. We evaluate SOLAR on various vision benchmarks using foun-
dation models, with results in Table 1. In the tables, configurations are denoted as SOLARmethod(N→k),
indicating that SOLAR is applied to a NOLA or LoRA model trained with rank r, using N bases per
matrix (N = NA = NB) and selecting the top-k bases by significance, where N and k are given in
thousands. SOLAR consistently achieves competitive top-1 accuracy in few-shot (10 samples per
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Table 1: Top-1 classification accuracy (%) of ViT-B and ViT-L on benchmark datasets under two
settings: (1) few-shot (10 samples/class, 25 epochs) and (2) full-data (5 epochs). Results report
mean ± std over 5 runs. SOLAR is applied with configuration method(N→k), where N and k are in
thousands.

Model Method # CIFAR-10 CIFAR-100 Food-101 T-ImageNet
Param 10 Full 10 Full 10 Full 10 Full

ViT-B

Full-FT 86M 91.1±.8 94.6±.5 78.2±.7 87.7±.3 65.8±.9 85.2±.4 78.1±1.0 85.4±.6
LoRA (r=4) 74K 92.3±.6 98.3±.2 81.8±.8 90.3±.4 72.4±.7 87.6±.3 77.9±.9 88.8±.4

NOLA 48K 92.2±.6 94.7±.5 81.3±.8 86.6±.4 72.6±.5 85.9±.2 78.4±.7 82.8±.5
SOLARr=4(4→1.6) 41K 92.3±.7 98.3±.4 81.5±.7 89.8±.2 71.8±.6 87.0±.5 77.9±.8 87.9±.4
SOLARNOLA(4→1.2) 32K 92.1±.7 94.5±.3 81.1±.6 85.4±.3 72.5±.6 85.4±.3 78.3±.8 82.3±.5

ViT-L

Full-FT 303M 90.2±.9 94.1±.6 86.2±.7 87.7±.5 73.9±.8 85.5±.4 80.8±1.1 89.2±.6
LoRA (r=4) 197K 97.1±.5 98.7±.1 88.1±.7 92.4±.3 81.8±.7 89.8±.2 84.4±.8 91.8±.5
LoRA (r=2) 98K 96.6±.4 98.7±.1 88.0±.6 92.9±.3 82.1±.7 90.0±.2 83.8±.7 90.4±.3

NOLA 96K 96.0±.8 97.4±.6 87.8±1.0 89.3±.5 82.5±.8 86.7±.4 84.3±.9 86.7±.6
SOLARr=4(4→1.6) 82K 97.0±.5 98.5±.3 87.9±.8 91.4±.4 76.8±.7 87.1±.4 78.7±.7 88.6±.5
SOLARr=2(1→0.3) 50K 96.1±.8 98.2±.4 87.4±.9 90.0±.5 77.0±.8 86.8±.6 76.4±.9 87.6±.6
SOLARNOLA(4→1.2) 64K 95.8±.9 97.0±.4 87.7±.8 89.3±.4 82.1±.7 86.6±.3 84.1±.8 86.4±.6

Table 2: Additional evaluation on vision datasets using ViT-B. The table shows bit-level representation
footprint (32-bit baseline) and top-1 accuracy. All models are trained for 10 epochs.

Method Byte Footprint Oxford Pets SUN397 CUB-200 ImageNet-1K

LoRA (r=1) 74KB 93.0±-.3 74.3±-.2 84.7±-.2 81.5±-.4
NOLA 48KB 90.4±-.5 61.7±-.4 79.4±-.4 77.4±-.3
SOLARr=1(2→0.2) 8KB (89% ↓) 92.6±-.4 73.9±-.2 84.2±-.3 81.3±-.2

Table 3: Effect of quantization on
SOLARr=4(4→1.6) performance. ViT-L-
MAE fine-tuned on CIFAR-10.

Method Quant. Accuracy Byte Footprint

SOLAR

32-bit 86.7±-.3 319KB
16-bit 86.5±-.3 166KB
8-bit 85.9±-.4 89KB
4-bit 84.8±-.6 50KB

Table 4: Effect of rank and adapter placement in
SOLARr=4(4→1). Accuracy (%) on CIFAR-100
using ViT-B.

Rank Q K V QV QKV

1 87.0 85.5 86.6 88.3 90.1
2 87.5 85.7 87.4 88.6 90.5
4 87.8 86.1 87.5 89.0 90.6
8 88.1 86.0 87.4 89.1 90.7
16 87.9 86.0 87.1 89.0 90.6

class) and full-data settings while requiring far fewer trainable parameters than LoRA and NOLA.
On ViT-B and ViT-L, SOLAR matches LoRA’s performance using up to 74% fewer parameters. For
instance, applied to a LoRA (r = 2), bases NA = NB = 4000, and topk = 1600, SOLAR reduces
fine-tuned parameters from 98K to 25K while maintaining comparable accuracy.

Beyond parameter reduction, SOLAR improves storage efficiency. Table 2 reports mean and standard
deviation over 5 runs on four additional datasets using ViT-B, quantifying the bit-level footprint
assuming 32-bit precision during training. We apply 8-bit quantization to SOLAR after topk parameter
selection. While LoRA (r = 1) requires 74KB of adapter parameters, SOLAR reduces this to 8KB
(89% reduction). These extreme compressions incur only minor accuracy drops, showing SOLAR
enables fine-grained control of model size to meet strict constraints and offers a flexible tradeoff
between footprint and performance.

In addition to reducing parameter and storage footprints, SOLAR remains highly robust under
quantization. As shown in Table 3, reducing coefficient precision from 32-bit to 4-bit incurs less than
a 2% accuracy drop on ViT-L-MAE (CIFAR-10, 10-shot). We further evaluate the effect of adapter
rank and placement (Table 4), observing that performance improves with rank up to 8 (with higher
ranks requiring more time to converge), and that the Query (Q) projection yields the highest gains.
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Table 5: Model representation efficiency for LLaMA models. SOLAR compresses LoRA adapter
updates across various model sizes. For the 13B model, all methods use 4-bit quantization, making
the LoRA baseline equivalent to QLoRA.

Model LLaMA-3.2 1B LLaMA-2 13B (4-bit)

Method LoRA NOLA SOLAR LoRA NOLA SOLAR
r=8 1000 bases r = 8(4→1.2) r=1 1000 bases r = 1(1→0.3)

# Params 852K 64K 81K (90% ↓) 819K 140K 51K (94% ↓)

Val Loss 1.51 1.87 1.52 1.05 1.29 1.05
MMLU Acc 30.1 25.9 28.3 54.5 51.8 54.5

Table 6: Performance and parameter efficiency on E2E NLG using GPT-2 Small and Medium. All
methods use rank-4 adapters applied to the Query and Value projections.

Method GPT-2 Small GPT-2 Medium
MET # Params MET # Params

Full-FT 28.4 124M 46.2 355M
LoRA (r=4) 29.7 147K 47.2 393K
NOLA 29.1 48K 46.8 350K
SOLAR (r=4, 1→0.3) 29.7 15K (90% ↓) 46.4 30K (92% ↓)
SOLAR (r=1, 0.1→0.1) 26.1 4K (97% ↓) 44.8 9K (98% ↓)

3.2 SOLAR ON LLAMA

Experimental Setup. We apply SOLAR to LLaMA-3 models of size 1B–13B. All models are fine-
tuned using adapters in the query and value projections across all transformer layers. For the 1B model,
we use LoRA with rank 8; for the 31B model, we use LoRA with rank 1. To reduce GPU memory
usage for large-scale models, we quantize the 13B model using 4-bit NF4 quantization through the
BitsAndBytes library Dettmers et al. (2021); Dettmers (2025). Further implementation details
and hardware configurations are provided in the Appendix.

Evaluation Benchmarks. All models are fine-tuned on the Stanford Alpaca Taori et al. (2023)
dataset for instruction-following and evaluated on its validation loss. We also assess generalization to
out-of-distribution tasks using the MMLU benchmark Hendrycks et al. (2020).

Comparison Methods. We compare SOLAR with PEFT baselines, including LoRA Hu et al. (2021)
and NOLA Koohpayegani et al. (2024). LoRA uses rank r = 8 for LLaMA-3 1B and r = 1
for the 13B model. NOLA follows its original configuration, with 1000 random basis vectors per
matrix Koohpayegani et al. (2024). For the 13B model, we apply 4-bit quantization to all methods
(LoRA, NOLA, and SOLAR). The reported trainable parameters include learned coefficients and
overhead for basis indexing. All experiments use gradient checkpointing, and learning rates are tuned
separately per model and method to ensure a fair comparison.

Results and Performance Analysis. Table 5 reports results across model sizes. SOLAR matches
LoRA in Alpaca validation loss and MMLU Hendrycks et al. (2020) accuracy while reducing trainable
adapter parameters by up to 94%. For example, on LLaMA-3.2 13B, SOLAR cuts the adapter size
from 819K to 51K without accuracy loss.

3.3 SOLAR ON GPT-2

Experimental Setup. We evaluate our method on GPT-2 Radford et al. (2019) base and medium
models fine-tuned on the E2E NLG dataset Novikova et al. (2017) using LoRA. The models are
trained for 5 epochs using a batch size of 8 and a learning rate of 0.1. LoRA is applied to the
self-attention Query and Value projection, with a rank of r = 4. After training, we apply SOLAR to
compress the LoRA adapter updates.

Evaluation Benchmarks. We use the E2E NLG dataset to evaluate generative quality. Generated
outputs are assessed using METEOR Banerjee & Lavie (2005) metric. We report LoRA, NOLA, and
SOLAR performance.
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Results and Performance Analysis. Table 6 summarizes results on the E2E NLG dataset using
GPT-2 Small and Medium models. SOLAR achieves competitive METEOR scores compared to
LoRA and NOLA, while substantially reducing adapter size. On GPT-2 Medium, SOLAR reduces
adapter representation size from 393K (LoRA) to 30K parameters with minimal performance loss.
Applied to rank-1 LoRA, it achieves a 98% reduction, demonstrating strong compression capability.

3.4 DISCUSSION AND ANALYSIS ON SOLAR PERFORMANCE AND EFFICIENCY

Figure 2: Subspace similarity between the W and
∆W matrices (Q, K, V) from the first layer of the
ViT-B model using LoRA with rank r = 4.

Subspace Analysis. We analyze the sub-
space similarity between the foundation model’s
weightsW and the LoRA update ∆W with rank
r = 4 (see Figure 2). Let W = UWΣWV ⊤

W and
∆W = U∆WΣ∆WV ⊤

∆W denote their SVDs.
To quantify subspace alignment, we define
the similarity function as ϕ(W,∆W, i, j) =

ψ(U
(i)
W , U

(j)
∆W ) = ∥U (i)

W

⊤
U

(j)
∆W ∥2F , where U (i)

W

and U
(j)
∆W are the matrices formed by taking

the i and j left singular vectors of W and
∆W , respectively. This normalized Frobenius
inner product measures how much of the j-
dimensional subspace of ∆W lies within the
i-dimensional subspace of W , reaching its max-
imum when perfectly aligned. Figure 2 shows
that the fine-tuned model emphasizes directions already present in the foundation model, supporting
prior observations that LoRA updates lie in low-dimensional, structured subspaces Hu et al. (2021);
Farhadzadeh et al. (2025); Zhang et al. (2025b). This suggests leveraging existing directions is
more effective than relying purely on random ones: LoRA implicitly aligns with them, and SOLAR
exploits this alignment in its basis pool, explaining its performance advantage over NOLA.

Figure 3: Representation Performance vs. Repre-
sentation Cost: On ViT-B (r = 4), SOLAR demon-
strates a trade-off between parameter count and
performance, achieving strong performance with
far fewer parameters than LoRA.

Effect of Basis Pool Size and Communication
Budget on Performance. To evaluate SOLAR’s
trade-off between representation size and per-
formance, we analyze the effect of varying the
basis pool size and the number of selected topk

components on representation accuracy. Exper-
iments are conducted on a ViT-Base model fine-
tuned using LoRA with rank 4, followed by SO-
LAR compression. Each LoRA matrix A and
B requires 4 × 768 = 3072 parameters. We
observe that increasing k improves SOLAR’s
expressiveness and accuracy. Moreover, a larger
basis pool enhances performance by increasing
the likelihood of capturing directions aligned
with the fine-tuned model subspace. As shown
in Figure 3, even with fixed k, larger pools yield higher accuracy by enabling more precise reconstruc-
tion of target directions. SOLAR thus achieves performance comparable to LoRA with significantly
fewer parameters. This trade-off confirms Theorem 1: increasing the basis pool N or sparsity k
reduces the compression error C2.

Table 7: Runtime Overhead: LoRA (10
epochs) vs. SOLAR post-training on ViT-B
across vision datasets. Times in seconds.

Dataset LoRA SOLAR Overhead (%)

CIFAR-10 1176 14 1.19
CIFAR-100 1165 14 1.20
Food-101 3480 67 1.92
Tiny-ImageNet 2081 15 0.72
ImageNet-1K 56634 155 0.27

SOLAR Overhead and Runtime Efficiency. As a
post-training method, SOLAR introduces negligible
runtime overhead and does not interfere with fine-
tuning. For instance, fine-tuning LLaMA-3.2 1B with
LoRA on Tiny-ImageNet took 2081 seconds, while
SOLAR, including random basis generation, convex
least-squares solving, and topk selection, took only
15 seconds (under 0.72% of training time). These
operations are computationally lightweight, as shown
in Table 7, confirming SOLAR’s practical efficiency.
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Limitations and Future Work. As a post-hoc method, SOLAR’s performance is limited by the base
adapter, and its hyperparameters (N and k) may need per-task tuning to optimize the compression-
accuracy trade-off. While it shows strong results on vision and language tasks, its effectiveness on
other modalities (audio, time series, or multimodal data) remains untested. Future work will extend
SOLAR to these areas and evaluate its performance in other environments.

4 BACKGROUND AND RELATED WORKS

Transformers in NLP and Vision. Transformers Vaswani et al. (2017), are now the standard in
NLP for modeling long-range dependencies via self-attention Raiaan et al. (2024). Models such as
LLaMA Touvron et al. (2023), BERT Devlin et al. (2019), and GPT Radford et al. (2018) build on
this structure to achieve strong results across diverse benchmarks. In vision, ViT Dosovitskiy et al.
(2020) treats image patches as tokens, making Transformers a unifying backbone across modalities.

Parameter-Efficient Fine-Tuning (PEFT). As transformers scale, task-specific fine-tuning becomes
computationally intensive. PEFT methods mitigate this by updating only a subset of parameters.
LoRA Hu et al. (2021) introduces trainable low-rank matrices per layer, typically modifying <1%
of weights, while NOLA Koohpayegani et al. (2024) re-parameterizes these as linear combinations
of random bases, decoupling parameters from rank and architecture. Yet PEFT gains often fall
short in deployment, especially on edge, mobile, and federated settings with communication and
storage bottlenecks. Adapting GPT-2 (117M) on-device may still require gigabytes of transfer and
petaflop-scale computation per round Wang et al. (2025), with updates taking seconds to transmit and
hours to process on low-power hardware (e.g., Jetson TX2).

Challenges of PEFT. As models grow, adapter overhead scales rapidly. Even modest adapters (e.g.,
7M parameters for a 7B model at rank 16) accumulate significant costs across users, tasks, or training
rounds Xu et al. (2023b). A 1% adapter for LLaMA-2 70B adds 700M parameters; for GPT-3 (350B),
3.5B—tens of gigabytes in FP32. Such costs are infeasible in personalized or federated settings,
where hundreds of adapters may be exchanged or stored per user Zhang et al. (2024). While PEFT
leverages the low intrinsic dimensionality of task adaptation Hu et al. (2021), deployment remains
inefficient. It has been shown that BERT fine-tuning on MRPC Dolan & Brockett (2005) requires only
1,861 degrees of freedom out of 110M, highlighting redundancy in full-rank updates Aghajanyan et al.
(2020). Yet even small adapters impose substantial overhead on massive models Xu et al. (2023a);
Lialin et al. (2023). Hence, the true bottleneck is adapter size, not fine-tuning efficiency Jie et al.
(2023), motivating flexible post-training compression to reduce footprint without altering training.

PEFT Compression Techniques. To mitigate PEFT costs, pruning Han et al. (2024); Ilhan et al.
(2024) and quantization Chen et al. (2024); Hubara et al. (2021) have been explored. These reduce
model size but require careful tuning or retraining, are less effective under severe bandwidth limits,
and are mainly optimized for full-model compression, limiting applicability to adapters. Adapter
updates are highly redundant and lie in low-dimensional subspaces Hu et al. (2021); Yadav et al.
(2023); Wu et al. (2024), motivating post-training compression. Methods like ComPEFT Yadav
et al. (2023), BitDelta Liu et al. (2024), Delta-CoMe Ping et al. (2024), and DeltaZip Yao et al.
(2025) compress adapter weights after fine-tuning but rely on heuristics, task-specific tuning, or
training integration, reducing flexibility. Other approaches alter fine-tuning itself: VeRA Kopiczko
et al. (2023) employs a shared random basis, SVFT Lingam et al. (2024) learns sparse coefficients
for an SVD-based basis, and EigenLoRAx Kaushik et al. (2025) builds a PCA basis from many
pre-trained adapters. In contrast, SOLAR is a post-hoc, training-free utility that compresses any
adapter, providing a complementary plug-and-play solution.

5 CONCLUSION

Adapter-based fine-tuning methods such as LoRA significantly reduce the cost of adapting large
models. However, in distributed and on-device settings, communication and storage overheads remain
a major bottleneck. To address this, we introduce SOLAR, a lightweight post-training compression
method that reparameterizes adapter updates as sparse combinations of structured basis vectors
aligned with the foundation model’s latent subspace. SOLAR substantially reduces adapter size and
transmission cost without altering the training process or model architecture.
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APPENDIX

A PROOF OF THEOREM 1

Let ∆W ∗ ∈ Rm×n denote the optimal adapter for the downstream task, ∆W the adapter obtained
by LoRA fine-tuning, and ∆W̃ the SOLAR reconstruction. Let ∆Wproj denote the projection of
∆W onto the SOLAR bases (i.e., bases that are constructed from the SVD of the foundation model’s
weights, combined with randomized perturbations).

Our proof relies on the following standard assumptions from the literature on parameter-efficient
fine-tuning and randomized numerical linear algebra:

(A1) Spectral Initialization: The LoRA adapter matricesA andB are initialized using the spectral
initialization strategy from Zhang et al. (2025a).

(A2) Low-Rank Update: The optimal task-specific update ∆W ∗ is approximately low-rank, with
rank r∗ < min{m,n} Zhang et al. (2025a).

(A3) Well-Behaved Data: The training data follows the generation process outlined in Zhang
et al. (2025a), where input features are drawn from an isotropic sub-Gaussian or Gaussian
distribution.

(A4) Fast Spectrum Decay: The projected update matrix ∆Wproj exhibits spectral decay, meaning
its tail singular values are small (Martinsson & Tropp, 2020).

First, we decompose the total error using the triangle inequality. The total error, ∥∆W̃ −∆W ∗∥F , is
the distance between the SOLAR-reconstructed adapter and the optimal adapter. This is bounded by
the sum of the Training Error and the Compression Error:

∥∆W̃ −∆W ∗∥F ≤ ∥∆W̃ −∆W∥F︸ ︷︷ ︸
Compression Error

+ ∥∆W −∆W ∗∥F︸ ︷︷ ︸
Training Error

(6)

Here, the first term, ∥∆W̃−∆W∥F , is the compression error introduced by SOLAR’s approximation.
The second term, ∥∆W − ∆W ∗∥F , is the training error from the underlying LoRA fine-tuning
process itself. We will bound each term separately.

The analysis of the training error for LoRA adapters is non-trivial and has been extensively studied.
We directly leverage the results from Zhang et al. (2025a), showing that under Assumptions (A1)-
(A3), LoRA trained with gradient descent converges to the optimal low-rank adapter ∆W ∗. Their
analysis provides the following bound on the training error after t steps:

∥∆W −∆W ∗∥F ≤
√
2r∗

(
1− ηλr∗

64κ

)t

λr∗ , (7)

where r∗ is the rank of the optimal update ∆W ∗, κ is its condition number, λr∗ is its r∗-th singular
value, and η is the learning rate. This bound, derived under the specified spectral initialization and
data concentration assumptions, demonstrates that the fine-tuned adapter ∆W gets exponentially
closer to the optimal adapter ∆W ∗ as training progresses.

SOLAR reconstructs the adapter as a sparse coefficientization over these perturbed bases:

∆W̃ =

NB∑
i=1

NA∑
j=1

βiαj M
(i)
B M

(j)
A . (8)

Following the randomized rangefinder formulation Halko et al. (2011); Martinsson & Tropp (2020),
we construct the sketch matrices for both the column and row spaces of the LoRA-style adapter
update ∆W as

YA = ∆W ΩA ∈ Rm×NA , YB = ∆W⊤ΩB ∈ Rn×NB . (9)

Each column of YA represents the action of ∆W on a random probe vector drawn from the right-basis
pool ΩA, effectively sampling the column space of ∆W . Similarly, each column of YB captures
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random projections of the row space of ∆W . These sketches compactly encode the dominant
directions of ∆W without explicitly computing its singular value decomposition.

The Gaussian perturbations in M (i)
A = V:,Ii

+ ϵi and M (j)
B = U:,Jj

+ ϵj play an important theoretical
and practical role. First, they ensure that the composite sketching matrices ΩA and ΩB satisfy the
sub-Gaussian concentration and Johnson–Lindenstrauss properties required for the probabilistic error
bounds in randomized numerical linear algebra Halko et al. (2011). Second, adding small isotropic
noise expands the effective span of the sampled singular directions, preventing over-alignment with
any single dominant mode and improving numerical stability when the singular spectrum of ∆W
decays slowly. Finally, this perturbation acts as a regularizer that mitigates sampling bias inherited
from the foundation model’s specific singular subspace, ensuring broader coverage of the subspace
where fine-tuned updates lie.

We then compute orthonormal bases for the column spans of these sketches:

QA = orth(YA) ∈ Rm×qA , QB = orth(YB) ∈ Rn×qB , (10)

where
rA = rank(QA) ≤ min(m,NA), rB = rank(QB) ≤ min(n,NB).

By construction, range(QA) = range(YA) and range(QB) = range(YB). In the terminology
of randomized numerical linear algebra, this process corresponds to the rangefinder step, which
identifies low-dimensional subspaces that approximate the dominant column and row spaces of ∆W .

Finally, we define the two-sided (bi-rangefinder) projection as

PNA,NB
(∆W ) := QAQ

⊤
A ∆W QBQ

⊤
B . (11)

This projection provides a low-rank approximation to ∆W using orthonormal subspaces inferred
from randomized sketches. Geometrically, PNA,NB

(∆W ) captures the principal subspace of ∆W
identified by ΩA and ΩB , offering an efficient surrogate for the optimal SVD-based projection
U1U

⊤
1 ∆WV1V

⊤
1 while retaining probabilistic error guarantees Halko et al. (2011); Martinsson &

Tropp (2020).

We bound the bi-projection error by splitting it into two one-sided parts using projector non-
expansiveness (∥QAQ

⊤
AX∥F ≤ ∥X∥F ):

∥∆W −QAQ
⊤
A∆WQBQ

⊤
B∥F ≤ ∥∆W −QAQ

⊤
A∆W∥F + ∥QAQ

⊤
A(∆W −∆WQBQ

⊤
B)∥F

≤ ∥∆W −QAQ
⊤
A∆W∥F + ∥∆W −∆WQBQ

⊤
B∥F . (12)

Each addend is a standard one-sided rangefinder error. By Theorem 10.5 of Halko et al. (2011)
(Frobenius form) with oversampling NA > rA + 1 and NB > rB + 1,

E ∥∆W −QAQ
⊤
A∆W∥F ≤

(
1 +

rA
NA − rA − 1

)1
2

(∑
t>rA

σt(∆W )2

)1
2

, (13)

E ∥∆W −∆WQBQ
⊤
B∥F ≤

(
1 +

rB
NB − rB − 1

)1
2

(∑
t>rB

σt(∆W )2

)1
2

. (14)

Combining equation 12–equation 14 yields the expected two-sided projection error bound:

E ∥∆W−PNA,NB
(∆W )∥F ≤

(
1 +

rA
NA − rA − 1

)1
2

(∑
t>rA

σ2
t

)1
2

+

(
1 +

rB
NB − rB − 1

)1
2

(∑
t>rB

σ2
t

)1
2

.

(15)
(When desired, power iterations can be incorporated on either side to sharpen the spectral decay and
constants Halko et al. (2011); Martinsson & Tropp (2020).)

After projection, SOLAR enforces sparsity by retaining only the top-k basis pairs in equation 8. Let
the singular values of PNA,NB

(∆W ) be {σ̃t}, we have:

∥∆W̃ − PNA,NB
(∆W )∥F ≤

(∑
t>k

σ̃2
t

)1
2

. (16)
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Moreover, orthogonal projections are contractions in Frobenius norm and cannot increase tail energy,
hence ∑

t>k

σ̃2
t ≤

∑
t>k

σt(∆W )2. (17)

Adding and subtracting PNA,NB
(∆W ) and using equation 15–equation 17, we obtain

E ∥∆W̃ −∆W∥F ≤ E ∥∆W − PNA,NB
(∆W )∥F + E ∥∆W̃ − PNA,NB

(∆W )∥F

≤
(
1 +

rA
NA − rA − 1

)1
2

(∑
t>rA

σ2
t

)1
2

+

(
1 +

rB
NB − rB − 1

)1
2

(∑
t>rB

σ2
t

)1
2

(18)

+

(∑
t>k

σ2
t

)1
2

. (19)

Combining the decomposition with equation 19 and the LoRA training bound equation 7, we conclude

E ∥∆W̃ −∆W ∗∥F ≤
(
1 + rA

NA−rA−1

)1
2

(∑
t>rA

σ2
t

)1
2

+
(
1 + rB

NB−rB−1

)1
2

(∑
t>rB

σ2
t

)1
2

︸ ︷︷ ︸
projection error

+

(∑
t>k

σ2
t

)1
2

︸ ︷︷ ︸
sparsification error

+
√
2r∗
(
1− ηλr∗

64κ

)t
λr∗︸ ︷︷ ︸

training error

. (20)

Each term in equation 20 can be driven to zero under mild conditions: (i) the projection error vanishes
as NA, NB grow so that rA, rB reach the true (or effective) rank of ∆W (then the corresponding
spectral tails are zero); (ii) the sparsification error vanishes when k exceeds the numerical rank of
PNA,NB

(∆W ); and (iii) the training error decays to zero as t→ ∞ under (A1)–(A3) by equation 7.
Consequently, with sufficient sampling (NA, NB), sparsity budget (k), E ∥∆W̃ −∆W ∗∥F → 0.

B IMPLEMENTATION DETAILS

All models are implemented using PyTorch Paszke (2019), with HuggingFace Transformers Wolf
et al. (2020) for LLaMA and GPT-based models, and Timm Wightman (2025) for ViT-based vision
backbones. Training and evaluation are performed on NVIDIA A100 and RTX 4090 GPUs. For all
vision experiments, we use ViT-B and ViT-L as base encoders. For language models, we use GPT-2
and LLaMA-3 (1B, 3B, 8B). LoRA is applied to the query and value projections. SOLAR operates
post-training by compressing the PEFT adapter matrices. All experiments are conducted under a
fixed random seed for reproducibility. The implementation code for SOLAR, along with scripts
used to reproduce the experiments, is included in the supplementary material and also available at
https://anonymous.4open.science/r/SOLAR-D3B2/.

C DATASET DETAILS

We summarize dataset statistics in Table 8, including number of training samples and class counts.

We summarize dataset statistics used in the LLM experiments in Table 9, covering instruction tuning
(Section 3.2) and language generation tasks (Section 3.3). The table includes the number of training
samples, average sequence lengths, and the model-specific context in which each dataset is used in
the experiments.

3
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Table 8: Dataset statistics used in experiments. Each dataset includes the number of training samples
and classes.

Dataset Training Samples Number of Classes

CIFAR-10 50,000 10
CIFAR-100 50,000 100
Food-101 75,750 101
Tiny-ImageNet 100,000 200
ImageNet-1K 1,281,167 1,000

Table 9: Dataset statistics in LLM experiments.

Dataset Samples Avg. Seq. Length Context

Stanford Alpaca 52,000 ∼256 tokens LLaMA-3 instruction tuning
MMLU 15,858 ∼200 tokens LLaMA-3 Generalization evaluation
E2E NLG 42,000 ∼35 tokens GPT-2 generation fine-tuning

D REPRESENTATION COST DETAILS: PARAMETERS AND STORAGE

To quantify SOLAR’s compression benefit, we detail the number of adapter parameters and byte-level
footprint across ViT-B, ViT-L, LLaMA, and GPT-2 models. We compare LoRA, NOLA, and SOLAR
under adapter rank (r = 4). Tables 10 through 15 provide full parameter breakdowns. Byte-level
analysis is presented in Table 13.

ViT. For vision backbones, Table 10 and Table 11 report the number of representation parameters
for query projections (Q) and classifier heads. In the experiments presented in the main paper, the
classifier head parameters are excluded from comparison since they are identical across all methods
following Koohpayegani et al. (2024). NOLA’s parameter footprint for MLP projections is shown in
Table 12 (following the setup in Koohpayegani et al. (2024)). Byte-level storage comparisons across
quantization, used to produce Table 2 and Table 3 in the main paper, are provided in Table 13.

Table 10: Number of representation parameters for ViT-B (Rank = 4). Each row reports the parameter
count for query projections and the classifier head using SOLAR and LoRA across different datasets.
The classifier head parameter count is shared across methods and is computed as (num_classes
× 768 + num_classes). For SOLAR, the query projection count corresponds to: number of
layers × (topk coefficients for A + topk coefficients for B + encoded basis for A + encoded basis for
B) +1 (seed value). All SOLAR rows follow the form N→ topk where N is the original subspace
size. For LoRA, the query projection count corresponds to: number of layers × (input dimension ×
rank for A + rank × output dimension for B), where rank is 4.

Method Dataset Query (Q) Classifier Head

SOLAR

CIFAR-10 12×
(
(1600 + 1600) + 4000+4000

32

)
+ 1 = 41,401 10× 768 + 10 = 7,690

CIFAR-100 41,401 100× 768 + 100 = 76,900
Food-101 41,401 101× 768 + 101 = 77,669
Tiny-ImageNet 41,401 200× 768 + 200 = 154,000

LoRA

CIFAR-10 12× [(768× 4) + (4× 768)] = 73,728 10× 768 + 10 = 7,690
CIFAR-100 73,728 100× 768 + 100 = 76,900
Food-101 73,728 101× 768 + 101 = 77,669
Tiny-ImageNet 73,728 200× 768 + 200 = 154,000

LLMs. For language models, parameter counts for adapter layers are detailed in Table 14 for
LLaMA and in Table 15 for GPT-2 variants.

4
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Table 11: Number of representation parameters for ViT-L (Rank = 4). Each row shows the parameter
counts for Query projections and the classifier head using SOLAR and LoRA across different datasets.
The classifier head parameter count is shared across methods and is calculated as (num_classes
× 1024 + num_classes).

Method Dataset Query (Q) Classifier Head

SOLAR

CIFAR-10 24×
(
(500 + 500) + 1000+1000

32

)
+ 1 = 25,501 10× 1024 + 10 = 10,250

CIFAR-100 25,501 100× 1024 + 100 = 102,500
Food-101 25,501 101× 1024 + 101 = 103,625
Tiny-ImageNet 25,501 200× 1024 + 200 = 204,800

LoRA

CIFAR-10 24× [(1024× 4) + (4× 1024)] = 196,608 10× 1024 + 10 = 10,250
CIFAR-100 196,608 100× 1024 + 100 = 102,500
Food-101 196,608 101× 1024 + 101 = 103,625
Tiny-ImageNet 196,608 200× 1024 + 200 = 204,800

Table 12: Number of representation parameters for ViT-B (Rank = 4). Each row shows the pa-
rameter counts for MLP projections (for NOLA) and classifier head across datasets. The classifier
head parameter count is shared across methods and is calculated as (num_classes × 768 +
num_classes).

Method Dataset MLP Classifier Head

NOLA

CIFAR-10 12× 2× 2× 1000 + 1 = 48,001 10× 768 + 10 = 7,690
CIFAR-100 48,001 100× 768 + 100 = 76,900
Food-101 48,001 101× 768 + 101 = 77,669
Tiny-ImageNet 48,001 200× 768 + 200 = 154,000

E ADDITIONAL EXPERIMENTAL RESULTS

This section provides supplementary experimental results to further validate the claims made in the
main paper. We present detailed performance metrics for additional model scales and include a
crucial ablation study that compares SOLAR against a parameter-matched LoRA baseline.

E.1 PERFORMANCE ON INTERMEDIATE-SCALE LLAMA MODELS

Table 16 extends our analysis to the LLaMA-3.2 3B and LLaMA-3.1 8B models, demonstrating
SOLAR’s consistent efficiency and performance on intermediate-scale architectures. The results show
that SOLAR maintains the performance of the original LoRA adapters while achieving parameter
reductions of over 90%.

E.2 COMPRESSION OF ADAPTIVE-RANK PEFT METHODS (ADALORA)

To evaluate SOLAR on more recent PEFT methods, we applied it to AdaLoRA, which produces
adaptive-rank adapter matrices (A and B). SOLAR compresses these trained adapters post-hoc, using
an initial rank of r = 8 and a target average rank of r = 1 on LLaMA-3.2 3B and LLaMA-2 13B.
As shown in Table 17, SOLAR significantly reduces adapter parameters while preserving MMLU
performance.

E.2.1 EXPERIMENTS WITH 2-BIT QUANTIZATION

To further validate SOLAR’s robustness to aggressive quantization, we conducted additional experi-
ments with 2-bit quantization on LLaMA-2 13B and LLaMA-3.1 8B. The results, summarized in
Table 18, confirm that SOLAR remains effective while drastically reducing parameter counts.

E.3 EXTREME COMPRESSION

In this section, we report additional experiments demonstrating SOLAR’s ability to achieve extreme
compression while retaining competitive accuracy. These results complement the main paper by
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Table 13: Byte-level footprint of representation parameters for ViT-B and ViT-L using LoRA and
SOLAR. Each value reflects the total number of bytes required to store adapter updates (excluding
classifier heads). For LoRA, storage is computed as: number of layers ×

(
rank × output dimension

for B + input dimension × rank for A
)
× precision in bytes (e.g., 4 bytes for 32-bit float). For

SOLAR, storage is computed as: number of layers ×
(
topk coefficients for A + topk coefficients

for B + encoded basis vectors for A + encoded basis for B
)
× precision in bytes, plus 1 byte to

store a random seed. For example, the row "500→50" denotes that 500-dimensional subspaces are
sparsified to top-k = 50 coefficients, with encoded bases represented at 1 bit per element (8 elements
per byte).

Method Representation Footprint (Bytes)

LoRA (r=1) 12× [(768× 1) + (1× 768)]× 4 = 73,728
SOLAR for ViT-B 8Bit (r=1, 500→50) 12×

[
(50 + 50) + 500

8

]
× 1 + 1 = 1,951

SOLAR for ViT-B 8Bit (r=1, 100→10) 12×
[
(10 + 10) + 100

8

]
× 1 + 1 = 391

LoRA (r=4) 24× [(1024× 4) + (4× 1024)]× 4 = 786,432
SOLAR for ViT-L 32Bit (r=4, 4000→1600) 24×

[
(1600 + 1600) + 4000

32

]
× 4 + 1 = 319,201

SOLAR for ViT-L 16Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

16

]
× 2 + 1 = 165,601

SOLAR for ViT-L 8Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

8

]
× 1 + 1 = 88,801

SOLAR for ViT-L 4Bit (r=4, 4000→1600) 24×
[
(1600 + 1600) + 4000

4

]
× 0.5 + 1 = 50,401

Table 14: Number of representation parameters for LLaMA-3 models using LoRA, NOLA, and
SOLAR. Each row reports total adapter parameters for attention projections (Q and V for LoRA
and NOLA; Q and K for SOLAR). Output heads and MLP layers are frozen. For LoRA, the
parameter count is computed as: number of layers ×

(
input dimension × rank for B + rank × output

dimension for A +
)
. Due to differing dimensions between A and B in LoRA, the table computes the

contributions for Q and V projections separately. For NOLA, it is computed as: number of layers
× 2 × (number of random basis vectors), assuming separate basis sets for A and B. For SOLAR,
the count is: number of layers × 2 ×

(
topk coefficients for B + topk for A + encoded bases for B +

encoded bases for A
)
, plus 1 byte to communicate or store the shared seed.

Model (Rank) Configuration Total Parameters

LLaMA-3.2 1B (r=8) 16 layers (Q, V) 16× [(2048× 8 + 8× 2048) + (2048× 8 + 8× 512)] = 851,968
NOLA 16 layers (Q, V) 16× 2× (1000 + 1000) = 64,000

SOLAR (r=8,4K→1.2K) 16 layers (Q, V) 16× 2×
(
1200 + 1200 + 4000

32

)
+ 1 = 80,801

LLaMA-3.2 3B (r=1) 28 layers (Q, V) 28× [(3072× 1 + 1× 3072) + (3072× 1 + 1× 1024)] = 286,720
NOLA 28 layers (Q, V) 28× 2× (1000 + 1000) = 112,000

SOLAR (r=1,1000→150) 28 layers (Q, V) 28× 2×
(
150 + 150 + 1000

32

)
+ 1 = 18,551

LLaMA-3.1 8B (r=1) 32 layers (Q, V) 32× [(4096× 1 + 1× 4096) + (4096× 1 + 1× 1024)] = 425,984
NOLA 32 layers (Q, V) 32× 2× (1000 + 1000) = 128,000

SOLAR (r=1, 1000→300) 32 layers (Q, V) 32× 2×
(
300 + 300 + 1000

32

)
+ 1 = 40,401

highlighting scenarios where communication and storage constraints are especially strict (e.g.,
distributed or on-device learning).

Table 19 shows evaluations on four vision datasets using ViT-B under different compression budgets.
We quantify the bit-level representation footprint assuming 32-bit precision during training and apply
8-bit quantization to the SOLAR coefficients after top-k selection. Compared to LoRA (r = 1),
SOLAR reduces the adapter footprint by up to 99% (from 74KB to 0.4KB) with only minor drops in
accuracy. These results illustrate that SOLAR enables fine-grained tradeoffs between accuracy and
storage cost under extreme compression budgets.
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Table 15: Number of trainable adapter parameters for GPT-2 models using LoRA, NOLA, and
SOLAR. Each row reports the total number of parameters added to the query and value projections (Q
and V). All configurations freeze the output heads and MLP layers. For LoRA, the parameter count is
computed as: number of layers × 2 ×

(
input dimension × rank for B + rank × output dimension for

A
)
. For NOLA, the parameter count is: number of layers × 2 × (number of random basis vectors),

assuming separate basis sets for Q and V. For SOLAR, the parameter count is: number of layers × 2
×
(
topk coefficients for B + topk coefficients for A + encoded bases for B + encoded bases for A

)
,

plus 1 for the shared seed.

Model (Rank) Configuration Total Parameters

GPT-2 Small (r=4) 12 layers (Q, V) 12× 2× (768× 4 + 4× 768) = 147,456
NOLA 12 layers (Q, V) 12× 2× (1000 + 1000) = 48,000

SOLAR (r=1, 1000→300) 12 layers (Q, V) 12× 2×
(
300 + 300 + 1000

32

)
+ 1 = 15,150

SOLAR (r=1, 100→90) 12 layers (Q, V) 12× 2×
(
90 + 90 + 100

32

)
+ 1 = 4,396

GPT-2 Medium (r=4) 24 layers (Q, V) 24× 2× (1024× 4 + 4× 1024) = 393,216
NOLA 24 layers (Q, V) 350,000 Koohpayegani et al. (2024)

SOLAR (r=4, 1000→300) 24 layers (Q, V) 24× 2×
(
300 + 300 + 1000

32

)
+ 1 = 30,301

SOLAR (r=4, 100→90) 24 layers (Q, V) 24× 2×
(
90 + 90 + 100

32

)
+ 1 = 8,791

Table 16: Model representation efficiency for LLaMA 3B and 8B models. For the 8B model, all
methods use 4-bit quantization, making the LoRA baseline equivalent to QLoRA.

Model LLaMA-3.2 3B LLaMA-3.1 8B (4-bit)

Method LoRA NOLA SOLAR LoRA NOLA SOLAR
r=1 1000 bases SOLARr=1(1K→0.1K) r=1 1000 bases SOLARr=1(1K→0.3K)

# Params 287K 112K 16K (94% ↓) 425K 128K 40K (91% ↓)

Val Loss 1.02 1.31 1.04 0.89 1.01 0.90
MMLU Acc 54.0 52.7 54.0 60.9 56.1 60.9

F SCALABILITY TO LARGER VISION MODELS

To validate that SOLAR remains effective and computationally tractable on larger-scale models, we
conducted experiments on the ViT-G/14 architecture. This model is substantially larger than the
ViT-B/L backbones used in our main experiments, providing a strong test of scalability.

We fine-tuned a ViT-G/14 model on the full CIFAR-10, CIFAR-100, Food-101, and T-ImageNet
datasets using a LoRA adapter with rank r = 4. We then applied SOLAR with a basis pool of 8,000
vectors, selecting the top 4,000 coefficients to form the compressed adapter.

As shown in Table 20, SOLAR successfully preserves the performance of the original LoRA adapter
with negligible accuracy drops, while reducing the adapter’s parameter count by 31% (from 492K to
340K). This result demonstrates that SOLAR’s core mechanisms—including SVD extraction and
sparse reconstruction—scale effectively to larger models without sacrificing compression efficiency
or task performance.

F.1 ABLATION STUDY: BUDGET-MATCHED LORA COMPARISON

To further validate the efficiency of our compression strategy, we conduct an ablation study directly
comparing SOLAR to a budget-matched LoRA baseline, as suggested by reviewer feedback.[1] This
comparison is critical to demonstrate that SOLAR’s benefits extend beyond mere parameter reduction
and offer a more effective performance-compression trade-off than simply training a lower-rank
adapter from scratch.

As shown in Table 21, fine-tuning a LoRA adapter with a reduced rank (r=2) to match the parameter
count of the compressed SOLAR adapter results in a significant performance degradation across all
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Table 17: SOLAR applied to AdaLoRA adapters on intermediate-scale LLaMA models.

Method # Params (Adapter) MMLU Accuracy

AdaLoRA (Baseline, 3B) 305K 54.8%
SOLAR (on AdaLoRA, 3B) 16K 54.7%
AdaLoRA (Baseline, 13B) 871K 57.9%
SOLAR (on AdaLoRA, 13B) 16K 57.7%

Table 18: 2-bit quantization experiments comparing LoRA (QLoRA) and SOLAR.

Method Quantization # Params MMLU Acc

LoRA (QLoRA) - LLaMA-2 13B 2-bit 410K 53.1
SOLARr=1(1K→0.3K) - LLaMA-2 13B 2-bit 51K 53.1
LoRA (QLoRA) - LLaMA-3.1 8B 2-bit 363K 58.4
SOLARr=1(1K→0.3K) - LLaMA-3.1 8B 2-bit 40K 58.4

tasks. In contrast, SOLAR, when applied to the higher-performing LoRA (r=4) adapter, successfully
preserves task accuracy while achieving a comparable parameter budget. This highlights that SOLAR
retains the expressive power of the original higher-rank adapter, a feat not achievable by simply
reducing the rank during training. All experiments were conducted on the full datasets using the
ViT-B backbone, with results reported as the mean accuracy over five independent runs to ensure
statistical robustness.

G COMPARISON WITH SIMPLE SVD TRUNCATION

To compare against simple post-hoc SVD truncation, we evaluate SOLAR’s performance against
SVD applied directly to the LoRA update ∆W . Since the LoRA adapter ∆W already has rank r,
SVD only provides compression if the truncation rank is set lower than r. We use an initial LoRA
rank of r = 4 and truncate the SVD to rank 1. In contrast, SOLAR achieves a much smaller footprint
by reparameterizing the update in the foundation model’s subspace. The results are summarized in
Table 22.

H APPLICATION TO FEDERATED LEARNING

One of the motivations for developing SOLAR is to reduce communication overhead in distributed
learning scenarios, such as Federated Learning (FL). In typical FL setups, clients fine-tune a model
on their local data and transmit the resulting model updates (e.g., LoRA adapters) to a central server
for aggregation. As highlighted by recent work Mhanna & Assaad (2024), communication—not
computation—is often the primary bottleneck. Transmitting full adapters from thousands of clients
can generate enormous data transfer loads. For example, in an FL setup with 10,000 clients—1,000
participating in each of 10 training rounds—transmitting 74 KB LoRA adapters per client would
amount to 740 GB of total data transfer.

SOLAR addresses this challenge as a lightweight, post-hoc compression utility. After local training,
each client can compress its adapter with SOLAR before transmission. The server then receives only
the sparse coefficients and a random seed, drastically reducing per-client communication costs.

To demonstrate SOLAR’s effectiveness in distributed settings, we simulated a 10-client FL environ-
ment. We compare a baseline where clients transmit full LoRA adapters with a scenario where clients
transmit SOLAR-compressed adapters. Each client fine-tunes a ViT-B model on CIFAR-10 with
LoRA (r = 4), under two data distribution scenarios: an IID baseline and a non-IID distribution
generated via a Dirichlet process with a concentration parameter of 0.5. The simulation runs for 30
communication rounds, with one epoch of local training per client per round.

As shown in Table 23, the performance gap between full LoRA adapters and SOLAR-compressed
adapters is minimal in both IID and non-IID settings. This demonstrates that SOLAR’s compression
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Table 19: Evaluation of extreme compression on ViT-B. We report bit-level representation footprint
(32-bit baseline) and top-1 accuracy over 5 runs. All models are trained for 10 epochs.

Method Byte Footprint Oxford Pets SUN397 CUB-200 ImageNet-1K

LoRA (r=1) 74KB 93.0±0.5 74.3±0.3 84.7±0.4 81.5±0.6
SOLAR (r=1, 500→50) 2KB (97% ↓) 91.2±0.6 72.4±0.4 81.4±0.5 80.7±0.4
SOLAR (r=1, 100→10) 0.4KB (99% ↓) 90.3±0.7 72.4±0.5 81.3±0.6 80.6±0.5

Table 20: Scalability of SOLAR on the ViT-G/14 model. Results show top-1 accuracy (%) on full
datasets.

Method # Params CIFAR-10 CIFAR-100 Food-101 T-ImageNet

LoRA (r = 4) 492K 99.4 94.6 91.2 92.8
SOLAR (r = 4, 8K → 4K) 340K (31% ↓) 99.4 94.5 91.2 92.8

Table 21: Comparison of SOLAR with a budget-matched LoRA (r=2) baseline on ViT-B. While
LoRA (r=2) has a similar parameter count to the compressed SOLAR adapter, it shows a clear
performance degradation. SOLAR maintains performance comparable to the original, higher-rank
LoRA (r=4).

Method #Params CIFAR-10 CIFAR-100 Food-101 T-ImageNet

LoRA (r = 4) 74K 98.3 90.3 87.6 88.8
LoRA (r = 2) 37K 97.1 89.0 85.5 87.4

SOLAR (r = 4, 4K → 1.6K) 41K 98.3 89.8 87.0 87.9
SOLAR (r = 4, 4K → 0.8K) 22K 97.0 89.0 85.2 87.4

Table 22: Comparison of SOLAR and simple SVD truncation against standard LoRA adapters on
multiple vision datasets. The table reports classification accuracy and the corresponding byte footprint
of the adapter parameters after compression. SOLAR consistently reduces the parameter size while
preserving or improving performance.

Method Byte Footprint Oxford Pets SUN397 CUB-200 ImageNet-1K

LoRA (r = 1) 74KB 93.0 74.3 84.7 81.5
LoRA (r = 4) 297KB 94.2 75.6 86.0 82.8
SVD truncation on LoRA 74KB 92.7 73.3 83.6 80.8
SOLAR on LoRA (r = 1) 8KB 92.6 73.9 84.2 81.3
SOLAR on LoRA (r = 4) 8KB 93.9 75.0 85.4 82.4

does not disproportionately harm aggregation performance, even under significant data heterogene-
ity. Our experiment confirms that SOLAR can serve as a post-training, plug-and-play module to
reduce communication costs in standard FL frameworks without requiring complex changes to the
aggregation strategy.

Table 23: Performance of SOLAR on ViT-B under IID and non-IID data distributions in a simulated
10-client federated learning environment.

Method # Params CIFAR-10 (IID) CIFAR-10 (non-IID)

LoRA (r = 4) 74K 93.7 87.4
SOLAR (r = 4, 4K → 2K) 51K (31% ↓) 93.2 86.7
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