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ABSTRACT

Human mobility is crucial for urban planning (e.g., public transportation) and
epidemic response strategies. However, existing research often neglects integrating
comprehensive perspectives on spatial dynamics, temporal trends, and other con-
textual views due to the limitations of existing mobility datasets. To bridge this
gap, we introduce MOBINS (MOBIlity Networked time Series), a novel dataset
collection designed for networked time-series forecasting of dynamic human move-
ments. MOBINS features diverse and explainable datasets that capture various
mobility patterns across different transportation modes in four cities and two coun-
tries and cover both transportation and epidemic domains at the administrative area
level. Our experiments with nine baseline methods reveal the significant impact of
different model backbones on the proposed six datasets.

1 INTRODUCTION

Diverse and explainable human mobility datasets are crucial for advancing urban planning, affecting
public transportation demand (Han et al., 2022), crowd congestion (Singh et al., 2020), traffic
management (Liu et al., 2024), and infection prediction (Panagopoulos et al., 2021). Previous research
focused on forecasting traffic and crowd congestion in specific areas using various transportation
modes, such as subway systems (TianChi, 2019), ride-hailing services (Fivethirtyeight, 2015), and
taxis (TLC, 2009). Additionally, there have been several attempts to predict COVID-19 infection by
analyzing human mobility across different regions (Katragadda et al., 2022).

However, the datasets used in prior studies often fail to capture the diverse nature of human mobility
from multiple perspectives. To comprehensively represent diverse mobility patterns, it is imperative
to observe the movements of a large number of individuals over an extended period, taking into
account various transportation modes. Unfortunately, many studies attempt to estimate demand using
data either in a single transportation mode or in a short time frame (TianChi, 2019; Panagopoulos
et al., 2021). Some efforts to understand human mobility rely on sparse movement data collected
from a limited number of individuals. Despite the importance of understanding human mobility’s
impact on various aspects, such as transportation and epidemics, there is a lack of research that
integrates additional information beyond transportation to enhance the diversity of mobility datasets.

Subway datasets (TianChi, 2019), a networked mobility dataset consisting of stations with high human
traffic volumes, meet many of the specified criteria. Nevertheless, the subway datasets themselves do
not offer multiple perspectives—i.e., diversity. Although there have been several studies to broaden
a single data perspective (Shi et al., 2020), they only integrate mobility data from a single source
with other contextual information that shares the same static topology. It is insufficient, for example,
to simply add weather information as an additional variable to the time series. Instead, it is critical
to use mobility-effected information at specific points of interest (PoIs) to create synergy between
dynamic movements and networked time series. This approach not only enhances performance but
also aids in understanding social phenomena that are difficult to discern from a single data source.

To improve the diversity of human mobility datasets, it is essential to collect data from different
transportation modes across diverse regions over an extended period, capturing numerous daily move-
ments. Moreover, incorporating additional contextual information, such as disease outbreaks, can aid
in capturing various contextual patterns associated with spatio-temporal information. Meanwhile, for
explainability purposes, the instances in the dataset should be organized on a network based on the
spatial connectivity of each explainable area unit, such as an administrative area.
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Figure 1: A structure of mobility networked time series in New York. MOBINS contains three
components: (1) human movements from an origin to a destination over time, (2) spatial structure
based on geographic proximity or a road network, and (3) time-varying features (e.g., numbers of
taxi pick-ups and drop-offs) of each region. The first and third components cover the same period.
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Figure 2: Dynamic edge movements and time-varying infection cases on a static spatial network.
On top of the spatial network, node features represent the number of confirmed cases in each city or
district over time, and edge features represent population movement flows between cities or districts
over time. The increasing number of infection cases at the upper-right node is influenced by the
increasing population flows to that node from other nodes.

Towards diverse and explainable human mobility datasets, we propose MOBINS, MOBIlity
Networked time-Series forecasting benchmark. MOBINS offers a unique combination of origin-
destination movements, a spatial network, and multiple time series, as illustrated in Figure 1. It
involves multiple transportation modes including buses, subways, express buses, and taxis, providing
a rich representation of human mobility patterns. With observations spanning at least two years and
numerous daily movements, MOBINS enables the development and evaluation of advanced forecast-
ing models. To ensure broad applicability, we include the benchmark datasets for transportation and
infection prediction across four cities and two countries. By representing the networked mobility
datasets at the administrative area level and treating each node as a distinct entity, MOBINS helps
the model interpretation of the underlying mobility patterns.

Our dataset collection contains not only network-based interactions between nodes and edges but also
temporal dynamics from time-varying features. Also, all datasets have a spatial network, where nodes
represent locations such as stations, districts, and cities and edges represent connectivity between
nodes based on subway lines, roads, and geographical adjacency. In Figure 2 visualizing part of a
dataset in MOBINS, a spatial network created based on road network information is given as static
data, and dynamic human mobility is represented through dynamic edge movements. In this case, the
positive correlation between human movements and time-varying infection cases is captured. This
kind of insight is difficult to uncover from a straightforward collection of multiple datasets, because
their regions, spatial and temporal resolutions, and collection intervals may not be aligned. Therefore,
this new opportunity clearly demonstrates the innovation and significance of MOBINS.

Our sophisticated and diverse dataset collection is publicly available together with forecasting
methods. A substantial amount of time and effort has been dedicated to gathering comprehensive

2
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datasets from various data sources, as well as merging and preprocessing them in preparation for their
release. We aspire to contribute to the progress of the community that studies human mobility. Our
contributions are as follows:

• Datasets: To the best of our knowledge, this is the first comprehensive dataset collection charac-
terized by diversity and explainability for mobility networked time-series forecasting.

• Experiments: We conduct experiments to predict both time series and origin-destination move-
ments. These experiments are based on various baselines with different backbones, applied to our
dataset collection: transportation and epidemic datasets in four cities and two countries.

• Takeaways: Our experiments highlight the need for an integrated framework that simultaneously
considers the three components—origin-destination movements, a spatial network, and multiple
time series—in Figure 1. These insights guide future research directions in developing advanced
frameworks for mobility networked time-series forecasting.

2 PRELIMINARIES

2.1 FORECASTING WITH TRANSPORTATION TIME-SERIES DATA

Human mobility prediction aims to predict each location’s various attributes such as speed, demand,
and congestion. In the context of traffic forecasting, studies employ traffic speed sensor datasets (Liu
et al., 2024; Li et al., 2017) collected from PeMS (Performance Measurement System). Similarly,
studies on demand or congestion prediction use modified inflow and outflow datasets derived from
various transportation modes, such as subway (TianChi, 2019) or taxi (TLC, 2009) datasets. Unlike
conventional time-series forecasting, mobility time-series forecasting emphasizes both temporal and
spatial modules. Spatial axes are represented using N ×N grids based on given coordinates, while
an adjacency graph captures spatial connectivity derived from PoIs or a correlation generated from
the sensor proximity (Jiang et al., 2021). Alternatively, station-based spatial connectivity is employed
to model the patterns of movements within a given graph (Ou et al., 2020).

2.2 FORECASTING WITH ORIGIN-DESTINATION DATA

Origin-destination (OD) forecasting focuses on predicting the number of movements between the
regions, capturing the interaction patterns within a mobility network. Datasets from ride-hailing
services (Fivethirtyeight, 2015), taxi (TLC, 2009), and subway (TianChi, 2019) provide valuable
information for deriving origins and destinations. OD movements between candidate origins and
destinations, such as grids, stations, and PoIs, are forecasted using spatial and temporal modules (Han
et al., 2022; Wang et al., 2019; Rong et al., 2023). Meanwhile, several studies have attempted to
enhance time-series forecasting performance by incorporating OD movements. For example, research
on COVID-19 prediction in England (Panagopoulos et al., 2021) and USA (Wang et al., 2023) has
used the interaction between nodes, represented by the number of COVID-19 cases, and human
mobility between regions. These studies leverage the relationship between inter-regional movement
and the spread of infections to predict the number of cases in each region (Katragadda et al., 2022).

3 MOBILITY NETWORKED TIME SERIES

3.1 PROBLEM DEFINITIONS

Mobility is represented along both spatial and temporal dimensions. The spatial component is
structured through a graph, denoted as G = (V,E). The node set V = {v1, v2, . . . , vN} captures
locational data, while the edge set E illustrates the connectivity between these nodes. Each node
temporally aggregates node time-series features Xt, encompassing metrics such as transportation
in/out-flow, ridership, infection rates, and additional time-sensitive data, where Xt ∈ RN×d, d is the
number of feature variables, and t is the index of the time. In scenarios where the graph G remains
static, its spatial network A ∈ RN×N is defined through a fixed adjacency matrix. Conversely, in
dynamic settings, G evolves with OD movements Mt ∈ RN×N , where M ij

t accurately measures the
volume of movements from node vi to node vj at each time point t.

3
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Table 1: Comparisons based on the components of mobility networked time series (M: million).

Datasets Spatial
Nodes

Spatial Network OD Movements Node Time-Series Features Time PeriodEdges Domain Daily Movements Modes Daily Amounts Domain
Hangzhou Subway

(TianChi, 2019) 81 85 Station 2.9M Subway 2.9M Subway
In/Out-flow

01/01/2019
– 01/25/2019

LargeST (CA)
(Liu et al., 2024) 8600 201363 Distance - - 187.77M Traffic Flow 01/01/2017

– 12/31/2021

COVID (England)
(Panagopoulos et al., 2021) 129 - - 11.86M Mobile

Device 1975 Infection 03/01/2020
– 04/30/2020

MOBINS
(Transporation)

Seoul 128 290
Station-based

Administrative
Area

2.68M

Smart
Cards

4.02M

Subway
In/Out-flow

01/01/2022
– 12/31/2023

Busan 60 121 0.63M 0.75M 01/01/2021
– 12/31/2023

Daegu 61 123 0.25M 0.34M 01/01/2021
– 12/31/2023

NYC 5 12 Borough 0.10 M Taxi 3.03M Ridership 02/01/2022
– 03/31/2024

MOBINS
(Epidemic)

Korea 16 45 City &
Province 13.41M Smart

Cards 25834 Infection 01/20/2020
– 08/31/2023

NYC 5 12 Borough 2418 Taxi 2038 Infection 03/01/2020
– 12/31/2023

Table 2: Comparisons based on crucial criteria for mobility datasets.

Datasets
Diversity (§3.2.1) Explainability (§3.2.2)

Various
Modes

Various
Regions

Long
Period

Many Daily
Movements

Bi-Modal
Dataset

Explainable
Units

Spatial
Network

Hangzhou Subway (TianChi, 2019) X X X O O O O

LargeST (Liu et al., 2024) O O O - X X O

COVID (Panagopoulos et al., 2021) O O X O O O X

MOBINS O O O O O O O

Definition 3.1 (MOBILITY NETWORKED TIME-SERIES FORECASTING). Given a spatial network
A and a corresponding historical dataset D = {D1, D2, . . . DT }, where Dt = (Xt,Mt) includes
node time-series features Xt and OD movements Mt, the objective of mobility networked time-
series forecasting is to learn a function f that forecasts both the future node times-series features
{XT+1, XT+2, . . . , XT+H} and the future OD movements {MT+1,MT+2, . . . ,MT+H} over a
forecast horizon H .

3.2 LIMITATIONS OF EXISTING MOBILITY DATASETS

Existing mobility datasets, as used in human mobility forecasting, are compared with the characteris-
tics of our MOBINS in Table 1. We categorize existing human mobility datasets into three types. In
the first type, the Hangzhou Subway dataset (TianChi, 2019) offers deep analysis through individual
unit data but is limited by its specific region and short collection period, sharing the limitation also
observed in datasets like the NYC Uber dataset (Fivethirtyeight, 2015). This dataset’s collection
from a single source makes it challenging to capture the diverse nature of human mobility. In the
second type, LargeST (Liu et al., 2024) provides extensive data over a long collection period but
lacks detailed human mobility information, such as OD movements. This limitation is also present
in other PeMS-based datasets, such as the MERA-LA and PEMS-BAY datasets (Li et al., 2017). In
the third type, Panagopoulos et al. (2021) shared human mobility datasets that link movements with
other factors. However, its short collection period makes it challenging to observe long-term trends,
and the absence of a spatial network reduces its utility for spatial analysis.

For urban planning purposes (e.g., public transportation) and epidemic response strategies, human
mobility datasets should provide multiple views of spatial and temporal dimensions, as well as exhibit
qualities such as diversity and explainability. However, many of the datasets currently available do
not meet these criteria. In Table 2, we highlight the specific shortcomings of existing human mobility
datasets, emphasizing their deficiencies in capturing essential qualities.
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Figure 3: Composition of the transportation and epidemic datasets in South Korea.

3.2.1 DIVERSITY

To accurately represent human mobility, datasets should encompass a wide array of contexts. Human
movement can occur through various modes of transportation, such as subways, city buses, long-
distance buses, high-speed trains, taxis, personal vehicles, and ride-hailing services. A dataset
that covers only a single mode of transportation, like the subway dataset (TianChi, 2019), fails to
provide a comprehensive view of mobility. Datasets incorporating various modes are essential for
depicting the diverse nature of human mobility. From a spatial perspective, the mobility datasets
should encompass various regions to capture the different spatial and contextual patterns, such as
commercial, residential, tourist, and mixed-use area patterns, emerging from diverse administrative
areas. For instance, COVID datasets (Panagopoulos et al., 2021) cover four EU countries, and
LargeST (Liu et al., 2024) includes datasets from across California, including Los Angeles, the
Bay Area, and San Diego. From a temporal perspective, datasets should also include long periods
to offer insights into both short-term and long-term mobility patterns. It is critical that datasets
extend beyond simple metrics such as ‘time of day’ or ‘day of the week’ to include annual data,
facilitating a richer temporal context. However, except for LargeST (Liu et al., 2024), many datasets
cover periods of less than one year, with some training models over periods even shorter than one
month (TianChi, 2019; Li et al., 2017). Moreover, mobility datasets must be collected with many daily
movements. Unfortunately, several datasets are employed with only an insufficient number of daily
movements (Wang et al., 2023), which fail to capture representative human mobility. Understanding
human movements is not only about comprehending the movements themselves but also about linking
information strongly correlated with these movements to get insights into social phenomena, which
allows for the exploration of many aspects of human mobility. Therefore, bi-modality is helpful to
comprehend human movements and their strongly correlated phenomena. For example, the COVID
datasets consist of two types of data: OD movements from human mobility between regions based on
mobile device data, and node time-series features from the number of infected individuals.

3.2.2 EXPLAINABILITY

Decision-makers in urban planning require models with high explainability, which necessitates
datasets with inherent explainability. Training models using grid or sensor identifiers (Li et al., 2017;
Liu et al., 2024) is insufficient. Explainable units for locational information, e.g., administrative
areas, are vital. In the spatial dimension of mobility, each dataset should realistically represent spatial
connectivity. For instance, the subway dataset (TianChi, 2019) records connectivity at the station level.
Administrative areas can create a spatial network based on actual spatial adjacency and connectivity,
indirectly helping to understand how the impact of an event spreads out.

4 DATASET COLLECTION: MOBINS

Our MOBINS dataset collection encompasses two domains: transportation and epidemic.

5
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Figure 4: Temporal patterns with positive correlations between inflow/outflow and OD movements
about different periods in Transportation-Busan. Inflow/outflow and OD movements on all nodes are
aggregated hourly or monthly to calculate the average and 95% confidence interval (C.I).

4.1 DATASET CONSTRUCTION

Transportation datasets: The MOBINS dataset collection comprises transportation data from three
South Korea cities (Seoul, Busan, and Daegu) and one U.S. city (New York City). The Transportation-
[Seoul, Busan, Daegu] datasets include node time-series features from subway inflow/outflow data
and OD movements from smart card usage across various public transportation modes. These datasets
use subway maps to represent spatial connectivity, leveraging the commonalities between node
time-series features and OD movements. However, pre-processing is required to align the data to a
consistent spatial and hourly resolution, as node time-series features are generated for each station
and OD movements are based on administrative areas. Figure 3 illustrates that stations within the
same administrative area are consolidated into a single node in the spatial network, resulting in nodes
represented by station-based administrative areas. The Transportation-NYC dataset includes OD
movements from the NYC yellow and green taxi datasets (TLC, 2009) and node time-series features
from NYC subway, tram, and railway ridership data. The spatial network is built at the borough level
to alleviate sparsity from the huge number of nodes. Consequently, NYC taxi records from 263 zones
and NYC ridership data from 428 stations are represented at a consistent resolution.

Epidemic datasets: The MOBINS dataset collection includes epidemic datasets that consist of node
time-series features obtained from COVID-19 infection count and OD movements obtained from
a smart card or taxi trip records in South Korea or New York City (NYC). The “Epidemic” section
in Figure 3 illustrates the composition of the Epidemic-Korea dataset based on the spatial networks
characterized by an adjacency matrix with diagonal ones representing the connectivity between
cities and provinces. The OD movements from buses, urban rails, railways, and long-distance buses
are used to represent inter-city or inter-provincial movements. However, islands are excluded due
to their distinct transportation modes. Each node represents a city or a province, with COVID-19
infection cases recorded at each administrative area. Similarly, for the Epidemic-NYC dataset, node
time-series features are based on daily infection cases from the five boroughs, while OD movements
are comprehensively integrated from the NYC yellow and green taxi datasets (TLC, 2009).

4.2 DATASET STRAWMAN ANALYSIS BUSAN
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Figure 5: Spatial patterns of the OD
movements and hop matrix in the
Transportation-Busan dataset.

Transportation datasets: Figure 4 illustrates both the
‘hours of the day’ and ‘months of the year’ patterns in the
Transportation-Busan dataset, using the long-term data
collection spanning at least two years. The dataset exhibits
a strong positive correlation between OD movements and
node time-series features, as evident from the similar tem-
poral distributions. Though these two modalities may
show different values at a fine granularity, their aggregated
trends coincide with each other, which confirms the va-
lidity of the dataset. Common temporal patterns include
commuting patterns at 8 a.m. and 6 p.m., where both OD
movements and inflow/outflow reach their peak values, as
shown in Figure 4a. Also, these temporal patterns in Figures 4a and 4b highlight the importance of
capturing both short-term and long-term dynamics in mobility networked time-series forecasting.
From a spatial perspective, Figure 5a displays the total sum of OD movements between nodes, and
Figure 5b is a matrix based on hops, indicating the number of nodes to be traversed from one node
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(a) [Korea] Period: 01/01/2020 – 10/31/2021.
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(b) [NYC] Period: 03/01/2020 – 03/31/2022.

Figure 6: Temporal patterns show negative relationships between infection cases and OD movements
in the Epidemic-[Korea, NYC] datasets. The negative correlation is prominent in the yellow back-
ground. Infection cases and OD movements about all nodes are summed daily (M: million).

Table 3: Dataset statistics and default configurations. ‘# Node’ is the number of nodes which indicate
regions (e.g., stations or PoIs). We newly define forecasting target attributes with node time-series
features and OD movements. For every node, the ‘Target Dim.’ is defined by N2 + d ·N , where N
is the number of regions and d is the number of feature variables from each node.

Domain Dataset # Node Target Dim. Total Period Train Days Test Days Time
Interval

Transportation

Seoul 128 16640 01/01/2022 – 12/31/2023 548 182 1 hour

Busan 60 3720 01/01/2021 – 12/31/2023 822 273 1 hour
Daegu 61 3843

NYC 5 30 02/01/2022 – 03/31/2024 593 197 1 hour

Epidemic Korea 16 272 01/30/2020 – 08/31/2023 990 330 1 day

NYC 5 30 03/01/2020 – 12/31/2023 1051 350 1 day

to another on the spatial network. Figure 5 reveals a negative correlation between OD movements
and the hop matrix. In the hop matrix, darker colors represent a lower number of hops in the spatial
network. Conversely, areas with higher (brighter) OD movements are associated with lower (darker)
hops in the hop matrix. This finding suggests that a spatial network and OD movements are correlated,
with higher mobility observed between nodes that have lower hops.

Epidemic datasets: Figure 6 presents the daily COVID-19 infection cases and daily OD movements
for the Epidemic-[Korea, NYC] datasets. Figures 6a and 6b reveal a negative correlation between
infection cases and movements during the early stages of the COVID-19 pandemic. As infection
cases increase, human movements decrease, indicating a change in mobility patterns in response
to the outbreak. From a temporal perspective, the Epidemic-[Korea, NYC] datasets demonstrate a
strong negative correlation between node time-series features (infection cases) and OD movements,
providing comprehensive insights into the interplay between the spread of infection and human
mobility. This temporal analysis emphasizes the importance of considering the dynamic relationship
between human mobility and disease spread.

5 EXPERIMENTS

Table 3 summarizes the statistics of the datasets used in our experiments.

5.1 EXPERIMENTAL SETTINGS

To evaluate our dataset collection with a four-day look-back window and various prediction lengths,
we use Mean Absolute Error (MAE) as an evaluation metric, as shown in Table 4. We assess model
performance across three different prediction lengths: 7, 14, and 30 days, to capture both short-term
and long-term forecasting capabilities. Previous studies have employed prediction lengths ranging
from 96 to 720 steps for long-term forecasting and 6 to 48 steps for short-term forecasting (Wu et al.,
2022). For Transportation-[Seoul, Busan, Daegu, NYC] datasets that have a 1-hour time interval, we
evaluate long-term forecasts at horizons of 168, 336, and 720 hours (i.e., 7, 14, and 30 days). Since
the 1-hour interval results in many time points, these horizons are considered long-term. Meanwhile,
for the Epidemic-[Korea, NYC] datasets, which have a 1-day time interval, the same prediction
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periods of 7, 14, and 30 days represent short-term forecasts. Therefore, our dataset collection serves
as a comprehensive benchmark for both long-term and short-term mobility networked time-series
forecasting, depending on the datasets’ time interval, with prediction lengths consistently set to 7,
14, and 30 days. For fair comparisons, all baselines are configured to follow the same experimental
setup, running for 10 epochs with early stopping.

5.2 BASELINES

In our evaluation with MOBINS, we consider a broad range of traditional and modern forecasting
models as baselines. We choose well-acknowledged prediction models as our benchmark, including
(i) Linear-based models: DLinear, NLinear (Zeng et al., 2023); (ii) RNN-based model: SegRNN (Lin
et al., 2023); (iii) Transformer-based models: Informer (Zhou et al., 2021), Reformer (Kitaev et al.,
2020), PatchTST (Nie et al., 2022); (iv) CNN-based model: TimesNet (Wu et al., 2022); (v) GNN-
based models: STGCN (Yu et al., 2018), MPNNLSTM (Panagopoulos et al., 2021).

Linear models take a linear approach to forecasting, treating time-series data as linear signals.
DLinear and NLinear are known for their simplicity and efficiency, focusing on capturing linear
trends and patterns. The RNN-based model, SegRNN, employs a recurrent neural network to capture
temporal dependencies in the data. RNNs are well-suited for sequential data and are commonly used
for time-series forecasting. SegRNN uses a segmentation-based technique to enhance the ability
to capture long-range dependencies. Transformer-based models use self-attention mechanisms to
capture long-range dependencies in time-series data. Reformer is an efficient variant of Transformer
models that replaces dot-product attention with locality-sensitive hashing, reducing complexity and
employing reversible residual layers to store activations only once during training. PatchTST extends
the Transformer model to time-series data by breaking down the data into smaller patches. This
approach allows the model to focus on localized patterns while leveraging the power of self-attention
to understand broader trends. The CNN-based model, TimesNet, uses convolutional layers to capture
temporal patterns in the data, allowing it to efficiently process time series with high-dimensional
features. This model can identify localized patterns effectively, making it suitable for various time-
series forecasting tasks. The GNN-based models use diverse graphs to deal with spatial information or
integrate other contextual information for time-series forecasting. STGCN uses a static graph derived
from inter-node proximity, while MPNNLSTM utilizes a dynamic graph based on OD movements.

5.3 BASELINE EVALUATION RESULTS

In this section, we outline the key results from our experiments, detailing how each baseline performs
across a range of datasets. The outcomes highlight the relative strengths and weaknesses of different
forecasting models and offer insights into their applicability in diverse contexts.

• Linear models: DLinear and NLinear demonstrated strong performance, achieving the lowest
error rates on several datasets. DLinear was the best model for the Transportation-Daegu dataset
across all prediction lengths and for the Transportation-[Seoul, Busan] datasets for 14-day and
30-day predictions. This result suggests that linear models can be highly effective in scenarios
with simpler data patterns or lower degrees of complexity.

• RNN-based models: SegRNN showed competitive performance but did not achieve the best
scores on any dataset, indicating that RNNs may face challenges with the increased complexity
and longer-range dependencies typically associated with some time-series forecasting tasks.

• Transformer-based models: Recent approaches such as Informer, Reformer, and PatchTST
were assessed. PatchTST excelled in the Transportation-Seoul dataset for the 7-day prediction
length, achieving an average error rate of 0.3995 with a standard deviation of 0.0046. This result
emphasizes the adaptability and versatility of Transformer-based approaches, which are known for
their ability to handle long-range dependencies effectively.

• CNN-based models: TimesNet achieved the lowest error rates in several datasets, including
the Transportation-[Seoul, NYC] and Epidemic-[Korea, NYC] datasets across all prediction
lengths. These findings suggest that CNN-based models can be highly effective in certain contexts,
particularly when dealing with spatio-temporal patterns.

• GNN-based models: STGCN and MPNNLSTM were evaluated, but they did not outperform other
baseline models in any of the datasets. However, their performance was competitive, indicating
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Table 4: Prediction comparison between nine baselines in terms of average MAE and standard
deviation (in parentheses) with all prediction lengths (7, 14, and 30 days) in all datasets. The best
model across each dataset is highlighted in bold. Please note the following abbreviations: “Pred.”
means “Prediction”, “Trans.” refers to “Transportation” and “Epic.” denotes “Epidemic”.

Pred.
day Domain Dataset Linear-based RNN-based Transformer-based CNN-based GNN-based

DLinear NLinear SegRNN Informer Reformer PatchTST TimesNet STGCN MPNNLSTM

7 days

Trans.

Seoul 0.3858
(±0.0068)

0.4021
(±0.0003)

0.7022
(±0.0363)

0.9204
(±0.0018)

0.5637
(±0.0315)

0.3995
(±0.0046)

0.3822
(±0.0062)

0.4053
(±0.0047)

0.6401
(±0.0009)

Busan 0.5743
(±0.0056)

0.5898
(±0.0006)

0.9986
(±0.0087)

3.4773
(±0.0031)

0.7316
(±0.0075)

0.6411
(±0.0052)

0.6103
(±0.0642)

0.6945
(±0.0032)

0.9556
(±0.0035)

Daegu 0.4677
(±0.0004)

0.4919
(±0.0003)

0.7876
(±0.0597)

1.3885
(±0.0038)

0.5338
(±0.0014)

0.4916
(±0.0011)

0.4902
(±0.0087)

0.4901
(±0.0032)

0.7337
(±0.0018)

NYC 0.4491
(±0.0011)

0.4460
(±0.0005)

0.9226
(±0.0462)

0.9147
(±0.007)

0.5503
(±0.0036)

0.4687
(±0.0027)

0.3984
(±0.0024)

0.4601
(±0.0019)

0.6627
(±0.0015)

Epic.
Korea 0.5767

(±0.0031)
0.5828

(±0.0015)
0.5936

(±0.0072)
1.7884

(±0.0013)
0.7137

(±0.0320)
0.6014

(±0.0392)
0.4133

(±0.0058)
0.7427

(±0.0199)
0.7827

(±0.0062)

NYC 0.4830
(±0.0016)

0.4666
(±0.0022)

0.4896
(±0.0179)

1.0627
(±0.0015)

0.5945
(±0.0165)

0.5026
(±0.0044)

0.3948
(±0.0033)

0.5794
(±0.0038)

0.6934
(±0.0062)

14 days

Trans.

Seoul 0.3878
(±0.0047)

0.4072
(±0.0003)

0.7183
(±0.0071)

0.6453
(±0.0043)

0.6310
(±0.0105)

0.4006
(±0.0028)

0.4015
(±0.0312)

0.4182
(±0.0257)

0.6399
(±0.0013)

Busan 0.5830
(±0.0075)

0.5934
(±0.0003)

0.9913
(±0.0243)

0.9482
(±0.0012)

0.7434
(±0.0045)

0.6324
(±0.0023)

0.6175
(±0.0611)

0.6862
(±0.0044)

0.9528
(±0.0040)

Daegu 0.4696
(±0.0004)

0.4942
(±0.0004)

0.8154
(±0.0039)

0.7284
(±0.0004)

0.5486
(±0.0045)

0.4919
(±0.0007)

0.4826
(±0.0033)

0.4888
(±0.0021)

0.7323
(±0.0009)

NYC 0.4579
(±0.0023)

0.4501
(±0.0004)

0.9027
(±0.0237)

0.7229
(±0.004)

0.5623
(±0.0071)

0.4680
(±0.0011)

0.3988
(±0.0017)

0.4629
(±0.0023)

0.6624
(±0.0008)

Epic.
Korea 0.6258

(±0.0006)
0.6088

(±0.0010)
0.6484

(±0.0210)
1.0182

(±0.0116)
0.8025

(±0.0180)
0.6467

(±0.0196)
0.4562

(±0.0063)
0.7726

(±0.0269)
0.8003

(±0.0075)

NYC 0.5008
(±0.0008)

0.4784
(±0.0016)

0.5341
(±0.0298)

0.7046
(±0.0402)

0.6012
(±0.0169)

0.5100
(±0.0048)

0.4026
(±0.0033)

0.5855
(±0.0069)

0.6970
(±0.0095)

30 days

Trans.

Seoul 0.3924
(±0.0020)

0.5949
(±0.0001)

0.7503
(±0.0708)

0.6425
(±0.0006)

0.6446
(±0.0059)

0.4082
(±0.0034)

0.4082
(±0.0095)

0.4215
(±0.0075)

0.6431
(±0.0016)

Busan 0.5985
(±0.0023)

0.6038
(±0.0004)

0.9622
(±0.0453)

0.9365
(±0.0024)

0.7654
(±0.0241)

0.6424
(±0.0028)

0.5969
(±0.0126)

0.6759
(±0.0015)

0.9402
(±0.0001)

Daegu 0.4750
(±0.0004)

0.5006
(±0.0004)

0.8132
(±0.0057)

0.7285
(±0.0021)

0.5849
(±0.0124)

0.4957
(±0.0017)

0.4846
(±0.0023)

0.4923
(±0.0017)

0.7315
(±0.0012)

NYC 0.4747
(±0.0019)

0.4592
(±0.0004)

0.9075
(±0.0185)

0.723
(±0.0013)

0.5709
(±0.0122)

0.4811
(±0.0022)

0.4054
(±0.0040)

0.4627
(±0.0045)

0.6598
(±0.0005)

Epic.
Korea 0.7035

(±0.0028)
0.6479

(±0.0012)
0.7318

(±0.0504)
1.0122

(±0.0077)
1.1443

(±0.0469)
0.7268

(±0.0197)
0.5049

(±0.0118)
0.8537

(±0.0500)
0.8247

(±0.0172)

NYC 0.5304
(±0.0014)

0.4875
(±0.0010)

0.5272
(±0.0286)

0.7243
(±0.0138)

0.6370
(±0.0121)

0.5408
(±0.0068)

0.4068
(±0.0044)

0.6154
(±0.0189)

0.6932
(±0.0104)

that GNN-based approaches have the potential to manage complex network relationships and
scenarios involving spatio-temporal interactions with more dataset-specific adaptations.

5.4 SUMMARY OF FINDINGS

Overall, the results indicate that no single forecasting model outperforms all others across all datasets.
Instead, the choice of the best model depends on the specific characteristics of the dataset and the
underlying data patterns. Linear-based models are effective in simpler scenarios, Transformer-based
approaches excel in contexts with long-range dependencies, CNN-based methods work well with
spatio-temporal data, and GNN-based models are ideal for datasets with complex networks.

• While linear models such as DLinear and NLinear perform well in simpler scenarios, they struggle
with more complex data patterns and non-linear relationships. These models are limited in their
ability to capture intricate temporal dependencies and are not suitable for datasets with highly
dynamic or irregular patterns. However, in our datasets, they are simple but powerful baselines.

• RNN-based models, such as SegRNN, face challenges in handling long-range dependencies and
complex temporal patterns. As the sequence length increases, RNNs suffer from vanishing or
exploding gradients (Pascanu et al., 2013), limiting their effectiveness in capturing long-term
dependencies. Therefore, SegRNN performs badly on our transportation datasets.

• While Transformer-based models like PatchTST demonstrate promising results in handling long-
range dependencies, they struggle with capturing local patterns and short-term dynamics. The
self-attention mechanism in Transformers can be computationally intensive, especially for longer
sequences (Wang et al., 2020), which can limit their scalability. Moreover, Transformers often
require large amounts of training data to achieve optimal performance.

• GNN-based models are designed to handle complex network relationships but require careful
design and fine-tuning to achieve optimal performance. The performance of GNN-based models
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heavily depends on the quality and representation of the graph structure, which can be challenging
to construct for some datasets. Moreover, GNNs can be computationally expensive, especially for
large-scale networks (Ding et al., 2022) and face scalability issues.

These findings provide a valuable reference for researchers and practitioners when selecting appropri-
ate forecasting models for their specific applications. The comprehensive evaluation across diverse
datasets and model architectures reinforces the importance of experimentation and context-driven
decision-making in the field of mobility networked time-series forecasting. However, the limitations
of existing forecasting models highlight the need for innovative approaches that can effectively
address the challenges posed by complex and diverse datasets. That is, a novel approach is anticipated
to outperform DLinear and TimesNet for this challenging problem.

6 FUTURE WORK AND LIMITATIONS

The complexity of mobility patterns requires diverse and comprehensive analysis for mobility
networked time-series forecasting. Therefore, every component of mobility datasets captures spatio-
temporal variability across multiple transportation modes and organizes the datasets into a bi-modal
form, facilitating a comprehensive understanding of mobility trends over time. Additionally, the
structure of the datasets with explainable units under a spatial network increases explainability, aiding
decision-makers in interpreting mobility trends and implications for urban planning (Li et al., 2012;
Hoang et al., 2016) and epidemic control (Ni & Weng, 2009; Katragadda et al., 2022) and these
insights can significantly impact policy-making and economic decisions.

While MOBINS dataset collection serves as a forecasting benchmark, the presence of distribution
shifts due to the changes in the Epidemic-[Korea, NYC] datasets suggests that they can be utilized
for time-series online learning, adapting models in real-time. Additionally, the benchmark can be
extended for research on imputation, clustering of traveling behaviors, and hierarchical time-series
forecasting. Despite the advantages of our datasets, there are a few constraints, such as the fact that
MOBINS is limited to only two domains and its period of dataset collection is mostly only two to
three years, which is not enough to support annual patterns.
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