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The Missing Piece: Standardising for AI-ready
Earth Observation Datasets
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Abstract
Geospatial communities have long relied on stan-
dardised formats for raster and vector data, en-
abling interoperability, stable tool development,
and long-term data preservation. In contrast, Ar-
tificial Intelligence (AI)-ready datasets, particu-
larly those derived from Earth Observation (EO),
lack equivalent conventions. As a result, data pro-
ducers often adopt ad hoc file structures, loosely
defined formats, and inconsistent semantic encod-
ings. This fragmentation hinders interoperability,
complicates reuse, and undermines reproducibil-
ity. We argue that the lack of a standard format
represents a structural bottleneck to scalable scien-
tific progress, especially in the era of foundation
models, where diverse datasets must be combined
for effective training and performance evaluation
in downstream tasks. To address this, we intro-
duce TACO: a comprehensive specification that
defines a formal data model, a cloud-optimized
on-disk layout, and an API for creating and ac-
cessing AI-ready EO datasets.

1. Introduction
The rapid increase in Earth Observation (EO) data, com-
bined with advances in AI and cloud computing, has un-
locked new opportunities for scientific discovery and op-
erational monitoring (Montillet et al., 2024; Eyring et al.,
2024; Hagos et al., 2022). Modern applications range from
methane superemitter detection (Vaughan et al., 2024) and
burned area estimation (Ribeiro et al., 2023) to biodiversity
tracking (Yeh et al., 2021) and global-scale weather fore-
casting (Rasp et al., 2020; Bi et al., 2023). These efforts
increasingly rely on data-driven models, which require large
volumes of curated, structured, and accessible EO data (Re-
ichstein et al., 2019). However, preparing AI-ready EO
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datasets continues to be a significant challenge (Sambasivan
et al., 2021; Francis & Czerkawski, 2024). Most datasets re-
quire extensive preprocessing and reformatting before they
can be integrated into AI pipelines, and only a small fraction
are usable “out of the box”. Although the number of AI-
ready EO datasets has grown substantially, with more than
500 now cataloged (Schmitt et al., 2023), they still lack a
unified structure and consistent metadata conventions. This
fragmentation hinders reproducibility, limits interoperabil-
ity, and slows the development of AI (Dimitrovski et al.,
2023; Long et al., 2021). These issues are especially critical
for training foundation models, which rely on combining
diverse sources (Marsocci et al., 2024).

Insights from scientific communities can guide the devel-
opment of standardised, AI-ready EO datasets. Fields such
as climate science and geographic information systems
(GIS) have long struggled with data standardisation and pro-
vide valuable lessons through widely adopted formats like
NetCDF (Treinish & Gough, 1987; Rew & Davis, 1990) and
GeoTIFF (Ritter & and, 1997; Devys et al., 2019). NetCDF
was initially created as a binary format for scientific data.
However, as its use has grown within the climate science
community, it became evident that the existing specifica-
tion did not sufficiently capture the complexity of domain-
specific metadata. This realization led to the development of
several metadata conventions, most notably the CF (Climate
and Forecast) Conventions (Eaton et al., 2024), which aimed
to standardise the description of scientific variables, coor-
dinates, and attributes. Although these conventions signifi-
cantly improved interoperability, their text-based definitions
introduced ambiguities and made consistent implementation
difficult. To address this, formal data models, such as the
CF data model (Hassell et al., 2017), were introduced years
later, offering a structured and unambiguous interpretation
of what CF-compliant data means. GeoTIFF, in contrast,
took a more pragmatic approach. Designed to facilitate the
exchange of raster data between GIS applications (Ritter
& and, 1997), GeoTIFF embeds minimal but critical meta-
data, specifically the coordinate reference system (CRS) and
geotransform, directly within the file (Devys et al., 2019).
GeoTIFF, unlike NetCDF, was not developed with a com-
prehensive semantic model in mind. However, its simplicity
and user-friendly design have led to widespread adoption.
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In hindsight, both cases underscore the importance of main-
tainability. Crucially, both NetCDF and GeoTIFF have
survived because active communities emerged around them,
building tools, libraries, and practices that reinforced and
extended the specifications over time (Devys et al., 2019;
Maso et al., 2023; Eaton et al., 2024). For CF-compliant
NetCDF datasets, the experience highlighted the limitations
of relying only on text-based definitions: as the authors of
the CF data model argue in their conclusion, “creating an
explicit data model before the CF conventions were writ-
ten would arguably have been preferable. A data model
encourages coherent implementations, which could be file
storage syntaxes or software codes” (Hassell et al., 2017).
In contrast, GeoTIFF illustrates how a well-defined minimal
standard focused on a specific use case can achieve broad
interoperability without necessitating a complex data model.
These lessons highlight the need to balance formal rigor
with practical simplicity. Given the inherent complexity
of AI-ready EO datasets, a formal data model is essential;
however, whenever possible, it should be designed around
the tools and workflows practitioners use on a daily basis to
facilitate smooth adoption.

The FAIR principles (Wilkinson et al., 2016), Findability,
Accessibility, Interoperability, and Reusability, provide a
useful framework to systematically address the challenges
faced by the AI-ready EO datasets. Regarding Findabil-
ity, web standardised metadata schemas (i.e., Schema.org,
Guha et al. 2016) are rarely used to describe AI-ready EO
datasets, limiting their visibility in search engines and data
catalogs (Benjelloun et al., 2024). In terms of Accessibility,
data access often depends on manual downloads or cus-
tom APIs rather than scalable, cloud-native formats that
support partial or selective retrieval. With respect to In-
teroperability, the wide variety of formats, with differing
conventions for byte layout, chunking strategies, compres-
sion, and explicit metadata, creates barriers to seamless
integration across datasets. Finally, on Reusability, many
datasets lack clear licenses, provenance, or documentation,
making them difficult to audit, cite, or extend.

To close these gaps, we propose TACO (Transparent Access
to Cloud Optimized Datasets), a FAIR-compliant, cloud-
optimized specification for organizing AI-ready EO datasets.
TACO files are self-contained, portable, and complete, en-
capsulating all the information required for sample interpre-
tation without relying on external files or software depen-
dencies. Built on widely supported technologies like GDAL
and Apache Parquet, TACO allows for seamless integration
across multiple programming languages. The remainder
of this paper presents the TACO specification in detail and
outlines directions for future development.

Logical 

 B. Data Format

ToolBox Reader

Semantic 

create read

 A. Data Model

 C. API

Structure Description

Figure 1. Conceptual organization of the TACO Specification. The
Data Model (A) is composed of two layers: Logical Structure
(describing the relationships between data and metadata) and Se-
mantic Description (standardised metadata definitions). These
layers collectively define the Data Format (B), specifying how data
is stored, which can be created and accessed through a dedicated
API (C) consisting of the ToolBox (for creation) and the Reader
(for reading).

2. Specification
The TACO specification defines the data model, file for-
mat, and API (Figure 1). Here, the “data model” refers
to an abstract representation of a dataset that defines the
rules, constraints, and relationships connecting metadata
to the associated data assets (Figure 2). The “data format”
defines the physical representation of the dataset, specify-
ing how data and metadata are encoded, stored, and orga-
nized. Finally, the API specifies the programmatic meth-
ods and conventions by which users and applications can
interact with TACO-compliant datasets. By providing a
unique and well-structured interface, the API abstracts the
underlying complexity of the data format and data model,
allowing data users to query, modify, and even integrate
multiple TACO datasets. The specifications presented here
correspond to version 0.2.0; future versions must remain
backward-compatible with this standard.

2.1. Data Model

The logical structure of the TACO data model is illustrated
in the UML diagram in Figure 2. At its core, a TACO
dataset is defined as a structured collection of minimal self-
contained data units, called SAMPLEs, organized within a
container, called TORTILLA, and enriched by dataset-level
metadata.

A SAMPLE represents the minimal self-contained and
smallest indivisible unit for AI training and evaluation. Each
SAMPLE encapsulates the actual data and metadata (Fig-
ure 4). Importantly, each SAMPLE contains a pointer to
a DataSource that specifies how to access the underlying
data. TACO supports three primary DataSource types: (i)
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Figure 2. TACO logical structure. A SAMPLE encapsulates raw data and metadata, with a pointer to a DataSource. Supported data
sources include GDALDataset, BYTES, and TORTILLA. TACO extends TORTILLA by adding high-level dataset metadata.

GDALDataset, for raster or vector data readable by the
GDAL library; (ii) BYTES, representing raw byte streams
for unsupported or custom formats; and (iii) TORTILLA.
While the BYTES option is available, GDALDataset is rec-
ommended for partial read support.

The TORTILLA serves as a container that manages multiple
SAMPLE instances. All SAMPLEs within a TORTILLA
share a uniform metadata schema, enabling the combined
metadata to be represented as a dataframe. Since TOR-
TILLA implements the DataSource interface, it can be ref-
erenced within a SAMPLE, enabling recursive nesting of
TORTILLA containers. This design supports the representa-
tion of hierarchical datasets while preserving the modularity
and self-contained nature of individual SAMPLEs.

Building upon TORTILLA, the TACO class extends this
container structure by adding comprehensive dataset-level
metadata (Figure 5). This additional metadata provides
a semantic overview of the collection, supporting dataset
management, discovery, and interoperability.

2.2. Data Format

The TORTILLA and TACO file formats are designed for
efficient storage of large-scale datasets using a binary serial-
ization scheme (Figure 3). Each TORTILLA file requires a
consistent schema and metadata structure in all its samples.
Metadata is stored in the FOOTER using Apache Parquet,
while the corresponding sample data is stored as a Binary
Large Object (BLOB). Each row in the Apache Parquet file
corresponds to a different SAMPLE object. The BLOB and
the FOOTER are combined within a single file, constituting
the TORTILLA format (see Figure 3). Notably, the format
allows for partial reads of the BLOB during sample-level
access, while the FOOTER is read in full only once during

the loading process. A TACO file extends TORTILLA by
incorporating additional dataset-level metadata (the COL-
LECTION), encoded in JSON at the end of the file. This
design ensures that both TORTILLA and TACO files are
self-contained, portable, and complete, encapsulating all
the information required for sample interpretation without
relying on external files or software dependencies.

Each file begins with a fixed 200-byte HEADER that in-
cludes a 2-byte magic number, an 8-byte offset and length
for the FOOTER, and an 8-byte data partition count indi-
cating how many segments the dataset contains. This count
allows the TACO API to verify completeness and recon-
struct the dataset correctly. TACO files add two more 8-byte
fields for the COLLECTION offset and length. Both for-
mats reserve space in the header for future use: 174 bytes in
TORTILLA and 158 bytes in TACO.

The TACO API (Section 2.3) automatically generates some
fields based on the input data. For example, it records
sample-level offsets and lengths in the FOOTER as columns,
allowing efficient random access to individual samples (il-
lustrated by the red dotted line in Figure 3). To support
multiple programming languages and partial reads, TACO
depends on GDAL’s Virtual File System (VFS), particu-
larly the /vsisubfile/ handler, which treats byte ranges within
a TACO file as standalone GDALDataset objects. This
enables random access without reading the BLOB region.
TACO also supports cloud-optimized access, adding other
GDAL VFS handlers, such as /vsicurl/, /vsis3/, /vsiaz/,
/vsigs/, /vsioss/, and /vsiswift/, ensuring high-performance
reads across diverse cloud storage platforms.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

Figure 3. Structure of the TACO and TORTILLA file format, used as the underlying container for SAMPLEs. The static section encodes
file-level metadata including a magic number (MN), FOOTER offset (FO) and length (FL), data partition (DP), and pointers to the
COLLECTION (CO and CL, only for TACO). The black box illustrates the current API for reading a TACO file: if the SAMPLE is
GDAL-readable, the API returns a GDAL virtual file system (VFS) string snippet.

2.3. API

The TACO API consists of two main components: the Tool-
box and the Reader. The Toolbox provides constructs for
core data classes, SAMPLE, TORTILLA, and TACO, en-
abling users to define and modify the dataset structure en-
tirely through code. It includes a create method, which
serializes both data and metadata into fully compliant TACO
or TORTILLA files. Additionally, an edit method allows
users to update existing files, whether they need to adjust
the COLLECTION or the FOOTER.

The Reader component provides a simple interface to
load and interact with TACO and TORTILLA files. It in-
cludes a load function that retrieves the FOOTER and, if
called with collection=True, also returns the COL-
LECTION. It must also provide a compile function that
creates smaller subsets of existing TACO or TORTILLA
files. The Reader is designed to work with a DataFrame in-
terface in the target programming language (e.g., R, Python,
or Julia), where the FOOTER is mapped to a DataFrame
object. In addition, a read method must be implemented
on the DataFrame interface to expose GDAL Virtual File
System (VFS) access. For instance, consider the black-box
Python code in Figure 3. When ‘load’ is called, the API
converts the FOOTER into a Pandas DataFrame. In the
following line, ‘read’ is invoked. Since the SAMPLEs (each
row in the orange table of Figure 3) are in GeoTIFF format,
the TACO API generates a GDAL VFS string, which can be
interpreted by the GDALOpen class.

3. Discussion and Future work
Several further directions are planned to enhance TACO’s
usability, performance, and interoperability. One major area
of focus is optimizing support for streaming datasets. While
TACO already enables partial reads, this approach can be
inefficient in nested datasets, since inspecting each sample
often results in a separate Parquet read operation, which in
cloud environments translates to an additional HTTP GET
request per sample. This not only increases latency but also
adds operational costs. To mitigate this, future versions
will revise the FOOTER layout to consolidate all sample
metadata upfront. While this will increase the size of the
FOOTER, it will enable data users to have all metadata
locally, nested or not, eliminating the need for repeated re-
mote fetches. Another major direction is the introduction of
metadata conventions tailored to common EO downstream
tasks such as land cover classification, change detection,
methane detection, or flood mapping. These conventions
enhance consistency and interoperability, and TACO will
provide constructors and utilities to create compliant exten-
sion metadata.

Finally, we envision developing a shared C/C++ core TACO
API designed for interoperability across multiple program-
ming languages, including Python, R, Julia, MATLAB,
and JavaScript. This architecture ensures consistent be-
havior and high performance regardless of the language
used. JavaScript API will further support in-browser visual-
ization, enabling users to explore large datasets efficiently.
By offering the same API interface across programming
languages, TACO can be seamlessly integrated into diverse
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AI pipelines, fostering broader adoption and ease of use.
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A. Semantic description of the SAMPLE metadata

Metadata

id: String
file_format: DataSource

Core

data_split: String
Optional

offset: Long
length: Long

Automatic

DataSource

GTiff
JPEG
BYTES
TORTILLA

(...other GDAL formats)

«Extension»
Extension

applyExtension(): void

«Extension»
STAC

crs: String
geotransform: List<Float>
tensor_shape: List<Long>
time_start: Long

Core

time_end: Long
Optional

centroid: List<Float>
Automatic

«Extension»
STATS

mean: Float
min: Float
max: Float
std: Float
var: Float

Automatic

«Extension»
RAI

elevation: Long
pop: Float
gmi: Float
cisi: Float
gdp: Float
hdi: Float
admin0: String
admin1: String
admin2: String

Automatic

«Extension»
Flood

«Extension»
Methane

not implemented yet

not implemented yet

optional extensions
1

0..*

requires

Figure 4. Semantic description of the SAMPLE metadata. The Metadata class contains essential fields for file identification and storage.
An abstract Extension class defines the interface for optional metadata, allowing for expansion. Core fields are required, optional fields
are user-defined, and automatic fields are generated by the TACO API.
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B. Semantic description of the TACO dataset-level metadata.

«Extension»
Extension

applyExtension(): void

Metadata

id: String
taco_version: String
dataset_version: String
extent: Extent
description: String
licenses: Licenses
providers: List<Contact>
data_curator: List<Contact>

Core

title: String
keywords: List<String>
task: TaskType
split_strategy: SplitStrategy
raw_link: Hyperlink
discuss_link: Hyperlink
scientific: Publications
sensors: List<Sensor>

Optional

Licenses

licenseList: List<License>

License

name: String
Contact

name: String
organization: String
emails: List<String>
roles: List<String>

Hyperlink

href: String
description: String

Extent

spatial: List<List<Float>>
temporal: List<List<String>>

«Extension»
RAI

data_collection: String
data_collection_type: String
data_collection_timeframe: String
data_limitations: String
data_biases: String
personal_sensitive_information: String
use_cases: String
data_preprocessing_protocol: String
data_annotation_protocol: String
annotation_platform: String
data_release_maintenance_plan: String

«Extension»
Publications

summary: String
doi: String
publications: List<Publication>

Publication

doi: String
summary: String

«Extension»
Sensor

sensor: String
bands: List<SpectralBand>

SpectralBand

name: String
index: Int
common_name: String
unit: String

optional extensions

1

0..*

1

1

1
*

raw_link
1

0..1
discuss_link

1

0..1

1

0..1

1

0..1

1 0..1

1

0..1

1

*

1 *

1 *

Figure 5. Semantic description of the TACO dataset-level metadata. Core dataset information is structured in the Metadata class, linking
core and optional fields. Extensions, modeled through the abstract Extension class, allow modular inclusion of additional metadata.
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