
Published in Transactions on Machine Learning Research (11/2024)

The Harmonic Indel Distance

Bob Pepin bope@di.ku.dk
Department of Computer Science
University of Copenhagen

Reviewed on OpenReview: https: // openreview. net/ forum? id= HV9lXOIZYw

Abstract

This short note introduces the harmonic indel distance (HID), a new distance between strings
where the cost of an insertion or deletion is inversely proportional to the string length. We
present a closed-form formula and show that the HID is a proper distance metric. Then
we perform an experimental comparison of HID to normalized and unnormalized versions
of the indel distance on benchmark tasks for biomedical sequence data. We finally show
planar embeddings of the benchmark datasets to provide some insights into the geometry
of the metric spaces associated with the different distance metrics.

1 Introduction and Setting

In this paper, we introduce the harmonic indel distance (HID). The HID is a distance metric between strings
that is normalized in the sense that two long strings that differ by a single symbol are closer to each other
than two short strings that differ by a single symbol. Our main technical contribution is Theorem 3.1 which
proves the triangle inequality for HID and shows that it indeed defines a distance metric between strings.

The HID d(A, B) between two strings A and B is defined by

d(A, B) = 2H|A|+|B|−| lcs(A,B)| − H|A| − H|B| (1.1)

where | · | denotes string length, Hn =
∑n

i=1 1/i is the harmonic series and lcs(A, B) denotes the longest
common subsequence (LCS) of A and B. We will also use the notation scs(A, B) for the shortest common
supersequence (SCS) of two strings.

The paper is structured as follows: in the remainder of this section we provide some additional intuition
on the definition of the HID, give an overview of related work and briefly comment on the computational
complexity. Section 3 proves the triangle inequality. In section 4 we first show that HID can be applied to
supervised machine learning tasks by two experiments that apply HID to a classification and a regression task.
Next, we show that HID is applicable to unsupervised learning by giving an example of a data visualization
task. We additionally compare HID to alternative string distances and show that it differs from alternative
distances on some of the tasks. Section 5 wraps up the paper and provides additional suggestions for use
cases of the HID.

In order to gain some intuition for the formula (1.1) we can rewrite it as

d(A, B) =
| scs(A,B)|∑

i=|A|

1
i

+
| scs(A,B)|∑

j=|B|

1
j

(1.2)

using that | scs(A, B)| = |A| + |B| − | lcs(A, B)|. The interpretation is as follows: First we insert characters
to transform A into scs(A, B), where the cost of each insertion is inversely proportional to the length of the
intermediate string (i in the formula) at that step. Then we delete characters to transform scs(A, B) into
B, with the cost of a deletion again being inversely proportional to the length of the intermediate string (j
in the formula) on which it is performed.
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Known dissimilarity measures between strings either do not take the length of the strings into account
(e.g. Levenshtein distance and its variations) or fail the triangle inequality (e.g. Jaro–Winkler similarity,
Sørensen–Dice similarity), see Chapter 11 in Deza & Deza (2013) for an extensive list. In general, the
Steinhaus (or biotope) transform (Deza & Deza, 2013) can be used to transform an unnormalized metric
into a normalized metric while preserving the triangle inequality. We will compare the HID to a normalized
distance based on the Steinhaus transform in the experiments in Section 4 and show that it can give different
results in some data visualization tasks.

Regarding the computational complexity of computing the HID, observe that the formula (1.1) involves only
the harmonic series and the length of the LCS and of the strings A and B. The length of a string can be
expressed as the length of the LCS of a string with itself. The harmonic series can be precomputed into a
lookup table or approximated by the logarithm for large values. The computational complexity of HID is
thus equal to the complexity of computing the LCS, which can be computed using dynamic programming
algorithms with running time quadratic in the length of the strings (Abboud et al., 2015; Bringmann &
Kunnemann, 2015). Recently, algorithms have been developed that approximate the length of the LCS in
linear time, which immediately yield linear time approximations of the HID (Bringmann et al., 2023). Other
approximations of LCS such as for streaming and spall-space settings (Cheng et al., 2021) or differentiable
approximation of the LCS (Yavuz et al., 2018) immediately yield approximations of the HID with the same
properties.

2 Background and related work

The idea behind edit distances it to define the distance between two strings A and B to be the total cost
of transforming A into B through a sequence of operations such as insertions, deletions and substitutions
of characters. In this work, we consider so-called indel string distances, which are a particular case of edit
distances where the possible operations are restricted to insertions and deletions (indels). In particular, a
character substitution corresponds to a deletion followed by an insertion.

The most fundamental indel string distance is simply known as the indel distance (ID), see Deza & Deza
(2013). Like the HID, the ID quantifies the total cost of transforming a string A into a string B using the
operations of inserting and deleting characters. The cost of each operation for ID is 1, whereas for HID the
cost is inversely proportional to the length of the intermediate string. Comparing HID and ID therefore
allows to isolate the impact of normalizing the cost. The ID can be computed from the LCS using the
formula

dID(A, B) = |A| + |B| − 2| lcs(A, B)|.

The Steinhaus transform (biotope transform in Deza & Deza (2013)) is an alternative way of normalizing
string distances. The STID is defined by

dSTID(A, B) = 2dID(A, B)
|A| + |B| + dID(A, B) .

Denoting ∅ the empty string, note that dSTID(A, ∅) = 1 for any string A (since dID(A, ∅) = |A|) and that
dSTID(A, B) ≤ 1 for any A, B. This shows in particular that dSTID embeds the space of strings of arbitrary
length into a sphere of radius 1. The STID is normalized in the sense that if A is a subsequence of B then
dID(A, B) = |B| − |A| and dSTID(A, B) = |B|−|A|

|B| . In contrast for the HID we have dSTID(A, ∅) = H|A| so
that the space of all strings equipped with the STID distance has infinite radius.

The HID is inspired by the contextualized normalized edit distance from de la Higuera & Mico (2008) which
requires the computation of shortest paths over all possible edit operations, implemented using a custom
dynamic programming algorithm. The contextualized normalized edit distance is then the sum of the costs
over the shortest path, where the cost at each step in the path is normalized by the inverse string length at
that step.

From (1.2) it is clear that the HID is identical to the contextualized normalized edit distance restricted to
insertions and deletions (there is only a single shortest path). Our closed-form formula allows us to reduce
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the computational complexity from cubic to quadratic, thereby answering an open question posed in de la
Higuera & Mico (2008). The LCS-based formulation also permits the use of existing libraries for computing
LCS, available in all major programming languages, and to leverage efficiency improvements made in the
algorithms community as described in the next paragraph. We refer to de la Higuera & Mico (2008) for an
overview of the related literature up to 2008. The only subsequent major development known to the authors
is the family of extended edit distances developed in Fuad (2014). The basic idea behind the extended edit
distances is the addition of a penalty term to an edit distance which needs to be tuned to specific problem
instances, in contrast to the parameter-free definition of the HID.

3 Proof of main result

Theorem 3.1. The harmonic indel distance

d(A, B) := 2H|A|+|B|−| lcs(A,B)| − H|A| − H|B|

defines a distance on the space of strings. For any three strings A, B, C it satisfies the distance axioms

• d(A, B) = d(B, A),

• d(A, B) = 0 ⇐⇒ A = B and

• d(A, C) ≤ d(A, B) + d(B, C).

Before proving the theorem, we will start with three preliminary lemmas. In the proofs of the lemmas, we
make extensive use of the observation that if A is a subsequence of B, then d(A, B) = H|B| − H|A| which
follows immediately from the definition.

Lemma 3.2. For any two strings A and B

d(A, B) = d(A, scs(A, B)) + d(scs(A, B), B).

Proof. First note that, if A is a subsequence of B, then d(A, B) = H|B| − H|A|. Now, since | scs(A, B)| =
|A| + |B| − | lcs(A, B)| we have

d(A, scs(A, B)) + d(scs(A, B), B) = H| scs(A,B)| − H|A| + H| scs(A,B)| − H|B| = d(A, B).

Lemma 3.3. For any three strings A, B, C such that A is a subsequence of B and B is a subsequence of C
we have

d(A, C) = d(A, B) + d(B, C).

Proof. By the subsequence relations in the assumption the distances simplify and we get

d(A, B) + d(B, C) = H|B| − H|A| + H|C| − H|B| = H|C| − H|A| = d(A, C).

Lemma 3.4. For any two strings A and B we have

d(A, B) ≤ d(A, lcs(A, B)) + d(lcs(A, B), B).

Proof. By symmetry, we can assume without loss of generality that |A| ≥ |B|. Now, by a direct computation

d(A, B) − d(A, lcs(A, B)) − d(lcs(A, B), B)
= 2H|A|+|B|−| lcs(A,B)| − H|A| − H|B| − (H|A| − H| lcs(A,B)|) − (H|B| − H| lcs(A,B)|)
= 2(H|A|+|B|−| lcs(A,B)| − H|A|) − 2(H|B| − H| lcs(A,B)|).
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The first expression in parentheses is a sum of |B| − | lcs(A, B)| terms, all of which are less or equal than
1/|A| so that

H|A|+|B|−| lcs(A,B)| − H|A| =
|A|+|B|−| lcs(A,B)|∑

i=|A|

1/i ≤ |B| − | lcs(A, B)|
|A|

.

The second expression in parentheses above is also a sum of |B| − | lcs(A, B)| terms, all of which are greater
or equal than 1/|B|, and by our assumption 1/|B| ≥ 1/|A|. Therefore

H|B| − H| lcs(A,B)| =
|B|∑

i=| lcs(A,B)|

1/i ≥ |B| − | lcs(A, B)|
|B|

≥ |B| − | lcs(A, B)|
|A|

.

This shows that
d(A, B) − d(A, lcs(A, B)) − d(lcs(A, B), B) ≤ 0

which is the conclusion.

Proof of Theorem 3.1. The symmetry d(A, B) = d(B, A) follows trivially from the definition. So does the
“if” direction of the second property. For the only if direction, note that d(A, B) can be decomposed into a
sum of two positive terms

d(A, B) = (H| scs(A,B)| − H|A|) + (H| scs(A,B)| − H|B|)

so that d(A, B) = 0 implies | scs(A, B)| = |A| = |B| and A = B. To prove the triangle inequality, we use the
notation and property scs(A, B, C) = scs(A, scs(B, C)) = scs(scs(A, B), C) and apply in turn Lemmas 3.2,
3.4, 3.3 twice and 3.2 again to obtain

d(A, B) + d(B, C)
= d(A, scs(A, B)) + d(scs(A, B), B) + d(B, scs(B, C)) + d(scs(B, C), C)
≥ d(A, scs(A, B)) + d(scs(A, B), scs(A, B, C)) + d(scs(A, B, C), scs(B, C)) + d(scs(B, C), C)
= d(A, scs(A, B, C)) + d(scs(A, B, C), C)
≥ d(A, scs(A, C)) + d(scs(A, C), C)
= d(A, C).

4 Experiments

The purpose of the experiments in this section is to compare the HID to other string distances when applied
to machine learning tasks: the indel distance (ID) and the Steinhaus transform indel distance (STID). Note
that we do not compare against the contextualized normalized edit distance since it is identical to the HID if
we restrict the operations to insertions and deletions as we do in this paper. In addition, the cubic complexity
of the normalized edit distance would be prohibitive for our experiments.

We perform experiments on two benchmark tasks for biological sequence regression and classification re-
spectively. We also present planar embeddings for each dataset using t-SNE to gain some insight into the
geometries of the spaces associated to the different distances. Table 1 presents statistics on the datasets
used. As our main goal is to evaluate the differences between HID, ID and STID, we do not aim to beat
state-of-the-art deep learning models but we do include standard baselines to put our results into perspec-
tive. We do not claim either that HID is inherently superior to any of the other distances. Each distance
embeds the data in a metric space with a different geometry, and the most appropriate geometry depends
on the task at hand. Our experiments do show that the different metrics considered result in differences
in performance for some but not all tasks and that normalization by string length is beneficial for the two
supervised learning tasks considered.
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All benchmark experiments used support vector machines with radial basis function kernels based on the
string metrics described above. The SVM margin as well as the RBF variance hyperparameters were opti-
mized using the Tree-structured Parzen Estimator algorithm implemented in the Optuna software (Akiba
et al., 2019). We used the SVM implementation from Scikit-Learn (Pedregosa et al., 2011). The hyperpa-
rameters used are included in Table 4 in the appendix.

Table 1: Dataset statistics

Number of Sequences Sequence Length
Dataset Training Validation Test Min. Max. Median
ncRNA 25371 6430 13646 42 500 123
FLIP Mixed 22335 2482 3134 20 35213 413
FLIP Human 7287 861 1945 39 34350 477.0
FLIP Human-Cell 5149 643 1366 44 34350 469.0

4.1 Classification

The classification task involves the classification of sequences of non-coding RNA according to their type
and uses the Dataset2 dataset from the benchmark paper Creux et al. (2024). This dataset was chosen
because non-coding RNA are some of the shortest biological sequences, and we expect the benefit of the
normalization in HID to be higher for shorter sequences. The dataset provides training and test splits, and
a validation set was generated by random splitting of the provided training set.

The results are shown in Table 2. We see that the SVMs with HID and STID kernels are competitive with
the strongest baseline, which uses a recurrent neural network architecture, whereas the SVM with ID kernel
underperforms 4 out of the 6 baselines whereas .

Table 2: Classification accuracy on ncRNA benchmark

Model Accuracy (%)
SVM (HID) 97.3
SVM (STID) 97.0
SVM (ID) 90.6
ncrna-deep 97.1
MFPred 96.5
RNAGCN 94.7
NCYPred 91.6
nRC 78.3
ncRDense 73.5

Baseline values are taken from Creux et al. (2024)

4.2 Regression

We evaluate the regression performance on the thermostability prediction task from the FLIP benchmark for
protein sequences (Dallago et al., 2021). This is a challenging benchmark which includes a carefully selected
train-validation-test split based on biological considerations. The metric adopted by the benchmark is the
Spearman correlation coefficient. The baselines include language models pre-trained on a large corpus of
sequence data (ESM), the same models trained only on the benchmark training set (ESM-untrained) as well
as a CNN and a ridge regression model.
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Our results are presented together with the baselines in Table 3. The SVMs using normalized distances HID
and STID are competitive with all baselines that have not been pre-trained on a large corpus of external
sequence data, whereas the unnormalized ID SVM only outperforms the weakest baseline.

Table 3: Spearman correlation coefficient on FLIP thermostability prediction task

Model Mixed Human Human-Cell
Models pretrained on large corpus
ESM-1b (per AA) 0.68 0.71 0.76
ESM-1v (per AA) 0.65 0.77 0.78
Models without pretraining
SVM (HID) 0.42 0.59 0.56
SVM (STID) 0.40 0.59 0.57
SVM (ID) 0.20 0.39 0.40
ESM-untrained (per AA) 0.44 0.44 0.46
ESM-untrained (mean) 0.36 0.48 0.49
CNN 0.34 0.50 0.49
Ridge 0.17 0.15 0.24

Baseline values are taken from Dallago et al. (2021)

4.3 Metric Embedding

To give some more insights into the different geometries entailed by the HID, STID and ID, we provide
t-SNE plots of the training datasets for ncRNA (Figure 1) and FLIP (Figure 2). The objective of t-SNE
is to embed a dataset into the plane while keeping the distances in the embedding as consistent as possible
with the distances in the original space. Each of the distance metrics defines a metric space of strings, and
we expect the t-SNE embedding to reflect as much as possible the geometry of the dataset, viewed as points
in the string space entailed by the respective distance metric.

For the ncRNA dataset, a visual inspection of Figure 1 suggests that all distances result in a similar geometry,
with the normalized distances leading to a slightly sharper separation for example between red and green
classes.

On the other hand, for the FLIP datasets (Figure 2) the different distances lead to clearly different embed-
dings. The HID leads to a dataset geometry that can be embedded as a crescent shape, with lower-valued
points concentrating in one end and higher-valued points concentrating in the other end, especially for the
Human and Human-Cell datasets.

The embedding for STID still shows concentration of high- and low-value points in different regions of the
embedding space and recovers the same local structures as the HID embedding. However, it does not show
any non-trivial global structures, which might be due to the geometry of the STID metric space being less
compatible with Euclidean plane geometry than the HID metric space (recall that the STID space is a sphere
of radius 1 where all elements are at distance at most 1 from each other). This interpretation is supported
by the STID embedding having significantly higher KL divergence than the HID embedding in the t-SNE
objective (Table 5 in the appendix).

Finally, the ID produces a radially symmetric embedding with regularly spaced patterns that do not show
any obvious relation to the target value. The regular spacing could be caused by the large number of points
that each are at the same integer distance from each other.
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HID STID ID

Figure 1: T-SNE plots of ncRNA training dataset using different distance metrics. Colors correspond to
different classes. All metrics recover the clusters present in the data with HID and STID obtaining a slightly
better separation.
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Figure 2: T-SNE plots of FLIP training datasets using different distance metrics. Colors correspond to
different target values for thermostability in the regression task. HID shows both global and local structure,
STID shows local structure and ID shows little apparent structure.
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5 Discussion

We introduced the harmonic indel distance and showed that it defines a distance metric. We showed that the
harmonic indel distance outperforms the unnormalized indel distance on two biomedical sequence regression
and classification tasks while showing comparable performance to a normalized version of the indel distance.
Our experiments on planar embeddings with t-SNE show that HID and STID can in some, but not all,
cases result in different planar embeddings. The original motivation for the development of the HID was
classification of web browsing histories, which involves significantly shorter data with more variation in the
length of sequences, where the lack of normalization in ID is expected to have an even larger impact. It is
striking that there are still such large differences in performance on datasets where the median length is in
the hundreds of characters, and it could be interesting to evaluate the HID on shorter sequences, for example
within social sequence classification. Unfortunately, as of the time of submitting this manuscript, we were
not aware of any suitable benchmark datasets with baselines containing short sequences with high variability
in sequence length.
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A Experimental Details

The SVMs used in the experiments have regularization parameter C and the kernels used are k(A, B) =
e−γ dist(A,B)2 where dist is either HID or ID and with the values for C and γ given in Table 4.

All t-SNE embeddings used a target perplexity of 30 and were run for the number of iterations given in
Table 5.

Table 4: Hyperparameters

Dataset Distance Metric γ C

ncRNA HID 8.443116755229333 99.5612463103948
ncRNA STID 9.91793899262693 1.485844877379199
ncRNA ID 0.00012069602683643651 0.3910622178775264
FLIP Mixed HID 2.694680159717171 5.303192435782873
FLIP Mixed STID 3.4503356492866195 1.696222220623828
FLIP Mixed ID 0.00014856111427324835 2.018895367718889
FLIP Human HID 3.0711811333241985 8.972094031636633
FLIP Human STID 2.2338162722360013 2.472937362472116
FLIP Human ID 0.00010361128449343376 0.6548096783807119
FLIP Human-Cell HID 2.211198503980429 5.994311048805454
FLIP Human-Cell STID 4.758786457584244 29.469372386529603
FLIP Human-Cell ID 0.00010519254700762129 0.02074221663631553

Table 5: Hyperparameters and statistics for t-SNE plots

Dataset Distance Metric Iterations KL Divergence
ncRNA HID 2048 1.876777
ncRNA STID 2048 1.889551
ncRNA ID 2048 2.277497
FLIP Mixed HID 8192 2.349853
FLIP Mixed STID 8192 2.582142
FLIP Mixed ID 8192 3.670377
FLIP Human HID 8192 1.968790
FLIP Human STID 8192 2.299917
FLIP Human ID 8192 3.546993
FLIP Human-Cell HID 8192 1.891862
FLIP Human-Cell STID 8192 2.250279
FLIP Human-Cell ID 8192 3.459189
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A.1 Effect of perplexity parameter on t-SNE plots

To validate that the t-SNE plots in the main paper are representative, we here show the plots resulting from
a parameter sweep of the perplexity parameter from 2−2 to 212 for the Human Cell dataset from FLIP. The
plots show that our observation that HID preserves more global structure in the t-SNE plots than STID is
robust to different parameter values. All embeddings were run to convergence.

The resulting plots are included as a separate file in the supplementary material.
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