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ABSTRACT

Machine unlearning, the process of selectively removing data from trained models,
is increasingly crucial for addressing privacy concerns and knowledge gaps post-
deployment. Despite this importance, existing approaches are often heuristic and
lack formal guarantees. In this paper, we analyze the fundamental utility, time,
and space complexity trade-offs of approximate unlearning, providing rigorous
certification analogous to differential privacy. For in-distribution forget data—data
similar to the retain set—we show that a surprisingly simple and general procedure,
empirical risk minimization with output perturbation, achieves tight unlearning-
utility-complexity trade-offs, addressing a previous theoretical gap on the separation
from unlearning “for free” via differential privacy, which inherently facilitates the
removal of such data. However, such techniques fail with out-of-distribution
forget data—data significantly different from the retain set—where unlearning time
complexity can exceed that of retraining, even for a single sample. To address this,
we propose a new robust and noisy gradient descent variant that provably amortizes
unlearning time complexity without compromising utility.

1 INTRODUCTION

The ability to selectively remove or “forget” portions of the training data from a model is a crucial
challenge in modern machine learning. As deep neural networks are widely deployed across diverse
domains like computer vision, natural language processing, and healthcare, there is a growing need
to provide individuals with granular control over their data. This need is amplified by stringent
regulations like the European Union’s General Data Protection Regulation (GDPR) (Voigt and
Von dem Bussche, 2017), which enshrines the “right to be forgotten,” mandating data erasure upon
request. Machine unlearning is designed to address this regulatory necessity by systematically
removing the influence of specific training examples without compromising model performance.

Recent years have seen growing interest in developing algorithms that can efficiently “unlearn”
data (Bourtoule et al., 2021; Nguyen et al., 2022; Foster et al., 2024). The proposed approaches range
from methods like fine-tuning on the retained data while increasing loss on the forget data (Graves
et al., 2021; Kurmanji et al., 2024), to more sophisticated techniques that provoke catastrophic
forgetting by fine-tuning specific model layers (Goel et al., 2022). Unfortunately, many of these
methods lack formal guarantees, rendering it unclear when they comply with regulatory standards.

Unlearning guarantees fall into two main categories: exact and approximate. Exact unlearning
guarantees that the unlearned model has never used the forget data, often relying on sharding-based
strategies (Bourtoule et al., 2021), which can be space-inefficient and lack error bounds. In contrast,
approximate unlearning ensures only that the unlearned model is statistically close to one retrained
from scratch without the forget data, akin to the protections offered by differential privacy (Dwork
et al., 2014). While approximate unlearning provides a more feasible path in terms of efficiency and
practicality, it has yet to fully address certain key challenges.

Although several prior works have explored approximate unlearning (Ginart et al., 2019; Neel et al.,
2021; Chourasia and Shah, 2023), the theoretical understanding of the utility-complexity trade-offs
remains incomplete. This is particularly true for challenging scenarios, such as when the forget data is
out-of-distribution or adversarial. Such cases are highly relevant to practice, given the heterogeneity
of user data and the observation that deletion requests are often non-random (Marchant et al., 2022).

∗Work done while at Stanford University.
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Addressing these challenges is crucial for making machine unlearning a practical and reliable tool for
real-world applications, where models must adapt to diverse data and privacy requirements.

Contributions. Our work draws a comprehensive landscape of the utility-complexity trade-offs in
approximate unlearning. We tackle two complementary unlearning scenarios: the in-distribution
case where the forget data is an arbitrary subset of samples from the test distribution, and we initiate
the study of the out-of-distribution scenario where the forget data may arbitrarily deviate from the
test distribution. In particular, our results precisely quantify the number of samples that can be
deleted under fixed utility and computation budgets, assuming the empirical loss has a unique global
minimum. We analyze the unlearning-training pair consisting of a generic optimization procedure and
output perturbation, and show that it can unlearn a constant fraction of the dataset, independently of
the model dimension, thereby settling a theoretical question by Sekhari et al. (2021) and highlighting
a tight separation with differential privacy. In the case of out-of-distribution forget data however,
we show that this approach can fail to unlearn a single sample in the worst case. We propose a new
algorithm using a robust and efficient variant of gradient descent during training, which ensures a
good initialization for unlearning independently of the forget data. We show that this algorithm can
certifiably unlearn a constant fraction of the dataset, with near-linear time and space complexities.

1.1 RELATED WORK

The concept of machine unlearning, introduced by Cao and Yang (2015), has gained significant
attention following the introduction of data-privacy laws, such as GDPR, which mandates that
companies must delete user data upon request. Cao and Yang (2015) studied exact unlearning, where
the unlearned model behaves as if it had never used the forget data, deterministically mimicking
retraining from scratch. However, this strict approach is only feasible for highly structured problems.
Bourtoule et al. (2021) tackled this challenge with a partitioning strategy, training ensemble models
on different data shards. While this approach reduces the need for full retraining when deleting data,
it incurs high space complexity and lacks utility guarantees.

To address the impracticalities of exact unlearning, researchers have shifted focus to approximate
unlearning, a relaxation of exact unlearning. Ginart et al. (2019) pioneered this direction, proposing
that an unlearned model should be statistically indistinguishable from one retrained without the
forget data, similar to the guarantees offered by differential privacy (Dwork et al., 2014). This laid
the foundation for a spectrum of algorithms that balance computational efficiency and approximate
unlearning guarantees (Guo et al., 2020; Izzo et al., 2021; Golatkar et al., 2021; Gupta et al., 2021;
Neel et al., 2021; Chourasia and Shah, 2023).

Certified unlearning. A growing body of work focuses on providing guarantees for approximate
unlearning, particularly for convex learning problems (Guo et al., 2020; Neel et al., 2021; Sekhari
et al., 2021). Methods such as gradient descent with output perturbation (Neel et al., 2021) have
proven effective in the convex case, even with sequential deletion requests. However, little is known
about the generalization guarantees of such approaches, even in the convex case. Notably, Sekhari
et al. (2021) first proved generalization guarantees for unlearning with a Newton step and output
perturbation (Guo et al., 2020), uncovering a separation with differential privacy. Specifically,
differential privacy without an unlearning mechanism is inherently limited in the number of deletions
it can handle, while maintaining fixed utility on the test loss, a result further tightened by Huang
and Canonne (2023). Our work improves upon this by showing that gradient descent with output
perturbation offers sharper guarantees. Moreover, we demonstrate that this approach cannot be further
improved in general, based on lower bounds from robust mean estimation (Diakonikolas et al., 2019).

Unlearning out-of-distribution data. Despite advances in certified unlearning, most approaches
assume that the forget data is drawn from the same distribution as the training data, leaving out-of-
distribution (OOD) data and adversarially corrupted forget data underexplored. Recent works (Goel
et al., 2024; Pawelczyk et al., 2024) highlight the complexities that arise when deletion requests
target OOD or corrupted samples. These scenarios are especially relevant given that deletion requests
are often non-random, originating from diverse and heterogeneous data sources. Moreover, studies
like Marchant et al. (2022) have demonstrated that OOD data can be manipulated to slow down
certified unlearning algorithms, triggering retraining and causing denial-of-service-like attacks. Our
work addresses these issues by introducing a new unlearning algorithm that is robust to OOD and
corrupted data. The algorithm achieves near-linear time complexity for unlearning, independently of
the nature of the forget data, and thus is provably robust against attacks like Marchant et al. (2022).
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2 PROBLEM STATEMENT

Consider a training set S made of n examples independently drawn from distribution D over data
space Z , and a loss function ℓ : Rd ×Z → R. Our goal is to minimize the population risk:

min
θ∈Rd

L(θ) := Ez∼D [ℓ(θ; z)]. (1)

During the training phase, we aim at solving the empirical risk minimization problem:

min
θ∈Rd

L(θ;S) := 1

|S|
∑
z∈S

ℓ(θ; z). (2)

Let A denote the training procedure aimed at solving (2) on the full dataset S, producing a model
A(S) ∈ Rd. Next, consider a scenario where a subset Sf ⊂ S of size f := |Sf |, referred to as
the forget set, needs to be removed. The goal is then to update the model based on the retain set
S \ Sf . Ideally, one would retrain using only the retain set with A. However, due to time and space
constraints, an approximate unlearning procedure U is used, which modifies the original model A(S),
knowing the forget data Sf , to be as close as possible to A(S \ Sf ).

Paraphrasing prior definitions (Ginart et al., 2019; Neel et al., 2021; Sekhari et al., 2021), we formalize
approximate unlearning as statistical indistinguishability between the unlearned model and the model
trained without the forget data. We denote by Z∗ := ∪k≥1Zk the space of datasets with elements in
Z , i.e., S ∈ Z∗ if and only if it is a tuple of data points from Z .
Definition 1 ((q, ε)-approximate unlearning). Let q > 1, ε ≥ 0, and Sf ⊂ S ∈ Z∗. Let A : Z∗ →
Rd be a training procedure, and U : Z∗ × Rd → Rd be a randomized unlearning procedure. The
pair (U ,A) achieves (q, ε)-approximate unlearning, on training set S with forget set Sf , if

Dq(U(Sf ,A(S)) ∥ U(∅,A(S \ Sf ))) ≤ ε, (3)
where Dq(· ∥ ·) is the Rényi divergence of order q between the probability distributions of its

arguments, defined for every P1, P2 as Dq(P1 ∥ P2) :=
1

q−1 logEX∼P2

(
P1(X)
P2(X)

)q
.

Above, U(Sf ,A(S)) is the unlearned model and U(∅,A(S \ Sf )) is the model trained without
the forget data and no unlearning request. The guarantee conveys similar semantics to differential
privacy (Dwork et al., 2014); an adversary cannot confidently distinguish the unlearned model from
the model trained without the forget data, with any auxiliary information.

In this work, we are interested in the trade-off of approximate unlearning with time and space com-
plexity, for different types of data distributions, including when the forget data is out-of-distribution or
corrupt. We define below the utility objectives of the in- and out-of-distribution unlearning scenarios.
Throughout, we assume that the loss function ℓ is lower bounded, so that all minima are well-defined.
Definition 2. Let 0 ≤ f < n. Consider a data distribution D over data space Z , unlearning-training
pair (U ,A), and recall that Z∗ := ∪k≥1Zk is the set of training sets. Denote the population risk
minimum by L⋆ := minθ∈Rd L(θ), and independent and identical sampling of n and n− f samples
from D by S ∼ Dn and Sr ∼ Dn−f , respectively.1 We define the following utility objectives:

1. In-distribution: LID(U ,A) := ES∼Dn

[
max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L⋆

]
,

2. Out-of-distribution: LOOD(U ,A) := ESr∼Dn−f

[
max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,A(Sr ∪ Sf )))− L⋆

]
.

In other words, our in-distribution objective of unlearning quantifies the retained utility when, starting
from a training set consisting of n samples from the test distribution D, an adversary can remove
up to f samples arbitrarily. This objective has been previously considered by Sekhari et al. (2021).
Besides, our out-of-distribution objective considers the worst case where the training set is composed
of up to f samples that may not be from D and are to be removed, while the remainder Sr of the
training set is sampled from D. This objective has not been theoretically studied before in the context
of unlearning, and covers practical cases where user data is very heterogeneous, or shifts over time,
or is corrupt and needs to be “corrected” (Goel et al., 2024).

1In the out-of-distribution scenario, we denote the retain data by Sr for clarity, since it is sampled from the
test distribution independently of the forget data.
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3 DELETION CAPACITY & REDUCTION TO EMPIRICAL RISK MINIMIZATION

We begin by introducing the notion of deletion capacity to compare different unlearning-training
pairs. Our approach extends the formalism from Sekhari et al. (2021), which defined deletion capacity
in terms of utility. In this work, we introduce the concept of computational deletion capacity, which
accounts for the time complexity incurred during unlearning.
Definition 3. Let n, α, T > 0 and consider a pair (U ,A) satisfying approximate unlearning.

1. The utility deletion capacity is the maximum number f(α) < n of samples that can be
removed while ensuring the error remains at most α. We refer to it as in-distribution if the
error is measured as LID, and out-of-distribution if it is measured as LOOD.

2. The computational deletion capacity is the maximum number f(T ) < n of samples that can
be removed within a given time complexity budget T .

We observe that we aim for unlearning-training pairs which have the largest deletion capacities
possible. Besides, introducing a computational aspect to deletion capacity is natural because, without
computational constraints, the utility deletion capacity could be maximized by retraining from scratch.
Similarly, the computational deletion capacity could be maximized by outputting a data-independent
model. Consequently, we are interested in optimizing both capacities simultaneously—that is,
maximizing the number of deletions while keeping both the error and time complexity low. An
analogous space complexity analysis could also be considered, but for simplicity, we omit it here.

We now show that it is sufficient to analyze the deletion capacity using the empirical loss, via the
following generic bounds on the population risk with worst-case deletion, under standard assumptions.
Proposition 1. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth.
Consider any unlearning-training pair (U ,A), with output θ̂ := U(Sf ,A(S)), and recall the notation
of Definition 2. By denoting θ⋆ := argminθ∈Rd L(θ) and σ2

⋆ := Ez∼D ∥∇ℓ(θ⋆; z)∥2, we have

LOOD(U ,A) ≤ L

µ
ESr∼Dn−f [ max

Sf∈Z∗

|Sf |≤f

L(θ̂;Sr)− L⋆,Sr
] +

L

2µ2

σ2
⋆

n− f
. (4)

Moreover, if ∇ℓ(θ⋆; z), z ∼ D, is sub-Gaussian with variance proxy σ2, we have

LID(U ,A) ≤ L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
] +

8Lσ2

µ2

1 + f ln(n)

n− f
. (5)

Finally, assuming that for every z ∈ Z , the loss ℓ(· ; z) is R-Lipschitz, we have

LID(U ,A) ≤ 2L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(θ̂;S \ Sf )− L⋆,S\Sf
] +

4LR2

µ2

(
1

n
+

(
f

n

)2
)
. (6)

This proposition provides a general strategy for analyzing the utility deletion capacity: if the worst-
case empirical loss on the retain data is bounded by αemp, this directly implies a bound on the number
f of deletions that can be made, with a guaranteed bound on the population risk. Importantly, we do
not need to directly analyze the generalization error of the unlearned model.

For example, for a target population risk bound α ≥ αemp in the Lipschitz in-distribution case with
n = Ω( 1

α ), we deduce that the utility deletion capacity is at least of the order Ω(n
√
α), i.e., a constant

fraction of the full dataset when assuming a constant error. Another interesting example is ‘lazy’
differential privacy, that is ignoring removal requests after training with differential privacy, which
satisfies approximate unlearning. Standard empirical risk minimization bounds of DP-SGD (Bassily
et al., 2014), with the group differential privacy property adapted for Rényi differential privacy (Bun
and Steinke, 2016), yield the empirical risk error Õ( f

2d
n2ε ). Plugging this bound in Proposition 1

guarantees a utility deletion capacity of Ω(n
√

αε
d ). This has recently been shown to be tight for

‘lazy’ differential privacy (Huang and Canonne, 2023), after converting from Rényi to approximate
differential privacy (Mironov, 2017). We defer the full proofs related to this section to Appendix B.
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Algorithm 1 Unlearning via Noisy Minimizer Approximation
Input: Target empirical loss αemp, smoothness constant L, model dimension d, unlearning budget ε.
Training: get θA

S by approximating the risk minimizer on S up to squared distance αempε
4Ld

Unlearning: get θU by approximating the risk minimizer on S \ Sf up to squared distance αempε
4Ld

after initializing at θA
S

return θU +N (0,
αemp

2Ld Id)

4 IN-DISTRIBUTION UNLEARNING VIA NOISY RISK MINIMIZATION

In this section, we tackle in-distribution unlearning. Specifically, we analyze Algorithm 1, a generic
unlearning framework assuming access to an approximate empirical risk minimization oracle. We
show that any instance of this framework can minimize the in-distribution empirical utility objective
to an arbitrary precision, subject to standard assumptions.

Notation. For any dataset S, we denote by θ⋆
S the global minimizer of the empirical loss L(· ;S),

which we assume to be unique. In particular, for any forget set Sf ⊂ S, we denote by θ⋆
S\Sf

the
unique global minimizer of the empirical loss L(· ;S \ Sf ). Consider an arbitrary optimization
procedure A (for training or unlearning) which outputs θA

S ∈ Rd when given dataset S and initial
model θ0 ∈ Rd. For every αprecision,∆initial > 0, we denote by TA(αprecision,∆initial) the compu-
tational complexity required by A to guarantee on any dataset S that, given the initialization error
∥θ0 − θ⋆

S∥2 ≤ ∆initial, its output θA
S satisfies ∥θA

S − θ⋆
S∥2 ≤ αprecision.

Theorem 1. Let ε, αemp,∆ > 0, 0 ≤ f < n, and q > 1. Assume that, for every z ∈ S, the loss
ℓ(· ; z) is L-smooth, and ε ≤ d. Assume that for every Sf ⊂ S, |Sf | ≤ f, the empirical loss over
S \ Sf has a unique minimizer. Recall the notation above and consider the unlearning-training pair
(U ,A) in Algorithm 1, with the initialization error of A on set S being at most ∆.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over worst-case S \ Sf , at
most αemp in expectation over the randomness of the algorithm, with time complexity:

Training: TA

(αempε

4Ld
,∆
)
, Unlearning: TU

(
αempε

2Ld
,
αempε

4Ld
+ 2 max

Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2).
Theorem 1 covers most optimization methods that have been studied in certified unlearning, such as
gradient descent (Neel et al., 2021; Chourasia and Shah, 2023) and the Newton method variants (Guo
et al., 2020; Sekhari et al., 2021), and also covers unexplored methods with known gradient complexity
bounds, e.g., those using stochastic gradients, projection, or acceleration (Bubeck et al., 2015). The
proof crucially leverages the existence of a unique minimizer as an anchor point to guarantee statistical
indistinguishability. In fact, the optimization oracle needs to reach the aforementioned minimizer
up to precision proportional to the unlearning budget ε, to compensate for the output perturbation
in Algorithm 1. Our approach generalizes previous analyzes (Neel et al., 2021), especially since it
does not require convexity; it applies to several non-convex problems with a unique global minimizer,
such as principal component analysis and matrix completion (Zhu et al., 2018).

Thanks to Theorem 1 and Proposition 1, we get Corollary 2 using gradient descent as an approximate
risk minimizer, which has worst-case time complexity O(nd log( ∆

αemp
)) for strongly convex problems,

for precision αemp and initialization error ∆, with space complexity O(d) (Nesterov et al., 2018).

Corollary 2. Let ε, α, αemp > 0, and q > 1. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is
µ-strongly convex and L-smooth, and that ε ≤ d. Consider the unlearning-training pair (U ,A)
in Algorithm 1, where the approximate minimizers are obtained via gradient descent2, and denote
θ0 ∈ Rd the initial model for training.

2i.e., the sequence θt+1 = θt − 2
L+µ

∇L(θt;S), t ≥ 0, and we replace S with S \ Sf for unlearning. We
explain how to compute the number of iterations in Remark 6.
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Algorithm In-Distribution Deletion Capacity

Utility Computational

Algorithm 1 with Gradient Descent Ω(n
√
α) Ω

(
nαε exp(T/2nd)

Rd∥θ0−θ⋆
S∥

)
Newton step (Sekhari et al., 2021) Ω̃

(
nmin

{
α,

√
αε1/4

d1/4

})
(n− 1)1T=Ω(nd2+d2.38)

Differential Privacy (Huang and Canonne, 2023) Θ̃
(
n
√

αε
d

)
(n− 1)1T=Ω(n2d)

Lower bound (Lai et al., 2016) O(n
√
α) —

Table 1: Summary of the in-distribution deletion capacities (the larger, the better), for error bound
α > 0 and computation budget T > 0, under approximate unlearning for strongly convex tasks, with
smoothness and Lipschitz assumptions. We adapt the unlearning guarantees of prior works to align
with our Rényi divergence-based definition. The last two reported computational capacities mean
that no sample can be unlearned unless T exceeds the proven time complexity of these algorithms.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over the worst-case S \Sf ,
at most αemp in expectation over the randomness of the algorithm with time complexity:

Training: O
(
nd log

(
d

αempε
∥θ0 − θ⋆

S∥2
))

, Unlearning: O
(
nd log

(
1 +

d

αempε
max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2)),
ignoring dependencies on L, µ. Also, the space complexity is O(d) during training and unlearning.

For αemp ≤ α, assuming that for every z ∈ Z the loss ℓ(· ; z) is R-Lipschitz, the in-distribution
population risk LID(U ,A) is at most α, if n = Ω( 1

α ) and f = O(n
√
α), with time complexity:

Training: O
(
nd log

(
d

αε
ES ∥θ0 − θ⋆

S∥2
))

,Unlearning: O
(
nd log

(
1 +

d

αε

(
Rf

n

)2))
.

From the result above, we deduce that Algorithm 1, when using gradient descent, achieves an in-
distribution utility deletion capacity of at least Ω(n

√
α). This implies that a constant fraction of the

dataset can be deleted while maintaining a fixed error α. Our analysis establishes a tight separation
from ‘lazy’ differential privacy methods, where deletion capacity degrades polynomially with the
model dimension d (Huang and Canonne, 2023). Furthermore, this result answers a previously open
theoretical question by Sekhari et al. (2021), demonstrating that dimension-independent utility dele-
tion capacity is indeed possible. Notably, the best previously known utility deletion capacity decayed
with dimension as Ω(1/d1/4)(Sekhari et al., 2021). We experimentally validate this separation in
Figure 1a on a simple least-squares regression task. Finally, we observe that the deletion capacity of
Ω(n

√
α), as established in Corollary 2, is tight in terms of its dependence on both α and n, following

lower bounds for robust mean estimation (Lai et al., 2016; Diakonikolas et al., 2019).

Meanwhile, the time complexity bound from Corollary 2 increases logarithmically with the fraction
of unlearned samples. In fact, for a time budget T , the computational deletion capacity given in
Corollary 2 is Ω(nαε exp(T/2nd)

Rd∥θ0−θ⋆
S∥ ) in the Lipschitz case. This capacity scales linearly with n and

exponentially with the time budget T , effectively counterbalancing the linear dependence on the
unlearning budget ε, the error α, and the inverse of the dimension d. The exponential dependence
on T is highly favorable, though it stems from the logarithmic gradient complexity of gradient
descent in strongly convex tasks which degrades to quadratic for non-strongly convex tasks (Nesterov
et al., 2018). In contrast, the algorithm by Sekhari et al. (2021), which achieved the previously best
known utility deletion capacity, has a time complexity of O(nd2 + d2.38) and space complexity
of O(d2). Consequently, its computational deletion capacity is zero unless the time budget T is
at least Ω(nd2 + d2.38). This comparison shows that gradient descent with output perturbation
possesses the largest known in-distribution deletion capacities. A summary comparison of various
unlearning-training approaches, in terms of in-distribution deletion capacity, is provided in Table 1.
We defer the full proofs related to this section to Appendix C.
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(a) In-distribution error LID versus dimension d for
Algorithm 1 and DP-SGD, with f = 20 forget data
out of 10, 000 samples. The error of DP-SGD is near-
linear, showing a separation between differential pri-
vacy and unlearning.
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(b) Out-of-distribution error LOOD versus number of
unlearning iterations for Algorithms 1 and 2, using
gradient descent, with f ∈ {1, 0.1n, 0.45n} forget
data out of 1, 000 samples. The per-iteration cost is
the same for both algorithms. The unlearning time of
Alg. 1 (non-robust) can be 10× slower than Alg. 2.

Figure 1: Numerical validation on a linear regression task with synthetic data for the same unlearning
budget, with in-distribution (left) and out-of-distribution (right) data. The in-distribution forget set is
sampled at random, while the out-of-distribution data is obtained by shifting labels with a fixed offset.
Additional details and results on real data can be found in Appendix F.

Thanks to our analysis, we also establish that the certified unlearning algorithms of Neel et al. (2021)
and Chourasia and Shah (2023), whose generalization bounds were unknown prior to our work, also
achieve a tight in-distribution utility deletion capacity, and a similar computational deletion capacity
as Algorithm 1 with gradient descent. We recall that there are a few algorithmic differences with the
latter, since Neel et al. (2021) additionally project models and Chourasia and Shah (2023) add noise
at each iteration and assume a Gaussian model initialization.

5 OUT-OF-DISTRIBUTION UNLEARNING VIA ROBUST TRAINING

While Corollary 2 offers significant improvements over existing results, extending the same analysis
to the out-of-distribution utility objective poses new challenges. In this case (Definition 2), the forget
data can deviate arbitrarily from the test distribution. Unfortunately, the time complexity of the
unlearning procedure in Algorithm 1 grows with the distance between the risk minimizers on the
retain and full data, which becomes unbounded for the out-of-distribution objective, defeating the
purpose of approximate unlearning in the worst case.

This is formalized in Proposition 2 below, where a single forget sample can make the initialization
error of the unlearning phase of Algorithm 1 arbitrarily large. This naturally implies that the
unlearning phase can be slower than retraining from an arbitrary initialization in the worst case,
following standard gradient complexity lower bounds (Nesterov et al., 2018, Theorem 2.1.13).

Proposition 2. Let f = 1, n > 1, and Z = Rd. There exists a 1-strongly convex and 1-smooth loss
function, such that for any retain set Sr ∈ Zn−1, any (unlearning-time) initialization error ∆ > 0,

there exists a forget sample zf ∈ Z achieving
∥∥∥θ⋆

Sr∪{zf} − θ⋆
Sr

∥∥∥2 = ∆, where θ⋆
Sr

and θ⋆
Sr∪{zf}

denote the empirical minimizers on the retain and full data respectively.

To address this, we introduce a new strategy where the goal is to train on the full dataset in a manner
that minimizes sensitivity to the forget data. Since the forget data is unknown in advance and could
potentially consist of outliers, we employ a robust variant of gradient descent. Specifically, we use
the coordinate-wise trimmed mean of the gradient batch, as described in Algorithm 2. The trimmed
mean, with trimming parameter τ , is a classical robust statistics method that computes the average of
all inputs along each coordinate, excluding the τ smallest and largest values (Lugosi and Mendelson,
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Algorithm 2 Unlearning via Robust Training and Noisy Minimizer Approximation
Input: Target empirical loss αemp, smoothness L and strong convexity constant µ, model dimension
d, initial model θ0, trimming parameter f , unlearning budget ε, initialization error ∆.
Training: get θAf

S by robust training (shown below) for K ≥ 2L
µ log( Ld∆

αempε
) iterations:

for t = 0 . . .K − 1 do
Compute the trimmed mean gradient: rt = TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn))

/* average all but f largest and smallest inputs coordinate-wise */

Update the model: θt+1 = θt − 1
Lrt

end
Unlearning: get θU by approximating the risk minimizer on S \ Sf up to squared distance αempε

4Ld by
initializing at θAf

S
return θU +N (0,

αemp

2Ld Id)

2019). This approach allows mitigating the influence of outliers in the forget data, thereby enhancing
the efficiency and robustness of the unlearning phase, especially in out-of-distribution settings.

In this section, we denote the retain set as Sr for clarity since, in the out-of-distribution scenario, it is
sampled from the test distribution and independent of the forget data. Recall also that θ⋆,Sr is the
minimizer of the empirical loss over the retain data. In order to analyze Algorithm 2, we introduce
the interpolation error constant on the retain set Sr, and its counterpart on the data distribution D
given k ≥ 1 samples, respectively:

E(Sr) :=
1

|Sr|
∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 , Ek(D) := ESr∼Dk E(Sr). (7)

The smaller the interpolation error, the easier it is to fit the retain data, and the underlying data distri-
bution, respectively. Theorem 3 below states the unlearning and utility guarantees of Algorithm 2.

Theorem 3. Let ε, α, αemp, µ, L > 0, q > 1, θ0 ∈ Rd, and f ≤ nmin
{

1
3 ,

12µ
5(L−µ)

}
. Assume that,

for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth. Consider the unlearning-training
pair (U ,A) in Algorithm 2 using gradient descent during unlearning.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over Sr with worst-case
Sf , at most αemp in expectation over the randomness of the algorithm with time complexity:

Training: O
(
nd log

(
d

αempε

∥∥θ0 − θ⋆
Sr

∥∥2)), Unlearning: O
(
nd log

(
1 +

d

αempε

f

n
E(Sr)

))
,

ignoring dependencies on L, µ. The space complexity is O(d) during training and unlearning. For
αemp ≤ α, the out-of-distribution risk LOOD(U ,A) is at most α, if n − f = Ω( 1

α ), with time
complexity:

Training: O
(
nd log

(
d

αε
ESr

∥∥θ0 − θ⋆
Sr

∥∥2)),Unlearning: O
(
nd log

(
1 +

d

αε

f

n
En−f (D)

))
.

Theorem 3 addresses the primary limitation of the analysis in Corollary 2: the unlearning time
complexity is now independent of the out-of-distribution forget data. Instead, the time complexity is
driven by the interpolation error on the retain set, rather than the difference between the empirical
risk minimizers of the retain and full datasets. The interpolation error is often much smaller for well-
behaved data or sufficiently large models, making this bound much tighter. In contrast, Corollary 2
could only achieve such a strong bound under the restrictive assumption that the loss is Lipschitz,
which either results in an excessively large Lipschitz constant, e.g., scaling with model dimension for
bounded domains, or excludes fundamental tasks, such as unconstrained least-squares regression.
We numerically validate the robustness of the unlearning time complexity of Algorithm 2, compared
to Algorithm 1, in Figure 1b on a least-squares regression task, and defer additional validation on
real data to Appendix F. Finally, this result is the first theoretical guarantee against the so-called
slow-down attacks in machine unlearning (Marchant et al., 2022), which not only seek to undermine
utility but also unlearning efficiency, denial-of-service attacks.
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Algorithm Out-of-Distribution Deletion Capacity

Utility Computational
Lipschitz Non-Lipschitz

Algorithm 1 with Gradient Descent n− 1 Ω
(
nαε exp(T/2nd)

Rd∥θ0−θ⋆
S∥

)
0

Algorithm 2 with Gradient Descent Ω(n) Ω
(
n α2ε2 exp(T/nd)

E(Sr)d2∥θ0−θ⋆
Sr

∥2

)
Ω
(
n α2ε2 exp(T/nd)

E(Sr)d2∥θ0−θ⋆
Sr

∥2

)
Table 2: Summary of the out-of-distribution utility and computational deletion capacities (the larger,
the better) due to Theorem 3, for error bound α > 0 and computation budget T > 0, under
approximate unlearning for strongly convex tasks, with smoothness and Lipschitz assumptions. The
out-of-distribution deletion capacities of previous certified unlearning methods are not known.

The proof of Theorem 3 demonstrates that the robust training procedure converges to the empirical
risk minimizer on the retain data, up to a small error proportional to the interpolation error and the
fraction of forget data. This provides a solid initialization for the unlearning process, with limited
sensitivity to the forget data. Additionally, although Algorithm 2 sets the trimming parameter τ equal
to the size f of the forget set for simplicity, the result of Theorem 3 only requires τ = O(f), and can
be straightforwardly extended to any trimming parameter by replacing f by τ in the theorem. We
defer the full proofs related to this section to Appendix E.

The most significant aspect of deletion capacity here is computational. Since we can achieve
arbitrarily small empirical risk, Proposition 1 implies that the out-of-distribution utility deletion
capacity of Algorithm 2 is only constrained by the fact that the trimming parameter can be at most
half of the full data size, and is thus a constant fraction Ω(n) of the dataset. On the other hand,
manipulating the time complexity bound from Theorem 3 gives a computational deletion capacity

of Ω
(
n α2ε2 exp(T/nd)

E(Sr)d2∥θ0−θ⋆
Sr
∥2

)
. This bound is favorable due to its exponential dependence on the time

budget T , linear dependence on n, and the typically small interpolation error, which effectively
mitigates the quadratic dependence on other parameters. In contrast, the unlearning time complexity
of any unlearning-training pair covered by Theorem 1 maybe unbounded, as explained earlier in the
section, and thus the corresponding deletion capacity is zero. Still, with the restrictive assumption that
the initialization error is bounded on the full dataset and that the loss is R-Lipschitz everywhere, the

computational deletion capacity from Corollary 2 is Ω
(
nαε exp(T/2nd)

Rd∥θ0−θ⋆
S∥

)
, which may be hindered

by a large Lipschitz constant R and does not benefit from a small interpolation error. A summary
comparison of our unlearning-training approaches, in terms of out-of-distribution deletion capacity,
is provided in Table 2.

6 CONCLUSION

This paper presents a theoretical analysis of the utility and complexity trade-offs in approximate
machine unlearning. By focusing on both in-distribution and out-of-distribution unlearning scenarios,
we offer new insights into how much data can be unlearnt under fixed computational budgets while
maintaining utility. For the in-distribution case, we showed that a simple optimization procedure with
output perturbation can unlearn a constant fraction of the dataset, independent of model dimension,
thereby resolving a key theoretical question and highlighting the clear distinction from differential
privacy-based unlearning approaches. For the more challenging out-of-distribution case, we intro-
duced a robust gradient descent variant, ensuring a good initialization for unlearning and certifiably
unlearning a constant fraction of the data with near-linear time and space complexity.

An intriguing open research direction is the analysis of unified upper bounds on the deletion capacities,
specifically what is the maximum number of samples that can be deleted for a fixed computation,
utility, and unlearning budgets? So far, only an upper bound on the utility deletion capacity is known.
Other open research directions include extending our results to more complex models, and improving
utility and time complexity guarantees in real-world applications.
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APPENDIX ORGANIZATION

The appendix is organized as follows. Appendix A recalls standard definitions used in the main paper.
Appendix B contains the proof of Proposition 1. Appendix C contains the proofs of Theorem 1 and
Corollary 2. Appendix D contains the proof of Proposition 2. Appendix E contains the proof of
Theorem 3. Finally, Appendix F contains additional details on Tables 1 and 2 and Figure 1.

A STANDARD DEFINITIONS

We recall that we assume the loss function to be differentiable everywhere, throughout the paper.
Definition 4 (L-smoothness). A function L : Rd → R is L-smooth if, for all θ,θ′ ∈ Rd, we have

L(θ′)− L(θ)− ⟨∇L(θ),θ′ − θ⟩ ≤ L

2
∥θ′ − θ∥2 .

The above is equivalent to, for all θ,θ′ ∈ Rd, having ∥∇L(θ′)−∇L(θ)∥ ≤ L ∥θ′ − θ∥ (see, e.g.,
(Nesterov et al., 2018)).
Definition 5 (µ-strong convexity). A function L : Rd → R is µ-stongly convex if, for all θ,θ′ ∈ Rd,
we have

L(θ′)− L(θ)− ⟨∇L(θ),θ′ − θ⟩ ≥ µ

2
∥θ′ − θ∥2 .

Moreover, we recall that strong convexity implies the Polyak-Łojasiewicz (PL) inequality (Karimi
et al., 2016) 2µ (L(θ)− L⋆) ≤ ∥∇L(θ)∥2. Note that a function satisfies L-smoothness and µ-strong
convexity inequality simultaneously only if µ ≤ L.
Definition 6 (R-Lipschitz). A function L : Rd → R is R-Lipschitz if, for all θ,θ′ ∈ Rd, we have

|L(θ′)− L(θ)| ≤ R ∥θ′ − θ∥ .

The above is also equivalent to all the gradients being bounded by R in norm.

B PROOF OF PROPOSITION 1

Lemma 4. Let 0 ≤ f < n. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and
L-smooth. Then, we have

ES∼Dn [L(θ⋆
S)− L⋆] ≤

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n

. (8)

Moreover, if ∇ℓ(θ⋆; z), z ∼ D, is sub-Gaussian with variance proxy σ2, then

ES∼Dn

[
max
Sf⊂S
|Sf |≤f

L(θ⋆
S\Sf

)− L⋆

]
≤ 8Lσ2

µ2

f ln(n) + 1

n− f
. (9)

Proof. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth. Then,
successively smoothness and then strong convexity, we have

ES∼Dn [L(θ⋆
S)− L⋆] ≤

L

2
ES∼Dn ∥θ⋆

S − θ⋆∥2 ≤ L

2µ2
ES∼Dn ∥∇L(θ⋆;S)∥2

=
L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n

.

The last equality is simply due to S consisting of n i.i.d. samples from D. This proves the first
statement.

Now, assume that ∇ℓ(θ⋆; z), z ∼ D, is sub-Gaussian with variance proxy σ2. This implies that,
for every Sf , |Sf | ≤ f , ∇L(θ⋆;S \ Sf ) is sub-Gaussian with variance proxy σ2

|S\Sf | ≤
σ2

n−f , as the

13



Published as a conference paper at ICLR 2025

average of sub-Gaussian of independent sub-Gaussian random variables (see (Rigollet and Hütter,
2015, Section 1.2)). As a standard property of sub-Gaussian variables (Pauwels, 2020, Theorem 2.1.1),
we thus have

ES∼Dn exp

(
n− f

8σ2
∥∇L(θ⋆;S \ Sf )∥2

)
≤ 2.

Using the above, and Jensen’s inequality, we have

ES∼Dn max
Sf⊂S
|Sf |≤f

∥∇L(θ⋆;S \ Sf )∥2 =
8σ2

n− f
ES ln

exp

n− f

8σ2
max
Sf⊂S
|Sf |≤f

∥∇L(θ⋆;S \ Sf )∥2



≤ 8σ2

n− f
ln

ES exp

n− f

8σ2
max
Sf⊂S
|Sf |≤f

∥∇L(θ⋆;S \ Sf )∥2



=
8σ2

n− f
ln

ES max
Sf⊂S
|Sf |≤f

exp

(
n− f

8σ2
∥∇L(θ⋆;S \ Sf )∥2

)

≤ 8σ2

n− f
ln

 ∑
Sf⊂S
|Sf |≤f

ES exp

(
n− f

8σ2
∥∇L(θ⋆;S \ Sf )∥2

) ≤ 8σ2

n− f
ln

(
2

f∑
k=0

(
n

k

))
.

We now use the following consequence of the binomial theorem:
∑f

k=0

(
n
k

)
≤ ∑f

k=0 n
k1f−k ≤

(n+ 1)f . We obtain

ES∼Dn max
Sf⊂S
|Sf |≤f

∥∇L(θ⋆;S \ Sf )∥2 ≤ 8σ2

n− f
ln

(
2

f∑
k=0

(
n

k

))
≤ 8σ2

n− f
ln
(
2(n+ 1)f

)
=

8σ2

n− f
(ln(2) + f ln(n+ 1)) .

Now, we use successively smoothness and strong convexity of the loss function, then the inequality
above:

ES∼Dn

[
max
Sf⊂S
|Sf |≤f

L(θ⋆
S\Sf

)− L⋆

]
≤ L

2
ES∼Dn max

Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S\Sf

− θ⋆
∥∥∥2

≤ L

2µ2
ES∼Dn max

Sf⊂S
|Sf |≤f

∥∇L(θ⋆;S \ Sf )∥2

=
L

2µ2

8σ2

n− f
(ln(2) + f ln(n+ 1)) .

Simplifying the above upper bound concludes the proof.

Lemma 5 ((Neel et al., 2021; Sekhari et al., 2021)). Let 0 ≤ f < n and S ∈ Zn. Assume that, for
every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and R-Lipschitz. We have

max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥ ≤ 2Rf

µn
.

Proposition 1. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth.
Consider any unlearning-training pair (U ,A), with output θ̂ := U(Sf ,A(S)), and recall the notation
of Definition 2. By denoting θ⋆ := argminθ∈Rd L(θ) and σ2

⋆ := Ez∼D ∥∇ℓ(θ⋆; z)∥2, we have

LOOD(U ,A) ≤ L

µ
ESr∼Dn−f [ max

Sf∈Z∗

|Sf |≤f

L(θ̂;Sr)− L⋆,Sr
] +

L

2µ2

σ2
⋆

n− f
. (4)

14



Published as a conference paper at ICLR 2025

Moreover, if ∇ℓ(θ⋆; z), z ∼ D, is sub-Gaussian with variance proxy σ2, we have

LID(U ,A) ≤ L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
] +

8Lσ2

µ2

1 + f ln(n)

n− f
. (5)

Finally, assuming that for every z ∈ Z , the loss ℓ(· ; z) is R-Lipschitz, we have

LID(U ,A) ≤ 2L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(θ̂;S \ Sf )− L⋆,S\Sf
] +

4LR2

µ2

(
1

n
+

(
f

n

)2
)
. (6)

Proof. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth. Let
ε, δ, α > 0. Moreover, denote by θ⋆

S\Sf
and θ⋆

S the minimizers of the empirical loss functions
L(· ;S \ Sf ) and L(· ;S), respectively. For the out-of-distribution case, we denote by θ⋆

Sr
the

minimizer of the empirical loss function L(· ;Sr). These exist and are well-defined by strong
convexity of the loss function.

Lipschitz in-distribution case. Assume in addition that, for every z ∈ Z , the loss ℓ(· ; z) is R-
Lipschitz. To analyze the population loss, we recall that the loss function is R-Lipschitz, L-smooth,
and µ-strongly convex by assumption, which allows using Lemma 4 as follows:

ES∼Dn [L(θ⋆
S)− L⋆] ≤

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n

≤ LR2

2µ2n
. (10)

Therefore, we have
LID(U ,A) := ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L⋆]

= ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
S)] + ES∼Dn [L(θ⋆

S)− L⋆]

≤ ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
S)] +

4R2

µn
.

Now, we use that the loss function is L-smooth by assumption, followed by Jensen’s inequality, which
yields

LID(U ,A) ≤ L

2
ES∼Dn max

Sf⊂S
|Sf |≤f

∥U(Sf ,A(S))− θ⋆
S∥2 +

LR2

2µ2n

≤ LES∼Dn max
Sf⊂S
|Sf |≤f

∥∥∥U(Sf ,A(S))− θ⋆
S\Sf

∥∥∥2 + LES∼Dn max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2 + LR2

2µ2n
.

We recall from (Sekhari et al., 2021, Lemma 6) that, by the Lipschitzness of the loss, we have

max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥ ≤ 2Rf

µn
.

Taking squares and expectations and then plugging the above inequality in the previous one yields

LID(U ,A) ≤ LES∼Dn max
Sf⊂S
|Sf |≤f

∥∥∥U(Sf ,A(S))− θ⋆
S\Sf

∥∥∥2 + 4L

(
Rf

µn

)2

+
LR2

2µ2n
.

Because the loss function is µ-strongly convex by assumption, we have
µ

2
max
Sf⊂S
|Sf |≤f

∥∥∥U(Sf ,A(S))− θ⋆
S\Sf

∥∥∥2 ≤ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
.

By taking expectations on the bound above and plugging it into the previous bound, we obtain

LID(U ,A) ≤ 2L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
] +

4LR2

µ2

(
1

n
+

(
f

n

)2
)
.

Simplifying and rearranging terms concludes the proof of the Lipschitz in-distribution case.
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Sub-Gaussian in-distribution case. Assume now that ∇ℓ(θ⋆; z), z ∼ D, is sub-Gaussian with
variance proxy σ2. Together with the strong convexity and smoothness assumptions, we can use the
second statement of Lemma 4 as follows:

LID(U ,A) := ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L⋆]

= ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
S\Sf

)] + ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(θ⋆
S\Sf

)− L⋆]

≤ ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
S\Sf

)] +
8Lσ2

µ2

f ln(n) + 1

n− f
.

Now, we use successively that loss is smooth then strongly convex, to show the following for any S:

L(U(Sf ,A(S)))− L(θ⋆
S\Sf

) ≤ L

2

∥∥∥U(Sf ,A(S))− θ⋆
S\Sf

∥∥∥2
≤ L

µ

(
L(U(Sf ,A(S));S \ Sf )− L(θ⋆

S\Sf
;S \ Sf )

)
.

Plugging the above back in the previous inequality, we obtain

LID(U ,A) := ES∼Dn [ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S)))− L⋆]

≤ L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
] +

8Lσ2

µ2

f ln(n) + 1

n− f
.

This concludes the proof of the sub-Gaussian in-distribution case.

Out-of-distribution case. Using Lemma 4, the smoothness and strong convexity assumptions
imply

ESr∼Dn−f [L(θ⋆
Sr
)− L⋆] ≤

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n− f

. (11)

Therefore, we have

LOOD(U ,A) := ESr∼Dn−f [ max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,A(Sr ∪ Sf )))− L⋆]

= ESr∼Dn−f [ max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
Sr
)] + ESr∼Dn−f [L(θ⋆

Sr
)− L⋆]

≤ ESr∼Dn−f [ max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,A(S)))− L(θ⋆
Sr
)] +

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n− f

.

Successively using smoothness and strong convexity, and recalling the notation L⋆,Sr
:=

L(θ⋆
Sr
;Sr) = minθ∈Rd L(θ;Sr), we have

L(U(Sf ,A(S)))− L(θ⋆
Sr
) ≤ L

2

∥∥U(Sf ,A(S))− θ⋆
Sr

∥∥2 ≤ L

µ
(L(U(Sf ,A(S));Sr)− L⋆,Sr ) .

After taking a maximum over Sf and expectations and plugging this last bound in the one before, we
get

LOOD(U ,A) ≤ L

µ
ESr∼Dn−f [ max

Sf∈Z∗

|Sf |≤f

L(U(Sf ,A(S));Sr)− L⋆,Sr
] +

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n− f

.

This concludes the proof.
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C PROOFS OF THEOREM 1 AND COROLLARY 2

Theorem 1. Let ε, αemp,∆ > 0, 0 ≤ f < n, and q > 1. Assume that, for every z ∈ S, the loss
ℓ(· ; z) is L-smooth, and ε ≤ d. Assume that for every Sf ⊂ S, |Sf | ≤ f, the empirical loss over
S \ Sf has a unique minimizer. Recall the notation above and consider the unlearning-training pair
(U ,A) in Algorithm 1, with the initialization error of A on set S being at most ∆.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over worst-case S \ Sf , at
most αemp in expectation over the randomness of the algorithm, with time complexity:

Training: TA

(αempε

4Ld
,∆
)
, Unlearning: TU

(
αempε

2Ld
,
αempε

4Ld
+ 2 max

Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2).
Proof. Let q > 1, ε, αemp > 0, 0 ≤ f < n, and S ∈ Zn a given training set. Assume that the loss
function is L-smooth at any data point, and that ε ≤ d. Denote by θ⋆

S\Sf
and θ⋆

S the minimizers of
the empirical loss functions L(· ;S \ Sf ) and L(· ;S), respectively. These exist and are well-defined
by assumption. Also, following Algorithm 1, denote by θA

S\Sf
and θA

S the model obtained using A
over the training sets S \ Sf and S, respectively. Moreover, denote by θU the model obtained after
using U over the training set S \ Sf before Gaussian noise addition.

For any precision αemp > 0, initialization error ∆ > 0, we denote the worst-case computational com-
plexity of the training procedure to approximate the empirical risk minimizer up to squared distance
αemp by TA(αemp,∆), and by TU (αemp,∆) during unlearning. Therefore, at the computational

cost of TA(
αempε
4Ld ,∆) during training and max Sf⊂S

|Sf |≤f

TU (
αempε
4Ld ,

∥∥∥θA
S − θ⋆

S\Sf

∥∥∥2) during unlearning

since we initialize at θA
S , we have by definition∥∥θA

S − θ⋆
S
∥∥2 ≤ αempε

4Ld
, max

Sf⊂S
|Sf |≤f

∥∥∥θU − θ⋆
S\Sf

∥∥∥2 ≤ αempε

4Ld
,
∥∥∥θA

S\Sf
− θ⋆

S\Sf

∥∥∥2 ≤ αempε

4Ld
. (12)

Moreover, using Jensen’s inequality we have∥∥∥θA
S − θ⋆

S\Sf

∥∥∥2 ≤ 2
∥∥θA

S − θ⋆
S
∥∥2 + 2

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2 ≤ αempε

2Ld
+ 2

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2 . (13)

Thus, the computational complexity of unlearning is upper bounded by TU (
αempε
4Ld ,

αempε
2Ld +

2max Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2).
Unlearning analysis. Our goal here is to show that U(Sf ,A(S)) and U(∅,A(S \ Sf )) are near-
indistinguishable in the sense of Definition 1. To do so, we bound the distance between θA

S\Sf
and

θU , and infer the unlearning guarantee via the Rényi divergence bound of the Gaussian mechanism.

Now, using inequalities (12) and Jensen’s inequality, we obtain∥∥∥θU − θA
S\Sf

∥∥∥2 ≤ 2
∥∥∥θU − θ⋆

S\Sf

∥∥∥2 + 2
∥∥∥θA

S\Sf
− θ⋆

S\Sf

∥∥∥2 ≤ αempε

Ld
. (14)

Recall that U(Sf ,A(S)) := θU +N (0,
αemp

2Ld Id) and U(∅,A(S \ Sf )) := θA
S\Sf

+N (0,
αemp

2Ld Id).
We recall that the formula of Rényi divergences (Gil et al., 2013) of order q for Gaussians
N (µ,Σ),N (µ′,Σ) for arbitrary vectors µ, µ′ ∈ Rd and symmetric positive definite matrix
Σ ∈ Rd×d is q

2 (µ − µ′)⊤Σ−1(µ − µ′). Therefore, we conclude that (U ,A) satisfies (q, qε)-
approximate unlearning:

Dq(U(Sf ,A(S)) ∥ U(∅,A(S \ Sf ))) =
q

2 · αemp

2Ld

∥∥∥θU − θA
S\Sf

∥∥∥2 ≤ qε. (15)
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Utility analysis. We now analyze the empirical and population loss of the model U(Sf ,A(S)).
Recall that the loss function is L-smooth. Therefore, using inequalities (12), Jensen’s inequality and
taking expectations over the randomness of the additive Gaussian noise N (0,

αemp

2Ld Id), we can bound
the empirical loss:

E[ max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )]− L⋆
S\Sf

≤ L

2
E[ max

Sf⊂S
|Sf |≤f

∥∥∥U(Sf ,A(S))− θ⋆
S\Sf

∥∥∥2]
=

L

2
E
X∼N (0,

αemp

2Ld Id)
[ max
Sf⊂S
|Sf |≤f

∥∥∥θU − θ⋆
S\Sf

+X
∥∥∥2]

≤ L max
Sf⊂S
|Sf |≤f

∥∥∥θU − θ⋆
S\Sf

∥∥∥2 + LE
X∼N (0,

αemp

2Ld Id)
∥X∥2

= L max
Sf⊂S
|Sf |≤f

∥∥∥θU − θ⋆
S\Sf

∥∥∥2 + Ld
αemp

2Ld
≤ L

αempε

4Ld
+

αemp

2
≤ αemp, (16)

after using the assumption that ε ≤ d for the last inequality. Therefore, the expected empirical risk
error is at most αemp with the following computational complexities before and during unlearning
respectively:

TA(
αempε

4Ld
,∆), TU (

αempε

2Ld
,
αempε

2Ld
+ 2 max

Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2). (17)

This concludes the proof.

Corollary 2. Let ε, α, αemp > 0, and q > 1. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is
µ-strongly convex and L-smooth, and that ε ≤ d. Consider the unlearning-training pair (U ,A)
in Algorithm 1, where the approximate minimizers are obtained via gradient descent3, and denote
θ0 ∈ Rd the initial model for training.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over the worst-case S \Sf ,
at most αemp in expectation over the randomness of the algorithm with time complexity:

Training: O
(
nd log

(
d

αempε
∥θ0 − θ⋆

S∥2
))

, Unlearning: O
(
nd log

(
1 +

d

αempε
max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2)),
ignoring dependencies on L, µ. Also, the space complexity is O(d) during training and unlearning.

For αemp ≤ α, assuming that for every z ∈ Z the loss ℓ(· ; z) is R-Lipschitz, the in-distribution
population risk LID(U ,A) is at most α, if n = Ω( 1

α ) and f = O(n
√
α), with time complexity:

Training: O
(
nd log

(
d

αε
ES ∥θ0 − θ⋆

S∥2
))

,Unlearning: O
(
nd log

(
1 +

d

αε

(
Rf

n

)2))
.

Proof. Let ε, α, αemp > 0, and q > 1. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly
convex and L-smooth, and that ε ≤ d. Consider the training-unlearning pair (U ,A) in Algorithm 1,
where the approximate minimizer is obtained via gradient descent, with initialization θ0 ∈ Rd during
training.

For gradient descent, the worst-case computational complexity to reach precision (squared distance
to empirical risk minimizer) αemp > 0 with initialization error (squared distance to empirical risk
minimizer) ∆ > 0 is O(nd log ∆

αemp
) ignoring dependencies on L, µ (see, e.g., Nesterov et al. (2018)).

Therefore, by applying Theorem 1, we have that (U ,A) satisfies (q, qε)-approximate unlearning.
Moreover, in terms of utility, we have

EU max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf
≤ αemp, (18)

3i.e., the sequence θt+1 = θt − 2
L+µ

∇L(θt;S), t ≥ 0, and we replace S with S \ Sf for unlearning. We
explain how to compute the number of iterations in Remark 6.

18



Published as a conference paper at ICLR 2025

with the following training and unlearning time respectively:

O
(
nd log

(
d

αempε
∥θ0 − θ⋆

S∥2
))

,O
(
nd log

(
1 + d

αempε
max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2)).
In fact, we can obtain the guarantee (18) in expectation over S ∼ Dn, at the cost of the expectation
of the runtimes above. Indeed, taking expectations over the training set in the standard convergence
guarantee of gradient descent for smooth strongly convex problems (e.g., (Nesterov et al., 2018,
Theorem 2.1.15) implies that expected error α with expected initialization error ES [∆] can be
achieved in O(ndL

µ log ES [∆]
α ) time. That is, we have

ES∼Dn

 max
Sf⊂S
|Sf |≤f

L(U(Sf ,A(S));S \ Sf )− L⋆,S\Sf

 ≤ α, (19)

with the following training and unlearning time respectively:

O
(
nd log

(
d

αε
ES∼Dn ∥θ0 − θ⋆

S∥2
))

,O
(
nd log

(
1 +

d

αε
ES∼Dn max

Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥2)).
In turn, assuming that the loss is R-Lipschitz at any data point, we can plug the bound (38) in the
generalization bound of Proposition 1. As a result, we have

LID(U ,A) ≤ 2L

µ
ES∼Dn [ max

Sf⊂S
|Sf |≤f

L(θ̂;S \ Sf )− L⋆,S\Sf
] +

4R2

µ

(
1

n
+

L

µ

(
f

n

)2
)

≤ 2L

µ
α+

4R2

µ

(
1

n
+

L

µ

(
f

n

)2
)
.

Therefore, ignoring dependencies in L, µ, the in-distribution population risk is at most α (the factor
2L
µ in the first term above can be removed at the cost of a logarithmic overhead in the time complexity)

when n = Ω( 1
α ) and f = O(n

√
α).

Finally, we note that the unlearning time complexity can be further bounded, using the Lipschitz
assumption, since we have from (Sekhari et al., 2021, Lemma 6) that

max
Sf⊂S
|Sf |≤f

∥∥∥θ⋆
S − θ⋆

S\Sf

∥∥∥ ≤ 2Rf

µn
.

Thus, ignoring dependencies on L, µ, the unlearning time complexity is

O
(
nd log

(
1 +

d

αε

(
Rf

n

)2))
This concludes the proof.

Remark 6 (Practical implementation of Algorithm 1 with gradient descent). There are two practical
scenarios where we can compute an upper bound on the number of optimization iterations needed to
reach a predefined precision (in terms of squared distance to the empirical risk minimizer). Consider
the optimizer to be gradient descent here for clarity, and denote the empirical loss Lemp , and the
corresponding empirical risk minimizer θ⋆,emp.
The first scenario is when the loss function is non-negative (or some global lower bound is known);
this is quite common in machine learning, e.g., quadratic loss, cross-entropy loss, hinge loss, etc... In
this case, we know that for any initial model θ0 ∈ Rd , we have ∥θ0 − θ⋆,emp∥2 ≤ 2

µ (Lemp(θ0)−
Lemp(θ⋆,emp)) ≤ 2

µLemp(θ0), where the first inequality is due to µ-strong convexity, and the second
to the loss being non-negative. Therefore, knowing only the loss at the initial model, and (a lower
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bound on) the strong convexity parameter, e.g., ℓ2-regularization factor, we have a computable upper
bound on the initialization error. The upper bound on the number of iterations follows directly from
standard first-order convergence analyses, e.g., see Theorem 2.1.15 of Nesterov et al. (2018), and
is computable knowing the aforementioned bound on the initialization error, and the smoothness
and strong convexity constants. The second scenario is when the parameter space is bounded, and
in which case we use the projected variant of gradient descent, analyzed in Neel et al. (2021) for
empirical risk minimization. There, we know that the initialization error is bounded by the diameter
of the parameter space, which is computable. A computable upper bound on the number of iterations
needed follows with a similar argument as the first scenario above.

D PROOF OF PROPOSITION 2

Proposition 2. Let f = 1, n > 1, and Z = Rd. There exists a 1-strongly convex and 1-smooth loss
function, such that for any retain set Sr ∈ Zn−1, any (unlearning-time) initialization error ∆ > 0,

there exists a forget sample zf ∈ Z achieving
∥∥∥θ⋆

Sr∪{zf} − θ⋆
Sr

∥∥∥2 = ∆, where θ⋆
Sr

and θ⋆
Sr∪{zf}

denote the empirical minimizers on the retain and full data respectively.

Proof. Consider the data space Z = Rd and the quadratic loss ℓ(θ; z) = 1
2 ∥θ − z∥2 ,∀θ, z ∈ Rd.

This loss function is 1-strongly convex and 1-smooth at any data point. Fix zf := θ⋆,Sr
+ n

√
∆ · u

for some unit vector u ∈ Rd, ∥u∥ = 1. First, observe that

θ⋆,Sr = argmin
θ∈Rd

{
L(θ;Sr) =

1

2 |Sr|
∑
z∈Sr

∥θ − z∥2
}

=
1

|Sr|
∑
z∈Sr

z,

and similarly θ⋆,Sr∪{zf} = argminθ∈Rd L(θ;Sr ∪ {zf}) = 1
|Sr|+1

∑
z∈Sr∪{zf} z. Therefore, we

have

θ⋆,Sr∪{zf} =
1

|Sr|+ 1

∑
z∈Sr∪{zf}

z =
1

|Sr|+ 1

(
zf +

∑
z∈Sr

z

)

=
1

|Sr|+ 1
(zf + |Sr|θ⋆,Sr ) =

1

n
(zf + (n− 1)θ⋆,Sr ) .

Finally, thanks to the choice zf := θ⋆,Sr
+ n

√
∆ · u, ∥u∥ = 1, we conclude∥∥θ⋆,Sr∪{zf} − θ⋆,Sr

∥∥2 =
1

n2
∥zf − θ⋆,Sr

∥2 = ∆.

E PROOF OF THEOREM 3

Lemma 7. Let n ∈ N∗ and f < n/2. For any g1, . . . ,gn ∈ Rd and any I ⊆ [n] of size |I| ≥ n− f ,
we have

∥TMf (g1, . . . ,gn)− gI∥2 ≤ 6f

n− 2f

(
1 +

f

n− 2f

)
1

|I|
∑
i∈I

∥gi − gI∥2 , (20)

where we denote the average gI := 1
|I|
∑

i∈I gi.

Proof. Let n ∈ N∗ and f < n/2. Fix vectors g1, . . . ,gn ∈ Rd and subset I ⊆ [n] of size |I| = n−f .
For any set T ⊆ [n], we denote gI := 1

|T |
∑

i∈T gi := Ei∼T [gi]; the last notation is handy and
refers to the expectation over the uniform sampling of i from the set T . First, observe that since each
element in I has equal probability of belonging to a uniformly random subset T ⊆ I, |T | = n− f ,
we have

gI :=
1

|I|
∑
i∈I

gi = Ei∼I [gi] = E T ∼I
|T |=n−f

[gT ], (21)
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where we recall that the last notation is the expectation over the uniform sampling over subsets of I
of size n− f . Therefore, using Jensen’s inequality, we have

∥TMf (g1, . . . ,gn)− gI∥2 =

∥∥∥∥TMf (g1, . . . ,gn)− E T ∼I
|T |=n−f

[gT ]

∥∥∥∥2
≤ E T ∼I

|T |=n−f
∥TMf (g1, . . . ,gn)− gT ∥2 .

Now, recall from (Allouah et al., 2023, Proposition 2) that for every T ⊆ [n], |T | = n− f , we have

∥TMf (g1, . . . ,gn)− gT ∥2 ≤ 6f

n− 2f

(
1 +

f

n− 2f

)
1

|T |
∑
i∈T

∥gi − gT ∥2 . (22)

Plugging the above in the previous inequality and taking expectations yields

∥TMf (g1, . . . ,gn)− gI∥2 ≤ E T ∼I
|T |=n−f

∥TMf (g1, . . . ,gn)− gT ∥2

≤ 6f

n− 2f

(
1 +

f

n− 2f

)
E T ∼I
|T |=n−f

1

|T |
∑
i∈T

∥gi − gT ∥2

=
6f

n− 2f

(
1 +

f

n− 2f

)
E i∼T

T ∼I
|T |=n−f

∥gi − gT ∥2

≤ 6f

n− 2f

(
1 +

f

n− 2f

)
Ei∼I ∥gi − gI∥2

=
6f

n− 2f

(
1 +

f

n− 2f

)
1

|I|
∑
i∈I

∥gi − gI∥2 .

The third equality above is due to the same argument of (21), bias-variance decomposition, and
Jensen’s inequality. This concludes the proof.

Lemma 8. Assume that, for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth. Let

θ0 ∈ Rd, f ≤ nmin
{

1
3 ,

12µ
5(L−µ)

}
, and consider the training Algorithm 2. Then, for any T ≥ 1 and

any Sf ∈ Z∗, |Sf | ≤ f , we have

L(θT ;Sr)− L⋆,Sr
≤ 45f

µn

1

|Sr|
∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 + exp

(
− µ

2L
T
)
(L(θ0;Sr)− L⋆,Sr

) , (23)

where we denoted θ⋆
Sr

:= argminθ∈Rd L(θ;Sr).

Proof. Let t ≥ 0, f ≤ nmin
{

1
3 ,

12µ
5(L−µ)

}
, and Sr,Sf ∈ Z∗ such that |Sf | = n− |Sr| ≤ f . Recall

that L(· ;S \ Sf ) is L-smooth by assumption. From Algorithm 2, recall that θt+1 = θt − γrt with
rt := TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn)). Hence, by the smoothness assumption, we have

L(θt+1;S \ Sf )− L(θt;S \ Sf ) ≤ −γ ⟨∇L(θt;S \ Sf ), rt⟩+
1

2
γ2L ∥rt∥2 . (24)

Moreover, we recall the identity

⟨∇L(θt;S \ Sf ), rt⟩ =
1

2

(
∥∇L(θt;S \ Sf )∥2 + ∥rt∥2 − ∥∇L(θt;S \ Sf )− rt∥2

)
.

Substituting the above in (24) we obtain that

L(θt+1;S \ Sf )− L(θt;S \ Sf )

≤ −γ

2

(
∥∇L(θt;S \ Sf )∥2 + ∥rt∥2 − ∥∇L(θt;S \ Sf )− rt∥2

)
+

1

2
γ2L ∥rt∥2

= −γ

2
∥∇L(θt;S \ Sf )∥2 −

γ

2
(1− γL) ∥rt∥2 +

γ

2
∥∇L(θt;S \ Sf )− rt∥2 .
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Substituting γ = 1
L in the above we obtain that

L(θt+1;S \ Sf )− L(θt;S \ Sf ) ≤ − 1

2L
∥∇L(θt)∥2 +

1

2L
∥rt −∇L(θt;S \ Sf )∥2 . (25)

By applying Lemma 7 to the vectors ∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn) and the indices set I := {i ∈
[n] : zi ∈ Sr}, and denoting κ := 6f

n−2f

(
1 + f

n−2f

)
, we obtain

∥rt −∇L(θt;S \ Sf )∥2 =

∥∥∥∥∥∥TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn))−
1

|I|
∑
j∈I

∇ℓ(θt; zj)

∥∥∥∥∥∥
2

≤ κ

|I|
∑
i∈I

∥∥∥∥∥∥∇ℓ(θt; zi)−
1

|I|
∑
j∈I

∇ℓ(θt; zj)

∥∥∥∥∥∥
2

(26)

=
κ

|I|
∑
i∈I

∥∇ℓ(θt; zi)−∇L(θt;S \ Sf )∥2 . (27)

Besides, by denoting ζ2⋆ := 2
|Sr|

∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 and P := 2L

µ , we have thanks to strong
convexity and smoothness (see, e.g., (Allouah et al., 2024, Proposition 1)) that

1

|I|
∑
i∈I

∥∇ℓ(θt; zi)∥2 − ∥∇L(θt;S \ Sf )∥2 ≤ ζ2⋆ + (P − 1) ∥∇L(θt;S \ Sf )∥2 . (28)

1

|I|
∑
i∈I

∥∇ℓ(θt; zi)−∇L(θt;S \ Sf )∥2 =
1

|I|
∑
i∈I

∥∇ℓ(θt; zi)∥2 − ∥∇L(θt;S \ Sf )∥2

≤ ζ2⋆ + (P − 1) ∥∇L(θt;S \ Sf )∥2 .

Using the above in (27) yields

∥rt −∇L(θt;S \ Sf )∥2 ≤ κζ2⋆ + κ(P − 1) ∥∇L(θt;S \ Sf )∥2 .

Substituting the above in (25) yields

L(θt+1;S \ Sf )−L(θt;S \ Sf ) ≤ − 1

2L
∥∇L(θt;S \ Sf )∥2+

1

2L

(
κζ2⋆ + κ(P − 1) ∥∇L(θt);S \ Sf∥2

)
.

(29)
Multiplying both sides in (29) by 2L and rearranging terms, we get

(1− κ(P − 1)) ∥∇L(θt;S \ Sf )∥2 ≤ κζ2⋆ + 2L (L(θt;S \ Sf )− L(θt+1;S \ Sf ))

= κζ2⋆ + 2L
(
L(θt)− L⋆,S\Sf

+ L⋆,S\Sf
− L(θt+1)

)
.

After rearranging terms, and using strong convexity to lower bound the norm of the gradient with the
optimality gap, e.g., see (Karimi et al., 2016), we obtain

2L
(
L(θt+1;S \ Sf )− L⋆,S\Sf

)
≤ κζ2⋆ − 2µ (1− κ(P − 1))

(
L(θt;S \ Sf )− L⋆,S\Sf

)
+ 2L

(
L(θt;S \ Sf )− L⋆,S\Sf

)
= κζ2⋆ + (2L− 2µ (1− κ(P − 1)))

(
L(θt;S \ Sf )− L⋆,S\Sf

)
.

Dividing both sides by 2L, we get

L(θt+1;S \ Sf )− L⋆,S\Sf
≤ κζ2⋆

2L
+
(
1− µ

L
(1− κ(P − 1))

) (
L(θt;S \ Sf )− L⋆,S\Sf

)
.

(30)
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Then, applying (30) recursively for time indices in k ∈ {0, . . . , t− 1} yields

L(θt+1;S \ Sf )− L⋆,S\Sf
≤ κζ2⋆

2L

t∑
k=0

(
1− µ

L
(1− κ(P − 1))

)k
+
(
1− µ

L
(1− κ(P − 1))

)t+1 (
L(θ0;S \ Sf )− L⋆,S\Sf

)
≤ κζ2⋆

2L

1

1−
(
1− µ

L (1− κ(P − 1))
) + (1− µ

L
(1− κ(P − 1))

)t+1 (
L(θ0;S \ Sf )− L⋆,S\Sf

)
=

κζ2⋆
2µ (1− κ(P − 1))

+
(
1− µ

L
(1− κ(P − 1))

)t+1 (
L(θ0;S \ Sf )− L⋆,S\Sf

)
.

We now take t = T − 1 ≥ 0. Moreover, using the fact that (1 + x)n ≤ enx for all x ∈ R and
remarking that κ

1−κ(P−1) ≤ 45 f
n and 1− κ(P − 1) ≥ 1

2 when f
n ≤ min

{
1
3 ,

12
5(P−1)

}
yields that

L(θT ;S \ Sf )− L⋆,S\Sf
≤ 45

2µ

f

n
ζ2⋆ + exp

(
− µ

2L
T
) (

L(θ0;S \ Sf )− L⋆,S\Sf

)
.

This concludes the proof.

Theorem 3. Let ε, α, αemp, µ, L > 0, q > 1, θ0 ∈ Rd, and f ≤ nmin
{

1
3 ,

12µ
5(L−µ)

}
. Assume that,

for every z ∈ Z , the loss ℓ(· ; z) is µ-strongly convex and L-smooth. Consider the unlearning-training
pair (U ,A) in Algorithm 2 using gradient descent during unlearning.

Then, (U ,A) satisfies (q, qε)-approximate unlearning with empirical loss, over Sr with worst-case
Sf , at most αemp in expectation over the randomness of the algorithm with time complexity:

Training: O
(
nd log

(
d

αempε

∥∥θ0 − θ⋆
Sr

∥∥2)), Unlearning: O
(
nd log

(
1 +

d

αempε

f

n
E(Sr)

))
,

ignoring dependencies on L, µ. The space complexity is O(d) during training and unlearning. For
αemp ≤ α, the out-of-distribution risk LOOD(U ,A) is at most α, if n − f = Ω( 1

α ), with time
complexity:

Training: O
(
nd log

(
d

αε
ESr

∥∥θ0 − θ⋆
Sr

∥∥2)),Unlearning: O
(
nd log

(
1 +

d

αε

f

n
En−f (D)

))
.

Proof. Let q > 1, ε, α, αemp, α
′ > 0, 0 ≤ f < n, and Sr ∈ Zn−f ,S := Sr ∪ Sf ∈ Zn. Assume

that the loss function is µ-strongly convex and L-smooth at any data point, and that ε ≤ d. Denote by
θ⋆
Sr

and θ⋆
S the minimizers of the empirical loss functions L(· ;Sr) and L(· ;S), respectively. These

exist and are well-defined by strong convexity of the loss function. Also, following Algorithm 2,
denote by θ

Af

S and θA
Sr

the model obtained using Af over the training set S and obtained using A0

(i.e., empty forget set f = 0) over the training set Sr, respectively. Moreover, denote by θU the
model obtained after using U over the training set Sr before Gaussian noise addition.

Recall that the computational cost of reaching the empirical risk minimizer up to squared error
αemp > 0, starting with an initialization error ∆ > 0, with gradient on smooth strongly convex prob-
lems is O(ndL

µ log( ∆
αemp

)) (Nesterov et al., 2018). Therefore, letting ∆ :=
∥∥θ0 − θ⋆

Sr

∥∥2, at the com-

putational cost of O(ndL
µ log( Ld∆

αempε
)) during training and max Sf⊂S

|Sf |≤f

O(ndL
µ log(

Ld
∥∥∥θAf

S −θ⋆
Sr

∥∥∥2

αempε
))

during unlearning since we initialize at θAf

S , we have by definition

max
Sf⊂S
|Sf |≤f

∥∥θU − θ⋆
Sr

∥∥2 ≤ αempε

4Ld
,
∥∥θA

Sr
− θ⋆

Sr

∥∥2 ≤ αempε

4Ld
. (31)

Also, recalling the result of Lemma 8 and using strong convexity, we have

max
Sf⊂S
|Sf |≤f

∥∥∥θAf

S − θ⋆
Sr

∥∥∥2 ≤ 2

µ
max
Sf⊂S
|Sf |≤f

(L(θAf

S ;Sr)− L⋆,Sr
) ≤ 2

µ

(
45f

µn

1

|Sr|
∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 + α′

)
.

(32)
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Also, from Lemma 8, the computational complexity for the statement above is O(nd log (∆
α′ )) (to be

added during training), as the per-iteration cost involves computing d times a trimmed mean over n
real numbers, each of which can be done in worst-case linear time and constant space with variations
of the median-of-medians (Blum et al., 1973; Lai and Wood, 1988). Thus, the computational
complexity of unlearning is upper bounded by

O

nd
L

µ
log(

Ld
(

f
µn

1
|Sr|

∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 + α′

)
µαempε

)

 . (33)

Unlearning analysis. Our goal here is to show that U(Sf ,Af (S)) and U(∅,A0(Sr)) are near-
indistinguishable in the sense of Definition 1. To do so, we bound the distance between θA

Sr
and θU ,

and infer the unlearning guarantee via the Rényi divergence bound of the Gaussian mechanism.

Now, using inequalities (31) and the triangle inequality, we obtain∥∥θU − θA
Sr

∥∥2 ≤ 2
∥∥θU − θ⋆

Sr

∥∥2 + 2
∥∥θA

Sr
− θ⋆

Sr

∥∥2 ≤ αempε

Ld
. (34)

Recall that U(Sf ,Af (S)) := θU + N (0,
αemp

2Ld Id) and U(∅,A(Sr)) := θA
S\Sf

+ N (0,
αemp

Ld Id).
Thus, using the Rényi divergence expression between multivariate Gaussians (e.g., see (Gil et al.,
2013)) we conclude that (U ,A) satisfies (q, qε)-approximate unlearning:

Dq(U(Sf ,Af (S)) ∥ U(∅,A(Sr))) =
q

2 · αemp

2Ld

∥∥θU − θA
Sr

∥∥2 ≤ qε. (35)

Utility analysis. We now analyze the empirical and population loss of the model U(Sf ,Af (S)).
Recall that the loss function is L-smooth, and that the retain set Sr is fixed. Therefore, using
inequalities (31), Jensen’s inequality and taking expectations over the randomness of the additive
Gaussian noise N (0,

αemp

2Ld Id), we can bound the empirical loss:

EU [ max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,Af (S));Sr)]− L⋆,Sr ≤ L

2
EU [ max

Sf∈Z∗

|Sf |≤f

∥∥U(Sf ,Af (S))− θ⋆
Sr

∥∥2]
=

L

2
E
X∼N (0,

αemp

2Ld Id)
[ max
Sf∈Z∗

|Sf |≤f

∥∥θU − θ⋆
Sr

+X
∥∥2]

≤ L max
Sf∈Z∗

|Sf |≤f

∥∥θU − θ⋆
Sr

∥∥2 + LE
X∼N (0,

αemp

2Ld Id)
∥X∥2

= L max
Sf∈Z∗

|Sf |≤f

∥∥θU − θ⋆
Sr

∥∥2 + Ld
αemp

2Ld
≤ L

αempε

4Ld
+

αemp

2
≤ αemp, (36)

after using the assumption that ε ≤ d for the last inequality. Thus, the expected empirical risk
error is at most αemp with the following computational complexities before and during unlearning
respectively:

O
(
nd

L

µ
max

{
log (

∆

α′ ), log(
Ld∆

αempε
)

})
,O

nd
L

µ
log(

Ld
(

f
µn

1
|Sr|

∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2 + α′

)
µαempε

)

 .

(37)
Finally, we set α′ =

αempµε
Ld to conclude the first statement of the theorem.

In fact, we can obtain the guarantee (36) in expectation over Sr ∼ Dn−f , at the cost of the expectation
of the runtimes above. Indeed, taking expectations over the training set in the standard convergence
guarantee of gradient descent for smooth strongly convex problems (e.g., (Nesterov et al., 2018,
Theorem 2.1.15) implies that expected error α with expected initialization error ESr

[∆] can be
achieved in O(ndL

µ log
ESr [∆]

α ) time. That is, we have

ESr∼Dn−f

 max
Sf∈Z∗

|Sf |≤f

L(U(Sf ,Af (Sr ∪ Sf ));Sr)− L⋆,Sr

 ≤ α, (38)
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with the following training and unlearning time respectively:

O
(
nd log

(
d

αε
ESr∼Dn−f

∥∥θ0 − θ⋆
Sr

∥∥2)),
O
(
nd log

(
1 +

d

αε

f

n
ESr∼Dn−f

1

|Sr|
∑
z∈Sr

∥∥∇ℓ(θ⋆
Sr
; z)
∥∥2)).

In turn, we can plug the bound (38) in the generalization bound of Proposition 1. As a result, we have

LOOD(U ,A) ≤ L

µ
ESr∼Dn−f [ max

Sf∈Z∗

|Sf |≤f

L(U(Sf ,Af (Sr ∪ Sf ));Sr)− L⋆,Sr
] +

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n− f

≤ L

µ
α+

L

2µ2

Ez∼D ∥∇ℓ(θ⋆; z)∥2
n− f

.

Therefore, ignoring dependencies in L, µ, the in-distribution population risk is at most α (the factor
L
µ in the first term above can be removed at the cost of a logarithmic overhead in the time complexity)
when n− f = Ω( 1

α ). This concludes the proof.

F ADDITIONAL DETAILS AND RESULTS FOR TABLES 1 AND 2 AND FIGURE 1

Tables 1 and 2. We recall that Table 1 presents a summary of the in-distribution deletion capacities
(the larger, the better), for error bound α > 0 and computation budget T > 0, under approximate
unlearning for strongly convex tasks, with smoothness and Lipschitz assumptions. In particular, we
note that the utility deletion capacity of the Newton step algorithm is directly deduced from (Sekhari
et al., 2021, Theorem 3), with the following adaption from (εDP, δ)-unlearning (Sekhari et al.,
2021, Definition 2) to our (q, qε)-unlearning formalism for all q > 1: ε ≤ ε2DP

16 log(1/δ) assuming
that εDP ≤ log(1/δ) using (Mironov, 2017, Proposition 3). This adaptation is valid given that the
Gaussian mechanism employed (Guo et al., 2020; Sekhari et al., 2021) satisfies Rényi differential
privacy (Mironov, 2017, Corollary 3). The same adaptation is conducted for the differential privacy
method (Huang and Canonne, 2023). Besides, we note that the last two reported computational
capacities mean that no sample can be unlearned unless T exceeds the proven time complexity of
these algorithms (Bassily et al., 2014; Sekhari et al., 2021). Finally, the reported lower bound is a
direct adaptation of (Lai et al., 2016, Observation 1.4).
In both tables 1 and 2, the computational deletion capacities are obtained by computing the maximum
deleted samples f such that the sum of the training and unlearning time complexities is smaller
than T . We believe that comparing the sum of both unlearning and training times is important. For
the sake of the argument, a hypothetical (inefficient) training procedure that computes and stores
the empirical risk minimizers on every subset of the full dataset would only require constant-time
unlearning, which could be misleading if we only compare unlearning times. It is worth noting here
that the unlearning time complexity of the work of Sekhari et al. (2021) is independent of n, although
at least quadratic in d.

Figure 1. We recall that Figure 1 presents a numerical validation of our theoretical results on a linear
regression task with synthetic data under a fixed approximate unlearning budget, with in-distribution
and out-of-distribution data. Specifically, the full data features are generated from a d-dimensional
Gaussian N (0, Id), d = 100, and the labels are generated from the features and a random true
underlying model, also from a Gaussian N (0, Id), with a Gaussian response. The in-distribution
forget data consists of f = 20 data points sampled at random from the 10, 000 full training samples.
Moreover, we set the unlearning budget for the in-distribution scenario to ε = 1. We use the DP-SGD
implementation of Opacus (Yousefpour et al., 2021), and convert to group differential privacy, the
group being of size f , with standard conversion bounds (Vadhan, 2017, Lemma 2.2), and run the
optimizer until convergence or for 100 epochs (usually 10× more than Algorithm 1) with a fine-tuned
learning rate. For the out-of-distribution scenario, the forget data is obtained by shifting labels with
a fixed offset set to 103, the total number of training samples being 1, 000. Moreover, we set the
unlearning budget for the in-distribution scenario to ε = 10. The learning rates for Algorithm 1 and 2
are set following standard theoretical convergence rates (Nesterov et al., 2018) for strongly convex
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Figure 2: Out-of-distribution error LOOD versus number of unlearning iterations for Algorithms 1
and 2, using gradient descent as optimizer, with f ∈ {1, 0.1n, 0.45n} forget data out of 16, 512
samples of the California Housing dataset. The per-iteration cost is the same for both algorithms.
The unlearning time of Algorithm 1 (non-robust) can be 10× slower than Algorithm 2.

tasks, and Theorem 3. The initialization error can be estimated without knowing the distance to the
minimizer, since the loss is known to be non-negative in this case, and the strong convexity constant
is estimated empirically (see Remark 6 for details).

Empirical validation on real data. We extend the empirical validation in Figure 1 in the out-of-
distribution scenario to the California Housing dataset (Pace and Barry, 1997), a standard regression
benchmark. The dataset contains 20, 640 samples, each representing a district in California, with
features describing demographic and geographic information. We conduct the same experiment
as in Figure 1b, described in details in the previous paragraph, and show the results in Figure 2.
The conclusions drawn from the synthetic data experiment continue to hold here: when unlearning
out-of-distribution data, existing unlearning algorithms encompassed by Algorithm 1 (with gradient
descent, which is very similar to the algorithms of Neel et al. (2021) and Chourasia and Shah (2023))
are slower than Algorithm 2, which we recall is much less sensitive to out-of-distribution samples by
design. It is also worth noting that Algorithm 1 is even slower as the forget data fraction increases, as
predicted by the theory, and the same holds for Algorithm 2 although at a lower rate.
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