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ABSTRACT

Linear attention mechanisms have emerged as efficient alternatives to Softmax at-
tention, exhibiting steady improvements in language modeling capabilities driven
by increasingly sophisticated designs for decay matrices—though their structural
complexity has typically been limited to the Diagonal-Plus-Rank-1 level. To fur-
ther advance the understanding and capabilities of linear attention via more com-
plex decay structures, this work makes two primary contributions: (1) We propose
the HDLA linear attention mechanism, which utilizes efficient matrix decompo-
sition to achieve a Diagonal-Plus-Rank-2 structure, thereby extending the decay
matrix to a broader, more expressive, rank-enhanced and structured class. (2) We
propose a more general chunk-wise parallel algorithm that accommodates both
diagonal-plus-rank-rab decay structure and key-value outer products of rank rkv ,
thus providing a versatile foundation for future research. Comprehensive exper-
iments demonstrate that, compared to linear attention baselines, HDLA sets new
SOTA results on language modeling and retrieval tasks at 2.8B parameter scale,
delivers at most 80% and 58.2% performance gains over baselines on retrieval-
based MQAR and RULER tasks, and achieves an average score improvement of
4.39–7.66 on the synthetic MAD benchmark, respectively. Our proposed HDLA
model, as well as the rank-generalized chunk-wise parallel algorithm, together
provide a versatile algorithmic foundation and promising research prospects for
the design of rank-enhanced, structured linear attention mechanisms.

1 INTRODUCTION

Softmax attention, the core component of the Transformer (Vaswani et al., 2017), exhibits superior
token mixing capabilities (Tolstikhin et al., 2021; Yu et al., 2022) and supports highly efficient
parallel training (Dao et al., 2022). However, it is severely limited in long context scenarios, by
quadratic time complexity and a key-value (KV) cache that grows linearly with the sequence length.

Linear attention presents an efficient alternative to softmax attention by reducing the time complexity
to O(n) and compressing the infinite key-value sequences into a fixed-size hidden state (Katharopou-
los et al., 2020). Not only does it demonstrate great research potential, but the hybrid architecture
combining linear and softmax attention in 7:1 ratio has been successfully deployed as the founda-
tional framework for large language models (LLMs) in practical applications, achieving exceptional
throughput and advanced long-context reasoning capabilities (MiniMax et al., 2025). Through pro-
gressively more sophisticated hidden state decay mechanisms, linear attention has steadily improved
its language modeling performance. Nevertheless, a series of recent works—including DeltaNet
(Yang et al., 2024b), Gated DeltaNet (Yang et al., 2025), TTT-Linear (Sun et al., 2024)—restrict
the structural complexity of their decay matrices to at most Diagonal-Plus-Rank-1.

This insight naturally gives rise to a compelling question regarding the future of linear attention:
Does the Diagonal-Plus-Rank-1 decay structure truly represent the celling of hidden state manage-
ment and utilization? Or to say, can we extend the decay matrices to broader, structured, and more
expressive classes, thus further elevating the performance ceiling of linear attention mechanisms?

Our work addresses the aforementioned questions through the following two primary contributions.

1
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Firstly, we propose the Householder-Diagonalized Linear Attention (HDLA) method, which aug-
ments language modeling capacity via a more sophisticated decay matrix structure while maintain-
ing reasonable computational costs. We refine three necessary restrictions when designing complex
and efficient decay structures: parameter efficiency, memory efficiency, and computational effi-
ciency. Based on these restrictions and inspired by the congruence diagonalization theory of real
symmetric matrices, we employ generalized Householder matrices to diagonalize the decay matrix,
and show that HDLA’s structured decay is a specific instance of the Diagonal-Plus-Rank-2 class.

Secondly, we introduce a rank-generalized chunk-wise parallel algorithmic framework, which si-
multaneously accommodates the arbitrary diagonal term in linear attention mechanisms’ decay.
When formulating the chunk-wise parallel algorithm for HDLA, we achieve a broad generalization
that accommodates both Diagonal-Plus-Rank-rab decay structures and rank-rkv key-value updates.
This advance not only subsumes HDLA as a special case, but also provides a robust foundation for
future research on linear attention mechanisms.

Comprehensive experiments fully demonstrate the superior performance of our proposed HDLA
model: (1) Achieves state-of-the-art (SOTA) results in terms of language modeling perplexity (up to
2.8B parameter scale), with retrieval capability at 2.8B scale surpassing all linear attention baselines.
(2) On the retrieval-based RULER (Hsieh et al., 2024) experiment, achieves up to a 58.2% accuracy
improvement compared to Gated DeltaNet (Yang et al., 2025). (3) In synthetic MAD (Poli et al.) ex-
periment, the average score exceeds linear attention baselines by 4.39-7.66, significantly narrowing
the performance gap with Softmax Attention (Vaswani et al., 2017). (4) In synthetic MQAR (Arora
et al., 2023b) experiments, at sequence length 2048, the accuracy is about 80% higher than the more
computationally intensive Gated DeltaProduct with nh = 2 (Siems et al., 2025).

While achieving superior performance, HDLA maintains a relatively limited and reasonable compu-
tation amount. Even when compared to Gated DeltaProduct with nh = 3 (Siems et al., 2025), whose
computation amount is about 2x that of HDLA, HDLA still shows a clear performance superiority.

Our HDLA model and the generalized chunk-wise parallel algorithm together provide a foundation
for future research on rank-enhanced structured linear attention, showcasing promising prospects.

2 BACKGROUNDS AND RELATED WORKS

For notational conventions in this work, we use bold lowercase letters to denote column vectors (e.g.,
qt), bold uppercase letters for matrices (e.g., Q,O), and italic uppercase letters for learnable param-
eters (e.g., θq). Note that any matrix without a subscript is constructed by concatenating its corre-
sponding lowercase column vectors, e.g., Q denotes the column-wise concatenation of q1,q2, · · · .
We also use lowercase letters to represent tensors of a single timestep with more than 1 columns.
For instance, kt ∈ Rdk×rkv , and K is assembled by concatenating k1,k2, · · · column-wise.

Unified Recurrent Form of Linear Attention. In linear attention, an input xt ∈ Rd×1 is trans-
formed into a group of query qt ∈ Rdk×1, key kt ∈ Rdk×rkv and value vt ∈ Rdv×rkv at first:

qt = fq(xt,θq),kt = fk(xt,θk),vt = fv(xt,θv) (1)

The above transformation fq, fk, fv are typically linear functions, possibly with activation or nor-
malization, and θq,θk,θv are their projection parameters. Then, hidden state St ∈ Rdk×dv , decay
matrix Pt ∈ Rdk×dk , and the attention output ot ∈ Rdv×1 are computed as follows:

Pt = fp(xt,θp) ∈ Rdk×dk (2)

St = PtSt−1 + ktv
⊤
t ∈ Rdk×dv , (3)

ot = S⊤
t qt ∈ Rdv×1 (4)

The hidden state St seeks to compress information from arbitrarily long key-value pairs into a fixed-
size memory. The decay matrix Pt balances the relative importance between historical information
St−1 and the incoming new information ktv

⊤
t . Different structures of Pt lead to different levels of

model performance, as well as varying parallel forms and strategies of sequential parallelism.
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The original purpose of linear attention. Linear attention (Katharopoulos et al., 2020) is originally
targeted at addressing the time and space complexity issue of Softmax attention. It uses linear kernel
functions to approximate the high-cost non-linear Softmax operation. Leveraging the associative
property of matrix multiplication, it enables each key-value pair to be processed only once, and
achieves O(n) time complexity while compressing infinite key-value sequences into fixed size St.

The developmental trajectory of decay matrices. The evolution of linear attention methods has
moved from the original variant (Katharopoulos et al., 2020) lacking any decay mechanisms—which
cannot forget unimportant historical information—to approaches with learnable constant decay such
as RetNet (Sun et al., 2023) and TransNormer (Qin et al., 2024a). While these mitigate forgetting
to a certain extent, they remain insensitive to the relative importance between historical information
St−1 and newly arriving information ktv

⊤
t . More recently, diagonal input-dependent decay mech-

anisms, introduced by models such as GLA (Yang et al., 2024a), Mamba (Gu & Dao, 2024), and
HGRN2 (Qin et al., 2024d), enable adaptive weighting of historical context but are constrained by
their diagonal structure, leading to a lack of cross-row interaction during hidden state updates. As a
result, these mechanisms permit only partial forgetting of old information without negative erasure.
To address this, recent works have adopted input-dependent non-diagonal decay structures (typi-
cally Diagonal-Plus-Rank-1) and have demonstrated superior performance over earlier approaches.
DeltaNet (Yang et al., 2024b) and TTT-Linear (Sun et al., 2024) were the first to employ generalized
Householder matrices as non-diagonal decay matrices. Gated DeltaNet further improves language
modeling capabilities by incorporating a scalar forget gate into DeltaNet. RWKV-7 (Peng et al.,
2025) adopts a more general diagonal-plus-rank-1 decay structure, in which the diagonal terms
are analogous to the input-dependent decay used in GLA. Gated DeltaProduct (Siems et al., 2025)
repeats the recurrent step of Gated DeltaNet for nh times at each timestep, which is equivalent to ap-
plying a Diagonal-Plus-Rank-nh single-step rank-enhanced decay. The resulting decay matrix lacks
strong structural properties, and its performance improvement is limited even as the computational
amount grows 1 or 2 times. Therefore, we aim to explore a structured rank-enhanced decay method
that achieves greater performance gains, while incurring only limited additional computational cost
compared to Diagonal-Plus-Rank-1. Table 1: The structures of decay Pt in different linear

attention mechanisms (α, αt, βt ∈ R;kt, λt,at,wt, κ̂t ∈
Rdk×1).

Model Pt

Original Linear Attention I
RetNet, TransNormer αI

GLA, Mamba, HGRN2 Diag(λt)
DeltaNet, TTT-Linear I− βtktk

⊤
t

Gated DeltaNet αt(I− βtktk
⊤
t )

Gated DeltaProduct (nh iterations) αt(I− βtktk
⊤
t )

RWKV-7 Diag(wt)− κ̂t(at ⊙ κ̂t)
⊤

Chunk-wise parallel acceleration
algorithm of linear attention. The
core idea of chunk-wise parallel al-
gorithms for linear attention is to di-
vide the computation along the time
dimension into chunks, sequentially
compute the checkpoints of hidden
states before entering each sequen-
tial chunk, and then process the
linear attention outputs of different
time intervals in parallel. Lightning-
Attention (Qin et al., 2024b) and Lightning-Attention-2 (Qin et al., 2024c) address the parallelization
problem in the case of diagonal scalar decay, while Yang et al. (2024a) tackles the parallelization
for diagonal vector decay. ZeCO (Chou et al., 2025) further addresses the communication bottle-
neck in multi-GPU scaling based on previous algorithms. (Gated) DeltaNet (Yang et al., 2024b;
2025) solves the parallelization for the case of diagonal plus rank-1 decay. ParallelFlow (Cirone &
Salvi, 2025) provides a certain degree of parallelism for identity plus rank-n decay, but it does not
accommodate the arbitrary diagonal terms that are common in the decay matrices of linear attention.

Test-Time training. If the hidden state St is regarded as the projection parameter of a linear layer,
then the autoregressive update formula for the hidden state in most linear attention mechanisms
can be interpreted as stochastic gradient descent (SGD) on St, usually aiming at next value predic-
tion (using k⊤

t St to predict vt). This update process is referred to as Test-Time Training. TTT-
Linear (Sun et al., 2024) and DeltaNet (Yang et al., 2024b) were the first to interpret and design
linear attention mechanisms from this perspective. Titans (Behrouz et al., 2025c) introduces mo-
mentum to the stochastic gradient descent. Miras (Behrouz et al., 2025b) proposes a broad unifying
framework that integrates linear attention and Softmax attention under the view of Test-Time Train-
ing, utilizing components such as memory architectures, memory learning methods, attention bias,
and retention gates. ATLAS (Behrouz et al., 2025a) and MesaNet (von Oswald et al., 2025) make
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improvements on the stochastic gradient descent (attention bias) objective by optimizing the average
loss of all tokens within a sliding window or a global window, thereby achieving better performance.

3 METHOD

3.1 LINEAR ATTENTION WITH HOUSEHOLDER-DIAGONALIZED DECAY

Our goal is to achieve better language modeling capabilities through extending the decay matrices to
a broader, structured, and more expressive class, while simultaneously meeting efficiency constraints
in parameters, memory, and computation. Specifically, our idea is to parameterize the Diagonal-
Plus-Rank-2 decay structure by utilizing a certain kind of efficient matrix decomposition method.

3.1.1 EFFICIENCY CONSTRAINTS OF COMPLEX DECAY MATRIX DESIGN

Figure 1: The architecture of HDLA, as well as its inte-
gration within a Transformer layer. Details like output
gates and activation on keys and values are omitted. See
appendix C.1 for the exact architecture of HDLA.

Parameter, memory, and computational
efficiency are common challenges dur-
ing the design of linear attention mech-
anisms. When designing complex de-
cay structures, we’d like to revisit and
refine these constraints, so as to limit
the extremely broad design space and
to preliminarily validate the practical-
ity of our approach. (1) Parameter effi-
ciency. The O(d2k) decay matrix should
be obtained through O(dk) parameters,
to maintain a balance with the parame-
ter counts of θQ,θK and θV , avoiding
excessive parameters and learning over-
head. (2) Memory efficiency. Each of
the O(d2k) decay matrices or their cu-
mulative products should be compactly
stored in O(dk) memory on average,
matching the memory footprint of qt,kt and vt. (3) Computational efficiency. The cumulative
product of decay matrices must maintain reasonable computational costs. Moreover, hidden state
updates across sequential blocks should be enabled through concise one-pass matrix multiplications.

3.1.2 HOUSEHOLDER DIAGONALIZED LINEAR ATTENTION (HDLA)

To efficiently parameterize a complex decay Pt, it is advantageous to decompose it into simpler
components through matrix decomposition theory. Note that any real symmetric matrix Pt can
undergo congruence diagonalization via some invertible matrix Ht ∈ Rdk×dk , i.e., Pt = HtΛtH

⊤
t .

Utilizing this inspiration, the parameterization of Pt can be reduced to two sub-problems: (P1)
Learning the diagonal eigenvalue matrix Λt. (P2) Selecion of the invertible transformation Ht.

For (P1), we make the parameterization of Λt analogous to GLA’s input-dependent diagonalized de-
cay, equipping the model with fundamental capability to dynamically forget historical information.
For (P2), we adopt generalized Householder matrices as our transformation operator, inspired by
recent research of Diagonal-Plus-Rank-1 decay structure (Yang et al., 2024b; Sun et al., 2024; Yang
et al., 2025; Siems et al., 2025). The corresponding hidden state update formulae are as follows:

Pt = (I− βtktk
⊤
t )Λt(I− βtktk

⊤
t ) ∈ Rdk×dk , (5)

Λt = Diag(λt) ∈ Rdk×dk , λt = σ(WΛxt) ∈ Rdk×1, (6)

We make βt ∈ (0, 2) to enhance the model’s state tracking capability, following the conclusion of
Grazzi et al. (2025). σ(·) is an activation function ranging in (0, 1), and we adopt sigmoid(·) here.

Compared with GLA, the only excessive parameter is the projection matrix (of O(dk) scale) map-
ping the input xt into βt, confirming the parameter efficiency of HDLA. Deduction of chunk-wise
parallel algorithm in the following section will verify its computational and memory efficiency.

4
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3.2 GENERALIZED CHUNK-WISE PARALLEL ALGORITHM

3.2.1 DERIVATION AND RANK EXTENSION OF A GENERALIZED HIDDEN STATE UPDATE
RULE

During the derivation of HDLA’s chunk-wise parallel algorithm, we first reformulate its decay matrix
as a special case of the Diagonal-Plus-Rank-2 structure (see Appendix appendix C.2 for details):

Pt = Dt −AtB
⊤
t ∈ Rdk×dk ,At,Bt ∈ Rdk×2 (7)

Based on the above reformulation, and to provide a foundational support for future research both
theoretically and practically, we aim to develop a broader chunk-wise parallel algorithm for the
following hidden state recurrent update rule, which generalizes the ranks of AtB

⊤
t , and KtV

⊤
t to

arbitrary values simultaneously (i.e., setting At,Bt ∈ Rdk×rab ,Kt ∈ Rdk×rkv ,Vt ∈ Rdv×rkv ):

St = (Dt −AtB
⊤
t )St−1 +KtV

⊤
t ∈ Rdk×dv (8)

3.2.2 RANK GENERALIZED CHUNK-WISE PARALLEL ALGORITHM

Notational conventions. Define two kinds of matrices’ cumulative products as follows:

Pj
i =

{∏j
t=i+1 Pt, i < j

I, i ≥ j
,Dj

i =

{∏j
t=i+1 Di, i < j

I, i ≥ j
,dj

i = Dj
i1 ∈ Rdk×1 (9)

All timesteps in this work start at 1. The input tensors are partitioned along the sequential dimension
into chunks of size C. We abuse the subscript [n] to refer to tensors relevant to the n-th sequential
chunk. A[n] ∈ Rdk×rabC ,B[n] ∈ Rdk×rabC ,K[n] ∈ Rdk×rkvC ,V[n] ∈ Rdv×rkvC are concatenated
column-wise from the corresponding input tensors of each timestep inside the chunk, while S[n] =
S(n−1)C denotes the hidden state right before processing the first timestep of the n-th chunk.

Computation Flow. Since the linear attention of qnC+t over the first nC tokens can be coalesced
into the interaction between qnC+t, S[n], and PnC+t

nC , our method adopts a two-phase computa-
tion scheme similar to Lightning Attention (Qin et al., 2024b) and Gated Linear Attention (Yang
et al., 2024a): (1) Sequentially computing the hidden state checkpoints S[0],S[1], ...,S[N−1]; and (2)
Computing the linear attention outputs O[0], ...,O[N−1] across different time ranges in parallel.

These two computation phases correspond to the following eq. (10) and eq. (11), respectively:

S[n] = PnC
(n−1)CS[n−1] +

nC∑
t=(n−1)C+1

PnC
t KtV

⊤
t ∈ Rdk×dv , (10)

o(n−1)C+t = S⊤
[n−1]P

(n−1)C+t
(n−1)C q(n−1)C+t︸ ︷︷ ︸

inter−chunk attention

+(

(n−1)C+t∑
i=(n−1)C+1

ViK
⊤
i P

(n−1)C+t
t )qt︸ ︷︷ ︸

intra−chunk attention

(11)

Rank Generalized WY Representation. Let P[n] = PnC
(n−1)C =

∏nC
t=(n−1)C Pt ∈ Rdk×dk ,

H[n] =
∑nC

t=(n−1)C+1 P
nC
t KtV

⊤
t ∈ Rdk×dv . For efficient computation of eq. (10) and eq. (11), it

becomes imperative to identify optimized representations for both P[n] and H[n] that eliminate their
original dependence on cumulative summation (Σ) and cumulative product (

∏
) operators.

Employing mathematical induction, we optimize the representations of P[n] and H[n] as follows:

P[n] = DnC
(n−1)C(I−B

′

[n]W
⊤
[n]),H[n] = DnC

(n−1)C(K
′

[n]V
⊤
[n] −B

′

[n]U
⊤
[n]) (12)

5
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U[n] ∈ Rdv×rabC and W[n] ∈ Rdk×rabC are core components of arbitrary rank WY representation:

U[n] = V[n]triurkv×rab
(K

′

[n]A
′⊤
[n], 1)

(
I+ triurab×rab

(B
′

[n]A
′⊤
[n], 1)

)−1

∈ Rdv×rabC , (13)

W[n] = A
′

[n]

(
I+ triurab×rab

(B
′

[n]A
′⊤
[n], 1)

)−1

∈ Rdk×rabC , (14)

The above custom operator triur1×r2(Rr1×n,r2×n, i) serves analogous to standard triu(Rn×n, i)
in linear attention, except for treating each r1 × r2 sub-block of Rr1×n,r2×n as a single element.

A
′

[n] is obtained from A[n] using the following element-wise multiplication (⊙) on each of its col-

umn vectors (e.g., A
′

[n],:,t·rab+r), where t is the time index inside the sequential chunk, and r is the

rank index. B
′

[n] and K
′

[n] are obtained similar to A
′

[n], but with element-wise division (⊘) instead:

A
′

[n],:,t·rab+r = A[n],:,t·rab+r ⊙ d
(n−1)C+(t−1)
(n−1)C (15)

B
′

[n],:,t·rab+r = B[n],:,t·rab+r ⊘ d
(n−1)C+t
(n−1)C ,K

′

[n],:,t·rkv+r = K[n],:,t·rkv+r ⊘ d
(n−1)C+t
(n−1)C (16)

Resulting Formulae. Leveraging the WY representation defined in eq. (13) and eq. (14), eq. (10)
and eq. (11) can be reformulated into the following form, enabling efficient parallel computation of
attention output in different time range, after sequential computation of hidden state checkpoints:

S[n] = DnC
(n−1)C(I−B

′

[n]W
⊤
[n])S[n−1] +DnC

(n−1)C(K
′

[n]V
⊤
[n] −B

′

[n]U
⊤
[n]) (17)

O[n] = S⊤
[n−1]Q

′

[n] +V[n]triurkv×1(K
′⊤
[n]Q

′

[n], 0)− (S⊤
[n−1]W[n] +U[n])triurab×1(B

′⊤
[n]Q

′

[n], 0),

(18)

Here we only present some key conclusions. For detailed derivations, please refer to appendix C.3.

3.3 DISCUSSIONS

Understanding HDLA from the Perspective of Test-Time Training (TTT). If St is regarded as
the projection parameter of a linear layer, then a single step of hidden state update in HDLA is
equivalent to the following three-step optimization process (see appendix C.5 for details):

St,1 = St−1 −
βt

2
∇(min

St−1

∥k⊤
t St−1∥2), (19)

St,2 = St,1 −
1

2
∇
(
Trace(S⊤

t,1diag(1− λt)St,1)
)
, (20)

St = St,2 −
βt

2
∇(St,2∥k⊤

t St,2 −
1

βt
v⊤
t ∥2). (21)

Comparisons between HDLA v.s. Gated DeltaProduct. Gated DeltaProduct performs nh value
predictions and optimizations at each timestep. According to Yang et al. (2024b), all its iterations
within a single timestep can be merged into a rank-enhanced iteration with rab = rkv = nh. How-
ever, its coalesced Diagonal-Plus-Rank-rab decay does not exhibit a highly structured pattern. We
will demonstrate in the experiments that even when nh = 3, the computation amount is about 2× of
HDLA, the performance of Gated DeltaProduct still falls considerably short of our method.
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Table 2: Comparison on the computation amounts of HDLA, GDP2 (Gated DeltaProduct,
nh = 2), and GDP3 (Gated DeltaProduct, nh = 3) of a single recurrent timestep. We uniformly
calculate the computational cost of recurrent hidden state updates according to eq. (17) (setting
C = 1), and omit the estimation of computation required by the cumbersome WY Representation.

Method rab rkv Input Projection Hidden State Update Output Generation

HDLA 2 1 d(3dk + dv + 1) dk(8dv + 5) dkdv
GDP2 2 2 d(3dk + 2dv + 3) dk(12dv + 6) dkdv
GDP3 3 3 d(4dk + 3dv + 4) dk(18dv + 9) dkdv

4 EXPERIMENTS

We’ve conducted a series of experiments, ranging from synthetic tasks (MAD and Zoology), lan-
guage modeling experiments, retrieval-based tasks (NIAH), image classification and ablation stud-
ies, to comprehensively validate the effectiveness of our model. In the following, we use GDP2 and
GDP3 as abbreviations for Gated DeltaProduct when nh = 2 and nh = 3, respectively. Both models
incur significantly higher computational and memory overhead compared to HDLA, yet their overall
performance still remains inferior to our proposed method. (See appendix D for detailed settings)

Mechanistic Architectural Design (MAD). The MAD benchmark (Poli et al.) is composed of 6
kinds of small-scale synthetic tasks, and is designed to evaluate a model’s core language modeling
capabilities including in-context recall, memorization, information compression, selective copying
and noise suppression, etc. The scores across all synthetic tasks are averaged to predict the model’s
performance at large scales, according to scaling law (Kaplan et al., 2020; Shen et al., 2024).

Table 3: Performance Comparison on MAD benchmark aligned with MAD protocol Mem:
Memorization. ICR: In-Context Recall

Method Compression Fuzzy ICR ICR Mem. Noisy ICR Selective Copy AVG.

Softmax Attention 48.85 39.74 95.98 84.41 88.12 99.03 76.02
GDP2 39.40 10.59 99.29 49.84 95.06 97.68 65.31

DeltaProduct 40.77 14.16 99.85 46.08 99.66 99.95 66.74
Gated DeltaNet 41.41 12.90 99.73 55.64 99.40 99.91 68.17

DeltaNet 42.27 16.42 99.88 42.46 99.85 99.93 66.80
Mamba 48.20 10.24 86.90 89.48 94.50 82.14 68.58
HDLA 51.01 14.56 99.73 89.34 93.42 89.73 72.97

The results in table 3 demonstrate that: (1) The 4 non-diagonal decay baselines suffer from severely
impaired memorization capability, with scores not exceeding 60, whereas our HDLA performs well.
(2) Compared to the five linear attention baselines, HDLA demonstrates balanced and comprehen-
sive advantages across all tasks, and significantly narrows the performance gap with softmax atten-
tion. (3) HDLA underperforms softmax attention on Fuzzy In-Context Recall – a task requiring
accurate value prediction from keys interleaved wth arbitrary noisy tokens. This kind of limitation
can be attributed to the strong recency bias (Pan et al., 2025) in linear attention mechanisms.

Figure 2: Accuracy on the synthetic MQAR task.Multi-Query Associative Recall
(Zoology). We conduct Multi-
Query Associative Recall (Zoology,
Arora et al. (2023b)) experi-
ment against Gated DeltaProduct
(nh = 2) (Siems et al., 2025)
and Gated DeltaNet (Yang et al.,
2025), with parameter scale aligned
to 1.65M. The evaluated lengths
include 256, 512, 1024 and 2048.
See fig. 2 for the results. When
the maximum evaluation length is
extended to 2048, HDLA still maintains an accuracy higher than 81%, while the two baselines
nearly fail to produce correct answers, demonstrating HDLA’s advantage in recall ability.
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Table 4: Perplexity comparison on language modeling. The parameter scales of the three columns
from left to right are: 0.4B, 1.45B and 2.8B, respectively. Wiki: Wikitext. (Merity et al., 2016) LMB:
Lambada (Paperno et al., 2016).

Model Wiki LMB. Avg. Wiki LMB. Avg. Wiki LMB. Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

Linear Attention
HDLA 29.04 43.09 36.06 22.49 22.16 22.32 20.16 16.99 18.58
GDP2 (Siems et al., 2025) 30.98 51.59 41.28 23.51 25.79 24.65 20.94 19.82 20.38
GDP3 (Siems et al., 2025) 31.52 60.92 46.22 24.63 28.97 26.80 - - -
Gated DeltaNet (Yang et al., 2025) 30.06 56.07 43.06 23.09 26.56 24.83 20.47 18.74 19.60
DeltaNet (Yang et al., 2024b) 30.75 58.34 44.54 23.74 31.14 27.44 21.66 23.72 22.69
HGRN2 (Qin et al., 2024d) 30.87 47.81 39.34 23.26 24.70 23.98 20.93 19.69 20.31
Mamba2 (Dao & Gu, 2024) 30.26 51.00 40.63 23.93 27.53 25.73 21.95 23.61 22.78
GLA (Yang et al., 2024a) 30.95 56.55 43.75 23.44 29.41 26.42 21.08 21.82 21.45
TransNormerLLM (Qin et al., 2024a) 31.33 51.17 41.25 24.15 28.41 26.28 21.47 21.97 21.72
Softmax-Attention
Llama (Touvron et al., 2023) 28.46 46.73 37.60 22.29 25.07 23.68 20.32 21.10 20.71

Table 5: Comparison on zero-shot commonsense reasoning and retrieval augmented genera-
tion with 50B training tokens. We evaluate the models on BQ Clark et al. (2019), PIQA: Bisk
et al. (2020), HS Zellers et al. (2019), WG Sakaguchi et al. (2021), Arc-e and Arc-c Clark et al.
(2018), OBQ Mihaylov et al. (2018), SIQA Sap et al. (2019), SWDE Lockard et al. (2019), SC Ra-
jpurkar et al. (2018) and FDA Arora et al. (2023a). AVG-CSR: Average CommonSense Reasoning
accuracy. AVG-RET: Average RETrieval accuracy.

Model BQ. PIQA HS. WG. Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET
acc ↑ acc ↑ acc-n ↑ acc ↑ acc ↑ acc-n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc-n ↑

Parameter Scale: 1.45B, Number of tokens: 50B
HDLA 1.45 73.50 57.33 57.62 73.44 38.14 41.60 42.02 41.40 36.76 16.61 54.81 31.59
Gated DeltaNet 1.45 73.23 56.23 56.51 72.43 38.14 41.20 39.71 37.89 35.86 16.88 53.92 30.21

Language Modeling. We train 3 parameter scales of all the models: 0.4B, 1.45B and 2.8B on
10B/50B token datasets sampled from FineWeb-Edu. Perplexity results in table 4 demonstrate that
HDLA surpasses all the selected linear attention baselines by notable margins, and even outperforms
the Transformer-based architecture Llama (Touvron et al., 2023). table 7 shows that our method con-
sistently surpasses both Llama and linear attention baselines in zero-shot commonsense reasoning.
For retrieval tasks, our method is competitive in all parameter scales, and achieves the best perfor-
mance among all linear attention mechanisms when scaled up to 2.8B parameters. However, there
is still a considerable gap between our model and Llama in retrieval performance. The reason is that
the limited hidden state size of linear attention mechanisms fundamentally restricts their ability to
perform in-context cross-step retrieval, both explicitly and implicitly (Wen et al., 2025).

Retrieval-Based Tasks. We further trained Gated DeltaNet and HDLA models with 1.45B param-
eters until the total number of tokens reached 50B (see table 7 for language modeling and retrieval
results), and then evaluated the models on the retrieval-based task RULER (Hsieh et al., 2024). As
demonstrated by table 6, compared to Gated DeltaNet, HDLA has a significant advantage in retrieval
capability. Especially on the S-NIAH-3 task, its accuracy leads by 31.4% and 58.2%.

Table 6: Accuracy on different S-NIAH tasks for 1.45B HDLA and Gated DeltaNet.
Model S-NIAH-1 S-NIAH-2 S-NIAH-3
Sequence Length 1024 2048 1024 2048 1024 2048
HDLA 100.0% 98.8% 96.4% 52.2% 82.0% 65.2%
Gated DeltaNet 99.6% 97.2% 96.4% 45.8% 50.6% 7.0%

Image Classification. We conduct bidirectional image classification experiments on ImageNet-
1k (Deng et al., 2009). Baselines include Deit (Touvron et al., 2021) which is a Transformer-based
architecture, and some other linear attention architectures. Results of baselines are directly borrowed
from Chou et al. (2024). As show in table 8, HDLA performs better than most of the baselines.

Supplementary Experiments. In appendix B, we provide the following supplementary experi-
ments: (1) State expansion experiments on HDLA and baselines. (2) Fine-tuning on some hyperpa-
rameters of HDLA (e.g. learning rate, the range of βt, the type of activation functions on kt,vt).
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Table 7: Comparison on zero-shot commonsense reasoning and retrieval augmented genera-
tion with 10B training tokens. We evaluate the models on BQ Clark et al. (2019), PIQA: Bisk
et al. (2020), HS Zellers et al. (2019), WG Sakaguchi et al. (2021), Arc-e and Arc-c Clark et al.
(2018), OBQ Mihaylov et al. (2018), SIQA Sap et al. (2019), SWDE Lockard et al. (2019), SC Ra-
jpurkar et al. (2018) and FDA Arora et al. (2023a). AVG-CSR: Average CommonSense Reasoning
accuracy. AVG-RET: Average RETrieval accuracy.

Model BQ. PIQA HS. WG. Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET
acc ↑ acc ↑ acc-n ↑ acc ↑ acc ↑ acc-n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc-n ↑

Parameter Scale: 0.4B, Number of tokens: 10B
HDLA 61.50 67.41 40.48 51.14 60.65 28.58 31.80 38.13 10.26 21.78 3.09 47.46 11.71
GDP2 61.07 66.87 38.49 51.78 57.70 27.73 34.00 38.08 9.36 22.39 3.63 46.97 11.79
GDP3 60.37 66.59 37.62 51.30 57.53 26.28 35.00 38.84 8.37 20.68 3.36 46.69 10.80
Gated DeltaNet 58.41 67.63 39.41 51.85 58.38 27.13 33.60 36.75 8.01 20.78 2.63 46.65 10.47
DeltaNet 59.69 66.59 37.74 50.67 58.00 27.99 32.60 37.41 11.79 22.62 5.54 46.33 13.32
HGRN2 59.17 67.08 38.96 52.09 60.02 26.62 34.80 38.43 9.90 18.83 3.45 47.15 10.73
Mamba2 60.00 65.94 38.24 50.99 56.90 27.99 31.40 38.38 13.23 27.92 4.99 46.23 15.38
GLA 58.53 67.41 39.50 50.91 59.97 27.30 34.60 38.38 7.29 17.46 2.18 47.08 8.98
TransNormerLLM 59.45 66.59 38.34 49.64 59.51 28.41 35.60 39.56 10.08 21.31 2.00 47.14 11.13
Llama 60.73 66.65 38.88 51.62 58.63 28.24 33.40 38.95 47.07 30.86 17.15 47.14 31.69
Parameter Scale: 1.45B, Number of tokens: 10B
HDLA 60.52 71.00 47.77 52.88 67.17 32.68 35.60 40.84 21.69 28.22 8.17 51.06 19.36
GDP2 57.83 69.75 46.22 52.33 64.35 31.91 35.60 38.89 17.82 27.98 6.99 49.61 17.60
GDP3 60.80 68.50 44.18 51.70 63.43 31.48 35.60 38.89 14.04 26.34 5.26 49.32 15.21
Gated DeltaNet 61.47 69.97 47.11 53.12 65.36 33.11 35.40 40.84 20.43 27.61 7.35 50.80 18.46
DeltaNet 61.31 69.31 44.32 53.04 65.32 31.23 34.80 39.61 21.87 26.91 10.25 49.87 19.68
HGRN2 60.70 69.42 46.62 51.14 66.33 30.80 36.80 40.43 22.77 25.77 6.62 50.28 18.39
Mamba2 60.46 69.70 45.00 51.78 63.43 31.23 34.60 39.87 22.23 29.42 9.35 49.51 20.33
GLA 57.31 69.31 47.25 54.06 66.46 33.79 36.60 39.82 16.29 23.83 4.81 50.58 14.98
TransNormerLLM 61.56 69.75 46.02 51.70 64.86 31.57 34.40 39.61 18.99 26.51 4.26 49.93 16.59
Llama 61.68 69.42 46.89 53.20 65.82 30.89 35.40 39.82 62.29 38.47 39.38 50.39 46.71
Parameter Scale: 2.8B, Number of tokens: 10B
HDLA 61.13 71.65 51.93 56.51 70.29 34.90 37.60 40.69 27.45 30.56 16.61 53.09 24.87
GDP2 58.75 71.16 50.31 55.41 67.59 34.73 38.40 40.17 27.00 30.56 8.71 52.07 22.09
Gated DeltaNet 60.80 71.76 51.17 54.54 69.49 35.67 38.20 39.71 29.07 31.13 13.79 52.67 24.66
DeltaNet 59.97 71.16 47.79 55.33 67.13 33.53 35.80 39.92 30.51 29.12 12.25 51.33 23.96
HGRN2 61.56 70.57 50.49 53.04 68.90 34.81 39.00 40.43 28.44 29.19 14.61 52.35 24.08
Mamba2 60.73 71.06 48.55 53.43 64.77 32.17 38.20 39.15 23.94 34.55 8.98 51.01 22.49
TransNormerLLM 58.59 70.29 50.04 54.54 68.35 33.96 35.60 41.76 24.21 29.42 7.62 51.64 20.42
Llama 61.10 70.89 50.36 56.20 67.38 32.51 36.20 40.07 61.57 36.23 41.02 51.84 46.27

Table 8: Results of image classification on ImageNet-1k.
Model Accuracy Param(M) Model Accuracy Param(M) Model Accuracy Param(M)

HDLA 74.84% 6.1 MetaLA 75.33% 6.1 GDP2 73.81% 6.1
Gated DeltaNet 72.33% 6.1 HGRN 74.40% 6.1 GLA 72.47% 6.1

Mamba 73.39% 6.1 Deit 72.20% 5.7 - - -

5 CONCLUSION

In this work, we propose HDLA, a linear attention mechanism with enhanced structured decay
while maintaining reasonable computational and I/O cost, verify its effectiveness across various
types of experiments, and obtained its theoretical justification from Test-Time Training perspective.
Its robustness demonstrates that more sophisticated, structured and rank-enhanced decay structures
can improve the effectiveness of linear attention mechanisms. We’ve also derived a more general
algorithmic framework of linear attention, enabling both diagonal-plus-rank-rab decay and rank-rkv
key-value outer product updates, laying a solid foundation for future research.

Discussion and Limitation. Despite its superior experimental performance and sound theoretical
explanations, this work has at least the following limitations: (1) In terms of state expansion, this
work only explores a naive approach by altering the number of attention heads. Yet, to further bridge
the performance gap with Softmax attention, it is necessary to introduce more efficient multi-level
and functionally differenciated state expansion methods. (2) Purely linearized hidden state update
operations limit the model’s expressive power. As suggested in Behrouz et al. (2025c), it is impor-
tant to appropriately introduce non-linear operations on the hidden state to enhance expressiveness.
Nevertheless, HDLA has defined a more efficient utilization mechanism for a single hidden state,
and holds significant potential to inspire subsequent research in the rank-enhancement design trends.
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A DECLARATION OF LARGE LANGUAGE MODEL (LLM) USAGE

To make the language more fluent and smooth, we‘ve used large language models (LLMs) for pol-
ishing during the writing process. We assure that all methods and experiments have been conducted
manually and are authentic and valid.

B SUPPLEMENTARY EXPERIMENTS

B.1 STATE EXPANSION EXPERIMENTS

The hidden state size S of linear attention mechanisms can be computed by the following formula,
where nh is the number of attention heads, and dk and dv are the total dimensions of the keys and
values, respectively:

S = nh · dk
nh

· dv
nh

=
dkdv
nh

(22)

Therefore, without changing dk and dv , we can adjust the hidden state size by altering nh.

MAD experiment after state expansion. In table 3, we follow the MAD protocol by setting all
linear attention baselines to nh = 8, dk = 128, and dv = 128, resulting in an aligned per-layer
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hidden state size of S = 2048. Here, we naively achieve state expansion by setting nh = 4, so that
the per-layer hidden state size of each linear attention model is aligned to S = 4096.

Table 9: Performance comparison on MAD benchmark after expanding the hidden state size
from 2048 to 4096. Mem: Memorization. ICR: In-Context Recall.

Method Compression Fuzzy ICR ICR Mem. Noisy ICR Selective Copy AVG.

GDP2 41.69 19.96 99.86 64.46 99.80 99.93 70.95
DeltaProduct 42.74 21.35 99.93 52.74 99.79 99.96 69.42

Gated DeltaNet 44.03 18.34 99.89 66.85 99.87 95.61 70.77
DeltaNet 43.76 24.08 99.94 42.32 99.96 99.92 68.33
Mamba 44.82 12.21 87.24 89.25 88.74 83.08 67.56
HDLA 48.47 18.34 99.99 89.24 94.42 94.55 74.17

The results in table 9 shows that after state expansion, the average score of HDLA improves by 1.20,
still significantly outperforming other linear attention baselines, and is only 1.85% behind Softmax
Attention in table 3, demonstrating the effectiveness of HDLA under state expansion.

Language modeling results of HDLA after state expansion. The results in table 10 demonstrate
that after state expansion, the commonsense reasoning ability of HDLA remains nearly unchanged,
while its retrieval performance shows a clear improvement of 2.42% and 3.37%.

PS (B) nh BQ PIQA HS WG Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET
0.17 3 58.01 63.93 33.46 50.51 53.87 25.00 30.80 37.56 9.00 17.76 2.09 44.14 9.62
0.17 12 59.11 64.74 33.32 49.80 52.78 26.37 30.40 36.90 4.95 15.65 1.00 44.18 7.20
0.4 4 61.38 66.76 39.43 49.72 59.47 29.01 34.40 39.10 13.32 23.32 5.08 47.41 13.91
0.4 12 58.81 67.57 39.42 51.22 60.35 28.33 33.60 38.79 8.10 21.08 2.45 47.26 10.54

Table 10: Commonsense reasoning and retrieval results of HDLA before and after state expan-
sion. dk = dv = 768 at 0.17B parameter scale, while dk = dv = 1024 at 0.4B parameter scale.

B.2 HYPERPARAMETER FINE-TUNING EXPERIMENTS

Fine-tuning experiments on learning rate. In addition to the 3e-4 learning rate used in the main
text, we also compare a range of learning rates (2.0e-4, 2.5e-4, 3.0e-4, and 6.0e-4) following the
setup in Dao & Gu (2024). The results show that the models generally perform better with the
relatively large learning rate of 6e-4. Due to computational resource constraints, we have not yet
applied this setting to the language modeling experiments at 1.45B and 2.8B scales.

Model PS(B) lr BQ PIQA HS WG Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET

GDN 0.2 2.0e-4 59.4 63.1 31.9 50.0 52.0 25.3 29.6 37.2 4.8 13.2 2.0 43.6 6.7
GDN 0.2 2.5e-4 53.8 64.0 32.3 51.0 51.9 26.0 31.2 36.4 6.1 14.3 1.4 43.3 7.3
GDN 0.2 3.0e-4 60.1 64.1 32.7 50.0 53.6 25.3 30.8 36.7 5.9 14.3 1.0 44.2 7.1
GDN 0.2 6.0e-4 56.9 64.4 33.9 52.8 54.6 25.1 31.2 37.1 6.6 19.7 2.5 44.5 9.6

HDLA 0.2 2.0e-4 61.6 63.8 32.5 50.0 54.5 25.0 31.2 37.5 6.5 15.4 1.9 44.5 7.9
HDLA 0.2 2.5e-4 61.4 64.9 33.4 49.5 55.6 26.1 30.8 37.6 6.8 17.1 1.4 44.9 8.4
HDLA 0.2 3.0e-4 53.8 64.3 33.5 49.9 53.6 24.9 29.8 38.6 7.7 16.9 1.1 43.5 8.5
HDLA 0.2 6.0e-4 50.6 65.2 34.4 50.9 56.0 25.6 33.8 38.3 8.6 20.2 1.8 44.4 10.2

GDN 0.4 2.0e-4 58.8 67.0 38.1 50.2 59.1 26.5 32.8 39.0 9.7 20.5 2.8 46.5 11.0
GDN 0.4 2.5e-4 58.0 66.1 38.4 51.9 59.3 27.3 33.2 38.8 9.7 21.3 2.7 46.6 11.3
GDN 0.4 3.0e-4 58.4 67.6 39.4 51.9 58.4 27.1 33.6 38.2 10.9 23.8 2.5 47.4 12.4
GDN 0.4 6.0e-4 59.4 67.9 40.6 50.8 61.7 28.1 32.6 38.2 10.9 23.8 2.5 47.4 12.4

HDLA 0.4 2.0e-4 60.1 66.6 39.0 50.2 59.8 28.0 33.6 37.7 9.5 22.0 2.5 46.9 11.4
HDLA 0.4 2.5e-4 59.4 67.5 39.3 51.1 59.7 27.7 33.4 37.8 10.0 21.8 3.7 47.0 11.8
HDLA 0.4 3.0e-4 61.5 67.4 40.5 51.1 60.7 28.6 31.8 38.1 10.3 21.8 3.1 47.5 11.7
HDLA 0.4 6.0e-4 57.6 67.1 41.6 50.8 60.4 27.9 33.6 39.0 12.1 23.7 4.3 47.3 13.3

Table 11: Commonsense reasoning and retrieval results when fine-tuning on learning rate.

Fine-tuning experiments on βt’s range in HDLA.
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PS(B) βt BQ PIQA HS WG Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET
0.17 [0, 2] 53.76 64.25 33.52 49.88 53.58 24.91 29.8 38.59 7.65 16.86 1.09 43.54 8.53
0.17 [0, 1] 55.11 63.66 33.33 50.83 54.84 25.77 32.2 37.46 7.29 16.99 1.09 44.15 8.46
0.4 [0, 2] 61.50 67.41 40.48 51.14 60.65 28.58 31.8 38.13 10.26 21.78 3.09 47.46 11.71
0.4 [0, 1] 60.52 68.01 39.88 50.99 60.44 28.33 33.8 38.02 11.25 23.83 2.45 47.50 12.51

Table 12: Commonsense reasoning and retrieval results of HDLA under different βt intervals.

Fine-tuning experiments on the key/value activation function in HDLA.

PS(B) Act BQ PIQA HS WG Arc-e Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET
0.17 SiLU 53.76 64.25 33.52 49.88 53.58 24.91 29.8 38.59 7.65 16.86 1.09 43.54 8.53
0.17 ReLU 59.30 64.36 32.91 50.51 52.74 25.26 30.8 36.80 6.39 16.62 1.00 44.09 8.00
0.17 1+elu 59.66 64.25 32.97 50.59 53.54 24.66 30.4 37.15 6.30 17.33 1.54 44.15 8.39
0.4 SiLU 61.50 67.41 40.48 51.14 60.65 28.58 31.8 38.13 10.26 21.78 3.09 47.46 11.71
0.4 ReLU 61.71 67.63 39.65 51.78 59.68 27.56 31.0 38.49 10.53 20.44 2.54 47.19 11.17
0.4 1+elu 61.28 65.94 39.00 50.67 59.51 27.82 35.8 37.72 10.62 24.80 3.36 47.22 12.93

Table 13: Commonsense reasoning and retrieval results of HDLA with different activation functions.

C DETAILED ALGORITHMIC RESULTS

C.1 THE EXACT ARCHITECTURE OF HDLA AS A TOKEN MIXER

Here we present some details omitted in fig. 1 using mathematical formulae:

qt = θQxt ∈ Rdk×1,kt = θKxt ∈ Rdk×1,vt = θV xt ∈ Rdv×1 (23)

βt = θβxt ∈ R, λt = θλxt ∈ Rdk×1 (24)
qt = SiLU(qt),kt = SiLU(kt),vt = SiLU(vt) (25)
kt = norml2(kt) (26)

St = (I− βtktk
⊤
t )Diag(λt)(I− βtktk

⊤
t )St−1 + ktv

⊤
t (27)

yt = qtSt ∈ Rdv×1 (28)

gt = xtθg ∈ Rdv×1 (29)

ot = yt ⊙ gt ∈ Rdv×1 (30)

C.2 COMPUTATION OF At AND Bt

Consider factorizing each element of Λt as the product of its square roots, then coupling them with
the left and right Householder transformations Ht. This yields the reformulation of Pt as follows:

Pt =
(
Diag(

√
λt)− βtkt(kt ⊙

√
λt)

⊤
)(

Diag(
√

λt)− βt(kt ⊙
√
λt)k

⊤
t

)
(31)

This form of Pt is a special case of two diagonal-plus-rank-one matrices’ product:

Pt = (Dt,(1) − at,(1)b
⊤
t,(1))(Dt,(2) − at,(2)b

⊤
t,(2)) (32)

Utilizing the compact WY representation of diagonal-plus-rank-1 matrices’ cumulative prod-
ucts (Yang & Zhang, 2024), Pt can be rewritten as the following form:

Pt = Dt −AtB
⊤
t ∈ Rdk×dk ,At,Bt ∈ Rdk×2 (33)

We demonstrate the detailed formulation of At,Bt as follows:
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Pt = (Dt,(1) − at,(1)b
⊤
t,(1))(Dt,(2) − at,(2)b

⊤
t,(2))

= Dt,(1)Dt,(2) − at,(1)b
⊤
t,(1)Dt,(2) − (Dt,(1) − at,(1)b

⊤
t,(1))at,(2)b

⊤
t,(2)

Let:

Dt = Dt,(1)Dt,(2) ∈ Rdk×dk (34)

At =
[
at,(1) (Dt,(1) − at,(1)b

⊤
t,(1))at,(2)

]
∈ Rdk×2 (35)

Bt =
[
Dt,(2)bt,(1) bt,(2)

]
∈ Rdk×2 (36)

Then Pt can be rewritten as eq. (33)’s form.

C.3 SUPPLEMENTARY DEDUCTION OF THE FORWARD CHUNK-WISE PARALLEL ALGORITHM

For deduction of cumulative products of the decay matrices P1,P2, · · · , observe that:

P1 = D1 −A1B
⊤
1

P2 = (D1 −A1B
⊤
1 )(D2 −A2B

⊤
2 )

= D1D2 −A1B
⊤
1 D2 − (D1 −A1B1)A2B

⊤
2

P3 = (D1D2 −A1B
⊤
1 D2 − (D1 −A1B1)A2B

⊤
2 )(D3 −A3B

⊤
3 )

= D1D2D3 −A1B
⊤
1 D2D3

− (D1 −A1B1)A2B
⊤
2 D3 −

(
D1D2 −A1B

⊤
1 D2 − (D1 −A1B1)A2B

⊤
2

)
A3B

⊤
3

Suppose:

Pt = Dt
0 −

t∑
i=1

WiB
⊤
i D

t
i

Then:

Pt+1 = (Dt
0 −

t∑
i=1

WiB
⊤
i D

t
i)(Dt+1 −At+1B

⊤
t+1)

= Dt+1
0 −

t∑
i=1

WiB
⊤
i D

t+1
i −

(
(Dt

0 −
t∑

i=1

WiB
⊤
i D

t
i)At+1

)
B⊤

t+1D
t+1
t+1

= Dt+1
0 −

t+1∑
i=1

WiB
⊤
i D

t+1
i

= (I−
t+1∑
i=1

WiB
′⊤
i )Dt+1

0

Where:
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Wt = (Dt−1
0 −

t−1∑
i=1

WiB
⊤
i D

t−1
i )At

= (I−
t−1∑
i=1

Wi(
Bi

Di
0

)⊤)(At ⊙Dt−1
0 )

= (I−
t−1∑
i=1

WiB
′⊤
i )A

′

t

For compact form of S1,S2, · · · , observe that:

S1 = V1K
⊤
1

S2 = S1(D
2
1 −A2B

⊤
2 ) +V2K

⊤
2

= V1K
⊤
1 D

2
1 −V1K

⊤
1 A2B

⊤
2 +V2K

⊤
2

S3 = S2(D
3
2 −A3B

⊤
3 ) +V3K

⊤
3

= V1K
⊤
1 D

3
1 +V2K

⊤
2 D

3
2 +V3K

⊤
3 −V1K

⊤
1 A2B

⊤
2 D

3
2

−
(
(V1K

⊤
1 D

2
1 −V1K

⊤
1 A2B

⊤
2 +V2K

⊤
2 )A3

)
B⊤

3

Suppose:

St =
∑t

i=1(ViK
⊤
i −UiB

⊤
i )D

t
i

Then:

St+1 = St(D
t+1
t −At+1B

⊤
t+1) +Vt+1K

⊤
t+1

=

t∑
i=1

(ViK
⊤
i −UiB

⊤
i )D

t+1
i +Vi+1K

⊤
i+1 −

(
t∑

i=1

(ViK
⊤
i −UiB

⊤
i )D

t
iAt+1

)
B⊤

t+1

=

t+1∑
i=1

(ViK
⊤
i −UiB

⊤
i )D

t+1
i

=

t+1∑
i=1

(ViK
′⊤
i −UiB

′⊤
i )Dt+1

0

Where:

Ut =

t−1∑
i=1

(ViK
⊤
i −UiB

⊤
i )D

t−1
i At

=

t−1∑
i=1

(ViK
′⊤
i −UiB

′⊤
i )A

′

t

C.4 BACKWARD CHUNK-WISE PARALLEL ALGORITHM FOR LINEAR ATTENTION WITH
DIAGONAL-PLUS-RANK-rab DECAY STRUCTURE AND RANK-rkv KEY-VALUE UPDATES

For the sake of simplicity, make the following definitions:
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Λ[n] =
[
d
(n−1)C+1
(n−1)C d

(n−1)C+2
(n−1)C · · · dnC

(n−1)C

]
∈ Rdk×C (37)

Λ̄[n] =
[
dnC
(n−1)C+1 dnC

(n−1)C+2 · · · dnC
nC

]
∈ Rdk×C (38)

Λ̃[n] =
[
d
(n−1)C
(n−1)C d

(n−1)C+1
(n−1)C · · · dnC−1

(n−1)C

]
∈ Rdk×C (39)

For Λ̄[n], Λ̃[n]’s ⊙ operation with K[n],A[n] or B[n], Λ̄[n], Λ̃[n] are repeated across the sequential
dimension in an interleaving manner (analogous to torch.repeat interleave) before taking element-
wise multiplications.

Let’s review the forward formulae of linear attention with diagonal-plus-rank-rab decay structure
and rank-rkv key-value updates:

U[n] = V[n]triurkv×rab
(K

′

[n]A
′⊤
[n], 1)

(
I+ triurab×rab

(B
′

[n]A
′⊤
[n], 1)

)−1

∈ Rdv×rabC , (19)

W[n] = A
′

[n]

(
I+ triurab×rab

(B
′

[n]A
′⊤
[n], 1)

)−1

∈ Rdk×rabC , (20)

C[n] = S⊤
[n−1]W[n] +U[n] (40)

O[n] = S⊤
[n−1]Q

′

[n] +V[n]triurkv×1(K
′⊤
[n]Q

′

[n], 0)−C[n]triurab×1(B
′

[n]Q
′

[n], 0), (41)

S[n] = DnC
(n−1)CS[n−1] + (K[n] ⊙ Λ̄[n])V

⊤
[n] − (B[n] ⊙ Λ̄[n])C

⊤
[n], (42)

In the following subsections, we deduct the gradient of C[n] and S[n−1] first, which needs to be
computed serially. Then, the gradient of Q[n],K[n],V[n],A[n],B[n] of each chunk can be computed
in parallel. Finally, we will derive a concise form of the decay matrices’ diagonal term.

C.4.1 DEDUCTION OF ∂C[n] AND ∂S[n−1]

Since C[n] participates in the computation of O[n] (eq. (41)) and the update of S[n] (eq. (42)), its
gradient is composed of two parts:

∂C[n] = −∂O[n]tril1×rab
(Q

′⊤
[n]B

′

[n], 0)︸ ︷︷ ︸
∂C[n],intra

+ ∂S⊤
[n](B[n] ⊙ Λ̄[n])︸ ︷︷ ︸

∂C[n],inter

(43)

Since S[n−1] participates in the computation of C[n],O[n], as well as the update of S[n], the gradient
of S[n−1] is:

∂S[n−1] = W[n]∂C
⊤
[n] +Q[n]∂O

⊤
[n]︸ ︷︷ ︸

∂S[n−1],intra

+DnC
(n−1)C∂S[n]︸ ︷︷ ︸
∂S[n−1],inter

(44)

C.4.2 DEDUCTION OF ∂Q[n], ∂K[n], ∂V[n], ∂A[n] AND ∂B[n]

Since Q[n] participates in the computation of O[n], both intra-chunk and inter-chunk, its gradidient
is composed of:

∂Q[n],intra,part1 = (K[n] ⊙ Λ̄[n])triurkv×1(V
⊤
[n]∂O[n], 0) (45)

∂Q[n],intra,part2 = −(B[n] ⊙ Λ̄[n])triurab×1(C
⊤
[n]∂O[n], 0) (46)

∂Q[n],inter = (S[n−1]∂O[n])⊙Λ[n] (47)

∂Q[n] = ∂Q[n],intra,part1 + ∂Q[n],intra,part2 + ∂Q[n],inter (48)
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Similarly, the gradients of K[n],B[n],V[n] relevant to rank-enhanced gated linear attention can be
derived as follows:

∂K[n],gla =
(
(Q[n] ⊙Λ[n])tril1×rkv

(∂O⊤
[n]V[n], 0)

)
⊘Λ[n]︸ ︷︷ ︸

∂K[n],gla,intra

+(∂S[n]V[n])⊙ Λ̄[n]︸ ︷︷ ︸
∂K[n],gla,inter

(49)

∂B[n],gla = −
(
(Q[n] ⊙Λ[n])tril1×rkv

(∂O⊤
[n]C[n], 0)

)
⊘Λ[n]︸ ︷︷ ︸

∂B[n],gla,intra

+
(
−(∂S[n]C[n])⊙ Λ̄[n]

)︸ ︷︷ ︸
∂B[n],gla,inter

(50)

∂V[n],gla = ∂O[n]tril1×rkv
(Q

′⊤
[n]K

′

[n], 0)︸ ︷︷ ︸
∂V[n],intra

+S⊤
[n]D

nC
(n−1)CK

′

[n]︸ ︷︷ ︸
∂V[n],intra

(51)

∂V[n],gla = −∂O[n]tril1×rab
(Q

′⊤
[n]B

′

[n], 0)︸ ︷︷ ︸
∂C[n],intra

+S⊤
[n]D

nC
(n−1)CB

′

[n]︸ ︷︷ ︸
∂C[n],intra

(52)

Now we consider the gradients of each input corresponding to the arbitrary-rank WY compact rep-
resentation (eq. (13) and eq. (14)). The matrix inversion operation can be avoided in the backward
pass, utilizing the following observation of ut’s recurrent definition.

ut =

t−1∑
i=1

(vik
′⊤
i − uib

′⊤
i )a

′

t

⇒ ∂a
′

t,part1 =

t−1∑
i=1

(k
′

iv
⊤
i − b

′

iu
⊤
i )∂ut

⇒ ∂A
′

part1 = K
′

[n]triurkv×rab
(V⊤

[n]∂U[n], 1)−B
′

[n]triurab×rab
(U⊤

[n]∂U[n], 1)

⇒ ∂A[n],part1 = Λ[n] ⊙
(
(K[n] ⊘Λ[n])triurkv×rab

(V⊤
[n]∂U[n], 1)

)
−Λ[n] ⊙

(
(B[n] ⊘Λ[n])triurab×rab

(U⊤
[n]∂U[n], 1)

)
(53)

wt = (I−
t−1∑
i=1

wi(bi ⊘Di
0)

⊤)(at ⊙Dt−1
0 )

⇒ ∂(at ⊙Dt−1
0 ) = (I−

t−1∑
i=1

(bi ⊘Di
0)w

⊤
i )∂wt

⇒ ∂(A[n] ⊙ Λ̃[n]) = ∂W[n] −B[n] ⊘Λ[n]triu(W
⊤
[n]∂W[n], 1)

⇒ ∂A[n],part2 = Λ̃[n] ⊙
(
∂W[n] − (B[n] ⊘Λ[n])triurab×rab

(W⊤
[n]∂W[n], 1)

)
(54)

∂A[n] = ∂A[n],part1 + ∂A[n],part2 (55)

ut =

t−1∑
i=1

(vi(ki ⊘Di
0)

⊤ − ui(bi ⊘Di
0)

⊤)(at ⊙Dt−1
0 )

⇒ ∂(bi ⊘Di
0)

⊤ = −u⊤
i dut(at ⊙Dt−1

0 )⊤

⇒ ∂bi,wy,part1 = −(1⊘Di
0)

t∑
j=i+1

(
(aj ⊙Dj−1

0 )du⊤
j ui

)
⇒ ∂B[n],wy,part1 = −(1⊘Λ[n])

(
(A[n] ⊙ Λ̃[n])trilrab×rab

(∂U⊤
[n]U[n],−1)

)
(56)
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wt =

(
I−

t−1∑
i=1

wi(bi ⊘Di
0)

⊤

)
(at ⊙Dt−1

0 )

⇒ ∂(bi ⊘Di
0)

⊤ = −w⊤
i ∂wt(at ⊙Dt−1

0 )⊤

⇒ ∂bi,wy,part2 = −(1⊘Di
0)

t∑
j=i+1

(
(aj ⊙Dj−1

0 )∂w⊤
j wi

)
⇒ ∂B[n],wy,part2 = −(1⊘Λ[n])

(
(A[n] ⊙ Λ̃[n])trilrab×rab

(∂W⊤
[n]W[n],−1)

)
(57)

∂B[n],wy = −(1⊘Λ[n])
(
(A[n] ⊙ Λ̃[n])trilrab×rab

(∂U⊤
[n]U[n],−1)

)
− (1⊘Λ[n])

(
(A[n] ⊙ Λ̃[n])trilrab×rab

(∂W⊤
[n]W[n],−1)

)
(58)

Similar observation and deduction yields the following results:

∂ki,wy =

t∑
j=i+1

Dj−1
i aj∂u

⊤
j vi

= (1⊘Di
0)

t∑
j=i+1

(Dj−1
0 aj)∂u

⊤
j vi

= (1⊘Di
0)

t∑
j=i+1

(
(a

′

j)∂u
⊤
j

)
vi

⇒ ∂K[n],wy =
[
1⊘D1

0 1⊘D2
0 · · · 1⊘Dt

0

]
⊙
(
A

′

[n]tril(∂U
⊤
[n]V[n],−1)

)
⇒ ∂K[n],wy = (1⊘Λ[n])⊙

(
(A[n] ⊙ Λ̃[n])trilrab×rkv

(∂U⊤
[n]V[n],−1)

)
(59)

ut =

t−1∑
i=1

(vi(ki ⊘Di
0)

⊤ − ui(bi ⊘Di
0)

⊤)(at ⊙Dt−1
0 )

⇒ ∂vi,wy =

t∑
j=i+1

∂uj(aj ⊙Dj−1
0 )⊤(ki ⊘Di

0)

⇒ ∂V[n],wy = ∂U[n]trilrab×rkv

(
(A[n] ⊙ Λ̃[n])

⊤(K[n] ⊘Λ[n]),−1
)

(60)

If a tensor participates in the computation of WY representation and rank-enhanced gated linear
attention at the same time, then its total gradient is the summation of gradients relevant to the former
and the latter computations. For example:

∂V[n] = ∂V[n],gla + ∂V[n],wy (61)

C.4.3 DEDUCTION OF ∂Λ[n] AND ∂Λ̃[n]

Notice that the diagonal terms of Diagonal-Plus-Rank-rab decay matrices are applied on other input
tensors, using their chunk-wise cumulative products, and they are applied on Q[n] and A[n] (K[n]

and B[n]) in element-wise multiplication (division) manner:
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Q
′

[n],:,t = Q[n],:,t ⊙ d
(n−1)C+t
(n−1)C

A
′

[n],:,t·rab+r = A[n],:,t·rab+r ⊙ d
(n−1)C+(t−1)
(n−1)C

B
′

[n],:,t·rab+r = B[n],:,t·rab+r ⊘ d
(n−1)C+t
(n−1)C

K
′

[n],:,t·rkv+r = K[n],:,t·rkv+r ⊘ d
(n−1)C+t
(n−1)C

Now, we’d like to derive the gradient for the chunk-wise cumulative sum of the logarithms of diag-
onal decay terms, i.e., d(n−1)C+1

(n−1)C ,d
(n−1)C+2
(n−1)C+1, · · · .

For simplicity, consider the special case when rab = 1, and the result can be easily generalized to
arbitrarily chosen rab.

Let’s derive the gradient of d(n−1)C+t
(n−1)C and d

(n−1)C+t−1
(n−1)C first, for each 1 ≤ t ≤ C:

∂d
(n−1)C+t
(n−1)C = (∂q

′

(n−1)C+t ⊙ q(n−1)C+t)

− (∂k
′

(n−1)C+t ⊙ k(n−1)C+t)⊘ (d
(n−1)C+t
(n−1)C ⊙ d

(n−1)C+t
(n−1)C ) (62)

∂d
(n−1)C+(t−1)
(n−1)C = (∂A

′

(n−1)C+t ⊙ a(n−1)C+t)

− (∂b
′

(n−1)C+t ⊙ b(n−1)C+t)⊘ (d
(n−1)C+(t−1)
(n−1)C ⊙ d

(n−1)C+(t−1)
(n−1)C ) (63)

Given a vector y, the relationship between ∂y and ∂logy is:

∂logy = y(∂y)

Thus:

∂log(d
(n−1)C+t
(n−1)C ) = (∂q

′

[n] ⊙ q(n−1)C+t)⊙ d
(n−1)C+t
(n−1)C

− (∂k
′

(n−1)C+t ⊙ k(n−1)C+t)⊘ (d
(n−1)C+t
(n−1)C ) (64)

∂logd
(n−1)C+(t−1)
(n−1)C = (∂a

′

(n−1)C+t ⊙ a(n−1)C+t)⊙ d
(n−1)C+(t−1)
(n−1)C

− (∂b
′

[n] ⊙ b[n])⊘ (d
(n−1)C+(t−1)
(n−1)C ) (65)

Notice that:

∂q
′

(n−1)C+t = ∂q[n] ⊘ d
(n−1)C+t
(n−1)C (66)

∂a
′

(n−1)C+t = ∂a(n−1)C+t ⊘ d
(n−1)C+(t−1)
(n−1)C (67)

∂k
′

(n−1)C+t = ∂k(n−1)C+t ⊙ d
(n−1)C+t
(n−1)C (68)

∂b
′

(n−1)C+t = ∂b(n−1)C+t ⊙ d
(n−1)C+t
(n−1)C (69)

(70)

Substitude them into (eq. (64) and eq. (65)), the result is:

∂log(d
(n−1)C+t
(n−1)C ) = (∂q(n−1)C+t ⊙ k(n−1)C+t)

− (∂k(n−1)C+t ⊙ k(n−1)C+t)− (∂b(n−1)C+t ⊙ b(n−1)C+t) (71)

∂logd
(n−1)C+(t−1)
(n−1)C = (∂a(n−1)C+t ⊙ a(n−1)C+t) (72)
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Review that Λ[n] (Λ̃[n]) is the column-wise concatenation of d(n−1)C+t
(n−1)C (d(n−1)C+(t−1)

(n−1)C ) inside the
n-th sequential chunk:

Λ[n] =
[
d
(n−1)C+1
(n−1)C d

(n−1)C+2
(n−1)C · · · dnC

(n−1)C

]
(73)

Λ̃[n] =
[
d
(n−1)C
(n−1)C d

(n−1)C+1
(n−1)C · · · dnC−1

(n−1)C

]
(74)

Therefore, the corresponding chunk-wise parallel forms for ∂logΛ[n] and ∂logΛ̃[n] are as follows:

∂logΛ[n] = ∂Q[n] ⊙Q[n] − ∂K[n] ⊙K[n] − ∂B[n] ⊙B[n] (75)

∂logΛ̃[n] = ∂A[n] ⊙A[n] (76)

For arbitrarily chosen rab and rkv , define the following rankgatherr,C operation. Suppose the
operator matrix corresponds to ”rank” r:

Ed×C = rankgatherr,C(E
′

d×rC) (77)

Then Ed×C is defined as follows:

E:,t =

r−1∑
i=0

E
′

:,t∗r+i (78)

Simply utilizing the above operator, we can extend eq. (75) and eq. (76) into rank-rab low-rank term
of decay with rank-rkv key-value updates:

∂logΛ[n] = ∂Q[n] ⊙Q[n]

− rankgatherrkv,C
(∂K[n] ⊙K[n])− rankgatherrab,C

(∂B[n] ⊙B[n]) (79)

∂logΛ̃[n] = rankgatherrab,C
(∂A[n] ⊙A[n]) (80)

C.5 DEDUCTION OF HDLA’S EQUIVALENT TEST-TIME TRAINING FORMULAE

First, let us revisit the optimization problem:

St,1 =
βt

2
min
st−1

∥k⊤
t St−1∥2, (81)

St,2 = min

(
1

2
Trace(S⊤

t,1diag(1− λt)St,1)

)
, (82)

St =
βt

2
min
st,2

∥k⊤
t St,2 − v⊤

t /βt∥2. (83)

For the first optimization subproblem, online SGD yields:

St,1 = St−1 −∇St−1

(
βt

2
min
st−1

∥k⊤
t St−1∥2

)
(84)

(85)

= St−1 − βtktk
⊤
t St−1 (86)

(87)

= (I− βtktk
⊤
t )St−1. (88)
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For the second optimization subproblem, online SGD yields:

St,2 = St,1 −∇St,1

(
1

2
Trace(S⊤

t,1diag(1− λt)St,1)

)
(89)

(90)
= St,1 − (I− diag(λt))St,1 (91)

(92)
= diag(λt)St,1 (93)

(94)

= diag(λt)(I− βtktk
⊤
t )St−1. (95)

For the third optimization subproblem, online SGD yields:

St = St,2 −∇St,2

(
βt

2
min
st,2

∥k⊤
t St,2 − v⊤

t /βt∥2
)

(96)

(97)

= St,2 − βtkt(k
⊤
t St,2 −

1

βt
v⊤
t ) (98)

(99)

= (I− βtktk
⊤
t )St,2 + ktv

⊤
t (100)

(101)

= (I− βtktk
⊤
t )diag(λt)(I− βtktk

⊤
t )St−1 + ktv

⊤
t . (102)

Thus, this three-step optimization problem yields the HDLA recursive formulation.

D EXPERIMENTAL DETAILS

Mechanistic Architecture Design. In strict compliance with the MAD protocol, we employ a two
layer token mixer-channel mixer architecture, where each layer’s linear attention is aligned with a
hidden state of dimension of 2048 (8 attention heads with dk = dv = 16), and run all experiments
on NVIDIA H200 GPUs using bfloat16 precision. For state expansion experiments, the number of
attention heads has been changed to 4.

Zoology (Multi-Query Associative Recall). The learning rates are swept by: np.logspace(-4, -2,
4) for sequence length 256, np.logspace(-5, -3, 4) for sequence length 512, [1e-5, 5e-5, 1e-4, 5e-4,
1e-3, 5e-3, 1e-2] for sequence length 1024 and 2048, and we take the best result from all learning
rates. The parameter scales are aligned to 1.65M.

Language Modeling. We trained models on fineweb-edu, including small-scale and large-scale ver-
sions. For the small-scale version, we trained for 10B tokens with a learning rate of 3e-4, sequence
length (seqlen) of 2048, and a total batch size of 256 (num gpu × batch per gpu × grad acc). For the
large-scale version, we trained for 100B tokens with a learning rate of 3e-4, seqlen=8k, and a total
batch size of 128. All experiments were conducted on 8/32 A100 GPUs. We used FLA to imple-
ment the model, the Flame framework for training, and lm-eval-harness for evaluation. We report
results on wikitext, lambada openai, boolq, piqa, hellaswag, winogrande, arc easy, arc challenge,
openbookqa, social iqa, swde, squad completion, and fda. For wikitext (word perplexity) and lam-
bada openai (perplexity), as well as for swde, squad completion, and fda, we report the Exact-Match
(EM) score; for hellaswag, arc challenge, and openbookqa, we report acc norm; for the rest, we re-
port accuracy (acc).

Image Classification. Each model is trained and evaluated on 4 NVIDIA A800 GPUs using Pytorch
DDP. The input size of ImageNet is 224× 224. Following Deit, the batch size is set to 2048 during
300 training epochs with a cosine decay learning rate whose peak value is 2.4× 10−3. The warmup
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epochs is set to 20. We choose AdamW (β1 = 0.9, β2 = 0.98) with 0.05 weight decay as the
optimizer. Note that we do not use cutmix or mixup during the training. Results of MetaLA —Chou
et al. (2024), HGRN Qin et al. (2023), GLA Yang et al. (2024a), Mamba Gu & Dao (2024) and
Deit Touvron et al. (2021) are directly borrowed from Chou et al. (2024).
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