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ABSTRACT

Linear attention mechanisms have emerged as efficient alternatives to Softmax at-
tention, exhibiting steady improvements in language modeling capabilities driven
by increasingly sophisticated designs for decay matrices—though their structural
complexity has typically been limited to the Diagonal-Plus-Rank-1 level. To fur-
ther advance the understanding and capabilities of linear attention via more com-
plex decay structures, this work makes two primary contributions: (1) We propose
the HDLA linear attention mechanism, which utilizes efficient matrix decompo-
sition to achieve a Diagonal-Plus-Rank-2 structure, thereby extending the decay
matrix to a broader, more expressive, rank-enhanced and structured class. (2) We
propose a more general chunk-wise parallel algorithm that accommodates both
diagonal-plus-rank-r,; decay structure and key-value outer products of rank ry,,,
thus providing a versatile foundation for future research. Comprehensive exper-
iments demonstrate that, compared to linear attention baselines, HDLA sets new
SOTA results on language modeling and retrieval tasks at 2.8B parameter scale,
delivers at most 80% and 58.2% performance gains over baselines on retrieval-
based MQAR and RULER tasks, and achieves an average score improvement of
4.39-7.66 on the synthetic MAD benchmark, respectively. Our proposed HDLA
model, as well as the rank-generalized chunk-wise parallel algorithm, together
provide a versatile algorithmic foundation and promising research prospects for
the design of rank-enhanced, structured linear attention mechanisms.

1 INTRODUCTION

Softmax attention, the core component of the Transformer (Vaswani et al.| 2017)), exhibits superior
token mixing capabilities (Tolstikhin et al., 2021; |Yu et al., [2022)) and supports highly efficient
parallel training (Dao et al.l [2022)). However, it is severely limited in long context scenarios, by
quadratic time complexity and a key-value (KV) cache that grows linearly with the sequence length.

Linear attention presents an efficient alternative to softmax attention by reducing the time complexity
to O(n) and compressing the infinite key-value sequences into a fixed-size hidden state (Katharopou-
los et al., [2020). Not only does it demonstrate great research potential, but the hybrid architecture
combining linear and softmax attention in 7:1 ratio has been successfully deployed as the founda-
tional framework for large language models (LLMs) in practical applications, achieving exceptional
throughput and advanced long-context reasoning capabilities (MiniMax et al.,2025). Through pro-
gressively more sophisticated hidden state decay mechanisms, linear attention has steadily improved
its language modeling performance. Nevertheless, a series of recent works—including DeltaNet
(Yang et al.| [2024b), Gated DeltaNet (Yang et al., [2025), TTT-Linear (Sun et al., [2024)—restrict
the structural complexity of their decay matrices to at most Diagonal-Plus-Rank-1.

This insight naturally gives rise to a compelling question regarding the future of linear attention:
Does the Diagonal-Plus-Rank-1 decay structure truly represent the celling of hidden state manage-
ment and utilization? Or to say, can we extend the decay matrices to broader, structured, and more
expressive classes, thus further elevating the performance ceiling of linear attention mechanisms?

Our work addresses the aforementioned questions through the following two primary contributions.
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Firstly, we propose the Householder-Diagonalized Linear Attention (HDLA) method, which aug-
ments language modeling capacity via a more sophisticated decay matrix structure while maintain-
ing reasonable computational costs. We refine three necessary restrictions when designing complex
and efficient decay structures: parameter efficiency, memory efficiency, and computational effi-
ciency. Based on these restrictions and inspired by the congruence diagonalization theory of real
symmetric matrices, we employ generalized Householder matrices to diagonalize the decay matrix,
and show that HDLA’s structured decay is a specific instance of the Diagonal-Plus-Rank-2 class.

Secondly, we introduce a rank-generalized chunk-wise parallel algorithmic framework, which si-
multaneously accommodates the arbitrary diagonal term in linear attention mechanisms’ decay.
When formulating the chunk-wise parallel algorithm for HDLA, we achieve a broad generalization
that accommodates both Diagonal-Plus-Rank-r,; decay structures and rank-ry, key-value updates.
This advance not only subsumes HDLA as a special case, but also provides a robust foundation for
future research on linear attention mechanisms.

Comprehensive experiments fully demonstrate the superior performance of our proposed HDLA
model: (1) Achieves state-of-the-art (SOTA) results in terms of language modeling perplexity (up to
2.8B parameter scale), with retrieval capability at 2.8B scale surpassing all linear attention baselines.
(2) On the retrieval-based RULER (Hsieh et al.|[2024) experiment, achieves up to a 58.2% accuracy
improvement compared to Gated DeltaNet (Yang et al.|[2025). (3) In synthetic MAD (Poli et al.) ex-
periment, the average score exceeds linear attention baselines by 4.39-7.66, significantly narrowing
the performance gap with Softmax Attention (Vaswanti et al.,[2017). (4) In synthetic MQAR (Arora
et al.,|2023b) experiments, at sequence length 2048, the accuracy is about 80% higher than the more
computationally intensive Gated DeltaProduct with n;, = 2 (Siems et al., 2025).

While achieving superior performance, HDLA maintains a relatively limited and reasonable compu-
tation amount. Even when compared to Gated DeltaProduct with n;, = 3 (Siems et al.,|2025), whose
computation amount is about 2x that of HDLA, HDLA still shows a clear performance superiority.

Our HDLA model and the generalized chunk-wise parallel algorithm together provide a foundation
for future research on rank-enhanced structured linear attention, showcasing promising prospects.

2 BACKGROUNDS AND RELATED WORKS

For notational conventions in this work, we use bold lowercase letters to denote column vectors (e.g.,
q:), bold uppercase letters for matrices (e.g., Q, O), and italic uppercase letters for learnable param-
eters (e.g., 8,). Note that any matrix without a subscript is constructed by concatenating its corre-
sponding lowercase column vectors, e.g., Q denotes the column-wise concatenation of q,qz, - - - .
We also use lowercase letters to represent tensors of a single timestep with more than 1 columns.
For instance, k; € R%**7s and K is assembled by concatenating k1, ko, - - - column-wise.

Unified Recurrent Form of Linear Attention. In linear attention, an input x; € R4*1 g trans-
formed into a group of query q; € R% <! key k; € R% "k and value v; € R%*"* at first:

e = fo(xt,04), ke = fr(xt,0k), vi = fu(x,0,) (1)
The above transformation fy, fi, f, are typically linear functions, possibly with activation or nor-

malization, and 6, 0y, 6,, are their projection parameters. Then, hidden state S; € R4 > decay
matrix P, € R% >4k _and the attention output o, € R% <! are computed as follows:

P, = fy(x¢,0,) € R%*% )
S, =P8, + kv € Rdxdv, (3)
o, = S, q; € R%*! 4)

The hidden state S; seeks to compress information from arbitrarily long key-value pairs into a fixed-
size memory. The decay matrix P, balances the relative importance between historical information
S:-1 and the incoming new information ktvtT . Different structures of P; lead to different levels of
model performance, as well as varying parallel forms and strategies of sequential parallelism.
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The original purpose of linear attention. Linear attention (Katharopoulos et al., 2020) is originally
targeted at addressing the time and space complexity issue of Softmax attention. It uses linear kernel
functions to approximate the high-cost non-linear Softmax operation. Leveraging the associative
property of matrix multiplication, it enables each key-value pair to be processed only once, and
achieves O(n) time complexity while compressing infinite key-value sequences into fixed size S;.

The developmental trajectory of decay matrices. The evolution of linear attention methods has
moved from the original variant (Katharopoulos et al.|[2020) lacking any decay mechanisms—which
cannot forget unimportant historical information—to approaches with learnable constant decay such
as RetNet (Sun et al.| [2023)) and TransNormer (Qin et al.l [2024a). While these mitigate forgetting
to a certain extent, they remain insensitive to the relative importance between historical information
S;_1 and newly arriving information k;v,”. More recently, diagonal input-dependent decay mech-
anisms, introduced by models such as GLA (Yang et al., 2024a), Mamba (Gu & Dao, 2024), and
HGRN?2 (Qin et al.,|2024d), enable adaptive weighting of historical context but are constrained by
their diagonal structure, leading to a lack of cross-row interaction during hidden state updates. As a
result, these mechanisms permit only partial forgetting of old information without negative erasure.
To address this, recent works have adopted input-dependent non-diagonal decay structures (typi-
cally Diagonal-Plus-Rank-1) and have demonstrated superior performance over earlier approaches.
DeltaNet (Yang et al.,2024b) and TTT-Linear (Sun et al.;|2024) were the first to employ generalized
Householder matrices as non-diagonal decay matrices. Gated DeltaNet further improves language
modeling capabilities by incorporating a scalar forget gate into DeltaNet. RWKV-7 (Peng et al.,
2025)) adopts a more general diagonal-plus-rank-1 decay structure, in which the diagonal terms
are analogous to the input-dependent decay used in GLA. Gated DeltaProduct (Siems et al., [2025)
repeats the recurrent step of Gated DeltaNet for nj, times at each timestep, which is equivalent to ap-
plying a Diagonal-Plus-Rank-n;, single-step rank-enhanced decay. The resulting decay matrix lacks
strong structural properties, and its performance improvement is limited even as the computational
amount grows 1 or 2 times. Therefore, we aim to explore a structured rank-enhanced decay method
that achieves greater performance gains, while incurring only limited additional computational cost

compared to Diagonal-Plus-Rank-1. Taple 1: The structures of decay P, in different linear
Chunk-wise parallel acceleration attention mechanisms (o, oy, 5; € R; kg, A\¢, a, Wy, iy €

dix1
algorithm of linear attention. The RE*).
core idea of chunk-wise parallel al- Model \ P,

gorithms for linear attention is to di- Original Linear Attention I

vide the computation along the time RetNet, TransNormer ol
dimension into chunks, sequentially GLA, Mamba, HGRN2 Diag(\¢)
compute the checkpoints of hidden DeltaNet, TTT-Linear I- B:k:ik/

states before entering each sequen- Gated DeltaNet ai(I - Bikik{)

tial chunk, and then process the Gated DeltaProduct (n, iterations) ai(I — Bikik))
linear attention outputs of different RWKV-7 Diag(w:) — it(ar © )"

time intervals in parallel. Lightning-
Attention (Qin et al.,[2024b) and Lightning-Attention-2 (Qin et al.,2024c) address the parallelization
problem in the case of diagonal scalar decay, while |Yang et al.| (2024al) tackles the parallelization
for diagonal vector decay. ZeCO (Chou et al.| [2025) further addresses the communication bottle-
neck in multi-GPU scaling based on previous algorithms. (Gated) DeltaNet (Yang et al., [2024b;
2025) solves the parallelization for the case of diagonal plus rank-1 decay. ParallelFlow (Cirone &
Salvi, 2025)) provides a certain degree of parallelism for identity plus rank-n decay, but it does not
accommodate the arbitrary diagonal terms that are common in the decay matrices of linear attention.

Test-Time training. If the hidden state S; is regarded as the projection parameter of a linear layer,
then the autoregressive update formula for the hidden state in most linear attention mechanisms
can be interpreted as stochastic gradient descent (SGD) on S;, usually aiming at next value predic-
tion (using kS, to predict v;). This update process is referred to as Test-Time Training. TTT-
Linear (Sun et al.l 2024) and DeltaNet (Yang et al.l 2024b) were the first to interpret and design
linear attention mechanisms from this perspective. Titans (Behrouz et al., |2025¢) introduces mo-
mentum to the stochastic gradient descent. Miras (Behrouz et al.| 2025b) proposes a broad unifying
framework that integrates linear attention and Softmax attention under the view of Test-Time Train-
ing, utilizing components such as memory architectures, memory learning methods, attention bias,
and retention gates. ATLAS (Behrouz et al., 2025a) and MesaNet (von Oswald et al., |2025) make
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improvements on the stochastic gradient descent (attention bias) objective by optimizing the average
loss of all tokens within a sliding window or a global window, thereby achieving better performance.

3 METHOD

3.1 LINEAR ATTENTION WITH HOUSEHOLDER-DIAGONALIZED DECAY

Our goal is to achieve better language modeling capabilities through extending the decay matrices to
a broader, structured, and more expressive class, while simultaneously meeting efficiency constraints
in parameters, memory, and computation. Specifically, our idea is to parameterize the Diagonal-
Plus-Rank-2 decay structure by utilizing a certain kind of efficient matrix decomposition method.

3.1.1 EFFICIENCY CONSTRAINTS OF COMPLEX DECAY MATRIX DESIGN

Parameter, memory, and computational
efficiency are common challenges dur-
ing the design of linear attention mech-
anisms. When designing complex de-
cay structures, we’d like to revisit and
refine these constraints, so as to limit
the extremely broad design space and
to preliminarily validate the practical-
ity of our approach. (1) Parameter effi-

Se

ciency. The O(d3) decay matrix should x X
be obtained through O(d}) parameters, @ Matrix Sum ® Outer Product
to maintain a balance Wlth the parame- @® Matrix Multiplication (@) Activation Function

ter counts of 8¢, Ok and Oy, avoiding

excessive parameters and learning over- Figure 1: The architecture of HDLA, as well as its inte-
head. (2) Memory efficiency. Each of gration within a Transformer layer. Details like output
the O(di) decay matrices or their cu- gates and activation on keys and values are omitted. See
mulative products should be Compacﬂy appendixfor the exact architecture of HDLA.

stored in O(dj) memory on average,

matching the memory footprint of q;, k; and v;. (3) Computational efficiency. The cumulative
product of decay matrices must maintain reasonable computational costs. Moreover, hidden state
updates across sequential blocks should be enabled through concise one-pass matrix multiplications.

3.1.2 HOUSEHOLDER DIAGONALIZED LINEAR ATTENTION (HDLA)

To efficiently parameterize a complex decay Py, it is advantageous to decompose it into simpler
components through matrix decomposition theory. Note that any real symmetric matrix P; can
undergo congruence diagonalization via some invertible matrix H; € R%>de je. P, = H Ay H: .
Utilizing this inspiration, the parameterization of P; can be reduced to two sub-problems: (P1)
Learning the diagonal eigenvalue matrix A;. (P2) Selecion of the invertible transformation Hy.

For (P1), we make the parameterization of A; analogous to GLA’s input-dependent diagonalized de-
cay, equipping the model with fundamental capability to dynamically forget historical information.
For (P2), we adopt generalized Householder matrices as our transformation operator, inspired by
recent research of Diagonal-Plus-Rank-1 decay structure (Yang et al.|,2024b;[Sun et al.||2024; [Yang
et al.,[2025; [Siems et al.,2025). The corresponding hidden state update formulae are as follows:

P, = (I - Bikik] )A+(I — Bikik, ) € RE> )
A, = Diag(X;) € R X\ = o(Wpx,) € R%*1, 6)

We make ; € (0,2) to enhance the model’s state tracking capability, following the conclusion of
Grazzi et al|(2025)). o(+) is an activation function ranging in (0, 1), and we adopt sigmoid(-) here.

Compared with GLA, the only excessive parameter is the projection matrix (of O(dy) scale) map-
ping the input x; into f3;, confirming the parameter efficiency of HDLA. Deduction of chunk-wise
parallel algorithm in the following section will verify its computational and memory efficiency.



Under review as a conference paper at ICLR 2026

3.2 GENERALIZED CHUNK-WISE PARALLEL ALGORITHM

3.2.1 DERIVATION AND RANK EXTENSION OF A GENERALIZED HIDDEN STATE UPDATE
RULE

During the derivation of HDLA’s chunk-wise parallel algorithm, we first reformulate its decay matrix
as a special case of the Diagonal-Plus-Rank-2 structure (see Appendix appendix [C.2] for details):

P, =D, - A,B] e R A, B, € R%*2 (7)

Based on the above reformulation, and to provide a foundational support for future research both
theoretically and practically, we aim to develop a broader chunk-wise parallel algorithm for the
following hidden state recurrent update rule, which generalizes the ranks of AtBtT , and KtVtT to
arbitrary values simultaneously (i.e., setting A;, B; € R%*7a K, € R%*X7kv V; € R XTkv);

S, = (D; — A;B])S; 1 + K, V, € Rlxdv (8)

3.2.2 RANK GENERALIZED CHUNK-WISE PARALLEL ALGORITHM

Notational conventions. Define two kinds of matrices’ cumulative products as follows:

j I Py, i< j I Dy, i<j j
J _ t=i+1 T t» J Jj_ t=i+1 i J i 1 dpx1
Pi_{L Z_Zj,D._{I7 izj’di_DileR 9)
All timesteps in this work start at 1. The input tensors are partitioned along the sequential dimension
into chunks of size C. We abuse the subscript [n] to refer to tensors relevant to the n-th sequential
chunk. Ap,) € R*7arC B, e RAUxraC K e RUEXmseC V1 e R > are concatenated
column-wise from the corresponding input tensors of each timestep inside the chunk, while S(,,; =
S(n—1)c denotes the hidden state right before processing the first timestep of the n-th chunk.

Computation Flow. Since the linear attention of q,,c+ over the first nC tokens can be coalesced
into the interaction between qpc4¢, Sppn), and Pzg“, our method adopts a two-phase computa-
tion scheme similar to Lightning Attention (Qin et al., 2024b)) and Gated Linear Attention (Yang
etal.2024a): (1) Sequentially computing the hidden state checkpoints Sig), Sy, ..., S;v—1); and (2)
Computing the linear attention outputs Oy, ..., O _1) across different time ranges in parallel.

These two computation phases correspond to the following eq. and eq. (TI)), respectively:

nC
Stn] = Ps_1ycSm-1 + Z PIYK, V] € R#", (10
t=(n—1)C+1
(n—1)C+t
O(n—1)C+t = S[—;71]PE::Bg+tQ(n71)C+t +( Z VK] PV g, (11)
i=(n—1)C+1

inter—chunk attention

intra—chunk attention
Rank Generalized WY Representation. Let Py, = PiC ) = ?:C(nq) o P € Rdwxdi,
Hp,) = Z?ZC(H_I)CH PPCK,V, € R¥*dv For efficient computation of eq. and eq. , it
becomes imperative to identify optimized representations for both P,,; and H, that eliminate their
original dependence on cumulative summation (X) and cumulative product (] ]) operators.
Employing mathematical induction, we optimize the representations of Py,,; and Hy,, as follows:

’

nC ! T nC ! T T
P =D 1ye (L= By W), Hinp = D10 (Kppy Vi = By Upy) (12)
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U, € Ré*7arC and W, € R4 *7avC are core components of arbitrary rank WY representation:

’ ’ ’ ’ -1
U[n] = V[n]triuf,«k“ XTab (K[n]A[;lr], 1) (I + triurabxf,«ab (B[n]A[’;lt—]’ 1)) c Rdv ><’l‘abC’7 (13)

’ ’ ’ -1 .
W[n] = A[n] (I + triuTabXTab (B[n]A[r—lr]v 1)) € dexubC’ (14)

The above custom operator trit,, xry (Ryy xn,raxn, ) serves analogous to standard triu(R,xn, %)
in linear attention, except for treating each 71 X 72 sub-block of R, xr,r, x» as a single element.

A/[n] is obtained from A, using the following element-wise multiplication (©) on each of its col-

[n],:,trap+r
rank index. BEn] and Kin] are obtained similar to A/[n], but with element-wise division (©) instead:

umn vectors (e.g., A ), where t is the time index inside the sequential chunk, and r is the

! n—1)C+(t—1

Al = A torer © (O (15)
4 o (n—1)C+t 4 _ (n—1)C+t

Bl traytr = Binlitratr Q410 Kpng it 40 = Kplstre, +r @d(, 1) 0 (16)

Resulting Formulae. Leveraging the WY representation defined in eq. and eq. (T4), eq.
and eq. (T can be reformulated into the following form, enabling efficient parallel computation of
attention output in different time range, after sequential computation of hidden state checkpoints:

S["] = D?nc—l)C(I - B[n]W[—;])S["—l] + D?nc—l)C(K[n]V[TL] - B[n]UESL]) A7)
O[n] = SE’EL*UQETL] + V[n]triurkv «1 (KEJL—] Qin]’ 0) — (S[—quw[n] + U[n])triurabxl(B/[I]Ql[n] ,0),
(18)

Here we only present some key conclusions. For detailed derivations, please refer to appendix

3.3 DISCUSSIONS

Understanding HDLA from the Perspective of Test-Time Training (TTT). If S; is regarded as
the projection parameter of a linear layer, then a single step of hidden state update in HDLA is
equivalent to the following three-step optimization process (see appendix [C.5]|for details):

S0 = Sucs — 2 (quin K811 ), 19)
1 .
St2=S:1— EV (Trace(S;':ldlag(l — )\t)Sm)) , (20)
1
St = St’Q - %V(St’ﬂ ktTSm — EV:HQ) (21)
4

Comparisons between HDLA v.s. Gated DeltaProduct. Gated DeltaProduct performs n;, value
predictions and optimizations at each timestep. According to Yang et al.| (2024b), all its iterations
within a single timestep can be merged into a rank-enhanced iteration with 7., = rg, = np. How-
ever, its coalesced Diagonal-Plus-Rank-r,; decay does not exhibit a highly structured pattern. We
will demonstrate in the experiments that even when nj;, = 3, the computation amount is about 2x of
HDLA, the performance of Gated DeltaProduct still falls considerably short of our method.
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Table 2: Comparison on the computation amounts of HDLA, GDP2 (Gated DeltaProduct,
np = 2), and GDP3 (Gated DeltaProduct, n;, = 3) of a single recurrent timestep. We uniformly
calculate the computational cost of recurrent hidden state updates according to eq. (setting
C = 1), and omit the estimation of computation required by the cumbersome WY Representation.

Method \ Tab  Tho \ Input Projection Hidden State Update ~ Output Generation

HDLA 2 1 d(3dr + dv + 1) dk(8dy, + 5) didy
GDP2 2 2 d(3dk + 2d, + 3) dk(12dv + 6) drdy
GDP3 3 3 d(4dy + 3dy, + 4) di(18d, +9) didy

4 EXPERIMENTS

We’ve conducted a series of experiments, ranging from synthetic tasks (MAD and Zoology), lan-
guage modeling experiments, retrieval-based tasks (NIAH), image classification and ablation stud-
ies, to comprehensively validate the effectiveness of our model. In the following, we use GDP2 and
GDP3 as abbreviations for Gated DeltaProduct when nj, = 2 and nj, = 3, respectively. Both models
incur significantly higher computational and memory overhead compared to HDLA, yet their overall
performance still remains inferior to our proposed method. (See appendix [D|for detailed settings)

Mechanistic Architectural Design (MAD). The MAD benchmark (Poli et al.) is composed of 6
kinds of small-scale synthetic tasks, and is designed to evaluate a model’s core language modeling
capabilities including in-context recall, memorization, information compression, selective copying
and noise suppression, etc. The scores across all synthetic tasks are averaged to predict the model’s
performance at large scales, according to scaling law (Kaplan et al.,|2020; |Shen et al.| [2024).

Table 3: Performance Comparison on MAD benchmark aligned with MAD protocol Mem:
Memorization. ICR: In-Context Recall

Method \ Compression Fuzzy ICR ICR Mem. Noisy ICR Selective Copy \ AVG.
Softmax Attention | 48.85 39.74 95.98 84.41 88.12 99.03 | 76.02
GDP2 39.40 10.59 99.29 49.84 95.06 97.68 65.31
DeltaProduct 40.77 14.16 99.85 46.08 99.66 99.95 66.74
Gated DeltaNet 41.41 12.90 99.73  55.64 99.40 99.91 68.17
DeltaNet 42.27 16.42 99.88 42.46 99.85 99.93 66.80
Mamba 48.20 10.24 86.90 89.48 94.50 82.14 68.58
HDLA 51.01 14.56 99.73 89.34 93.42 89.73 72.97

The results in table [3|demonstrate that: (1) The 4 non-diagonal decay baselines suffer from severely
impaired memorization capability, with scores not exceeding 60, whereas our HDLA performs well.
(2) Compared to the five linear attention baselines, HDLA demonstrates balanced and comprehen-
sive advantages across all tasks, and significantly narrows the performance gap with softmax atten-
tion. (3) HDLA underperforms softmax attention on Fuzzy In-Context Recall — a task requiring
accurate value prediction from keys interleaved wth arbitrary noisy tokens. This kind of limitation
can be attributed to the strong recency bias (Pan et al.,2025)) in linear attention mechanisms.

Multi-Query Associative Recall Figure 2: Accuracy on the synthetic MQAR task.
(Zoology). We conduct Multi- 100% -

Query Associative Recall (Zoology,

Arora et al| (2023b))) experi- > 75%

ment against Gated DeltaProduct i~

(np, = 2) (Siems et all, [2023) ] °

and Gated DeltaNet (Yang et al.| < 959 -

2025), with parameter scale aligned

to 1.65M. The evaluated lengths 0% 1, . . r
include 256, 512, 1024 and 2048. 256 512 1024 2048

See fig. 2] for the results. When Sequence Length

the maximum evaluation length is “O- HDLA == Gated DeltaProduct =)= Gated DeltaNet

extended to 2048, HDLA still maintains an accuracy higher than 81%, while the two baselines
nearly fail to produce correct answers, demonstrating HDLA’s advantage in recall ability.
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Table 4: Perplexity comparison on language modeling. The parameter scales of the three columns
from left to right are: 0.4B, 1.45B and 2.8B, respectively. Wiki: Wikitext. (Merity et al.,2016) LMB:
Lambada (Paperno et al., 2016).

Model Wiki LMB. Avg. | Wiki LMB. Avg. | Wiki LMB. Avg.
pply ppld ppl) | ppl) ppld ppl) | pply ppld ppl)
Linear Attention
HDLA 20.04 43.09 36.06 | 22.49 2216 2232 20.16 1699 18.58
GDP2 (Siems et al.| 2025} 3098 51.59 4128 | 2351 2579 24.65 | 2094 19.82 20.38
GDP3 (Siems et al.| 2025) 3152 60.92 4622 | 24.63 2897 2680 | - - -
Gated DeltaNet (Yang et al.|[2025) 30.06 56.07 43.06 | 23.09 2656 24.83 | 20.47 18.74 19.60
DeltaNet (Yang et al.|[2024b) 3075 5834 44.54 | 2374 31.14 2744 | 21.66 23.72 22.69
HGRN2 (Qin et al.| 2024d) 30.87 47.81 39.34 | 2326 2470 23.98 | 2093 19.69 20.31
Mamba2 (Dao & Gul[2024) 3026 51.00 40.63 | 23.93 2753 2573 | 21.95 23.61 2278
GLA (Yang et al.|2024a) 3095 5655 43.75 | 23.44 2941 2642 | 21.08 21.82 2145
TransNormerLLM (Qin et al.|2024a) | 31.33 51.17 41.25 | 24.15 2841 2628 | 2147 2197 2172

Softmax-Attention
Llama (Touvron et al.|[2023)

2846 4673 37.60 [ 2229 25.07 23.68 [ 2032 21.10 2071

Table 5: Comparison on zero-shot commonsense reasoning and retrieval augmented genera-
tion with 50B training tokens. We evaluate the models on BQ |Clark et al.[ (2019), PIQA: Bisk
et al.[ (2020), HS Zellers et al.[ (2019), WG |Sakaguchi et al.| (2021, Arc-e and Arc-c |Clark et al.
(2018), OBQ Mihaylov et al.|(2018), SIQA |Sap et al.|(2019), SWDE [Lockard et al.[{(2019), SC |Ra-
jpurkar et al.|(2018)) and FDA |Arora et al.| (2023a). AVG-CSR: Average CommonSense Reasoning

accuracy. AVG-RET: Average RETrieval accuracy.
Model BQ PIQA HS. WG. Are Arcc OBQ SIQA SWDE SC  FDA | AVG-CSR AVG-RET

accT accT accnt acct acctT acen?T acct acctT acct acct acct acc T acc-n 1
Par ter Scale: 1.45B, Number of tokens: 50B
HDLA 145 7350 5733 57.62 7344 38.14 41.60 42.02 4140 36.76 16.61 54.81 31.59
Gated DeltaNet | 145 7323 56.23 56.51 7243 38.14 4120 39.71 3789 3586 16.88 ‘ 53.92 30.21

Language Modeling. We train 3 parameter scales of all the models: 0.4B, 1.45B and 2.8B on
10B/50B token datasets sampled from FineWeb-Edu. Perplexity results in table 4] demonstrate that
HDLA surpasses all the selected linear attention baselines by notable margins, and even outperforms
the Transformer-based architecture Llama (Touvron et al.,[2023). table[7]shows that our method con-
sistently surpasses both Llama and linear attention baselines in zero-shot commonsense reasoning.
For retrieval tasks, our method is competitive in all parameter scales, and achieves the best perfor-
mance among all linear attention mechanisms when scaled up to 2.8B parameters. However, there
is still a considerable gap between our model and Llama in retrieval performance. The reason is that
the limited hidden state size of linear attention mechanisms fundamentally restricts their ability to
perform in-context cross-step retrieval, both explicitly and implicitly (Wen et al.| 2025)).

Retrieval-Based Tasks. We further trained Gated DeltaNet and HDLA models with 1.45B param-
eters until the total number of tokens reached 5S0B (see table [/|for language modeling and retrieval
results), and then evaluated the models on the retrieval-based task RULER (Hsieh et al., [2024). As
demonstrated by table[6] compared to Gated DeltaNet, HDLA has a significant advantage in retrieval
capability. Especially on the S-NIAH-3 task, its accuracy leads by 31.4% and 58.2%.

Table 6: Accuracy on different S-NIAH tasks for 1.45B HDLA and Gated DeltaNet.

Model S-NIAH-1 S-NIAH-2 S-NIAH-3

Sequence Length 1024 2048 1024 2048 1024 2048
HDLA 100.0% 98.8 % 96.4% 52.2% 82.0% 65.2%
Gated DeltaNet 99.6% 97.2% 96.4% 45.8% 50.6% 7.0%

Image Classification. We conduct bidirectional image classification experiments on ImageNet-
1k (Deng et al., [2009). Baselines include Deit (Touvron et al.,|2021) which is a Transformer-based
architecture, and some other linear attention architectures. Results of baselines are directly borrowed
from |Chou et al.|(2024). As show in table |8} HDLA performs better than most of the baselines.

Supplementary Experiments. In appendix |B| we provide the following supplementary experi-
ments: (1) State expansion experiments on HDLA and baselines. (2) Fine-tuning on some hyperpa-
rameters of HDLA (e.g. learning rate, the range of 3;, the type of activation functions on k;, v;).
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Table 7: Comparison on zero-shot commonsense reasoning and retrieval augmented genera-
tion with 10B training tokens. We evaluate the models on BQ |Clark et al.[| (2019), PIQA: |Bisk
et al.| (2020), HS [Zellers et al.| (2019), WG [Sakaguchi et al.,| (2021)), Arc-e and Arc-c |Clark et al.
(2018)), OBQ Mihaylov et al.|(2018)), SIQA |Sap et al.| (2019), SWDE |Lockard et al.[(2019), SC Ra-
jpurkar et al.| (2018)) and FDA |Arora et al.|(2023a). AVG-CSR: Average CommonSense Reasoning
accuracy. AVG-RET: Average RETrieval accuracy.

Model BQ. PIQA HS. WG. Arce Arcc OBQ SIQA SWDE SC FDA | AVG-CSR AVG-RET
accT acctT acen?T acctT acctT acc-nfT accfT acct acctT acctT acct acc T acc-n T
Parameter Scale: 0.4B, Number of tokens: 10B
HDLA 6150 67.41 4048 51.14 60.65 2858 31.80 38.13 10.26 21.78 3.09 47.46 11.71
GDP2 61.07 66.87 3849 5178 57.70 2773 3400 38.08 936 2239 3.63 46.97 11.79
GDP3 60.37 66.59 37.62 5130 57.53 2628 3500 3884 837 20.68 3.36 46.69 10.80
Gated DeltaNet 5841 67.63 3941 5185 5838 27.13 33.60 36.75 8.01 20.78  2.63 46.65 10.47
DeltaNet 59.69 66.59 37.74 50.67 58.00 27.99 3260 3741 11.79 22.62 5.54 46.33 13.32
HGRN2 59.17 67.08 3896 52.09 60.02 26.62 3480 3843 990 18.83 345 47.15 10.73
Mamba2 60.00 6594 3824 5099 5690 2799 3140 3838 1323 2792 499 46.23 15.38
GLA 58.53 6741 3950 5091 5997 2730 3460 3838 @ 7.29 1746  2.18 47.08 8.98
TransNormerLLM | 59.45 66.59 3834 49.64 59.51 2841 3560 39.56 10.08 21.31 2.00 47.14 11.13
Llama 60.73 66.65 38.88 51.62 58.63 2824 3340 3895 47.07 30.86 17.15 47.14 31.69
Parameter Scale: 1.45B, Number of tokens: 10B
HDLA 60.52 71.00 47.77 5288 67.17 3268 3560 40.84 21.69 2822 8.17 51.06 19.36
GDP2 57.83 69.75 4622 5233 6435 3191 3560 3889 17.82 2798 6.99 49.61 17.60
GDP3 60.80 68.50 44.18 5170 63.43 3148 3560 3889 14.04 2634 5.26 49.32 15.21
Gated DeltaNet 6147 69.97 47.11 53.12 6536 33.11 3540 4084 2043 27.61 735 50.80 18.46
DeltaNet 61.31 69.31 4432 5304 6532 3123 3480 39.61 21.87 2691 1025 49.87 19.68
HGRN2 60.70 69.42 46.62 51.14 66.33 30.80 36.80 4043 2277 2577 6.62 50.28 18.39
Mamba2 60.46 69.70 4500 51.78 6343 3123 3460 39.87 2223 2942 935 49.51 20.33
GLA 5731 6931 4725 5406 6646 3379 36.60 39.82 1629 23.83 4.8l 50.58 14.98
TransNormerLLM | 61.56  69.75  46.02 51.70 64.86 31.57 3440 39.61 18.99 26,51 4.26 49.93 16.59
Llama 61.68 6942 46.89 5320 65.82 30.89 3540 39.82 6229 3847 3938 50.39 46.71
Parameter Scale: 2.8B, Number of tokens: 10B
HDLA 61.13 71.65 5193 5651 7029 3490 37.60 40.69 2745 30.56 16.61 53.09 24.87
GDP2 5875 71.16 5031 5541 67.59 3473 3840 40.17 27.00 3056 8.71 52.07 22.09
Gated DeltaNet 60.80 71.76  51.17 5454 6949 3567 3820 39.71 29.07 31.13 13.79 52.67 24.66
DeltaNet 5997 71.16 4779 5533 67.13 33,53 3580 39.92 30.51 29.12 1225 51.33 23.96
HGRN2 61.56 70.57 5049 53.04 6890 34.81 39.00 4043 2844 29.19 14.61 52.35 24.08
Mamba2 60.73 71.06 4855 5343 64.77 32.17 3820 39.15 2394 3455 898 51.01 22.49
TransNormerLLM | 58.59 70.29 50.04 5454 6835 3396 35.60 41.76 2421 2942 7.62 51.64 20.42
Llama 61.10 70.89 5036 5620 6738 3251 3620 40.07 61.57 3623 41.02 51.84 46.27

Table 8: Results of image classification on ImageNet-1k.
Model Accuracy Param(M) ‘ Model Accuracy Param(M) ‘ Model Accuracy Param(M)

HDLA 74.84% 6.1 MetalL A  75.33% 6.1 GDP2  73.81% 6.1
Gated DeltaNet 72.33% 6.1 HGRN  74.40% 6.1 GLA 72.47% 6.1
Mamba 73.39% 6.1 Deit  72.20% 5.7 - - -

5 CONCLUSION

In this work, we propose HDLA, a linear attention mechanism with enhanced structured decay
while maintaining reasonable computational and I/O cost, verify its effectiveness across various
types of experiments, and obtained its theoretical justification from Test-Time Training perspective.
Its robustness demonstrates that more sophisticated, structured and rank-enhanced decay structures
can improve the effectiveness of linear attention mechanisms. We’ve also derived a more general
algorithmic framework of linear attention, enabling both diagonal-plus-rank-r,; decay and rank-ry,,
key-value outer product updates, laying a solid foundation for future research.

Discussion and Limitation. Despite its superior experimental performance and sound theoretical
explanations, this work has at least the following limitations: (1) In terms of state expansion, this
work only explores a naive approach by altering the number of attention heads. Yet, to further bridge
the performance gap with Softmax attention, it is necessary to introduce more efficient multi-level
and functionally differenciated state expansion methods. (2) Purely linearized hidden state update
operations limit the model’s expressive power. As suggested in Behrouz et al.| (2025c), it is impor-
tant to appropriately introduce non-linear operations on the hidden state to enhance expressiveness.
Nevertheless, HDLA has defined a more efficient utilization mechanism for a single hidden state,
and holds significant potential to inspire subsequent research in the rank-enhancement design trends.
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A DECLARATION OF LARGE LANGUAGE MODEL (LLM) USAGE

To make the language more fluent and smooth, we‘ve used large language models (LLMs) for pol-
ishing during the writing process. We assure that all methods and experiments have been conducted
manually and are authentic and valid.

B SUPPLEMENTARY EXPERIMENTS

B.1 STATE EXPANSION EXPERIMENTS

The hidden state size S of linear attention mechanisms can be computed by the following formula,
where ny, is the number of attention heads, and dj, and d,, are the total dimensions of the keys and
values, respectively:

dy dy  dpd,
S=np —. L=k (22)
np MNp np

Therefore, without changing dj and d,,, we can adjust the hidden state size by altering ny,.

MAD experiment after state expansion. In table [3] we follow the MAD protocol by setting all
linear attention baselines to n, = 8, di = 128, and d, = 128, resulting in an aligned per-layer
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hidden state size of S = 2048. Here, we naively achieve state expansion by setting nj, = 4, so that
the per-layer hidden state size of each linear attention model is aligned to S = 4096.

Table 9: Performance comparison on MAD benchmark after expanding the hidden state size
from 2048 to 4096. Mem: Memorization. ICR: In-Context Recall.
Method | Compression Fuzzy ICR  ICR  Mem. Noisy ICR Selective Copy | AVG.

GDP2 41.69 19.96 99.86 64.46 99.80 99.93 70.95
DeltaProduct 42.74 21.35 99.93 52.74 99.79 99.96 69.42
Gated DeltaNet 44.03 18.34 99.89 66.85 99.87 95.61 70.77
DeltaNet 43.76 24.08 99.94 4232 99.96 99.92 68.33
Mamba 44.82 12.21 87.24 89.25 88.74 83.08 67.56
HDLA 48.47 18.34 99.99 89.24 94.42 94.55 74.17

The results in table[9shows that after state expansion, the average score of HDLA improves by 1.20,
still significantly outperforming other linear attention baselines, and is only 1.85% behind Softmax
Attention in table 3] demonstrating the effectiveness of HDLA under state expansion.

Language modeling results of HDLA after state expansion. The results in table [10f demonstrate
that after state expansion, the commonsense reasoning ability of HDLA remains nearly unchanged,
while its retrieval performance shows a clear improvement of 2.42% and 3.37%.

PS(B) n, BQ PIQA HS WG  Arce Arc-c OBQ SIQA SWDE SC  FDA AVG-CSR AVG-RET

0.17 3 5801 6393 3346 5051 53.87 2500 30.80 37.56 9.00 17.76 ~ 2.09 44.14 9.62
0.17 12 59.11 6474 3332 49.80 5278 2637 3040 3690 4.95 15.65 1.00 44.18 7.20
0.4 4 6138 66.76 3943 49.72 5947 29.01 3440 39.10 1332 2332 5.08 47.41 13.91
0.4 12 58.81 67.57 3942 5122 6035 2833 33.60 3879 810 21.08 245 47.26 10.54

Table 10: Commonsense reasoning and retrieval results of HDLA before and after state expan-
sion. d;, = d, = 768 at 0.17B parameter scale, while d = d, = 1024 at 0.4B parameter scale.

B.2 HYPERPARAMETER FINE-TUNING EXPERIMENTS

Fine-tuning experiments on learning rate. In addition to the 3e-4 learning rate used in the main
text, we also compare a range of learning rates (2.0e-4, 2.5e-4, 3.0e-4, and 6.0e-4) following the
setup in |Dao & Gu| (2024). The results show that the models generally perform better with the
relatively large learning rate of 6e-4. Due to computational resource constraints, we have not yet
applied this setting to the language modeling experiments at 1.45B and 2.8B scales.

Model PS(B) Ir BQ PIQA HS WG Arce Arc-c OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET

GDN 02 20e4 594 631 319 500 520 253 296 372 4.8 132 20 43.6 6.7
GDN 02 25e4 538 640 323 510 519 260 312 364 6.1 143 14 433 7.3
GDN 02 3.0e4 601 641 327 500 536 253 30.8 367 59 143 1.0 442 7.1
GDN 02 6.0e4 569 644 339 528 546 251 312 371 6.6 197 25 445 9.6
HDLA 02 20e4 61.6 638 325 500 545 250 312 375 6.5 154 19 445 79
HDLA 02 25e4 614 649 334 495 556 261 308 376 6.8 17.1 1.4 44.9 8.4
HDLA 02 3.0e4 538 643 335 499 536 249 298 386 7.7 169 1.1 435 8.5
HDLA 02  6.0e4 506 652 344 509 560 256 338 383 8.6 202 1.8 44.4 10.2
GDN 04  20e4 588 670 381 502 591 265 328 39.0 9.7 205 28 46.5 11.0
GDN 04  25e4 580 661 384 519 593 273 332 388 9.7 213 27 46.6 11.3
GDN 04  3.0e4 584 676 394 519 584 271 33.6 382 109 238 25 474 12.4
GDN 04  6.0e4 594 679 406 508 61.7 281 326 382 109 238 25 474 12.4
HDLA 04  20e4 60.1 666 390 502 598 280 33.6 377 9.5 220 25 46.9 11.4
HDLA 04  25e4 594 675 393 511 597 277 334 378 100 218 3.7 47.0 11.8
HDLA 04 3.0e4 615 674 405 51.1 607 286 31.8 381 103 218 3.1 475 11.7
HDLA 04  6.0e4 576 671 41.6 508 604 279 33.6 39.0 12.1 237 43 473 13.3

Table 11: Commonsense reasoning and retrieval results when fine-tuning on learning rate.

Fine-tuning experiments on [3;’s range in HDLA.
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PSB) B, BQ PIQA HS WG Arce Arcc OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET

0.17 0,2] 5376 6425 3352 4988 5358 2491 298 3859 7.65 16.86 1.09 43.54 8.53
0.17 0,1] 55.11 63.66 3333 5083 5484 2577 322 3746 729 16.99 1.09 44.15 8.46
0.4 0,2] 6150 67.41 4048 51.14 60.65 2858 31.8 3813 1026 21.78 3.09 47.46 11.71
0.4 0,1] 60.52 68.01 39.88 5099 6044 2833 338 38.02 11.25 2383 245 47.50 12.51

Table 12: Commonsense reasoning and retrieval results of HDLA under different (3, intervals.

Fine-tuning experiments on the key/value activation function in HDLA.

PS(B) Act BQ PIQA HS WG Arce Arccc OBQ SIQA SWDE SC FDA AVG-CSR AVG-RET

0.17  SiLU 5376 64.25 33.52 49.88 5358 2491 29.8 3859 7.65 16.86  1.09 43.54 8.53
0.17 ReLU 5930 6436 3291 50.51 5274 2526 30.8 3680 6.39 16.62 1.00 44.09 8.00
0.17  I+elu 59.66 64.25 3297 50.59 53.54 24.66 304 37.15 6.30 17.33  1.54 44.15 8.39
0.4 SiLU 6150 67.41 4048 51.14 60.65 2858 31.8 38.13 1026 21.78 3.09 47.46 11.71
04 ReLU 61.71 67.63 39.65 51.78 59.68 27.56 31.0 3849 1053 2044 254 47.19 11.17
0.4 I+elu  61.28 6594 39.00 50.67 59.51 27.82 358 3772 10.62 2480 3.36 47.22 12.93

Table 13: Commonsense reasoning and retrieval results of HDLA with different activation functions.

C DETAILED ALGORITHMIC RESULTS

C.1 THE EXACT ARCHITECTURE OF HDLA AS A TOKEN MIXER

Here we present some details omitted in fig. |I|using mathematical formulae:

a = Ogx; € R ky = Ox, € R™* vy = Oyx, € R?™ (23)
Br = 05x; € R\ = Oyx, € RWX1 (24)
q: = SiLU(qq), k; = SiLU(k;), v, = SiLU(v;) (25)
k; = normy, (k) (26)
S, = (I - Bikik/ )Diag(\)(I — Bikik/ )S;i_1 + kyv, (27)
yi = qS; € R%*! (28)
g = x,0, € RT*! (29)
o, =y ©g € RM (30)

C.2 COMPUTATION OF A; AND B;

Consider factorizing each element of A; as the product of its square roots, then coupling them with
the left and right Householder transformations H;. This yields the reformulation of P, as follows:

P, = (Diag(v/A) = Biki(k; © VA)T) (Ding(vA) = Billee © VAOK) (3D

This form of P is a special case of two diagonal-plus-rank-one matrices’ product:

P, = (Dy0) — a, b, 1)) (Dr,2) — ar,2)bf 2)) (32)

Utilizing the compact WY representation of diagonal-plus-rank-1 matrices’ cumulative prod-
ucts (Yang & Zhang, [2024)), P; can be rewritten as the following form:

P, =D; — A;B] c R4 A, B, ¢ R%*2 (33)

We demonstrate the detailed formulation of A;, B; as follows:
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P; = (Dy 1) — a;, )b/ 1)) (Ds(2) — ar, 2Dy (5))
=Dy 1yDr(2) — ar,1)b/ (1)Di.2) — (Dr1) — &by (1y)ar )by (o)

Let:

Dt = Dt,(l)Dt,(Q) E deXdk (34)
A= [at,u) (Dt,1y — ar, )by 1))as,2) | € R#*? (35)
B, = [Dy,2)bs,1y by € R 2 (36)

Then P can be rewritten as eq. (33)’s form.

C.3 SUPPLEMENTARY DEDUCTION OF THE FORWARD CHUNK-WISE PARALLEL ALGORITHM

For deduction of cumulative products of the decay matrices Py, Po, - - -, observe that:
P, =D, - AB/
P, = (D, — AB])(D; — A3,B))
=D;D, - A;B/D;, — (D, — A;B,)A,B)
P; = (D;Dy, — A;B/ D, — (D; — A1B;)A,B, )(D; — A3B))
=D,;D,D; — A;B/ Dy;D3

— (Dy — A1B;)A;B] D3 — (D1D> — A;B{ D, — (D; — A;B1)A>B; ) A;B;
Suppose:

t

P, =Dj - W,B/D;
i=1

Then:

t
P, =(Df— Y W,B/D)(Di1 — AiBl))

=1
t t

=Dt — ZWiBiTDEH _ ((Dg — ZwiBng)Am) B/ DT

1=1 =1

t+1
— D(t)+1 _ ZWZB:DE+1

=1

t+1

=(@-> W;B,")D;"!
i=1

Where:
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t—1
W, =(D{ "' - W,B/DI A,

=1

— (= S Wil (A D)

t—1
=(I- ZWiB;T)A;
i=1
For compact form of S, S,, - - -, observe that:
S, = VK]

Sy = S1(D} — A3B; ) + VoK
= V1K| D} - ViK{ A;B; + VoK,
S3 = Sy(D3 — A3BJ) + V3K,
= V1K{ D} + V,K; D} + V3Kj — VK| A,B] D}
— ((ViK{D? - V1K A;B; + V5K, )A3) By
Suppose:
S¢ =i (ViK{ —U,B/)D!
Then:

Sty1=S:(Dj*' — A B[ ) + Ve K]

t t
=Y (VK -UB/)DI"" + V1 K[| — (Z(ViKI - UiBiT)DﬁAtH) B/,
i=1 3
t+1
=Y (VK] - U,B/)D/!
=1
t+1
=Y (viK;" -U;B;")D5!

i=1

Where:
t—1

U, =) (VK -UB/)D/ A,
=1

t—1
=) (ViK;" -U,B;")A,

=1

C.4 BACKWARD CHUNK-WISE PARALLEL ALGORITHM FOR LINEAR ATTENTION WITH

DIAGONAL-PLUS-RANK-r,;, DECAY STRUCTURE AND RANK-7%, KEY-VALUE UPDATES

For the sake of simplicity, make the following definitions:
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_ [4(—1)C+1  (n—1)C+2 dyxC
A = |:d(n—1)C di, e = d?ncq)c} € R% (37
A= [ o e o i) e RO (38)

I o (n—1)C (n—1)C+1 nC—1 dixC
Apy = |:d(n—1)C di, e d(l—nc} € R~ (39

For [X[n] , f&[n]’s © operation with K[}, A, or By, A[n] , A[n] are repeated across the sequential
dimension in an interleaving manner (analogous to torch.repeat_interleave) before taking element-
wise multiplications.

Let’s review the forward formulae of linear attention with diagonal-plus-rank-r,; decay structure
and rank-ry,, key-value updates:

’ / ’ ’ -1
U[n] = V[n]triurk_u X Tab (K[n]A[;LI—], 1) (I + triurabXTab (B[n]A[;—], 1)) € Rdv ><rabC’ (19)

Wi, = A'[n] (I + trity,, s, (BEH]A/[Z], 1)) e R XTabC (20)
Cpo) =S )W + Uy (40)
O = Sp, 1] Qpuy + Vimptrit,, 1 (K Qpyp» 0) — Cpaytritty,, w1 (B Qg 0), (41)
Su) = D 1)cSin-1) + (Kp) © A Vi) = (Bpay © Ap)Cry, (42)

In the following subsections, we deduct the gradient of Cy,,; and S,y first, which needs to be
computed serially. Then, the gradient of Q,,}, K[, V[n), A}, B[ of each chunk can be computed
in parallel. Finally, we will derive a concise form of the decay matrices’ diagonal term.

C.4.1 DEDUCTION OF 9Cj,] AND 9S|,,_

Since Cj, participates in the computation of Oy, (eq. (1)) and the update of Si,,j (eq. (#2)), its
gradient is composed of two parts:

OC ) = —00trily xr,, (Q By, 0) + 9S[ (B © Ay (43)

8C[n],intra ac[n],inter

Since Sy, participates in the computation of Cy,,), Oy, as well as the update of Sy,,;, the gradient
of Spj_yq is:

_ T T nC
aS[n_l] = W[n]ac[n] + Q[n]ao[n] + D(nfl)cas[n] (44)
OS[n—1],intra 0S[n—1],inter

C.4.2 DEDUCTION OF 9Qy,), K|}, 0V [y, 0A[,) AND OBy,

Since Qyy, participates in the computation of Oy, both intra-chunk and inter-chunk, its gradidient
is composed of:

OQn) intrapartt = (K © Ap)trivg,, «1(V ;000 0) (45)
OQpu intra,part2 = —(Bpn) © App)trig,, 1 (Cp, 80, 0) (46)
IQn)inter = (S[n-1]90n]) © Ay (47)
0Qpn) = 0Q[n) intra,part1 T OQ[n)intra,part2 + OQ[n],inter (48)
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Similarly, the gradients of K|}, B, V|5 relevant to rank-enhanced gated linear attention can be
derived as follows:

OK ] gla = ((Q[n] O Ap)trilir,, (30[T,L]V[n}70)) O A + (0S5 Vin) © Ay (49)
0K ], gla,intra K [n) gla,inter
OBl gla = — ((Q[n] O App)triliser,, (30[1](3[74, 0)) @ Ap)+ (= (081 Cp) @ Apg)  (50)
BB ],gla,intra BB[n],gla,inter

OV [ gla = 00 ytrili xr,, (QU K, 0) + S| DE 1) Ky (51)
OV [n],intra OV (4] intra

OV [n)gta = =00 trilir,, (QByy, 0) + SyDi o Byy (52)
9C1p],intra 9Cn],intra

Now we consider the gradients of each input corresponding to the arbitrary-rank WY compact rep-
resentation (eq. (I3) and eq. (I4)). The matrix inversion operation can be avoided in the backward
pass, utilizing the following observation of u;’s recurrent definition.

t—1
’

/T /T
u; = g (vik;,' —u;b; )a,
i=1
-1

! ‘T ‘T
= 08y oy = Z(kivi —b;u; )ou,

i=1
= 8Apart1 K[n]triurkﬂ XTab (V[—;] 3U[n], 1) - B[ ]trlurabxrab (U[n]aU[n]7 1)
= OA ] part = Ay © (Kpng @ Ay )trittner,, (V10U 1))

_ A[n] ® ((B[n] %) A[n])triurabxmb (U?;l]aU[n], 1)) (53)

(I- sz i@ Dj) "(a; © DG

t—1
= d(a; © D) = 1= (b; 0 Df)w, )ow,
=1
= 8(A[ 1O A n]) 8W[n] — B[n] @ A[ ]trlu( JL]@WM], 1)
= 8A[n] part2 = (GW[n] — ( [n] @ A[n])triu’ruwﬂ'ab (W[;] 6W[n], 1)) 54)

aA[n] = aA[n],partl + 8-A[n],partQ (55)

t—1 ] )

w =Y (vi(k; @ D) —ui(b; 0 Dy) ") (a; © DG
i=1

= 9(b; o DY) = —u/du,(a, o DT
t

= 8b71,wy7part1 = —(1 % Dé) Z ((aj © Dé_l)duyui)
j=it+1

= 8B[n]7wy7part1 = —(1 (%) A[n]) ((A[n] ® A[n])trﬂmbxrab (8U&]U[n], —1)) (56)
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(I - Zwl ;o D}Y) ) (a, © DY)
= 8(b1 (%) Dlo) = —Ww; 6wt(at O) Dé 1)

t
= 6]:)i,vvyg;)a»rtQ = _(1 @ DE)) Z ((aJ O] D%_l)aW;WZ)
j=i+1

= OBy parz = ~(1 0 M) (A © Al (OW Wi, =1)) (57)

8B[n],wy = —(1 (%) A[n]) ((A[n] ® A[n])trﬂrwxmb (6U[1]U[n], —1))

— (12 Ap) ((A[n] © A[n])trilrabxrm (3W[—;]W[n], —1)) (58)

Similar observation and deduction yields the following results:

1
OK; vy = Z Dj a](‘?u v,
Jj=i+1
t

= (10D} > (D) 'a;)ou)v;

j=i+1
) t
=1oD)) Y ((aj)auy) v
j=i+1
/ . T
= 0Ky wy =[10D§ 10D} --- 10D§l o (A[n]trll(éU[n]V[n], —1))
= 8Km7wy =1 A[n]) © ((A[n] ® A[n])trﬂrabxrk,, (3U[—;]V[n], —1)) (59)
t—1 .
w = (vilki @ D) —wi(b; @ D) ) (a; @ D)
=1

t
= OViwy = »_ Ou;(a; © DF )" (ki © D))
j=i+1

= OV n)wy = OUtrily,, <1y, ((A[n] O Ap) " (K © Ap), —1) (60)
If a tensor participates in the computation of WY representation and rank-enhanced gated linear

attention at the same time, then its total gradient is the summation of gradients relevant to the former
and the latter computations. For example:

OVin] = OVinlgia + Vi (61)

C.4.3 DEDUCTION OF 9A[,] AND 9A

Notice that the diagonal terms of Diagonal-Plus-Rank-r,; decay matrices are applied on other input
tensors, using their chunk-wise cumulative products, and they are applied on Q) and A,,; (K|
and B,)) in element-wise multiplication (division) manner:
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' — (n—1)C+t
Q["]v:vt - Q[n],:,t © d(’n 1)C
! _ (n—1)C+(t—1)
[n],trap+r — A[n],:,t-ra,b+r d(n 1)C

o (n—1)C+t
B[n],;,t-rab+r - B[n],iyt'rub"rT d(n 1HC

’ n—1)C+t
[n],,treo+r = K[n]ﬁ,t'Tkv-‘rT % dgn—1§c

Now, we’d like to derive the gradient for the chunk-wise cumulative sum of the logarithms of diag-

=10+ d(n 1)C+2

onal decay terms, i.e., (n—1)C (n—1)C+17 """

For simplicity, consider the special case when r,;, = 1, and the result can be easily generalized to

arbitrarily chosen 74p.

Let’s derive the gradient of dEZ Bg“ and déz 3g+t ! first, foreach 1 < ¢ < C:

n—1)C
ad( 1) + (aq (n—1)C+t QQ(n 1)C+t)

n—1)C+t n—1)C+t
(3kn Do+t OKm-1c+t) @ (dgn 1%0 QdEn_lic )

n—1)C+(t—1
8d§n 1%0 = (aAn Do+t © An— 1)C+t)

—1)C+(t—1 —1)C+(t—1
— (@b 1yc @ bra—ned) @ (i e T e T )

Given a vector y, the relationship between Jy and Odlogy is:

dlogy = y(dy)

Thus:

-1)C -1)C
310g(dgz_1§c+t) (09 © A1) 1) QdEZ 1;c+t

n—1)C
(8kn 1 C+t@k(n 1)C+t) (dgn 1)C+t)
(n—1)C+(t—1)

n—1)C+(t—1
810 d( g ( ) = (8a(n 1)C+t O] A(p— 1)C+t) O) d(nfl)C
(n—1)C+(t—1)
(8b @b[n]) (d(n e )
Notice that:
(n—1)C+t

aq(n—1)0+t = 0q[,) © d(n nc

/ n—1)C+(t—1
a3L(n—1)c+t =0apm_1)04t © dgn 1%0 =y

’ n—1)C+t
ak(nfl)C+t = 8k(n71)0+t © dgnqgc

’ —1)C+t
8b(n—l)Cth = b1yt © ngq;c

Substitude them into (eq. (64) and eq. (63)), the result is:

510%@%2:32“) = (0d(n-1)c+t © K(n—1)c4t)
— (Ok(n—1y)c+t © Kn—1)c+t) — (Ob(n_1)04¢t © bn_1yc4¢)

Olo dgz 3?”“ V= = (Qam-1)c+t © A(n—1)C+t)
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Review that A, (A[n]) is the column-wise concatenation of dg:jgg” (dEZ:BgHt*D) inside the

n-th sequential chunk:

[ 4(n—1)C+1 (n—1)C+2
Ay = |:d(n—1)C d(n—l)C d?ncq)c} (73)
A _ (n—1)C (n—1)C+1 nC—1
Ap) = |:d(n71)C d(n71)c d(nfl)C} (74)

Therefore, the corresponding chunk-wise parallel forms for dlogA,,) and Glog.&[n] are as follows:

OlogA ) = 0Qpn © Q) — 9Ky © Ky — 0B, © By (75)
810g./~\[n] = 8AM © A[n] (76)

For arbitrarily chosen r,;, and 7., define the following rankgather, . operation. Suppose the
operator matrix corresponds to “rank” 7:
Eqxc = rankgather, o(Egy,.c) 77

Then E4 ¢ is defined as follows:

r—1
E,;=Y E .., (78)

1=0

Simply utilizing the above operator, we can extend eq. and eq. into rank-r,; low-rank term
of decay with rank-r,, key-value updates:

OlogApn) = 0Qn) © Q)
— rankgather, (0K, © Kj,)) — rankgather, , (0B, © By)) (79

alog[\[n] = rankgather, | ~(0A[,) © Apy) (30)

C.5 DEDUCTION OF HDLA’S EQUIVALENT TEST-TIME TRAINING FORMULAE

First, let us revisit the optimization problem:

Se1 = 2 min K]S, % )
1

Si2 = min (2Trace(S;':1diag(1 — )\t)sm)) , (82)

S, = D min 80 — 7 /54 (83)

For the first optimization subproblem, online SGD yields:

i1 =St - Vs, (5 min 7812 (84)
(85)

=Si_1 — Bikik/ Sy (86)
(87)

= (I— Bikik/)S; 1. (88)
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For the second optimization subproblem, online SGD yields:

St2=8¢1—Vs,, (;Trace(s;diagu - At)st,l)) (89)
(90)

= St71 — (I — diag()\t))Sm (91)
(92)

= diag()\t)St’l (93)
(94)

= diag(A) (I — Bikik, )Si—1. (95)

For the third optimization subproblem, online SGD yields:

S: =82~ Vs,, (ﬂ; min |k Spo — v /ﬁt|2) (96)
97)

= Si2 — Biki(k/ Si 2 — %v? ) (98)
(99)

= (I - Bikik)Si 2 + kv, (100)
(101)

= (I - Bikik/ )diag(A\e) (I — Brkek, )Si—1 + ke . (102)

Thus, this three-step optimization problem yields the HDLA recursive formulation.

D EXPERIMENTAL DETAILS

Mechanistic Architecture Design. In strict compliance with the MAD protocol, we employ a two
layer token mixer-channel mixer architecture, where each layer’s linear attention is aligned with a
hidden state of dimension of 2048 (8 attention heads with d;, = d,, = 16), and run all experiments
on NVIDIA H200 GPUs using bfloat16 precision. For state expansion experiments, the number of
attention heads has been changed to 4.

Zoology (Multi-Query Associative Recall). The learning rates are swept by: np.logspace(-4, -2,
4) for sequence length 256, np.logspace(-5, -3, 4) for sequence length 512, [1e-5, Se-5, le-4, Se-4,
le-3, 5e-3, 1e-2] for sequence length 1024 and 2048, and we take the best result from all learning
rates. The parameter scales are aligned to 1.65M.

Language Modeling. We trained models on fineweb-edu, including small-scale and large-scale ver-
sions. For the small-scale version, we trained for 10B tokens with a learning rate of 3e-4, sequence
length (seqlen) of 2048, and a total batch size of 256 (num gpu x batch per gpu x grad acc). For the
large-scale version, we trained for 100B tokens with a learning rate of 3e-4, seqlen=8k, and a total
batch size of 128. All experiments were conducted on 8/32 A100 GPUs. We used FLA to imple-
ment the model, the Flame framework for training, and Im-eval-harness for evaluation. We report
results on wikitext, lambada_openai, boolq, piqa, hellaswag, winogrande, arc_easy, arc_challenge,
openbookqa, social_iqa, swde, squad_completion, and fda. For wikitext (word_perplexity) and lam-
bada_openai (perplexity), as well as for swde, squad_completion, and fda, we report the Exact-Match
(EM) score; for hellaswag, arc_challenge, and openbookqa, we report acc_norm; for the rest, we re-
port accuracy (acc).

Image Classification. Each model is trained and evaluated on 4 NVIDIA A800 GPUs using Pytorch
DDP. The input size of ImageNet is 224 x 224. Following Deit, the batch size is set to 2048 during
300 training epochs with a cosine decay learning rate whose peak value is 2.4 x 103, The warmup
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epochs is set to 20. We choose AdamW (5; = 0.9, B2 = 0.98) with 0.05 weight decay as the
optimizer. Note that we do not use cutmix or mixup during the training. Results of MetalLA —Chou
et al.| (2024), HGRN |Qin et al.| (2023), GLA [Yang et al.| (2024a), Mamba |Gu & Dao| (2024) and
Deit|Touvron et al.|(2021)) are directly borrowed from |[Chou et al.[(2024)).
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